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Visual cognition in multimodal large 
language models
 

Luca M. Schulze Buschoff    1,2,4  , Elif Akata    1,2,3,4, Matthias Bethge3 & 
Eric Schulz1,2

A chief goal of artificial intelligence is to build machines that think like 
people. Yet it has been argued that deep neural network architectures fail 
to accomplish this. Researchers have asserted these models’ limitations in 
the domains of causal reasoning, intuitive physics and intuitive psychology. 
Yet recent advancements, namely the rise of large language models, 
particularly those designed for visual processing, have rekindled interest in 
the potential to emulate human-like cognitive abilities. This paper evaluates 
the current state of vision-based large language models in the domains of 
intuitive physics, causal reasoning and intuitive psychology. Through a 
series of controlled experiments, we investigate the extent to which these 
modern models grasp complex physical interactions, causal relationships 
and intuitive understanding of others’ preferences. Our findings reveal that, 
while some of these models demonstrate a notable proficiency in processing 
and interpreting visual data, they still fall short of human capabilities in 
these areas. Our results emphasize the need for integrating more robust 
mechanisms for understanding causality, physical dynamics and social 
cognition into modern-day, vision-based language models, and point out 
the importance of cognitively inspired benchmarks.

People are quick to anthropomorphize, attributing human character-
istics to non-human agents1. The tendency to anthropomorphize has 
only intensified with the advent of large language models (LLMs)2. 
LLMs apply deep learning techniques to generate text3, learning from 
vast datasets to produce responses that can be startlingly human-like4. 
Astonishingly, these models cannot only generate text. When scaled up 
to bigger training data and architectures, other, so-called ‘emergent 
abilities’ appear5,6. The current models can, for example, pass the bar 
exam7, write poems8, compose music9 and assist in programming and 
data analysis tasks10. As a result, the line between human and machine 
capabilities is increasingly blurred11,12. People not only interact with 
these systems as if they were humans13, but they also start to rely on 
them for complex decision-making14, artistic creation15 and personal 
interactions16. It is, therefore, natural to ask: Have we built machines 
that think like people?

Judging whether or not artificial agents can mimic human thought 
is at the core of cognitive science17,18. Therein, researchers have long 
debated the capabilities of artificially intelligent agents19–21. In a seminal 
paper, Lake and colleagues22 proposed core domains to consider when 
making such judgements. Published during the height of the deep 
learning revolution23, the authors focused on domains that were easy 
for people but difficult for deep learning models: intuitive physics, 
causal reasoning and intuitive psychology.

Research on intuitive physics has studied how people perceive and 
interpret physical phenomena24–26. Past work on this topic has empha-
sized that humans possess an innate ability to predict and understand 
the physical properties of objects and their interactions27, even from 
a young age28, a notion sometimes summarized as a ‘physics engine’ 
in people’s heads29. This understanding includes concepts such as 
gravity30, inertia31 and momentum32. Some of the most canonical tasks 
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questions. We submitted them to some of the currently most advanced 
LLMs. To evaluate whether the LLMs show human-like performance in 
these domains, we follow the approach outlined in ref. 73: we treat the 
models as participants in psychological experiments. This allows us to 
draw direct comparisons with human behaviour on these tasks. Since 
the tasks are designed to test abilities in specific cognitive domains, 
this comparison allows us to investigate in which domains multimodal 
LLMs perform similar to humans, and in which they don’t. Our results 
showed that these models can, at least partially, solve these tasks. In 
particular, two of the largest currently available models, OpenAI’s 
Generative Pre-trained Transformer (GPT-4) and Anthropic’s Claude-3 
Opus, managed to perform robustly above chance in two of the three 
domains. Yet crucial differences emerged. First, none of the models 
matched human-level performance in any of the domains. Second, 
none of the models fully captured human behaviour, leaving room 
for domain-specific models of cognition such as the Bayesian models 
originally proposed for the tasks.

Related work
There have been a large number of studies on reasoning abilities in 
LLMs74–76. Previous studies have focused, among others, on testing 
LLMs’ cognitive abilities in model-based planning73, analogical rea-
soning tests77, exploration tasks78, systematic reasoning tests79,80, 
psycholinguistic completion studies81 and affordance understanding 
problems82. In this sense, our contribution can be seen as a part of a 
larger movement in which researchers use methods from the behav-
ioural sciences to understand black box machine learning models83–85. 
However, most of the previous studies did not investigate multimodal 
LLMs but rather remained in the pure language domain. Although 
there have been recent attempts to investigate vision LLMs’ cognitive 
features, including their reaction to visual illusions86 as well as how 
they solve simple intelligence tasks87, we investigate the proposed core 
components of cognition in these models.

Previous work has also looked at how LLMs solve cognitive tasks 
taken from the same domains that we have looked at. In intuitive 
physics, Zečević and colleagues88 found that LLMs performed poorly 
in a task using language descriptions of physical scenarios. Zhang 
and colleagues89 extracted programs from text produced by LLMs 
to improve their physical reasoning abilities. Finally, Jassim and col-
leagues90 proposed a new benchmark for evaluating multimodal 
LLMs’ understanding of situated physics. In causal reasoning, Binz 

in this domain involve testing people’s judgements about the stability 
of block towers33,34. These tasks have made their way into machine learn-
ing benchmarks35,36, where they are used to test the intuitive physical 
understanding of neural networks (see ref. 37 for an overview of previ-
ous work on building models with human-like physical knowledge).

Research on causal reasoning has studied how individuals infer 
and think about cause–effect relationships38–40. Past work on this 
topic has proposed that humans possess an intuitive capacity to infer, 
understand and predict causal relationships in their environment41–44, 
oftentimes described using Bayesian models of causal learning45,46. 
This cognitive ability encompasses recognizing patterns47,48, inferring 
causes from interventions49,50, and predicting future events based on 
hypothetical events51. Canonical tasks in this domain often involve 
assessing individuals’ ability to infer causal relationships, for example, 
when judging the responsibility of one object causing other objects’ 
movement52,53. Causal reasoning remains a challenge, even for current 
machine learning approaches54,55.

Research on intuitive psychology has explored how individuals 
infer, understand and interpret social phenomena and mental states 
of other agents56,57. Past work on this topic has emphasized the concept 
that humans possess an inherent ability to infer and reason about the 
mental states58,59, intentions and emotions of others, often referred to 
as a ‘theory of mind’60,61. This ability has been modelled as a Bayesian 
inference problem62–64. Canonical tasks in this domain often involve 
assessing individuals’ capacity to predict actions based on understand-
ing others’ perspectives or intentions, such as determining agents’ 
utility functions based on their actions in a given environment65,66. It 
is the subject of ongoing debates whether modern algorithms show 
any form of intuitive psychology67–69.

Lake and colleagues argued that some of these abilities act as 
‘start-up software’, because they constitute cognitive capabilities 
present early in development. Moreover, they proposed that these 
so-called ‘intuitive theories’70,71 need to be expressed explicitly using 
the calculus of Bayesian inference72, as opposed to being learned from 
scratch, for example, via gradient descent. However, with the increase 
in abilities of current neural networks, in particular LLMs, we pondered: 
Can LLMs, in particular vision LLMs, sufficiently solve problems from 
these core domains?

To address this question, we took canonical tasks from the 
domains of intuitive physics, causal reasoning and intuitive psychol-
ogy that could be studied by providing images and language-based 
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and Schulz73 showed that GPT-3 failed at simple causal reasoning 
experiments, while Kosoy and colleagues91 showed that LLMs cannot 
learn human-like causal over-hypotheses. In research on intuitive 
psychology, Kosinski argued that theory of mind might have emerged 
in LLMs68 which has been criticized other researchers69. Akata and col-
leagues showed that GTP-4 plays repeated games very selfishly and 
could not pick up on simple conventions such as alternating between 
options16. Finally, Gandhi and colleagues92 proposed a framework for 
procedurally generating theory of mind evaluations and found that 
GPT-4’s abilities mirror human inference patterns, although less reli-
able, while all other LLMs struggled.

Many of the past studies on LLMs have fallen risk to appearing in 
new models’ training sets. Recent work has recognized this issue and, 
in turn, evaluated language models on many problem variations to 
minimize training set effects93. Our work differs from these approaches 
as current models could not have just memorized solutions to the given 
problems because these problems require higher level reasoning. 
Furthermore, the human data and ground truth are most commonly 
stored in additional data files, which first have to be extracted and 
matched to the respective images to be used for model training. Since 
this requires data wrangling that cannot easily be automated and the 
number of stimuli to gain is so small, it is extremely unlikely that these 
stimuli together with the ground truth were entered into the training 
set of any of the investigated models.

Results
We tested five different models on three core components for 
human-like intelligence as outlined in ref. 22 (Fig. 1a). The models we 
used are vision LLMs, which are multimodal models that integrate 
image processing capabilities into LLMs94,95 (Fig. 1c). These models 
allow users to perform visual question answering96,97: users can upload 
an image and ask questions about it, which the model interprets and 
responds to accordingly.

To test the three core components, we used tasks from the cogni-
tive science literature that could be studied in vision LLMs via visual 
question answering. For every task, we queried the visual reasoning 
abilities of the LLMs with tasks of increasing complexity. First, we asked 
about simple features of the shown images such as the background 
colour or the number of objects shown. Afterwards, we submitted 
questions taken from the cognitive science experiments. We report 
results based on comparisons with the ground truth as well as the dif-
ferent models’ matches to human data.

Intuitive physics with block towers
To test the intuitive physics capabilities of the different LLMs, we used 
photographs depicting wooden block towers from ref. 98 (see Sup-
plementary Fig. 1 for an example). We first asked models to determine 
the background colour of the image. All four models achieved almost 
perfect accuracy (Fig. 2a). We then asked models to state the colour 
of blocks from top to bottom. Here, the performance of most models 
except for GPT-4V and Claude-3 deteriorated (Fig. 2b). Please note that 
the first two tasks are fairly trivial for humans and we would expect 
human performance to be at 100% (the background colour is always 
white and images featured two, three or four blocks in primary colours).

To test the models’ physical reasoning abilities, we asked them to 
give a binary stability judgement of the depicted block towers. Here, 
only GPT-4V and Claude-3 performed slightly above chance (Fig. 2c; 
for GPT-4V, Fisher’s exact test yielded an odds ratio of 2.597 with a 
one-sided P value of 0.028). None of the other models performed sig-
nificantly above chance (the second best performing model, Claude-3, 
had an odds ratio of 2.016, with a one-sided P value of 0.078). Human 
participants were also not perfect but showed an average accuracy of 
65.608%.

Finally, we determined the relationship between models’ and 
humans’ stability judgements using a Bayesian logistic mixed effects 
regression. We compute a Bayesian R2 for each regression model based 
on draws from the modelled residual variances99. We then take the 
square root of this Bayesian R2 and multiply it with the sign of the main 
regression coefficient to arrive at a pseudo r value. Around this pseudo 
r value we plot the square root of the 95% percentiles for the R2 value 
(Fig. 2d). We found that GPT-4V was the only model that showed a rela-
tion to human judgements, with a regression coefficient of 1.15 (95% 
credible interval (95% CI) 1.04, 1.27) and an R2 value of 0.066. However, 
the regression coefficient between individual humans and the mean 
over humans was still larger, with a coefficient of 1.46 (95% CI 1.41, 1.52) 
and an R2 value of 0.354.

Causal reasoning with Jenga
To test the models’ causal reasoning capabilities, we used synthetic 
images from refs. 100,101, which depicted block towers that were stable 
but might collapse if one of the blocks was removed (see Supplemen-
tary Fig. 2 for an example). We started by asking the models to count the 
blocks in the image. The images in this task displayed a larger number of 
blocks (ranging from 6 to 19), which made the basic counting task signifi-
cantly more challenging than in the previous section. Models’ responses 
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of a binomial distribution (n = 100). Bars in plot d show the square root of the R2 
values for Bayesian logistic mixed effects regressions with error bars given by the 
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times number of human participants).
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approximated the ground truth, albeit rarely matching it exactly. There-
fore, we report the mean absolute distance to the ground truth instead 
of the percentage of correct answers (Fig. 3a). The models’ performance 
highlighted the challenging nature of this task, with the best performing 
model (Claude-3) still being on average more than one block off.

We continued by querying the models for the number of blocks 
that would fall if a specific block was removed from the scene (Fig. 3b,c). 
We established a baseline performance represented by a horizontal 
line in Fig. 3b,c, which corresponds to a random agent that gave the 
mean between 0 and the number of blocks in each image as its’ predic-
tion, essentially behaving like a uniform distribution over the possible 
number of blocks that could fall. Notably, both GPT-4V and Fuyu-8B 
surpassed the random baseline, their performance levels being close 
to the human results reported in ref. 100, which is depicted by the 
rightmost bar in the plot. However, GPT-4V still diverges significantly 
from the average over human participants (t(42) = 2.59, P < 0.05).

Finally, we asked the models to rate the responsibility of a specific 
block for the stability of the other blocks (Fig. 3d). Notably, all mod-
els except for GPT-4V gave constant ratings for this task (Fuyu and 
Claude-3 always responded with 100, while Otter and LLaMA-Adapter 
V2 always responded with 50). The regression coefficient for GPT-4V 
with human values is 0.16 (95% CI 0.10, 0.21) with an R2 value of 0.027. 
The human-to-human regression has a coefficient of 0.54 (95% CI 0.45, 
0.63) and an R2 value of 0.268.

Causal reasoning with Michotte
For the second test for causal reasoning abilities, we ran an experiment 
from ref. 52 that is based on the classic Michotte launching paradigm102. 
It uses simple synthetic two-dimensional (2D) depictions of two balls 
labelled ‘A’ and ‘B’ with arrows showing their trajectories in front of 
a white background (see Supplementary Fig. 3 for an example). We 
started by asking the models to determine the background colour of the 
image (Fig. 4a). Most models perform fine with the exception of Fuyu, 
which always answers ‘pink’ (probably since pink is mentioned as the 
colour of the gate in the prompt). Then, we asked models to infer the 
trajectory of ball movement. This proved challenging for most models 
(Fig. 4b), which is surprising given that the prompt explicitly mentions 
that the arrows in the stimuli depict the trajectory of the balls and the 
balls always move from right to left.

We then queried the models for their agreement on a scale from 
0 to 100 with the following questions: either ‘Ball B went through the 

middle of the gate’ (if ball B entered the gate) or ‘Ball B completely 
missed the gate’ (if ball B missed the gate) (Fig. 4c). No model per-
forms close to the human results reported in ref. 52. The best per-
forming model is Fuyu with a regression coefficient of 0.26 (95% CI 
−0.08, 0.61) and an R2 value of 0.067. Interestingly, Claude-3 shows 
a negative relationship with human judgements, with a regression 
coefficient of −0.22 (95% CI −0.39, −0.06) and an R2 value of 0.076. 
The human-to-human regression coefficient is 0.85 (95% CI 0.69, 1.03) 
with an R2 value of 0.556.

Finally, we asked the models for their agreement on a scale from 
0 to 100 with the counterfactual question of whether ‘Ball B would 
have gone through the gate had Ball A not been present in the scene’ 
(Fig. 4d). Notably, the closed-source models perform worse than some 
open-source models for both tasks. Here, Fuyu is again the best per-
forming model with a regression coefficient of 0.42 (95% CI 0.28, 0.57) 
and an R2 value of 0.185. Pseudo r values for LLaMA-Adapter V2 and 
GPT-4V are missing, since the former gave only non-valid answers and 
latter always responded with 100. The human-to-human regression 
coefficient is 0.85 (95% CI 0.76, 0.93) with an R2 value of 0.698.

Intuitive psychology with the astronaut task
As a first test for the intuitive psychology understanding of the dif-
ferent LLMs, we used synthetic images depicting an astronaut on a 
coloured background from ref. 103 (see Supplementary Figs. 4 and 
5 for an example). The images featured different terrains and care 
packages. Depending on which terrain the astronaut crossed or which 
care package they chose to pick up, it was possible to infer the costs 
associated with the terrains and rewards associated with the care 
packages.

Again, we first tasked models with determining the background 
colour of the images. Here, the performance of the models was worse 
compared with the intuitive physics dataset (Fig. 5a), which might 
be due to the fact that the background colour here was not uniform 
(Supplementary Fig. 5). We then asked models to count the number of 
care packages in the scene. Most models except for GPT-4V struggled 
here (Fig. 5b).

Afterwards, we asked them to infer the costs associated with the 
different terrains (Fig. 5c) and the rewards associated with different 
care packages (Fig. 5d). All models only showed weak relations with 
the average over human participants in their judgements about the 
costs and rewards associated with the environment. The regression 
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coefficients of the models with the z-scaled mean over human partici-
pants ranged from −0.24 to 0.16 with R2 values between 0.025 to 0.04 
for cost questions, and from −0.02 to 0.39 (Claude-3, 95% CI 0.11, 0.66) 
with R2 values between 0.015 and 0.110 for reward questions.

Intuitive psychology with the help or hinder task
The new intuitive psychology dataset we added is taken from ref. 104. 
This task shows a simple 2D depiction of two agents in a grid environ-
ment (see Supplementary Fig. 6 for an example). On each time step, 
the agents can move up, down, left or right, or stay in place, but can-
not move through walls or boxes. The red agent has the objective of 
reaching a star in ten time steps. If the agent runs out of time they fail. 
The blue agent has the objective of either helping or hindering the red 
agent by pushing or pulling boxes around.

We first asked models to determine the background colour in the 
scene and to determine the number of boxes in the scene (Fig. 6a,b). The 
closed-source models are able to perfectly determine the background 
colour (always white) but they nonetheless struggle with determining 
the number of boxes in the scene (always 1, 2 or 3). Model answers for 
the counting task ranged from 1 to 4, with only LLaMA-Adapter V2 giv-
ing constant responses of 2.

We then asked the models whether the blue agent tried to help or 
hinder the red agent (Fig. 6c). Here, Otter shows the highest regression 
coefficient with human answers with 0.19 (95% CI 0.13, 0.25) and an R2 
value of 0.038. Claude-3 shows a negative relationship with human 
answers with a coefficient of −0.25 (95% CI −0.31, −0.20) and an R2 value of 
0.066. No model showed coefficients even close to the human-to-human 
coefficient of 0.93 (95% CI 0.90, 0.96) with an R2 value of 0.858.

Finally, we asked the model whether the red agent would have 
succeeded in reaching the star, had the blue agent not been there. We 
show the square root of the R2 for the Bayesian linear mixed effects 
regression with 95% percentiles in Fig. 6d. Interestingly, the results 
here flip, with Otter now showing a stronger negative relationship 
with a coefficient of −0.40 (95% CI −0.47, −0.33) and an R2 value of 
0.161 (this makes sense, since this task is essentially a counterfactual 
simulation question similar to Fig. 4d, where Otter already showed a 
negative relation to human judgements). GPT-4V and Claude-3 both 
show small positive regression coefficients with humans answers: 0.15 
(95% CI 0.09, 0.21) with an R2 value of 0.025, and 0.17 (95% CI 0.11, 0.23) 
with an R2 value of 0.032, respectively. Again, no model coefficient is 
close to the human-to-human coefficient of 0.83 (95% CI 0.80, 0.87) 
with an R2 value of 0.688.
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Fig. 4 | Results for Michotte causal reasoning experiment. a–d, We first ask for 
the background colour in the image (a), then the direction of ball movement  
(b), a judgement between 0 and 100 on whether ball ‘B’ goes through the gate (c) 
and finally a counterfactual judgement between 0 and 100 on whether ball ‘B’ 
would have gone through the gate, had ball ‘A’ not been present in the scene (d). 

The causal reasoning experiment was taken from ref. 52. Bars in plots a and b show 
percentage of correct answers with error bars given by the standard deviation of a 
binomial distribution (n = 18). Bars in plots c and d show the square root of the R2 
values for Bayesian logistic mixed effects regressions with error bars given by the 
square root of the 95% percentiles for this R2 value (n = 252 and 234, respectively).
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Fig. 5 | Results on astronaut task for intuitive psychology. a,b, Again, we first 
ask for the background colour (a) and the number of boxes in the scene (b). 
c,d, Models are then asked to make inferences about the costs (c) and rewards 
(d) in an environment depending on the path an agent has taken. The tasks for 
intuitive psychology were taken from ref. 103. Regression coefficients for Fuyu 
and LLaMA-Adapter V2 are missing as they always responded with constant 

ratings for either cost or reward questions. Bars in plots a and b show percentage 
of correct answers with error bars given by the standard deviation of a binomial 
distribution (n = 16). Bars in plots c and d show the square root of the R2 values for 
Bayesian logistic mixed effects regressions with error bars given by the square 
root of the 95% percentiles for this R2 value (n = 81 and 70, respectively).

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 7 | January 2025 | 96–106 101

Article https://doi.org/10.1038/s42256-024-00963-y

Discussion
We started by asking whether, with the rise of modern LLMs, research-
ers have created machines that—at least to some degree—think like 
people. To address this question, we took four recent multimodal LLMs 
and probed their abilities in three core cognitive domains: intuitive 
physics, causal reasoning and intuitive psychology.

In intuitive physics and causal reasoning, the models managed 
to solve some of the given tasks and GPT-4V showed a slight match 
with human data. However, while they performed well in some tasks, 
the models did not show a conclusive match with human data for the 
causal reasoning experiments. Finally, in the intuitive psychology tasks, 
none of the models showed a strong match with human data. Thus, an 
appropriate answer to the question motivating our work would be ‘No’, 
or—perhaps more optimistically—‘Not quite’.

Although we have tried our best to give all models a fair chance 
and set up the experiments in a clean and replicable fashion, some 
shortcomings remain that should be addressed in future work. First of 
all, we have tested only a handful of multimodal models on just three 
cognitive domains. While we believe that the used models and tasks 
provide good insights into the state-of-the-science of LLMs’ cognitive 
abilities, future studies should look at more domains and different 
models to further tease apart when and why LLMs can mimic human 
reasoning. For example, it would be interesting to see whether scale is 
the only important feature influencing model performance105,106. Cur-
rently, our evidence suggests that even smaller models, for example, 
Fuyu, with its 8 billion parameters, can sometimes perform as well as 
GPT-4V in some tasks. Additionally, we applied all models out of the 
box and without further fine-tuning. Future studies could attempt to 
fine-tune multimodal LLMs to better align with cognitive data107 and 
assess whether this improves their reasoning abilities more gener-
ally. Similar to other recent work108, we found that many models were 
already constrained in their basic visual processing. While the more 
powerful closed-source models performed more robustly on simple 
scene understanding tasks, we found that they still failed simple ques-
tions that would be trivial for human observers. Thus, we think that the 
models’ weak performance in some domains can partially be explained 
by their poor basic visual processing capabilities.

Another shortcoming of the current work is the simplicity of the 
used stimuli. While the block towers used in our first study were delib-
erately designed to be more realistic98 than commonly used psycho-
logical stimuli33, this was not true for the experiments in the other two 
domains. For the intuitive psychology experiments, in particular, we 

would expect the models to perform better if the stimuli contained 
more realistic images of people, which has been shown to work better 
in previous studies109. Interestingly, using more realistic stimuli can 
also change people’s causal judgements110; how realistic the stimuli 
used in cognitive experiments should be remains an open question111.

On a related point, we used only static images in our current 
experiments, which severely limits the breadth and level of detail of 
the questions we could ask. For example, some of the most canonical 
tasks investigating people’s causal reasoning abilities involve videos of 
colliding billiard balls52. As future LLMs will probably be able to answer 
questions about videos112, these tasks represent the next frontier of 
cognitively inspired benchmarks.

For the comparisons with human data, we used the participant 
data collected in the original studies for all experiments, except for 
the intuitive physics task, and assessed the correspondence between 
models and these data via a Bayesian mixed effects regression and R2 
values. Future work could expand on this approach by collecting new 
data from human participants choosing which of the model’s judge-
ments they prefer. This could lead to a more detailed comparison, 
similar to what has been proposed to discriminate among deep learning 
models for human vision113 and language114.

A crucial weakness of most studies using LLMs is that they can 
be sensitive to specific prompts115–117. While we have attempted to use 
prompts that elicited good behaviour, thereby giving LLMs a chance to 
perform well, future work could try to further optimize these prompts 
using available methods118–120, while also assessing how the models 
respond to paraphrased versions of the same tasks. We present an 
exploratory analysis of the effects of response constraints and context 
complexity on human behaviour in the intuitive psychology astronaut 
task in Supplementary Fig. 7. While response constraints and context 
complexity both influence model outputs, we also find that small vari-
ations to prompts on a character level can impact model behaviour, 
probably due to tokenization. Taken together, this shows that evalu-
ations of visual LLMs are not only dependent on the specific models 
and experiments used, but also on the prompts and probably even 
how these prompts are tokenized. While it could be possible to further 
engineer the used prompts, we believe that our current approach was 
sufficient to showcase these models’ abilities.

Our work has shown that multimodal LLMs have come a long 
way, showing some correspondence to human behaviour and often 
performing above chance. Moreover, machine learning researchers 
have put forward various ideas about how to close the remaining gap 
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Fig. 6 | Results on help or hinder task for intuitive psychology. a–d, We first ask 
for the background colour in the image (a), then the number of boxes in the scene 
(b), a judgement between 0 and 100 on whether an agent in the scene tried to 
hinder the other agent (c) and finally a counterfactual judgement between 0 and 
100 on whether an agent in the scene would have successfully reached the goal, 
had the other agent not been present (d). The intuitive psychology dataset was 

from taken from ref. 104. Bars in plots a and b show percentage of correct answers 
with error bars given by the standard deviation of a binomial distribution (n = 24). 
Bars in plots c and d show the square root of the R2 values for Bayesian logistic 
mixed effects regressions with error bars given by the square root of the 95% 
percentiles for this R2 value (n = 1,200).
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between humans and machines121, including self-supervised learning122, 
translating from natural into probabilistic languages123 or grounding 
LLMs in realistic environments124. This continuous evolution in models’ 
capabilities necessitates a re-evaluation of the metaphors and tools we 
use to understand them. We believe that cognitive science can offer 
tools, theories and benchmarks to evaluate how close we have come 
to ‘building machines that learn and think like people’.

Methods
Code
The open-source models were installed per the instructions on 
their related GitHub or Huggingface repositories and evaluated on 
a Slurm-based cluster with a single A100. For the results reported as 
GPT-4V, we used the public ChatGPT interface and the OpenAI appli-
cation programming interface (API), specifically the November 2023 
release of gpt4-vision-preview model which is available via the com-
pletions endpoint. For Claude-3, we used the Anthropic API. Code for 
replicating our results is available on GitHub (github.com/lsbuschoff/
multimodal). All models were evaluated in Python using PyTorch125. 
Additional analyses were carried out using NumPy126, Pandas127 and 
SciPy128. Matplotlib129 and Seaborn130 were used for plotting. Bayesian 
mixed effects models were computed using brms131 in R132.

Models
Open-source. Fuyu is an 8 billion parameter multimodal text and image 
decoder-only transformer. We used the Huggingface implementation 
with standard settings and without further fine-tuning (available at 
https://huggingface.co/adept/fuyu-8b). The maximum number of 
generated tokens was set to 8 and responses were parsed by hand. 
Otter is a multimodal LLM that supports in-context instruction tuning 
and is based on the OpenFlamingo model. We used the Huggingface 
implementation of OTTER-Image-MPT7B (available at https://hugging-
face.co/luodian/OTTER-Image-MPT7B), again with standard settings 
and without fine-tuning. The maximum number of generated tokens 
was left at 512 and responses were parsed by hand. For LLaMA-Adapter 
V2, which adds adapters into LLaMA’s transformer to turn it into an 
instruction-following model, we used the GitHub implementation of 
llama-adapter-v2-multimodal7b with standard settings and again with-
out further fine-tuning (available at https://github.com/OpenGVLab/
LLaMA-Adapter/tree/main/llama_adapter_v2_multimodal7b). The 
maximum number of generated tokens was left at 512 and responses 
were parsed by hand.

Closed-source. We initially queried GPT-4V through the ChatGPT 
interface, since the OpenAI API was not publicly available at the outset 
of this project. The intuitive psychology task responses were collected 
using the gpt4-vision-preview model variant after its November 2023 
release in the API. We set the maximum number of generated tokens 
for a given prompt to 1 to get single numerical responses. All other 
parameters were set to their default values. Note that this model does 
not currently feature an option for manually setting the temperature, 
and the provided documentation does not specify what the default 
temperature is. We query Claude-3 using the Anthropic API. We use 
the model version claude-3-opus-20240229 with a temperature of zero 
and the maximum number of new tokens between 3 and 6 depending 
on the task.

Datasets
Intuitive physics with block towers. We tested the intuitive physical 
understanding of the models using images from ref. 98. The photos 
depict a block tower consisting of coloured wooden blocks in front of 
a white fabric (see Supplementary Fig. 1 for an example). The images 
are of size 224 × 244. In the dataset, there are a total of 516 images of 
block towers. We tested the models on 100 randomly drawn images. We 
first tested the models on their high-level visual understanding of the 

scenes: we tasked them with determining the background colour and 
the number of blocks in the image. To test their physical understanding, 
we tested them on the same task as the original study: we asked them 
to give a binary rating on the stability of the depicted block towers. For 
the first two tasks, we calculated the percentage of correct answers for 
each of the models. For the third task, we calculated a Bayesian linear 
mixed effects regression between human and model answers.

Due to the limited sample size of the original human experiment, 
we reran the human experiment from ref. 98 on Prolific with 107 partici-
pants (55 female and 52 male native English speakers with a mean age of 
27.73 (s.d. = 4.21)). All participants agreed to take part in the study and 
were informed about the general purpose of the experiment. Experi-
ments were performed in accordance with the relevant guidelines 
and regulations approved by the ethics committee of the University 
of Tübingen. Participants first saw an example trial, followed by 100 
test images. In a two-alternative forced choice paradigm, participants 
were asked whether the block tower in a given image was stable or not 
stable. They were paid £1.50 and the median time they took to com-
plete the experiment was 08:08 min, making the average base reward 
£11.07 per hour. Additionally, they received a bonus payment of up to 
£1 depending on their performance (1 penny for each correct answer).

Causal reasoning with Jenga. For the first causal reasoning experi-
ment, we used images from ref. 100. The images show artificial block 
stacks of red and grey blocks on a black table (see Supplementary 
Fig. 2 for an example). The dataset consists of 42 images on which we 
tested all models. We again first tested the models on their high-level 
visual understanding of the scene and therefore tasked them with 
determining the number of blocks in the scene. The ground truth 
number of blocks in the scenes ranged from 6 to 19. Since this task is 
rather challenging due to the increased number of blocks, we do not 
report the percentage correct as for the intuitive physics dataset, but 
the mean over the absolute distance between model predictions and 
the ground truth for each image (Fig. 3a).

To test the causal reasoning of the models, we adopted the tasks 
performed in the original study100,101. We asked models to infer how 
many red blocks would fall if the grey block was removed. For this 
condition, Zhou and colleagues100 collected data from 42 participants. 
We again report the absolute distance between model predictions 
and the ground truth for each image (Fig. 3b). We calculate a random 
baseline which uses the mean between 0 and the number of blocks 
for each specific image as the prediction. We also ask the models for 
a rating between 0 and 100 for how responsible the grey block is for 
the stability of the tower. Here, data for 41 human participants were 
publicly available. For both the number of blocks that would fall if the 
grey block was removed, and its responsibility for the stability of the 
tower, we calculate the mean Pearson correlation to human participants 
from the original study (Fig. 3c).

Causal reasoning with Michotte. For the second test for causal rea-
soning abilities, we used a task from ref. 52. It features 18 images which 
show a 2D view of two balls and their trajectories on a flat surface (see 
Supplementary Fig. 3 for an example). This experiment is a variation of 
the classic Michotte launching paradigm102, used to test visual causal 
perception. We again first tested the models on their high-level visual 
understanding of the scene: we first asked them to determine the 
background colour (Fig. 4a) and then the direction of ball movement 
(Fig. 4b) from the two options ‘left to right’ or ‘right to left’ (the balls 
always moved from right to left).

To test the causal reasoning of the models, we adopted the tasks 
performed in the original study. We asked models about the actual out-
come of the scene: ‘Did ball A enter the gate?’ As in the original experi-
ments, models had to indicate their agreement with this statement on 
a scale from 0 (not at all) to 100 (completely). We then also asked the 
counterfactual question: ‘Would ball A have entered the gate had it not 

http://www.nature.com/natmachintell
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collided with ball B?’ The original authors52 collected the responses of 
14 participants in the ‘outcome’ condition and 13 participants in the 
‘counterfactual’ condition. We here report the regression between 
model and human responses (Fig. 4c,d).

Intuitive psychology with astronaut images task. To test the intui-
tive psychology of the different LLMs, we used stimuli from ref. 103. 
This part consisted of three different experiments, each consisting of 
16, 17 and 14 images showing a 2D depiction of an astronaut and care 
packages in different terrains (see Supplementary Figs. 4 and 5 for 
an example). To check their high-level understanding of the images, 
we again asked the models to determine the background colour of 
the images. Since this background colour is not uniform, we counted 
both ‘Pink’ and ‘Purple’ as correct answers. We report the percentage 
of correct answers for the background colour in Fig. 5a.

In accordance with the original study, analyses for the intuitive 
psychological capabilities of the models are split into cost questions 
(passing through a terrain is associated with a cost for the agent) and 
reward questions (collecting a care package yields some sort of reward 
for the agent). We pooled cost and reward questions over all three 
experiments and reported the mean Pearson correlation with the data 
of 90 human participants collected in ref. 103 (Fig. 5b,c). This heuristic 
calculates the costs and rewards associated with the environment from 
the amount of time an agent spends in each terrain and which care 
package the agent collects.

Intuitive psychology with the help or hinder task. The second intui-
tive psychology experiment is taken from ref. 104. It consists of 24 
images showing a 2D depiction of two agents in a grid world (see Sup-
plementary Fig. 6 for an example). To check the models’ basic under-
standing of the images, we again asked the models to determine the 
background colour of the images and the number of boxes in the scene. 
We report the percentage of correct answers for both tasks in Fig. 6a,b.

We then asked the models whether the blue agent tried to help or hin-
der the red agent on a scale from ‘definitely hinder RED’ (0) to ‘definitely 
help RED’ (100), with the midpoint ‘unsure’ (50). We show the regression 
to human judgements in Fig. 6c. Finally, we asked the model the coun-
terfactual question if the red agent would have succeeded in reaching 
the star had the blue agent not been there on a scale from ‘not at all’ (0) 
to ‘very much’ (100)? The original authors collected the responses of 50 
participants for each of the two conditions (‘intention’ and ‘counterfac-
tual’). We show the mixed linear regression coefficients between model 
and human answers for all models with 95% credible intervals in Fig. 6d.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data used in our experiments are available on GitHub (github.com/
lsbuschoff/multimodal). We have used subsets of openly available data-
sets from Lerer et al. (https://github.com/facebookarchive/UETorch/
issues/25#issuecomment-235688223)98, Gerstenberg et al. (https://
github.com/tobiasgerstenberg/eye_tracking_causality)52, Zhou et al. 
(https://github.com/cicl-stanford/mental_jenga)100, Wu et al. (https://
github.com/cicl-stanford/counterfactual_agents)104 and Jara-Ettinger 
et al. (https://osf.io/uzs8r/)103.

Code availability
All code needed to reproduce our results is available on GitHub (github.
com/lsbuschoff/multimodal; and via the Zenodo repository at https://
doi.org/10.5281/zenodo.14050104 (ref. 133)). We use openly available 
implementations of all LLMs except for GPT-4V and Claude-3. The code 
includes instructions on how to install and evaluate these LLMs. All 
prompts are listed in the Supplementary Information.
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