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M I C R O B I O L O G Y

Key role of Desulfobacteraceae in C/S cycles of marine 
sediments is based on congeneric 
catabolic-regulatory networks
Lars Wöhlbrand1*, Marvin Dörries1,2, Roberto Siani3,4, Arturo Medrano-Soto5, Vanessa Schnaars1, 
Julian Schumacher1†, Christina Hilbers1, Daniela Thies6, Michael Kube7, Richard Reinhardt8, 
Michael Schloter3,4, Milton H. Saier5, Michael Winklhofer9,10, Ralf Rabus1*

Marine sediments are highly bioactive habitats, where sulfate-reducing bacteria contribute substantially to sea-
bed carbon cycling by oxidizing ~77 Tmol Corg year−1. This remarkable activity is largely attributable to the delta-
proteobacterial family Desulfobacteraceae of complete oxidizers (to CO2), which our biogeography focused 
meta-analysis verified as cosmopolitan. However, the catabolic/regulatory networks underlying this ecophysio-
logical feat at the thermodynamic limit are essentially unknown. Integrating cultivation-based (80 conditions) 
proteogenomics of six representative Desulfobacteraceae spp., we identify molecular commonalities explaining 
the family’s environmental relevance and success. Desulfobacteraceae genomes are specifically enriched in sub-
strate uptake, degradation capacities, and regulatory functions including fine-tuned sulfate uptake. Conserved 
gene arrangements and shared regulatory patterns translate into strikingly similar (sub-)proteome profiles. 
From 319 proteins, we constructed a meta-network for catabolizing 35 substrates. Therefrom, we defined a 
Desulfobacteraceae characteristic gene subset, which we found prevalent in metagenomes of organic-rich, marine 
sediments. These genes are promising targets to advance our mechanistic understanding of Desulfobacteraceae-driven 
biogeochemical processes in marine sediments and beyond.

INTRODUCTION
Sulfate-reducing bacteria (SRB), such as Desulfobacteraceae, couple 
the oxidation of organic carbon to the reduction of sulfate to sulfide 
(dissimilatory sulfate reduction), thereby linking the carbon and 
sulfur cycles. This process is particularly important in global marine 
environments due to very high sulfate concentrations in the oceans 
[for overview, see (1, 2)]. Here, continental margins, coastal ranges, 
and shelf sediments stand out by their high input of organic matter, 
and more than 50% of their mineralization is achieved in the upper 
sediment layers, coupled to sulfate reduction (3, 4). Furthermore, 
organic carbon richness of upwelling regions generates oxygen min-
imum zones in the waterbody where SRB are involved in carbon 
turnover and a cryptic sulfur cycle (5). Globally, of the total carbon 
flux reaching the ocean floor, 12 to 29% are oxidized via sulfate re-
duction, as estimated from steady-state sulfate profiles (6). However, 

considering sulfate-reduction rates calculated from 35S radiotracer 
measurements as well as re-oxidation and cryptic sulfur cycle, this 
share is markedly higher, accounting for an estimated 77 Tmol Corg 
year−1 (7). These high mineralization rates may only be achieved by 
SRB capable of complete oxidation to CO2 (8, 9). However, the well-
studied family Desulfovibrionaceae cannot achieve this turnover be-
cause these organisms only incompletely oxidize organic substrates 
to acetate. The discovery of the family Desulfobacteraceae, encom-
passing completely oxidizing SRB (10–12), solved this biogeochem-
ical paradox. Members of this family use a large variety of organic 
substrates, ranging from small molecules (e.g., fermentation end 
products) to long-chain fatty acids and aromatic compounds, in-
cluding recalcitrant hydrocarbon compounds, such as n-alkanes, 
alkylbenzenes, and -phenols (1, 13, 14). The degradation routes of 
these different organic carbon substrates ultimately converge at the 
level of acetyl–coenzyme A (CoA) that is oxidized to CO2 via the 
Wood-Ljungdahl pathway (WLP) in most cases (1). In agreement 
with their proposed environmental role, Desulfobacteraceae mem-
bers, particularly those of the Desulfosarcina/Desulfococcus cluster, 
were shown to dominate the SRB communities in marine shelf sedi-
ments (e.g., 15–17).

Generally, SRB thrive at the thermodynamic limit of life, due to 
the very low redox potential of the sulfate/sulfide redox pair (−228 mV), 
allowing the generation of only ~10% of the energy obtained as 
compared to aerobic heterotrophs applying the oxygen/water pair 
(+818 mV) (18). To cope with this challenge, SRB evolved a number 
of specialized enzymes/complexes that harness biochemically intrigu-
ing mechanisms to facilitate endergonic reactions without spending 
adenosine 5′-triphosphate (ATP), e.g., reduction of sulfite to sulfide 
via a DsrC trisulfide (19), an electrogenic redox loop involving 
QrcABCD in sulfate reduction (20), or ATP-independent reductive 
dearomatization applying electron bifurcation (21). However, this 
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research focus on single remarkable enzymatic mechanisms needs 
to be complemented by global analyses of the involved catabolic net-
works and their regulatory modulations to explain the complexity 
involved in the environmental success and functions of SRB, both in 
general and for the Desulfobacteraceae in particular.

To achieve a holistic understanding of the role of Desulfobacteraceae 
in the marine carbon/sulfur cycles, we first conducted a meta-
analysis (literature based) to capture globally the biogeography of 
this family. Then, we conducted comparative proteogenomic analy-
ses across six members of the Desulfobacteraceae, which we selected 
to cover the versatility, phylogeny, and lifestyles of this family. 
Among them, Desulfosarcina variabilis 3be13 is a particularly versa-
tile, cultivated representative of the Desulfosarcina/Desulfococcus 
cluster, which is why we sequenced its genome and determined the 
proteomes of 29 substrate conditions. Overall, a total of 80 substrate 
conditions across the six studied strains allowed us (i) to gain un-
precedented insights into commonalities of consistently formed 
(constitutive) versus substrate-specifically formed (regulated) sub-
sets of the proteome (subproteomes), the formed transportome 
(entirety of transmembrane transport systems), and the regulation 
of sulfate uptake and (ii) to construct a catabolic meta-network 
(synthesis of all reactions/proteins involved in substrate degradation 
and respiratory energy conservation). Last, genes encoding various 
enzymes of key pathways in the meta-network were recognized as 
widespread across 43 Desulfobacteraceae reference genomes and 
also detectable in available metagenomes from geographically far 
apart and geochemically distinct marine sediments.

RESULTS
Biogeography of Desulfobacteraceae
We reviewed the literature to assess the global distribution, environ-
mental context, and habitat conditions of the family Desulfobacteraceae, 
exemplified for the genera Desulfosarcina, Desulfococcus, Desulfobacula, 
Desulfobacterium, and Desulfonema. More than 300 publications 
were analyzed (tables S1 to S5), resulting in the assignment of iso-
lates or phylotypes to 512 geographical locations (Fig. 1A). Docu-
mented habitats cover the entire globe, from the Arctic to Antarctic 
and all longitudes. The higher occurrence in North America (155 sites) 
and Europe (256 sites) reflects apparent research foci in these areas 
rather than the absence of these phyla in other regions, e.g., 96 sites 
in Asia (for details, see also fig. S1 and tables S1 to S5). At most sites 
the Desulfosarcina/Desulfococcus group dominates the SRB commu-
nity (406 isolates and phylotypes versus 56 to 140 for the other gen-
era), agreeing with previous findings [e.g., (15, 22)]. The marine 
realm represents the most important habitat (54.0 to 77.5%) of the 
selected five genera, dominated by deep sea and shelf sediments, al-
though the presence in non-marine sites (mainly freshwater sedi-
ments) underscores their general importance in global elemental 
cycling (Fig. 1B). The high occurrence of Desulfonema spp. in brackish/
freshwater habitats points toward the occupation of a special eco-
logical niche. Desulfobacteraceae members account for 1 to 10% of 
the respective total bacterial communities (Fig. 1C), although sub-
stantially higher numbers have been reported [e.g., (23, 24)]. The 
predominant occurrence of Desulfobacteraceae in the marine realm 
is reflected by the matching profile maxima of physicochemical pa-
rameters: high sulfate concentration and moderate-to-typical sea 
water salinity, mostly anoxia or suboxic conditions, and cold-to-
moderate temperatures (Fig. 1D). Moreover, the broad dispersion of 

the physicochemical parameters suggests that Desulfobacteraceae mem-
bers can cope with a wide variety of habitat conditions (Fig. 1B).

Desulfobacteraceae-shaping genomic traits
To determine genome-imprinted traits underlying the environmental 
success of Desulfobacteraceae, we conducted a comparative genome 
analysis. For this purpose, we selected 27 high-quality genomes 
of experimentally well-studied SRB, comprising 12 Desulfobacteraceae, 
5 Desulfovibrionaceae, and 10 others (tables S6 and S7). An obvious, 
prominent feature of Desulfobacteraceae is their larger genome sizes 
on average (5.6 Mbp) compared to those of the other analyzed SRB 
(average of 4.2 Mbp) (Fig. 2A) and the available (>35,400) bacterial 
genomes in general (average of 3.6 Mbp; fig. S2). Further, a higher 
genomic plasticity of Desulfobacteraceae genomes is evident from 
the large number of mobile genetic elements (greatly exceeding that 
of Desulfovibrionaceae), CRISPR-Cas loci, and phage-related genes 
(tables S6 and S7).

Next, we compared the genomic shares dedicated to specific 
functional groups [cluster orthologous groups (COGs)] across the 
27 selected genome sequences by determining the cumulative nu-
cleotide proportion of each COG category across the respective open 
reading frame (ORF) set (Fig. 2A and fig. S3). Principle components 
analysis (PCA) of these proportions separated most Desulfobacteraceae 
from the other SRB, particularly Desulfovibrionaceae members. 
This separation is driven by the categories energy metabolism (C), sig-
nal transduction (T), and lipid metabolism (I), as well as by genes 
not categorized (NIC) (Fig. 2A, inserted loadings plot). Coclustering 
of completely oxidizing Desulfomonile tiedjei and Syntrophobacter 
fumaroxidans reflects their similarly broad nutritional versatility 
[e.g., (25)].

Focussing now specifically on Desulfobacteraceae, we studied 
their genomic diversity by expanding the set of the 12 aforemen-
tioned genomes with 31 additional reference genomes (according to 
GenBank) of experimentally less well-studied strains of this family. 
t-Distributed stochastic neighbor embedding (t-SNE) analysis 
of these 43 genomes separated them into seven distinct clusters 
(Fig. 2B). Two coherent, genus-specific clusters were observed 
for Desulfatibacillum and Desulfosarcina; the outlying Desulfosarcina 
sp. strain BuS5 differs from other Desulfosarcina spp. by its smaller 
genome size (4.1 Mbp) and extreme metabolic specialization on 
short-chained n-alkanes (26). By contrast, five clusters comprised 
two to three genera each, while one cluster was most diverse, har-
boring seven genera. One may speculate that these heterogeneities 
may have arisen from co-occurrence and linked rates of horizontal 
gene transfer or lower degree of specialization.

Desulfobacteraceae core/pan genome
On the basis of the 43 Desulfobacteraceae reference genomes, we de-
termined a rather small core of 713 clusters of ortho-groups, which 
account for only 4% of the total pan genome. The corresponding 
pan genome is open, i.e., new genes are found per genome added. 
This may be due to the broad definition of the core at the family 
level (rather than species or genus), sample size, and environment. 
However, because the alpha value is 0.9 ± 0.01, sample size can be 
regarded as representative. Modeling the number of ortho-groups 
found per novel genome shows the collection to be near satura-
tion (fig. S4).

The core genome mainly provides essential cellular functions 
(DNA replication, transcription, and translation), dissimilatory 
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Fig. 1. Global occurrence, physicochemical habitat parameters, and habitat prevalence of Desulfobacteraceae key genera. (A) Global distribution of sites, where 
the occurrence of isolates and/or phylotypes affiliating with the genera Desulfococcus/Desulfosarcina (yellow), Desulfonema (orange), Desulfobacterium (red), or Desulfobacula 
(dark red) are reported (512 sites with a total of 661 occurrences across the genera). Densely spaced sites are aggregated into clusters and represented as circles. The 
circled areas indicate the number of occurrences/sites in a cluster, and the pie sector area indicates the abundance of a given genus in a cluster. Coloring of the genera is 
consistently used in (B) to (D). (B) Relative frequency of isolate/phylotype detection in different habitats is given for the selected genera. The total numbers of available 
data are indicated in the central gray circle. (C) Relative abundances of the selected genera within the total bacterial community. (D) Distribution of physicochemical pa-
rameters determined for the sites of detection: sulfate concentration, salinity, oxygen, and temperature. The numbers of available data are indicated. Underlying literature-
based data are compiled in tables S1 to S5.
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sulfate reduction together with redox complexes (Dsr, Qmo, and 
Rnf2), ATP synthase, and enzymes of central metabolism. Nota-
bly, 89 proteins of unknown function are included (~12% of the 
core genome) and 150 regulatory proteins. The Desulfobacteraceae 
typifying capacity for complete oxidation is not explicitly as-
signed to the core genome because it is implemented by differ-
ent pathways, i.e., the WLP for most (33 of 42) members, and 
the tricarboxylic acid (TCA) cycle for the genus Desulfobacter. 
The genera Desulfobotulus and Desulforegula harbor incomplete 
oxidizers despite their phylogenetic affiliation with the family 
Desulfobacteraceae.

Proteomic datasets of six representative 
Desulfobacteraceae members
How is the known nutritional versatility of Desulfobacteraceae ac-
complished on the protein level? The genome-shaping role of me-
tabolism and regulation recognized here (Fig. 2A) prompted us 
to investigate the general architecture and substrate-dependent 
dynamics of proteome landscapes (Fig. 3), catabolic networks (Fig. 
4), and transportomes (Fig. 5). For this purpose, we selected six 
Desulfobacteraceae members considering differences and common-
alities, respectively, in (i) nutritional versatility, (ii) specific lifestyles, 
(iii) environmental abundances of genera, and (iv) phylogenetic 
representation of the family (table S6). We studied in total 35 different 
substrate adaptation conditions, comprising numerous aromatic 
(including hydrocarbons) and aliphatic compounds as well as H2 + 
CO2 (chemolithoautotrophy): 29 for Ds. variabilis 3be13 (this study), 
7 for Desulfobacula toluolica Tol2 (27), 17 for Desulfococcus multivorans 
1be1 (28), 8 for Desulfonema limicola (29), 11 for Dn. magnum (29), 
and 8 for Desulfobacterium autotrophicum HRM2 (30). In total, 80 dif-
ferent proteomic datasets (i.e., strains and their respective substrate 

conditions) formed the basis for the subsequent comparative analyses. 
Coherence across these datasets was ascertained by consistently apply-
ing approach-specific standards to manual genome annotations, 
cultivations for substrate adaptations, and full-cycle proteomics, re-
spectively. Combining gel-based and gel-free methods applied to solu-
ble and membrane protein-enriched fractions yielded an exclusive 
protein detection of ~33% per fraction (fig. S5). These experiments 
covered 1133 to 2681 different proteins, depending on the strain and, 
on average, 652 to 1099 different proteins per tested substrate condi-
tion (Fig. 3A).

Proteome-shaping determinants
The high proteomic coverage (Fig. 3A), i.e., the large proportion of 
detected to genome-predicted proteins, enabled us to determine 
the abundance range for each detected protein across all substrate-
adaptation conditions for each of the six studied strains. We ex-
pressed this range as standard deviation and doing so for all 
proteins yielded a strain-specific distribution of abundance vari-
ability as displayed in Fig. 3B. The resulting distributions reveal a 
common pattern across all strains. As indicated by the peaks in the 
distributions, centered over low variability (Fig. 3B), the vast ma-
jority of proteins do not differ greatly in their abundances across 
the substrate conditions, and thus, they represent general cellular 
and metabolic functions. In contrast, only a small fraction of pro-
teins exhibits a large spread in abundance (upper tail of the distri-
bution in Fig. 3B). These highly differentially abundant proteins 
reflect specific adaptations to the tested substrates. This is exempli-
fied for Ds. variabilis 3be13 in fig. S6, showing distinct abundance 
maxima of the 2681 identified proteins in each of the 29 substrate 
conditions; analogous heatmaps for the other five strains are pro-
vided in figs. S7 to S11.
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Across tested substrate conditions and strains, the abundance 
profiles of detected proteins are markedly similar and of monomo-
dal shape, which can be well approximated by a log-normal distri-
bution (Fig. 3C and figs. S12 and S13). The horizontal location and 
scale parameters of the profiles are highly similar, indicating a fairly 
consistent proteome budget implemented by the six strains. Inte-
grating all tested substrate/strain conditions, we find that the strain 
determines proteome richness (diversity of detected proteins) more 
than the substrate does (Fig. 3D). Ds. variabilis 3be13 produces the 
greatest diversity of proteins, while the two Desulfonema spp. the least.

Constitutive versus substrate-specific subproteomes
Here, we define the strain-specific constitutive proteome as the set 
of proteins shared among all studied growth conditions. For the 
six studied strains, the constitutive proteome ranged from 322 
(Ds. variabilis 3be13) to 482 (Db. toluolica Tol2) different proteins 
[3.5 to 11.0% of all coding sequence (CDS); Fig. 3A and data S1]. 
Notably, these proteins account for 72.8 to 91.9% of all peptide 
counts as a measure of abundance (orange and red in Fig. 3E), and 
thus, they dominate the cellular protein content. By contrast, the 
nonconstitutive proteins (blue and gray in Fig. 3E) are much more 
diverse but represent a considerably smaller proportion of the total 
cellular protein content. The overlap between core genomes and 
constitutive proteomes of the six strains is fairly small, with only 
about a third (34.7 to 41.7%, red in Fig. 3E) of the constitutive pro-
teins encoded within the core genome.

To add a functional dimension, we analyzed the constitutive pro-
teomes for their allocations to Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway modules. In general, the largest por-
tions of the strain-specific constitutive proteomes are associated 
with energy metabolism (17.4 to 25.5%), carbohydrate metabo-
lism (16.4 to 22.3%), and amino acid metabolism (7.6 to 13.3%) 
(table S8). In particular, the six constitutive proteomes include 
Desulfobacteraceae-typifying metabolic modules, such as the dis-
similatory sulfate-reduction pathway with its diverse associated 
membrane protein complexes, as well as the WLP for complete sub-
strate oxidation (table S8). Notably, the constitutive proteomes har-
bor numerous uncharacterized proteins (52 to 85).

Apparently, the six studied strains invest similar resources from 
their constitutive proteomes in the aforementioned metabolic mod-
ules. To assess whether these commonalities also persist when ex-
amined in greater functional detail, we performed multidimensional 
analyses, which now considered abundances (peptide counts) and 
functions (KEGG orthology) of individual proteins. This higher-
resolution analysis again resulted in a strain-specific, viz., substrate-
independent separation (figs. S14 and S15), thus substantiating 
the superior role of each individual strain in defining its consti-
tutive proteome.

Next, we studied the nonconstitutive proteomes by focusing on 
peripheral degradation routes. Their protein constituents showed 
similar average abundance maxima across strains using these routes 
in a substrate-specific manner. This is exemplified in Fig. 3F for 
p-cresol as a phenolic compound with toxic properties, phenylpro-
panoate as a carboxylated aromatic compound and lignin building 
block, myristinate as a long-chain fatty acid, and lactate as an abun-
dant fermentation product, widely used by SRB. Notably, various 
degrees of regulatory stringency were observed across tested strains 
and substrates, e.g., phenylpropanoate-related proteins with re-
laxed specificity in Ds. variabilis 3be13 versus high specificity in 

Dn. magnum and Dc. multivorans 1be1. This points to sensory/
regulatory commonalities among members of the Desulfobacteraceae, 
in parts amended by strain-specific features.

Meta-network of catabolism
To unravel the biochemical basis underlying the substantial con-
tribution of Desulfobacteraceae to the marine C/S cycles, we re-
constructed de novo the catabolic network of highly versatile 
Ds. variabilis 3be13 and collated it with those previously elaborated 
for the other five strains (27–30). The synthesis (meta-)network re-
cruits 119 (Db. toluolica Tol2) to 235 (Ds. variabilis 3be13) protein-
encoding genes (median 2.7% of CDS per genome), which were 
covered by proteomics to the greatest extent (88.1 to 97.9% per 
strain). This meta-network comprises in total 319 different proteins and 
provides a holistic perspective of Desulfobacteraceae catabolism.

The degradation part of the meta-network accommodates 35 
substrates (Fig. 4A) and is characterized by a high degree of modu-
larity, explaining substrate versatility, combined with a few central 
modules (benzoyl-CoA pathway and WLP). Together, this part of 
the network (except for autotrophy) illustrates the manifold contri-
butions to the oxidative side of the marine carbon cycle. Degra-
dation routes for chemically stable aromatic compounds (and 
cyclohexane carboxylate) are organized in self-containing modules. 
These are encoded in operon-like structures that harbor not only the 
genes for degradation enzymes but also genes for associated elec-
tron transfer flavoproteins (ETFs), ETF:quinone oxidoreductase 
(Eqo), sensory/regulatory proteins, and often even transporters. 
Across studied strains sharing a given module, gene organization, 
protein sequences, and differential protein abundances are highly 
similar, as exemplified for the peripheral route of p-cresol degrada-
tion (up to 86% identity at the protein level; fig. S16, A and B) and 
the central benzoyl-CoA pathway (up to 85% identity; fig. S16, C 
and D). By contrast, genes for simpler substrates, e.g., fatty acids and 
aliphatic alcohols, as well as those for the WLP are usually scattered 
across the studied genomes. A wealth of alcohol dehydrogenases 
and oxidoreductases are encoded in all six genomes (e.g., 16 each in 
Ds. variabilis 3be13), which are dedicated to specific functions, e.g., 
β-oxidation of short- to long-chain fatty acids, and share a high de-
gree of sequence similarity (>70%). The extensive metabolic reper-
toire also covers chemolithoautotrophy (H2 and CO2), except for 
Dn. magnum and Dc. multivorans 1be1 the genomes of which do not 
contain genes for hydrogenases. Overall, regulatory proteins encod-
ed in direct proximity or within the gene cluster of a given pathway 
module are mostly single-component transcriptional activators 
(e.g., σ54-dependent) and are conserved across strains (e.g., TetR 
type in the case of p-cresol).

The energy metabolism section of the meta-network (Fig. 4B) is 
multilayered comprising general and more specialized functions 
and illustrates the contribution to the marine sulfur cycle. The 
equipment for dissimilatory sulfate reduction (APS-synthase/-
reductase and sulfite reductase) together with electron-delivering 
Qmo and Dsr (from the quinone pool) and Tmc complexes is ca-
nonical for SRB [e.g., (1, 31)]. Except for Tmc, all components are 
highly abundant members of the constitutive proteomes of all six 
strains. We assume that the (mena)quinone pool is replenished, 
mainly by the Qrc complex, due to its abundant and constitutive 
formation. However, the Qrc of Desulfobacteraceae apparently dif-
fers from the well-studied periplasmic hydrogenase-linked Qrc of 
Desulfovibrio spp. due to marked sequence dissimilarities of QrcA 
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(electron entry) and QrcB (structural function) (Supplementary 
Text and fig. S17). In addition, low abundance, substrate-specific 
formation of hydrogenases, or even lack of encoding genes in 
Desulfobacteraceae implicate a different electron donor. A further 
route of electron delivery to the quinone pool involves reduced 
forms of nicotinamide adenine dinucleotide (NADP+) (NADH)–
oxidizing Nqr/Nuo complexes. The NADH pool, in turn, is not only 
replenished via oxidation reactions of the degradation network but 
also is linked to the ferredoxin and NADP pools via Rnf2 and Nfn. 
Notably, the transmembrane sodium-pumping Rnf2 complex is 
abundantly and constitutively formed in all six strains. Rnf2 differs 
with respect to the ferredoxin/NAD-interacting domains of RnfBC 
from the Rnf1 complex occurring in Desulfovibrionaceae, other bac-
teria, and archaea (Supplementary Text and fig. S18). Last, electrons 
are delivered to the quinone pool via ETF/Eqo pairs, which are tai-
lored to specific degradation reactions, encoded in the respective 
pathway modules and substrate specifically formed—an apparently 
characteristic feature of Desulfobacteraceae members.

We next explored to what degree the genome-inferred regulatory 
potential (Fig. 2A) of Desulfobacteraceae is actually implemented. 
For this purpose, we subjected the comprehensive differential pro-
teomic datasets of each strain to cluster analysis (figs. S6 to S11), 
which groups proteins according to their similarity in abundance 
patterns across substrate conditions. The resultant 85 groups were 
manually inspected (figs. S26 to S120). A notable observation was 
the strong correlation between the grouping and the aforemen-
tioned modularity of the catabolic networks. That is, most identified 
protein components of a given module gather in a single group ir-
respective of strain and genetic organization (operon-like versus 
scattered; exemplified for Bam proteins of the central benzoyl-CoA 
pathway in fig. S19). This suggests a high degree of conservation of 
regulatory systems across members of the Desulfobacteraceae.

Transporter complement
Given the broad versatility of Desulfobacteraceae, one should expect a 
matching transporter repertoire. To determine the transportomes of 
the six strains, we used the comprehensive Transporter Classification 
Database (TCDB) (32), as COG categories do not consider transporters 
as distinct categories. In total, 384 to 565 transport systems are encoded 
(4.2 to 12.3% of CDSs), with secondary carriers and active transporters 
being the most abundant classes (58.9 to 73.2% of all transport pro-
teins) (Fig. 5A, fig. S20, and table S9). The proportions of the predicted 
and detected transporter subclasses are essentially congruent among 
the studied SRB. We further scrutinized the solute spectrum of the six 
transportomes resolved based on transporter classes (exemplified for 
Ds. variabilis 3be13 in Fig. 5B). Amino acids represent the major trans-
port solute, followed by drugs (mainly antibiotics), inorganic anions 
(mainly sulfate and phosphate), inorganic cations (mainly protons and 
sodium), and unknown compounds (Fig. 5B). Notably, the differential 
proteome dynamics (Fig. 3F) observed for the meta-network of catabo-
lism are mirrored at the transporter level. While substrates of periph-
eral degradation modules are imported by specifically formed uptake 
systems (e.g., DctPQM4 for 4-hydroxyphenylacetate), general sub-
strates such as sulfate enter the cell via constitutively synthesized trans-
porters (e.g., sulfate-importing Dvar_38430).

Sulfate uptake and its regulation in SRB
For concentration-dependent sulfate uptake, SRB mostly use high- 
and low-affinity, energy-efficient secondary transporters driven by 

Na+ (DASS-type) or H+ gradients (SulP types) (33–36). Using 
TCDB, we identified a 30.5–kilobase pair (kbp) gene cluster in the 
genome of Ds. variabilis 3be13 encoding the abundantly and consti-
tutively formed DASS-type sulfate transporters (i.e., Dvar_38230 
and Dvar_38430) and numerous two component systems (TCSs) 
and CBS-domain proteins (Fig. 5C and fig. S21). Notably, related 
gene clusters are present in all studied Desulfosarcina spp. (up to 
95% identity), Desulfobacteraceae (<80%), and 14 other SRB (<50%, 
in total 26 species; fig. S22A). Another gene cluster encoding the 
similarly abundant and constitutively formed SulP transporter is present 
in Ds. variabilis 3be13. It is widespread among Desulfobacteraceae 
(and Dv. salexigens; fig. S22BC) and also harbor genes for TCSs and 
a TetR-type repressor. The sensor histidine kinases (SHKs) of both 
gene clusters share very similar sensory domain structures, includ-
ing a small molecule recognizing N-terminal cache (IPR033479) 
domain (37). Indeed the 28 SHKs in diverse SRBs share 30 (of 220) 
identical or similar amino acids in the signal recognition domains, 
and 47 additional residues are similar in >75% of the sequences (fig. 
S23). This indicates a common effector, e.g., sulfate. The correspond-
ing response regulators (RRs) are of the WalR type. The observed 
SHK structure and RR combination is reminiscent of the PhoRB 
TCS from Escherichia coli and many other bacteria, which regulates 
high-affinity phosphate uptake in response to phosphate limitation 
(38, 39). Notably, in Mycobacterium smegmatis the PhoRB-mediated 
regulation of phosphate uptake is augmented by the repressor PhnF 
(40). Similarly, the sulP gene clusters of Desulfobacteraceae en-
code a TetR-type repressor with a matching upstream operator 
sequence (i.e., 16-bp palindromic nucleotide sequence located 
~20- to 40-bp upstream of the transcriptional start site; fig. S24) 
(41). Last, CBS domains are known to play regulatory roles, e.g., 
in response to adenosyl group–containing ligands including 
ATP and S-adenosylmethionine or ions (e.g., Mg2+) (42) or AMP 
level–dependent activity of the AMP-activated protein kinase (43). 
Hence, one may speculate that the studied SRB link intracellular 
APS levels with sulfate uptake. It is also conceivable that intracel-
lular sulfate or sulfide levels are sensed, analogous to the Mg2+ 
responsiveness of the magnesium transporter MgtE (Thermus 
thermophilus) mediated by a CBS domain–containing regulatory 
protein (44).

In conclusion, a fine-tuned regulatory mechanism for sulfate up-
take shared among SRB may operate as follows (Fig. 5D): SHK-
based sensing of external sulfate yields formation of Na+-dependent 
DASS uptake systems (high or low affinity) and H+-dependent SulP 
transporters (at high sulfate levels). A second control level may re-
spond to intracellular levels of sulfate (or S2−) or the general energy 
status of the cells [e.g., APS, ATP, and proton motive force (PMF)] 
involving CBS domain proteins (DASS cluster) and TetR repressors 
(SulP cluster). Such a fine-tuned regulatory network of sulfate up-
take and, hence, sulfate reduction/energy metabolism may ultimate-
ly allow for a higher energy yield and, therefore, represent a building 
block for the environmental success of Desulfobacteraceae and 
Desulfosarcina spp. in particular.

Characteristic “catabolic” genes of Desulfobacteraceae 
prevail in marine sediments
Integration of the constitutive proteome (Fig. 3) with the experi-
mentally substantiated catabolic meta-network (Fig. 4), allowed us 
to define a set of characteristic “catabolic genes” shared among the 
43 genome-sequenced Desulfobacteraceae members (Fig. 6A) and 
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explore their occurrence in reported high quality metagenomes 
from marine sediments (Fig. 6B).

As mentioned earlier, the machinery of energy metabolism, 
comprising sulfate uptake, its dissimilatory reduction (pyrophos-
phatase activity alternatively via HppA or PpaC), and the associated 
redox complexes (Fig. 4B) are conserved among all investigated 
Desulfobacteraceae species (Fig. 6A). Particularly noteworthy is the 
widespread occurrence of the Rnf2 complex. With respect to the 
degradation network (Fig. 4A), the characteristic WLP occurs in all 
investigated Desulfobacteraceae species, except Desulfobacter spp., 
which use the TCA cycle (note that Desulfobotulus and Desulforegula 
are incomplete oxidizers). The anaerobic benzoyl-CoA pathway 
(BamBC) is restricted to selected genera (Desulfosarcina, Desulfobacula, 
Desulfonema, and Desulfotignum) capable of aromatic compound 
degradation. Overall, meta-network genes are highly conserved 
within the family Desulfobacteraceae, irrespective of how wide-
spread they are across the 43 studied genomes.

We detected essentially all constituents of this deduced gene set in 
diverse shallow-to-deep-sea sediments (Fig. 6B), i.e., from an upwell-
ing system (Benguela region, off the coast of Namibia); below a strati-
fied, euxinic waterbody (Black Sea); an organic-rich estuarine (Gulf of 
Kutch, India); a cold-seep field [north-eastern slope of South China 
Sea (SCS)]; and a deep-sea, hydrothermal area (Guaymas Basin, Gulf 
of California). We saw similar functional-organismic profiles for 
the Sumatra upwelling system and the Pacific Ocean off the coast of 
California (USA) (fig. S25; details for all studied sites are provided in 
data S2). Together, these findings underpin the metabolic contribution 
of Desulfobacteraceae members to carbon mineralization in these geo-
graphically far apart and geochemically different habitats. While De-
sulfobacterales were consistently observed among the top-ranking 
orders of the seven sites (table S10), other prominent orders occurred 
only partially, for example, putatively carbohydrate and/or amino 
acid–degrading members of anaerobic Aminicenantales (OP8, uncul-
tivated) (45, 46) at sites with high input of organic material due to 
upwelling (Benguela, Sumatra) or via multiple river mouths in combi-
nation with oxygen-depleted bathypelagial (Black Sea). Likewise, in 
the estuarine environment of the Gulf of Kutch, nutrient input from 
agricultural discharge apparently leads to a prominent co-occurrence 
of facultative anaerobic, nitrate-reducing Pseudomonadales and 
nitrite-oxidizing Nitrospinales (47–49). Pseudomonadales are also 
well detected in sediments off the coast of California. The microbial 
community of SCS harboring the queried genes was most complex 
with Bacteriodales and Anaerolineales representing the prevailing 
taxa ranking behind Desulfobacterales, which agrees with the gener-
ally appreciated microbial richness of cold-seep ecosystems (50, 51). 
The prevalence of Desulfobacterales and Methanosarcinales members 
in the Guayamas Basin sediment could be attributed to their associa-
tion with anaerobic hydrocarbon degradation (1) and the unique role 
of these sediments as anoxic hydrocarbon ecosystems (52). Across 
these seven different types of marine sediments, the relative abun-
dance of Desulfobacterales members harboring the queried genes 
ranged from 1.5 to 20.0% (median values). By contrast, the query 
genes were not detected in the Challenger Deep sediment, where oxic 
and nutrient-depleted conditions prevail (table S10) (53).

DISCUSSION
Our proteogenomic analysis was devised to understand the catabolic 
basis of the long-appreciated role of SRB and Desulfobacteraceae, 

particularly in the interwoven carbon and sulfur cycles of marine 
sediments. The five genera selected for our comparative approach 
are indeed cosmopolitan thriving in diverse marine habitats, under-
scoring the transferability of the present findings to the family of 
Desulfobacteraceae in general.

We identified two family-defining metabolic key properties: (i) 
the pathway-module inherent coupling of substrate-degradation via 
electron transfer proteins (tailored to individual oxidation reac-
tions) to membrane-embedded redox complexes and dissimilatory 
sulfate reduction; (ii) a common catabolic network architecture, 
where multiple substrate specifically regulated pathway modules 
(peripheral degradation routes) feed into few constitutively formed 
central modules of degradation and energy metabolism. Both prop-
erties together contribute to an energy efficient exploitation of di-
verse substrates, ultimately enabling life at the thermodynamic limit 
and fostering environmental success.

The constructed meta-network reveals a broad range of shared 
and strain-specific degradation capacities among the six studied 
strains. This may even be underestimated given the breadth of the 
transporter repertoire, which greatly exceeds the number of tested 
substrates (plus required nutrients) and may therefore provide ac-
cess to hitherto unknown substrates/pathways. Furthermore, the 
inclusion of Desulfobacteraceae strains with not yet considered 
physiologies, e.g., n-alkane (54) and polymer degraders (55), will 
expand the catabolic diversity of our meta-network even more. 
Hence, the high sulfate reduction rates in organic-rich, marine sed-
iments do not rely on individual key species, but rather result 
from the additive degradation capacities of site-specific SRB com-
munities (communal accomplishment). Yet, the Desulfosarcina 
and Desulfococcus species currently stand out by exceptionally nu-
merous degradation modules, both reflecting their known broad 
substrate-spectrum and rationalizing their dominance in SRB com-
munities of marine sediments. The prevalence and conservation of the 
degradation modules across the 43 representative Desulfobacteraceae 
genomes hints at their niche-defining role. We speculate that the 
wealth of these modules was achieved by comprehensive horizontal 
gene transfer implicated by the genomes’ richness in mobile ele-
ments. Overall, these congeneric yet tailored genomic, regulatory, 
and catabolic capacities of Desulfobacteraceae shape their environ-
mental function and success, ultimately imprinted in their glob-
al biogeography.

In the light of the burgeoning large-scale metagenomic stud-
ies [particularly metagenome-assembled genomes (MAGs) [e.g., 
(56)], the here presented metabolism-centered insights into the 
Desulfobacteraceae provide a “treasure-trove” from which to select 
target genes for functional analysis of SRB communities in natural 
and technical environments. First, it can complement incubation 
experiments with labeled substrates that target the active part of the 
community [e.g., (57)]. Second, given their enormous carbon turn-
over in the seabed, Desulfobacteraceae should substantially shape 
the dissolved organic matter (DOM) (58), e.g., by depleting a broad 
range of organic substrates while enriching the recalcitrant fraction. 
Such microbial activities in the sediment should also feedback on 
DOM in the water column (59), particularly in shelf seas, when con-
sidering vertical exchange processes across the bottom boundary 
layer (60). Third, symbiotic/commensal relations of marine SRB 
with, e.g., marine oligochaete worms (61), benthic foraminifera 
(62), or seagrass/salt marsh cordgrass (63) and non-marine SRB 
with, e.g., the human gut [e.g., (64)], can be studied on a functional 
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level. Fourth, the mechanistic understanding of deleterious effects 
of SRB on technical installations can be improved, e.g., production 
and processing facilities of the gas and oil industry [e.g., (65)], as 
well as sites of metal and concrete corrosion [e.g., (66, 67)].

MATERIALS AND METHODS
Literature-based meta-analysis of habitat information
For meta-analysis of the genera Desulfococcus, Desulfosarcina, 
Desulfonema, Desulfobacterium, and Desulfobacula (Fig. 1), geo-
graphical and physicochemical parameters were systematically ex-
tracted from the primary literature from 1980 until 2019 using 
entries from PubMed [National Center for Biotechnology Informa-
tion (NCBI), Bethesda, MD, USA], Scopus (Elsevier B.V., Amsterdam, 
The Netherlands; until 2017), and the Web of Science (Clarivate, 
Philadelphia, PA, USA). An advanced keyword search was per-
formed using the terms (i) sulfate reduction, (ii) sulfate reducing or 
(iii) sulfate reducer* and (iv) bacter*, (v) archaea*, or (vi) desulfo* 
(also including British spelling using “ph”). Respective citations 
were submitted to EndNote (version 9X, Clarivate), including dedu-
plication, and obtained pdf files searched for the genera names. Last, 
all studies (in total 2471) were manually screened for environmental 
samples, and the detection/description of the respective genera based 
on isolates, 16S ribosomal RNA (rRNA) encoding genes, aprAB or 
dsrAB genes, or specific FISH probes. In the case of detection (in 
total 368 references, tables S1 to S5), physicochemical parameters of 
the corresponding habitat were extracted from the respective manu-
scripts and supplementary materials.

On the basis of the GPS coordinates of the sample locations and 
using the cartopy package for the programming language python 3 
(https://scitools.org.uk/cartopy), sites were clustered according to 
the density-based spatial clustering of applications with noise 
(DBSCAN) algorithm implemented in the python scikit-learn pack-
age. As parameters for DBSCAN, we used a dmax value of 300 km for 
global view (Fig. 1A) and 25 km for detailed views (fig. S1), applying 
great circle distances between sites as metric. dmax defines the maxi-
mal distance between two sites for them to be clustered together. 
The plate carrée projection (equidistant cylindrical projection) was 
used for presenting the worldwide distribution of clusters.

Organism, media, and cultivation
Ds. variabilis (strain 3be13, DSM 2060) was originally isolated from 
anoxic marine sediments of a Mediterranean lagoon (Montpellier, 
France) (68) and obtained from the Deutsche Sammlung von Mik-
roorganismen und Zellkulturen (DSMZ), Braunschweig, Germany. 
It was cultivated under strictly anoxic, sulfate-reducing (20 mM sul-
fate) conditions in 500-ml flat bottles containing 400 ml of defined 
bicarbonate-buffered, sulfide-reduced (1.5 mM Na2S) brackish 
water medium (69) at 28°C with the following growth substrates 
(in alphabetical order; concentration is given in parenthesis): ace-
tate (20 mM), benzoate (4 mM), benzyl alcohol (4 mM), butano-
ate (5 mM), 1-butanol (5 mM), cinnamate (3 mM), p-coumarate 
(5 mM), p-cresol (3 mM), cyclohexane carboxylate (3 mM), ethanol 
(15 mM), fumarate (10 mM), H2 + CO2 (80:20, v/v), hippurate 
(4 mM), 3-hydroxybenzoate (4 mM), 4-hydroxybenzoate (4 mM), 
4-hydroxyphenylacetate (5 mM), lactate (10 mM), 2-methylbutanoate 
(5 mM), 3-methylbutanoate (5 mM), myristinate (3 mM), phe-
nol (3 mM), phenylacetate (4 mM), phenylpyruvate (5 mM), 
3-phenylpropanoate (3 mM), propanoate (6 mM), 1-propanol (8 mM), 

pyruvate (15 mM), succinate (7 mM), and toluene (1% (v/v) in an 
inert carrier phase of 2,2,4,4,6,8,8-heptamethylnonane).

Cells of Ds. variabilis 3be13 were adapted to each of the above 
listed 29 substrate conditions over five passages before mass cultiva-
tion. Cells were harvested in mid-linear growth phase as described 
previously (70).

DNA sequencing, assembly, and annotation
DNA was isolated with the Genomic DNA Kit (QIAGEN, Hildesheim, 
Germany) according to the manufacturer’s instructions. Recombi-
nant plasmid and fosmid shotgun libraries were constructed. Plas-
mid libraries were generated from sonicated DNA (71). In addition, 
a fosmid library was constructed (>40-fold physical coverage) for 
data finishing and assembly confirmation (Epicentre Technologies, 
Madison, WI, USA). Templates for sequencing were obtained by in-
sert amplification via PCR or by plasmid isolation. Sequencing was 
carried out using the ABI3730XL capillary systems (ABI, Waltham, 
MA, USA). In total, 88,614 sequencing reads were generated, and 
the programs PHRAP (Phragment assembly program 1999; www.
phrap.org/phredphrapconsed.html) and Consed (72) were used to 
assess sequence quality and perform the assembly with a quality of 
less than 1 error in 100,000 bases.

Structural rRNAs and transfer RNAs (tRNAs) were determined 
using RNAmmer (v.1.2) (73) and tRNAscan-SE (74), respectively. 
Protein-coding sequences (CDS) were predicted by the ORF-finding 
program Glimmer3 (75) and manually revised and curated using 
Artemis (v.12.0) (76). The generated ORF dataset was screened 
against nonredundant protein databases (SWISSPROT and TREMBL), 
and the genome was manually annotated applying Artemis. The 
genome sequence of Ds. variabilis 3be13 has been submitted to 
GenBank under the BioProject PRJNA319746 with accession num-
ber CP159846.

Bioinformatic analysis of the Ds. variabilis genome
Bacterial genome data consulted for genomic comparisons with 
Ds. variabilis 3be13 were accessed from public databases, e.g., Inte-
grated Microbial Genomes (http://img.jgi.doe.gov/) or the NCBI 
(www.ncbi.nlm.nih.gov/). The Artemis software (v.12.0) (76) was 
applied for sequence and ORF-set visualization. Proteins were 
screened against SWISSPROT and TrEMBL (77) as well as InterPro 
(78) databases. A protein similarity search was performed by means 
of Ds. variabilis–specific blastp analysis (79). Genomic islands and 
islets (less than 10 kbp) were predicted applying IslandViewer 3 
(80), and the CRISPR recognition tool (v.1.1.) (81) served for detec-
tion of CRISPR sequences.

Comparative genomics
For all studied Desulfobacteraceae genome sequences (table S6), the 
respective GenBank files were used as templates to screen for phage-
like regions using PHASTER (82), and only intact (score > 90) phages 
were considered. The EggNOG database (v.4.5) (83) was consulted for 
orthology prediction and functional categorization. The number of 
ORFs with unknown or conserved unknown function was extracted 
from GenBank files. However, in the case of Ds. alkanivorans PL12, 
Ds. ovata 28bB2T, Ds. ovata oXyS1, and Ds. widdelii PP31, no such dif-
ferentiation was conducted. Genes encoding transposases or integras-
es were considered as mobile elements and counted per organism.

Genome occupancy (Fig. 2A) was calculated as the relative nu-
cleotide proportion of genes per COG category, and PCA plots were 
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generated using custom MATLAB (version 2022a) code. Thereby, 
for genes assigned to two or more COG categories, the respective 
share was equally allotted to the corresponding categories.

Genome selection and prediction of orthologs: Available RefSeq 
genomes from the order Desulfobacterales (n = 51) and their meta-
data were downloaded from NCBI (dataset v.14.2.2, accessed on 
23 May 2023) (84) and dereplicated to exclude redundancy us-
ing dereplicator.py (v.0.3.0; https://github.com/rrwick/Assembly-
Dereplicator), applying default settings. For the resulting collection 
of Desulfobacteraceae members (n = 43), protein-coding genes were 
predicted using Prodigal (v.2.6.3) (85). The translated amino acid 
sequences from the collected genomes and the independently as-
sembled Ds. variabilis 3eb13 were clustered into groups of orthologs 
(ortho-groups) using OrthoFinder (v.2.5.4) (86), with diamond 
reciprocal-best-hit at an ultrasensitive mode and an inflation pa-
rameter of 3. Statistical analysis of the ortho-groups’ prevalence and 
frequency was conducted in RStudio (2023.03.1, build 446) (87) us-
ing R language (v.4.3.0) and the “tidyverse” package collection 
(v.2.0.0) (88). All scripts are available in the public repository https://
github.com/rsiani/woehlbrand2024 and zenodo under doi: 10.5281/
zenodo.14039560. Briefly, the ortho-groups count matrix, summa-
rizing the number of protein-coding genes per genome belonging to 
an ortho-group, was obtained from Ortho-finder’s file “Ortho-
groups.GeneCount.tsv”. Using Heaps’ power law, as proposed by 
Tettelin and colleagues (89), the saturation rate of gene discovery 
was inferred. Barnes-Hut’s t-SNE (Rtsne, v.0.16) (90) was used to 
embed the genomes in a two-dimensional (2D) space constructed 
from the binary distances drawn from the count matrix (Fig. 2B). 
The genomes were then k-means clustered into the optimal number 
of groups, as determined by the average “silhouette” method (facto-
extra, v.1.0.7; https://github.com/kassambara/factoextra). A core 
genome of ortho-groups identified in at least 41 genomes (95% of 
the collection) was defined.

To understand the level of conservation of Desulfobacteraceae 
catabolic genes (DCGs) (Fig. 6A) in our collection, the procedure, 
first detailed by Wheeler and colleagues (91), was followed. Jackhmmer 
(hmmer v.3.1b2) (92) was used to produce multiple-sequence align-
ments of Ds. variabilis 3be13 DCGs with homologs from Uniref90 
(release 2023_02) (93) with an inclusion e value of 1 × 10−9. The 
alignments were then converted to HMM profiles. The ortho-groups 
including Ds. variabilis 3be13 DCGs were scanned against the re-
spective HMM profiles, and a delta bitscore was calculated by sub-
tracting each sequence bitscore from the reference Ds. variabilis 3be13 
ortho-group bitscore.

Metagenomics
To evaluate the prevalence of DCGs in oceanic environments 
(Fig. 6B), publicly available MAGs were sourced from eight 
different locations: Benguela upwelling, PRJNA367444; Black 
Sea, PRJNA405475; Gulf of Kutch, PRJNA598416; Sumatra upwell-
ing, PRJNA367445-446; South China Sea, PRJNA707313; Pacific 
Ocean off the coast of California, PRJNA620477-780, PRJNA653155, 
PRJNA654763-764, PRJNA654800-002, and PRJNA654836-837; 
Guaymas Basin, PRJNA362212; Challenger Deep, PRJNA635214. 
The previously generated HMM profiles were used to scan the 
MAGs for DCGs, and hits were quality-filtered based on sequence 
and domain scores, e values, and bias to control false discovery 
rates (for details, see code provided at zenodo under doi: 10.5281/
zenodo.14039560).

Profiling of soluble proteins by 2D DIGE and protein 
identification by MALDI-TOF-MS/MS
Extracts of soluble proteins of Ds. variabilis 3be13 were prepared, 
and 2D difference gel electrophoresis (DIGE) was performed essen-
tially as reported previously (94). Cell pellets (approximately 100 mg 
wet weight) from three biological replicates per substrate condition 
were suspended in lysis buffer [7 M urea, 2 M thiourea, 30 mM tris/
HCl, and 4% CHAPS (pH 8.5)], and cell breakage was achieved with 
the PlusOne sample grinding kit (GE Healthcare, Munich, Germany). 
The protein concentration was determined according to the method 
of Bradford (95). For minimal labeling, 200 picomoles of Lightning 
SciDye DIGE fluors (SERVA, Heidelberg, Germany) were used to 
label 50 μg of protein sample. Protein extracts of lactate-adapted 
cells served as the reference state and were labeled with Sci5. Protein 
extracts from the other 27 substrate adaptation conditions repre-
sented the test states and were each labeled with Sci3. The internal 
standard contained equal amounts of all test and the reference 
state(s) and was labeled with Sci2. Per gel, 50 μg each of the labeled 
reference state, test state, and internal standard were applied. To ac-
count for biological variation (96), three parallel gels were run with 
labeled protein extracts from three individual cultures (i.e., biologi-
cal replicates) for each test state and reference. First dimension sepa-
ration by isoelectric focusing (IEF) was conducted with 24-cm-long 
immobilized pH gradient (IPG) strips (pH 3 to 11 nonlinear; GE 
Healthcare) run in a Protean i12 system (Bio-Rad, Munich, Germany). 
The IEF program used was as follows: 50 V for 13 hours, 200 V 
for 1 hour, 1000 V for 1 hour, gradual gradient to 10,000 V within 
2 hours, and 10,000 V until 70,000 Vhs were reached. The second 
dimension separation of proteins according to molecular size was 
done by SDS–polyacrylamide gel electrophoresis (12.5% gels, v/v) 
using an EttanDalttwelve system (GE Healthcare).

2D DIGE gels were digitalized directly after completion of elec-
trophoresis with a charge-coupled device camera system (Intas Ad-
vanced 2D Imager, Intas Science Imaging Instruments GmbH, 
Göttingen, Germany) (97). Cropped gel images were analyzed with 
the DeCyder software (version 7.0; GE Healthcare) in two different 
work packages: one for aromatic (including cyclohexane carboxyl-
ate) and the other for aliphatic substrates. Parameters for spot detec-
tion were as described previously (96). All three biological replicates 
were included for the reference and each test state. Changes in the 
protein abundance of ≥ |1.5|-fold were regarded significant (96). 
Separate preparative colloidal Coomassie brilliant blue (cCBB)–
stained gels were run (300 μg of protein load) to obtain sufficient 
amounts of protein for reliable mass spectrometric identification. 
Spots of interest were excised using the EXQuest spot cutter (Bio-
Rad) from two cCBB-stained gels per analyzed substrate state and 
subsequently washed and tryptically digested as described (98).

Sample digests were spotted onto Anchorchip steel targets 
(Bruker Daltonik GmbH, Bremen, Germany) and analyzed with an 
UltrafleXtreme matrix-assisted laser desorption/ionization–time-
of-flight (MALDI-TOF)/TOF mass spectrometer (Bruker Daltonik 
GmbH) as described (98). Peptide mass fingerprint (PMF) searches 
were performed with a Mascot server (version 2.3; Matrix Science, 
London, UK) against the translated genome of Ds. variabilis 3be13 
with a mass tolerance of 25 parts per million (ppm). Five lift spectra 
were collected to confirm PMF identification, and three additional 
spectra were acquired of unassigned peaks applying feedback by the 
ProteinScape platform (version 3.1, Bruker Daltonik GmbH). In the 
case of failed PMF identification, eight lift spectra of suitable 
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precursors were acquired. Mass spectrometry (MS)/MS searches 
were performed with a mass tolerance of 100 ppm. For both, MS 
and MS/MS searches, Mascot scores not meeting the 95% certainty 
criterion were not considered significant. A single miscleavage was 
allowed (enzyme trypsin), and carbamidomethyl (C) and oxidation 
(M) were set as fixed and variable modifications, respectively.

Analyses of the membrane protein–enriched fractions
Total membrane protein fractions were prepared from two biologi-
cal replicates per substrate condition and analyzed as previously re-
ported (98). Essentially, cell extracts generated by means of a French 
Press (Sim-Aminco Ltd, Rochester, NY, USA) were treated with ice-cold 
carbonate and membrane proteins solubilized with SDS. Protein 
content was determined with the RC-DC assay (Bio-Rad), and pro-
tein separation was achieved using 12.5% SDS mini gels (10 cm by 
7 cm; Bio-Rad). Each sample lane (10 μg of protein load) was di-
vided into four gel slices, and each slice was cut into smaller pieces 
(about 1 mm2) before washing, reduction, alkylation, and tryptic 
digestion (98). The separation of peptides was performed with a 
nano-LC system. The nano-LC eluent was continuously analyzed by 
an online-coupled ion trap mass spectrometer (amaZon speed ETD, 
Bruker Daltonik GmbH) using the captive spray electrospray ion 
source (Bruker Daltonik GmbH). The instrument was operated in 
positive mode with a capillary current of 1.3 kV and drygas flow of 
3 liter/min at 150°C. Active precursor exclusion was set for 0.2 min. 
Per full scan MS, 20 MS/MS spectra of the most intense masses were 
acquired. Protein identification was performed with ProteinScape as 
described above, including a mass tolerance of 0.3 Da for MS and 
0.4 Da for MS/MS searches and applying a target decoy strategy 
(false discovery rate < 1%).

Shotgun proteomic analyses
For shotgun analysis, cell pellets from three biological replicates per 
substrate condition were suspended in lysis buffer [7 M urea, 2 M 
thiourea, and 30 mM tris/HCl (pH 8.5)]. Cell breakage, removal of 
cell debris, reduction with dithiothreitol, alkylation with iodoacet-
amide, and tryptic in-solution digest were performed as previously 
described (99). Separation and detection of total peptide mixtures 
per sample were performed by nano-LC-ESI-MS/MS (see the “Anal-
yses of the membrane protein–enriched fractions” section), except 
for applying a linear 240-min gradient. Protein identification was 
performed via the ProteinScape platform (see the “Profiling of solu-
ble proteins by 2D DIGE and protein identification by MALDI-
TOF-MS/MS” section).

Analyses of the Desulfobacteraceae proteomic data
Comparative analyses of proteomic datasets of all six Desulfobacteraceae 
representatives (Figs. 3 to 5) was performed using combined peptide 
count data of the shotgun (i.e., soluble protein fraction) and the 
membrane protein–enriched fraction datasets, respectively. Non
redundant lists of detected proteins were created by including only 
the highest peptide counts of either the soluble or membrane frac-
tion, and only detections in at least two replicates per condition 
were considered for subsequent analyses. Respective peptide count 
data were deposited at fairdomhub.org under DOI: 10.15490/fairdo
mhub.1.investigation.666.1 for Ds. variabilis 3be13 (this study), and 
protein data of the other strains were already reported (27–30). 
The shotgun mass spectrometry proteomics data have been de-
posited to the ProteomeXchange Consortium (http://proteomecentral.

proteomexchange.org) via the PRIDE partner repository (100) with 
the dataset identifiers PXD053571, PXD053594, PXD053598, 
PXD053602, PXD053606, and PXD053610. MATLAB (version 
R2022b, The MathWorks Inc., Natick, MA, USA) was used for data 
analyses applying custom code. The comparison of the different pro-
teomic datasets was performed using KEGG annotations of the in-
dividual proteins of all bacteria as assigned by EggNOG.
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