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micronuclAI enables automated
quantification of micronuclei for
assessment of chromosomal instability
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Miguel A. Ibarra-Arellano 1,11, Lindsay A. Caprio 2,3,11, Aroj Hada1,4, Niklas Stotzem1,5,6,7, Luke L. Cai2,3,
ShivemB. Shah 2,3, ZacharyH.Walsh2,3, JohannesC.Melms 2,3, FlorianWünneman1, Kresimir Bestak1,
Ibrahim Mansaray1, Benjamin Izar 2,3,8 & Denis Schapiro 1,4,9,10

Chromosomal instability (CIN) is a hallmark of cancer that drives metastasis, immune evasion and
treatment resistance. CIN may result from chromosome mis-segregation errors and excessive
chromatin is frequently packaged in micronuclei (MN), which can be enumerated to quantify CIN. The
assessment of CIN remains a predominantly manual and time-consuming task. Here, we present
micronuclAI, a pipeline for automated and reliable quantification ofMNof varying size andmorphology
in cells stained only for DNA. micronuclAI can achieve close to human-level performance on various
human and murine cancer cell line datasets. The pipeline achieved a Pearson’s correlation of 0.9278
on images obtained at 10X magnification. We tested the approach in otherwise isogenic cell lines in
which we genetically dialed up or down CIN rates, and on several publicly available image datasets
where we achieved a Pearson’s correlation of 0.9620. Given the increasing interest in developing
therapies for CIN-driven cancers, this method provides an important, scalable, and rapid approach to
quantifying CIN on images that are routinely obtained for research purposes. We release a GUI-
implementation for easy access and utilization of the pipeline.

Chromosomal instability (CIN) is a hallmark of aggressive cancers1–3, and
developmental and age-related disorders4. In cancer, CIN drives tumor
progression, heterogeneity, immune evasion, and treatment resistance
across a rangeof tumor lineages3,5–10.CINmayarise fromdifferentmutagens
(e.g., radiation, mitotic toxins), defects in DNA repair, andmost frequently,
from errors in chromosome segregation during anaphase11–13. Following
asymmetric distribution of chromatin, cells receiving excessive material
frequently package DNA in micronuclei (MN). MN are variable in size
(ranging from small (0.5–1 µM) to large (10–15 µm)), however less than 1/3
of the size of the primary nucleus, exist in different morphologies and
locations in relation to the nucleus, and lack the normal nuclear envelope,
which results in frequent rupture and release of double-stranded DNA
(dsDNA) to the cytosol14,15. This in turn triggers the cytosolic DNA sensing

machinery via cGAS-STING, that may result in production of pro-
immunogenic cytokines (e.g., type I interferons) when stimulated briefly,
but suppresses cytokine production and promotes STING-dependent pro-
metastatic pathways when activated tonically, such as in the case of most
CIN-driven cancers7,16,17. Thus, enumerating MN of varying qualities is a
useful approach for quantifying CIN and has important functional impli-
cations for tumor behavior, immune responses, and treatment outcomes.

Several approaches, such as cytogenetics, quantitative imaging and
single-cell genomics can be used for the assessment of CIN18. Among them,
quantitative imaging via microscopy is widely used for its simplicity, low-
cost, and scalability. Here, assessment of CIN is performed through the
quantification of its associated structural biomarkers, including MN, ana-
phase bridges, and Nuclear Buds (NBUDs), which are MN that may
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maintain a visible stalk of nucleoplasmic material19, among others12,20–22.
Although quantification of these functional CIN surrogates from micro-
scopy images is a routine process in cancer research, it is typically achieved
through manual scoring. Therefore, microscopy images are divided into
highpowerfields of view (FOV), and the total number of nuclei aswell as the
number ofMN are counted within each FOV. The rate ofMN and nuclei is
then estimated over the whole image in terms of ratio between the number
ofMNand thenumberof nuclei averagedoverall theFOVregions.During a
standard analysis, multiple images are scored per sample, resulting often in
at least 30 FOVs consisting of approximately 1000-1500 primary nuclei.
Subsequently, all these imagesmust bemanually counted andanalyzed7,23–25.

Themanual nature of this workflowmakes it tedious, time-consuming
and error prone, thus, limiting scalability. Moreover, the morphology and
localizationofMNrepresent an important source ofmisclassification errors.
The complexity of the task is further exacerbated by the lack of a standard
protocol leading to inter-observer variability inMN counting. Additionally,
density of nuclei in each image and the resulting crowding makes it chal-
lenging to confidently separate and accurately assign MN events to nuclei
for both humans and automated methods26. Thus, improved methods for
automatedCINquantification are necessary to increase speed, accuracy and
robustness of CIN-related research.

In this study, we aim to develop a robust and scalable solution for
automatically quantifying CIN via MN counting. micronuclAI quantifies
CIN using nuclei-stained images to assess the number of MN associated
with each nucleus individually.We comparemicronuclAI results tomanual
expert annotationonhumanandmurine cell lines to assess theperformance
and robustness across multiple datasets and microscopy conditions.
Additionally, micronuclAI offers tools for manually annotating new data-
sets with the PySimpleGUI and VR labeling tools. MicronuclAI is publicly
available as anopen-sourcePythonpackage, aNextflowpipeline, andauser-
friendly web-based Streamlit application.

Results
Design and implementation of micronuclAI
We developed micronuclAI, a deep-learning-based pipeline to assess CIN
through automated quantification of MN from nuclei-stained images.
micronuclAI distinguishes itself from previous methods26–32 as it 1) can
quantify for bothMNandNBUDs; 2) requires onlynuclear (DNA) staining;
3) can work with 10× to 20× image objectives; 4) can work with any seg-
mentation mask, and most importantly 5) is extensively evaluated in mul-
tiple cell lines and thus, ready for use by the community for nuclear-stained
images of cell lines (Fig. 1 and Table 1). Additionally, compared to manual
scoring, micronuclAI eliminates inter-observer variability and significantly
reduces the CIN scoring time (Supplementary Fig. 1).

Generation of the training data set and model selection
Expert annotation (the process of manually defining the amount of MN)
was performed using a custom tool, written in Python33, on 23 imageswith a
resolution of 8829×9072 pixels of the humanmelanoma cell line A375. To
perform the nuclear segmentation of the training images, we testedmultiple
methods and models: DeepCell Mesmer / DeepCell nuclear34, Cellpose35,
and Stardist36. We visually inspected the generated nuclear segmentation
masks and chose Stardist which generated themost accuratemasks through
qualitative comparison of several ROIs within the input image.

Nuclear segmentation was performed using the Stardist segmenta-
tion method with default parameters. Importantly, micronuclAI perfor-
mance is robust across multiple segmentation approaches
(Supplementary Fig. 2), thus the choice of the segmentation method was
not critical. With the help of the segmentation masks, we isolated 84,286
nuclei. From each isolated nucleus, the number of MN present was
manually counted for CIN estimation and henceforth termed as “CIN
count” (Fig. 2a) (See Methods). In all analyzes, NBUDs are considered
MN of distinct localization and morphology. From the labeled nuclei,
77,733 (92.23%) had a CIN count of 0; while 6553 (7.77%) of the labeled
nuclei had a CIN count of at least 1. To better handle this data imbalance,

we removed 23 (0.0272%) outliers with a CIN count ≥ 4, and randomly
sampled the same number of nuclei with a CIN count of 0 to the nuclei
with a CIN count > 0. The balanced training dataset consisted of 12,304
nuclei from 21 of the 23 labeled images; from which 6152 (50%) had CIN
count of 0; 5473 (42.74%) had a CIN count of 1; 564 (4.58%) had a CIN
count of 2; and 92 (0.75%) had CIN count of 3 (Fig. 2b). From this
balanced dataset of 12,304 nuclei, (90%) were used for training and (10%)
used for validation. The test dataset consisted of 804 nuclei obtained from
the remaining 2 hold out test images (Fig. 3a).

We selected the EfficientNet-V2-S37 model architecture as the final
model basedon the average 10-fold cross-validation (CV)performance.The
consistent performance across all the “folds” validated this decision,
ensuring that our model is both robust and well-generalized. Furthermore,
we compared the performance of the model using both a balanced and an
imbalanceddataset. This comparisonhighlightedbettermodel performance
when trained on the balanced dataset (Supplementary Table 1).

micronuclAI accurately identifies CIN in the hold-out test set
On the hold-out test set comprising 804 isolated nuclei, the best model
(EfficinentNetV2-S) achieved anaverageF1-weighted scoreof 0.9301, anda
MCC (Mathew’s correlation coefficient) of 0.8751 (Fig. 3b). These metrics
showcase the ability of the model to accurately quantify the number of MN
in each isolated nuclei image. Additionally, the attention maps correlate
with the areaswhereMNare present, and in caseswhere there is noMN, the
attention is focused across the entire nucleus (Fig. 3c). This shows themodel
has learned to identify the specific features and patterns associatedwithMN
and conversely accurately identifies cells without MN.

micronuclAI performance generalizes across biological and
technical contexts
To assess the generalizability ofmicronuclAI to a new cell line, we evaluated
the complete micronuclAI pipeline on images taken from the NCI-H358
non-small cell lung cancer (NSCLC) line. The rate of CIN was modulated
using previously established genetic constructs. In brief, overexpression of a
dominant-negative mutant of mitotic-centromere associated kinesin
(dnMCAK) enhances CIN in otherwise CIN-low cell lines38. Thus, in
addition to the parental cell line (H358) and expression of a vector control
(H358-GFP), we also examined a CIN-modified derivative (H358-
dnMCAK).

Evaluation of the complete pipeline was done based on the calculation
of the CIN score, as a ratio of the CIN counts to the number of total nuclei
present, compared betweenmanual counts from experts and the automatic
counts obtained from micronuclAI. The CIN scores for individual images
were found to be very accurate for each sample resulting in an RMSE value
of 0.0041, R2 of 0.881, and a Pearson’s correlation of 0.932. These metrics
signify that the manual and micronuclAI automatic counts show a high
correlation. Furthermore, the metrics improve when the CIN score is cal-
culated as an average of multiple technical or biological replicate images,
which is the standard procedure in manual counting. When taking average
counts for the three genetic variants of H358 cell line; H358 control, H358-
GFP, andH358-dnMCAK, the values for RMSE decreased to 0.0020, the R2

increased to 0.9794, and the Pearson’s correlation increased to
0.989 (Fig. 4a).

micronuclAI performance is robust to different species, magni-
fication and technical variation
We tested micronuclAI’s generalizability to unseen nuclear stains and
imaging conditions using independent datasets. Therefore, we initially
leveraged the BBBC039v139 data which is a Hoechst-stained U2OS osteo-
sarcoma cell line imaged at 20×. Comparing the CIN score between human
expert count and our pipeline revealed that micronuclAI was able to
accurately quantify the number of cells and micronuclei in the images. For
20 randomly selected images present in the dataset,micronuclAIwas able to
achieve an RMSE of 0.0159, an R2 of 0.905, and a Pearson’s correlation of
0.951 confirming the magnification invariability in images ranging from
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10× to20×magnificationand stain invariability betweenDAPI andHoechst
stains (Fig. 4b).

Additionally, we evaluated the performance of the pipeline on murine
lung cancer cell linesKP (KrasG12DTp53−/−) (n = 5) andKL (KrasG12DLkb1−/−)
(n = 5).Weobserved a great degree of correlationbetween the resultswith an
RMSE of 0.00684, an R2 of 0.9194, and a Pearson’s correlation coefficient of
0.9620. Thus, confirming the robustness of the pipeline to non-human cell
lines. Importantly, we used our previously identified default parameters for
preprocessing and predictions of these cell lines, thus, further optimization
would likely improve the results (Fig. 4c). All the results obtained on the
different cell types have been summarized in Table 2.

Discussion
In this study, we present micronuclAI, a framework that harnesses the
powerof deep-learning technology and computer vision techniques forCIN
assessment in cancer cell lines in situ. By focusing on MN quantification,

micronuclAI offers a reliable proxy for assessing CIN at scale, providing a
standardized and efficient solution.

Prior efforts recognized the importance of automating MN
quantification40,41, typically through combinations of traditional computer
vision, machine learning or deep learning approaches with their own
advantages and limitations as shown inFig. 1 andTable 1.A largenumberof
previous works have used the Cytokinesis-block MicroNucleus (CBMN)
assay following the protocols defined by the HUMN (HUman Micro-
Nucleus) project42 to quantifyMNwithin binucleated lymphocytes. Briefly,
the CBMN assay is a standardized method for genotoxicity studies where
biomarkers ofCINare scored inbinucleatedcells after cytokinesis is stopped
by addition of cytochalasin B40,43. Other exemplary methods automate MN
quantification in various other cell/tissue types after genotoxic exposures,
citing no difference in results between the in vitroMN tests with or without
the use of cytokinesis blockers like cytochalasin B44,45. Meanwhile, other
methods have proposed quantification of nuclear budding MN
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Fig. 1 | micronuclAI pipeline overview and previous work. amicronuclAI aims to
be the go-to tool for CIN assessment via automatic quantification of MN in nuclei-
stained images over the manual workflow. Evaluation of the pipeline was performed
by comparing the CIN score, a ratio of the total number of micronuclei and asso-
ciated structures to the total number of nuclei present, both manually and auto-
matically in multiple cell-lines. b Comparison between previous methods and

micronuclAI. Prior efforts to automatically quantify CINbring their own advantages
but also have certain limitations involving ability to account for multiple species,
multiple MN structures (MN or NBUDs), limited software availability, and
dependence on image acquisition parameters. cMock-up of the micronuclAI web
application (https://micronuclai.streamlit.app/).
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specifically28, or focus on a combination of MN and toroidal nuclei31 to
quantify CIN. Importantly, to our knowledge there have been no published
methods for automatic quantification of MN of varying morphology,
localization, across species and lineages in cancer cell lines. In addition,most
methods evaluate their performance on a limited dataset plagued by inter-
observer variability. Therefore, existing methods face certain limitations
such as i) quantification specifically ofmicronuclei alonewithin binucleated
lymphocytes, ii) quantification ofNBUDs alone, iii) requirement of cellular/
cytoplasmic staining in addition to nuclear staining, iv) lack of adequate
evaluation, and v) are not open-source or easily available. In contrast,
micronuclAI performs well across multiple biological, perturbational, and
technical conditions, and achieves human-level performance at a fraction of
the time, taking approximately 10 s (on a MacBook Pro M1) to score 3000
cells compared to the ~120min for manual scoring. Its robustness extends
to handling multiple nuclear staining, as demonstrated with DAPI and
Hoechst datasets. Furthermore, micronuclAI proves its magnification
invariance by excelling under varying microscopy conditions, including
10×, and 20× objective datasets. Furthermore, our pipeline is also robust
against out-of-focus nuclei images which are common in microscopy
images as themodel has been trainedwith a limited number of blurry nuclei
(Supplementary Table 2). The pipeline also outputs a percentage of out-of-
focus nuclei images from the given image as a form of quality check.

Despite all its strength, micronuclAI has also limitations. First, it
cannot explicitly communicate the reasoning behind its predictions, but its
value lies in its consistent and scalable detection of micronuclei as a reliable
indicator of CIN. We partly address this issue by using saliency maps to
highlight the regions in the image that contributed the most to drive the
prediction. Another limitation is the reliance on a nuclear segmentation
mask. Although precise identification of the nuclear boundaries is not
required and the method is robust to multiple segmentation methods,
instances of extensive mis-, over-, and under-segmentation may affect the
predicting capabilities of the framework so the segmentation quality cannot
be fully omitted. Cases where the model does not perform well are mostly
attributed to instances in images with overlapping nuclei (due to cell lines
which tend to grow on-top of one another), irregularly shaped nuclei, or the
presence of apoptotic cell fragments in the periphery of isolated nuclei
(Supplementary Fig. 3). Instances of the sameMN on two different isolated
nuclei imagesmight be present, leading to a potential double counting of the
same structures within two different patches. Such instances occur on areas
of the image with high nuclear/cell density that might yield misleading or
inflated results. Although rare, these instances can be minimized by fol-
lowing two approaches: 1) changing the FOV used for the nuclei isolation
step and, 2) addressing the experimental design before imaging. To quantify
the frequency of these occurrences, we calculated the Intersection over
Union (IoU) between all the patches in an image. 0.00168% of the pairs had
an IoU ≥ 0.5 signifying that only a negligible amount of overlap is present in
the dataset, hencewe can safely disregard the concern for double counting—
especiallywhenalso controlling for cell density. Lastly,wewould like tonote,
that MN enumeration from H&E staining is currently not supported due
to a lack of established ground-truth data obtained from this staining
modality.

In summary, micronuclAI is a robust and scalable tool for quantifying
CIN, andwill be a critical tool for understanding CIN biology and its role in
tumor biology and treatment responses.

Methods
Cell culture
A375 and NCI-H358 were obtained from the American Type Culture
Collection (ATCC). KP (KrasG12DTp53−/−) and KL (KrasG12DStk11−/−) are
descriptors of a syngeneic pair of murine non-small cell lung cancer
lines and were kindly gifted fromDr. Kwok-KinWong. KP is characterized
by both oncogenic mutations in Kras and loss of function in Tp53
(KrasG12DTp53−/−), whereas KL is defined by having oncogenic mutation in
Kras and loss of function in a tumor suppressor gene Stk11, which encodes
the protein LKB1 (KrasG12DStk11−/−)46. NCI-H358, KP, and KL wereT
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maintained in RPMI culture media supplemented with 10% FBS and 1%
penicillin/streptomycin, whereas A375 were cultured in DMEM, supple-
mented with 10% FBS and 1% penicillin/streptomycin.

Data Acquisition
Cellswere seededatadensityof1500cells/well inopaquebottom96-well tissue
culture plates (Corning). Once confluency reached 70-80% in the well, cells
were fixed in 4% paraformaldehyde for 15min. After washing with PBS, cells
were incubated with Hoescht (Thermo Fisher) diluted in Odyssey Blocking
Buffer (1:10000). Fluorescent imageswereobtainedon theZeissCelldiscoverer
7 using the PlanApochromat 20×/0.7 objective, 0.5× magnification changer,
and Axiocam 506. Whole-well images were stitched and exported using Zen
3.1 Software resulting in a final resolution of 8829 x 9072 pixels.

Segmentation
We extracted only the nuclear channel from raw images as ome.tif files
using AICSImageIO (v 4.11.0)47. We performed nuclear segmentation on
the resulting ome.tif images using:DeepCellMesmerWhole-Cell (v 0.4.1),
DeepCell Mesmer Nuclear (v 0.4.1), DeepCell Nuclear Segmentation
(v 0.4.1)34, Stardist (v 0.8.3)36 and Cellpose (v 2.2.2)35 on a high-
performance computational cluster, bwHPChelix. DeepCellMesmer and
DeepCell Nuclear are deep-learning models used for cell segmentation
andnuclear segmentation.DeepCellmodels are trained on a large number
of images to achieve human level performance in the segmentation task.
While DeepCell mesmer is trained on histological images, DeepCell
Nuclear is optimized for segmentation on images derived from cell cul-
tures. Cellpose is a human-in-the-loop generalist model for cell segmen-
tation, providing some pre-trained models. In this case, we used the
‘nuclei’model to perform nuclei segmentation. Stardist is a deep-learning
based object detection with Star-convex shapes algorithmused for 2D and
3D object detection and segmentation in microscopy. Training data was

generated using Stardist generated segmentation masks and the corre-
sponding nuclear ome.tif files.

Nuclei isolation and preprocessing
Using the segmentation mask, we obtained the coordinates that circum-
scribe eachof the segmentednuclei.We thenuse these coordinates to extract
isolated nuclei (IN) patches from the nuclear images. To homogenize the
apparent cell sizes of each single nuclei, we calculate a scaling factor for each
one. The factor is calculated with the following formula:

Scaling Factor ¼ Desired nuclei to image ratio×maxðNuclei Width;Nuclei HeightÞ
Final Image size

In this study, we use a nucleus to image ratio of 0.65; meaning each
isolated nuclei occupies sixtyfive percent of thefinal image size.We increase
the field of view (FOV) around each isolated nucleus by expanding the
circumscribed bounding box (20 pixels in the case of the training data). To
remove segmentation errors from the pipeline, we remove the bounding
boxes falling into the first five percentile by area. The remaining isolated
nuclei images are then resized and cropped to the center to a final resolution
of 256 × 256 pixels. Lastly, we correct the brightness intensity in each image
with brightness normalization. To facilitate this process, we developed the
mask2bbox Python library, which is specifically designed for generating,
handling, and visualizing bounding boxes froma segmentationmask image.
Mask2bbox is available as a python package via the Python Package Index
(PyPI), Bioconda, and as Docker and Singularity containers.

Data labeling
Atotal of 84,286 isolatednuclei patches from theA375 cell line images at 10×
were labeled by experts using a PySimpleGUI-based (v 4.60.4) labeling tool.
This tool is available to use as a PyPI and Conda package. To label the
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Fig. 2 | Data preprocessing and labeling. a micronuclAI image preprocessing
initially requires the extraction of bounding boxes via a segmentation mask. Sub-
sequently, Nuclei images are then processed by expanding the bounding box around
each nucleus, removing small outliers, and resizing to 256 × 256 pixels while cen-
tering the object within the image. (Further details in the methods section). bWith

the help of a custom-made labeling tool, the CIN count of each isolated nuclei is
recorded. The CIN count quantifies each MN and NBUD per isolated nuclei while
specific patterns such as apoptotic nuclei, mitotic nuclei, and low quality or blurry
images are given a CIN score of 0 to account for such structures present in real data.
(All scale bars = 10 µm).
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micronuclei, we adapted the protocol established by theHUMNproject42 for
human lymphocytes, and the scoring criteria in oral exfoliated cells from48

with someadjustments given the cell linesused anddownstreamapplication.
A micronuclei is counted if it fulfills the following criteria:

a. Rounded and smooth perimeter suggestive of a membrane, if separate
from the primary nuclei.

b. Less than one-third of the diameter of the associated nucleus, but large
enough to discern the shape.

c. Staining intensity similar to that of the primary nucleus.
d. Texture similar to that of the primary nucleus.
e. Same focal plane as the primary nucleus.

A NBUD is counted if it fulfills the above criteria for micronuclei and
appears to be touching or budding out of the primary nuclei but is clearly
distinguishable from/within the primary nuclear boundary.

Additionally, apoptotic and mitotic cells were identified with the fol-
lowing criteria and labeled as 0 CIN count.
a. Apoptotic cells: Single-cell patches with a large number of fragmented

objects and no definitive primary nuclei were considered as apoptotic
nuclei.

b. Mitotic cells: Single-cell patches with very bright double nuclei were
considered as mitotic nuclei.

Model Training
We used the labeled isolated nuclei images to train a convolutional neural
network (CNN) toquantify the number ofmicronuclei associatedwith each

primary nucleus. The quantification is achieved using amodel based on the
EfficientNet37 V2 architecture. The model architecture (Fig. 3a), is com-
posed of a fully connected CNN, followed by a channel-wise convolution
component as a feature extractor, and a fully connected layer for the final
prediction. We employ versions of EfficientNet V1 and V2, which are
models of increasing complexity, as the backbone feature extractors. The
models were implemented in Pytorch (v 2.4.0)49 using the Pytorch lightning
framework (v 2.4.0)49.

Themodels were trained using themean squared error (MSE) as the
loss function and Adaptive moment estimation (ADAM) as the gradient
descent optimizer. The initial learning rate was set to 10e-3 and decayed
usingReduceLRonPlateu (with a factor of 0.2 and a patience of 10 epochs)
with an early stop criteria to a maximum of 300 epochs. For regulariza-
tion, a dropout value of 0.2 was added to all fully connected (FC) layers.
All EfficientNet (B0-B7) models were trained both with random initial
weights and with weights of models pre-trained on ImageNet. Data
augmentations were applied at random during training which include
random vertical flip, random horizontal flip, random rotation ±0–30
degrees, randomly applied gaussianblur (p = 0.3, kernel_size = (3, 3)) and
data normalization [−1, 1]. The mini-batch size was set to 64 for all
models.

A 10-fold cross validation was performed over the entire dataset to
compare between the different models. We evaluated and selected the
backbone architecture based on the lowest rootmean squared error (RMSE)
value and F1-score on the validation set. Prediction values were rounded to
the nearest integer for comparison with the training labels. Consequently,
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Fig. 3 | Overview of the model training and testing. aWe train the micronuclAI
model on the preprocessed and labeled isolated nuclei from DAPI stained images
obtained from theA375 cell line. The training data consisted of 21/23 labeled images;
the remaining 2/23 images were used as a hold out test dataset. We selected the best
model based on the performance on the validation set. b The best model was then
tested on a holdout test dataset consisting of 804 nuclei from 2 labeled images. With

an average precision score of 0.9860 micronuclAI offers high accuracy for the
detection of CIN. During inference, micronuclAI outputs predicted CIN counts for
each detected nuclei in a csv file along with significant statistics. c Activation maps
show localized activation around MN in contrast to nuclei without CIN, where the
activation is not localized and appears to diffuse around the primary nuclei. (All scale
bars = 10 µm).
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we trained the final model using the entire dataset to leverage all available
data for potentially improved performance.

Manual data annotation
In addition to the manual labeling performed to generate the training data,
we manually counted nuclei and MN on the cell lines which were used for
validation of the complete pipeline.We used FIJI’s (v 2.14.0 / 1.54f)50 multi-
point tool to count all nuclei present in an image while separately keeping
trackof all theMNandNBUDs. These valueswere thenused to estimate the
degree of CIN by calculating the CIN score, as a ratio between the total
number of MN and total number of nuclei for each image. A Monte Carlo
approachwasused to estimate theCIN score in imageswhere the number of
cells was too large for manual labeling. This Monte Carlo estimation con-
sistedof randomly selecting 3 FOVfromeach image and assessingMNs and

NBUDs for ~800–1000 nuclei per FOV. A summary of all the available data
is present in Supplementary Table 3.

AVirtual Reality (VR) implementationwas also developed that offers a
gamified approach to annotation of single nuclei images. Since acquiring
annotations is a laborious yet critical task, such an implementation may
have great potential for increasing motivation from diverse communities
within and outside of academia. A schematic of the VR application is pre-
sented in Supplementary Fig. 4. In brief, the VR environment reflects a 3D
representation of the physical workspace, requiring linear scaling for object
size and spacing to maintain spatial coherence (Fig. 4a). The key objects
include the Patch Stack, a collection of individual cropped cell images
stacked vertically; the Buckets, which act as containers where crops are
assigned to indicate theirmicronuclei count (Fig. 4a); and theWhole Image,
a display indicating the bounding box coordinates of a selected crop
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Fig. 4 | micronuclAI pipeline validation results. To validate the pipeline with a
real-world application, we compared manual CIN scores against predictions
obtained frommicronuclAI for 4 different cell lines: aWeused aDAPI-stainedH358
human non-small-cell lung cancer derived cell line (R2 = 0.8212, Person’s Corr =
0.9124). b we used Hoechst stained U20S human osteosarcoma derived cell line
obtained from the Broad Bioimage Benchmark Collection (R2 = 0.8221, Pearson’s

Corr = 0.9278). c Lastly, we tested micronuclAI’s capability to identify CIN on non-
human cell lines by using the KP and KL cell lines derived from mouse non-small-
cell lung cancer (R2 = 0.9168, Pearson’s Corr = 0.9620). For each cell line, we can
observe the output of the nuclei isolation step resulting in homogeneous patches,
which are then used as input for the model to make predictions on. (All scale
bars = 10 µm).

Table 2 | Results obtained on different cell types

Dataset RMSE Avg. Accuracy R2 value Pearson’s Correlation

H358 0.00456 90.9269 0.8325 0.9124

Broad u2os 0.01436 86.6797 0.8609 0.9278

KP/KL 0.00684 91.1198 0.9194 0.9620

Overall Average 89.5888 0.8709 0.9340
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(Fig. 4a). All objects are positioned symmetrically around the origin (O) at
the center of the screen (Fig. 4a, b), with their size and spacing adjusted to fit
within the respective field of view constraints (Fig. 4b). The patches can be
moved around in 3D space and scaled up or down for better inspection.
Upon session completion the recorded micronuclei counts are saved to a
single tab separated text file that later is loaded as ground truth values for
training the CNN model.

Evaluation
Evaluation of the CNN model. We evaluated the CNN model on the
hold-out test dataset within the initial isolated nuclei images. The model
prediction values for the CIN count associated with each isolated nuclei
were rounded to the closest integer value. The model performance was
then assessedwith standard classificationmetric, F1-score and Precision-
Recall curve using the scikit-learn implementation in Python (v 1.0.2)51.
We also generated attention maps with Class Activation Maps (CAM)52

as a part of our attempt at generating explainable AI (XAI). Attention
maps provide a visual representation of how the neural network pro-
cessed the information helping us understand and confirm the model’s
decisions.

Evaluation of the pipeline on the H358 cell-line. We evaluated the
performance of the pipeline on images taken from the H358 cell-line, a
primary bronchoalveolar carcinoma of the lung, a non-small-cell lung
cancer. The dataset contains 17 DAPI-stained images, 10k × 10k pixels
imaged at 10× containing approximately 20,000 nuclei in total. This set of
images consisted of 3 different genetic variations that alter the CIN level :
H358, H358-GFP, H358-dnMCAK in order of CIN level from low to
high. The evaluation was done on the basis of CIN score for each image
compared to manual expert quantifications. R2 and Pearson’s correlation
were calculated as a summary statistic.

Evaluation of the pipeline on an external dataset imaged at 20×. To
test the scale invariability of the method, we evaluated the perfor-
mance of micronuclAI with an external image dataset BBBC039v139,
available from the Broad Bioimage Benchmark Collection53. The
dataset contained Hoechst-stained human U2OS cells with 200 fields
of view, 520 × 296 pixels imaged at a 20× zoom using ImageXpress
Micro epifluorescent microscope (Molecular Devices). Evaluation
was done on a set of 20 random images from this dataset containing
approximately 2400 nuclei by comparing the manual and micro-
nuclAI estimated CIN score using both R2 and Pearson correlation as
summary statistics.

Evaluation of the pipeline on murine cell lines. We further tested
micronuclAI onmice derived KP/KL cell lines: KP (KrasG12CTp53−/−) and
KL (KrasG12CLkb1−/−). 5 KP and 5 KL images were manually annotated
and compared to micronuclAI predictions. Given the large number of
cells images (~20 K per image) we used the Monte Carlo estimation
counting strategy for this task.

Implementation / Deployment
The complete micronuclAI pipeline is available as a Command Line
Interface (CLI) through Github, a simple Graphical User Interface (GUI)
through Streamlit, and a nf-core54 compliant pipeline for high-throughput
image analysis. Inferenceofmicronuclei canbe achieved in small tomedium
sized example TIFF/OME-TIFF images that can be uploaded to the
streamlit app. Image data is processed within a virtual machine (VM) on
Heicloud, a local Cloud infrastructure provided by University Computing
Center Heidelberg, and images are immediately deleted after micronuclei
inference. Once micronuclei are inferred, results predictions as well as
several plots describing the results are generated and presented to the user
within the Streamlit app. No data is kept on the server after the user dis-
connects from the app.

Statistics and reproducibility
Statistical analyses were performed with Python version 3.11. The datasets
used for evaluation in this study contained 17, 20, and 10 images for the
H358, BBC039v1, and KP/KL datasets respectively. Each image with the
same modification was defined as a technical replica for measuring the
overallmicronuclei ratio. The sample size for each experiment including the
number of images used and the number of cells was explained in the
Methods section and figure legend.

Data availability
Images, segmentation masks and labels used during model training are
available at synapse under the link https://www.synapse.org/#!Synapse:
syn54780485/. One of the test datasets BBBC039v1, obtained from the
Broad Bioimage Benchmark Collection can be found at https://bbbc.
broadinstitute.org/. The numerical source data used for the statistical ana-
lysis and figure generation is available in “Supplementary Data”.

Code availability
ThemicronuclAI training and inference code is available throughGithub at
https://github.com/SchapiroLabor/micronuclAI and the current version is
deposited at Zenodo55. The Labeling Tool code is available through Github
at https://github.com/SchapiroLabor/micronuclAI_labeling and the cur-
rent version is deposited at Zenodo56. The code for the micronuclAI
Streamlit App is available through Github at https://github.com/
SchapiroLabor/micronuclAI_streamlit and the current version is depos-
ited at Zenodo57. The micronuclAI Nextflow Pipeline is available through
Github at https://github.com/SchapiroLabor/micronuclAI_nf and the cur-
rent version is deposited at Zenodo58. The VR Labeling tool is available
throughGithubat https://github.com/SchapiroLabor/micronuclAI-VRand
the current version is deposited at Zenodo59. The Mask2Bbox package
developed for the tool is available through Github at https://github.com/
SchapiroLabor/mask2bbox and the current version is deposited at
Zenodo60.
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