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Consider the sum Y =B+B(H) of a Brownian motion B and an inde-
pendent fractional Brownian motion B(H) with Hurst parameter H ∈ (0,1).
Even though B(H) is not a semimartingale, it was shown in [Bernoulli 7
(2001) 913–934] that Y is a semimartingale if H > 3/4. Moreover, Y is
locally equivalent to B in this case, so H cannot be consistently estimated
from local observations of Y . This paper pivots on another unexpected fea-
ture in this model: if B and B(H) become correlated, then Y will never be
a semimartingale, and H can be identified, regardless of its value. This and
other results will follow from a detailed statistical analysis of a more general
class of processes called mixed semimartingales, which are semiparametric
extensions of Y with stochastic volatility in both the martingale and the frac-
tional component. In particular, we derive consistent estimators and feasible
central limit theorems for all parameters and processes that can be identi-
fied from high-frequency observations. We further show that our estimators
achieve optimal rates in a minimax sense.

1. Introduction. Mixed fractional Brownian motions (mfBms) were introduced by [11]
as the sum

(1.1) Yt = σBt + ρB(H)t, t≥ 0,

of a standard Brownian motionB and an independent fractional Brownian motionB(H) with
Hurst parameter H ∈ (0,1) \ {1

2}. While this class of processes was originally introduced in
mathematical finance to model long memory in asset prices, it poses nonstandard challenges
from a statistical perspective: Even though the laws of B and B(H) on a finite time interval
are mutually singular, the law of their superposition, Y , can be locally equivalent to that of
σB (if H > 3

4 ) or ρB(H) (if H < 1
4 ); see [8, 11, 43]. In these cases, either (ρ,H) or σ cannot

be consistently estimated on a finite time interval.
In this paper, we are interested in whether these results remain valid if B and B(H) are

no longer assumed to be independent. The answer to this question is negative.

THEOREM 1.1. Suppose that Y is given by (1.1) with σ,ρ > 0 and

(1.2) B(H)t =K−1
H

∫ t

−∞
((t− s)H− 1

2 − (−s)H− 1

2

+ )dB̃s, t≥ 0,

is the Mandelbrot–van Ness representation of standard fractional Brownian motion (see e.g.,
[35, Chapter 1.3]), where (B, B̃) is a two-dimensional Brownian motion with Var(B1) =
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Var(B̃1) = 1 and λ = Cov(B1, B̃1) ∈ [0,1] and KH is the normalizing constant given in
(2.3). Then the process Y has the same distribution as Ỹ given by

(1.3) Ỹt = σWt +

√
2λρσ

KH(H + 1
2)
W (H)t + ρW (H)t,

where W is a standard Brownian motion, W (H) and W (H) are fractional Brownian mo-
tions with Hurst parameters H and H = 1

2(H + 1
2), respectively, and all three processes are

independent. Moreover, if λ > 0, Y is not a semimartingale and its distribution is locally
singular to both σB and ρB(H) for all H ∈ (0,1) \ {1

2}.

The newly emerging fBm with Hurst parameter H significantly changes the properties of
the model. In particular, for all values of H , we have |H − 1

2 | <
1
4 , which has two conse-

quences for the correlated case: first, the mixed process will never be locally equivalent to
either of the two pure processes, and second, H (and therefore H) is identifiable from high-
frequency observations in all cases. Our asymptotic results below show that this also upholds
for negative correlation coefficients λ.

Fractional processes have a long history of applications in fields such as hydrology
[24, 36, 39], telecommunications [29, 34], finance [11, 17, 22], turbulence [9, 18] among
others. In these applications, superpositions of fractional processes arise naturally when mul-
tiple sources have a cumulative effect. For example, [44] describe a continuous GPS signal
affected by both white noise and fractional noise. The same phenomenon is found by [45] in
a range of astronomical data sets. Another example is found in hydrology, where fractional
Brownian motion is commonly used to model river runoff, with varying Hurst parameters for
different rivers [39]. In a system of multiple connected rivers, the runoffs add up downstream,
which leads to a superposition of fBms with different Hurst parameters. Due to the spatial
correlation of rainfall, these constituent fBms will be correlated, analogous to the mixed fBm
model studied in this paper. The results of this paper highlight that correlation between the
fBms is not negligible, as it alters the statistical properties significantly.

Our interest in mixed fractional Brownian motion of the specific form (1.1) is motivated
by recent applications of mixed processes in financial econometrics. In [15], it is shown that
for a large set of high-frequency stock return data, observed prices are contaminated by mi-
crostructure noise that locally resembles fractional Brownian motion with Hurst parameter
H ∈ (0, 12). Like in most microstructure noise models in the literature, the two innovation
processes driving price and noise (which are B and B(H) in (1.1)) are assumed to be in-
dependent of each other. However, both economic theory [20] and empirical evidence [23]
suggest that efficient price and microstructure noise should be contemporaneously cross-
correlated.

Against this background, the main contribution of this paper is to develop an infill asymp-
totic theory for semiparametric extensions of the mfBm model (called mixed semimartin-
gales) where σ and ρ can be stochastic and time-varying. The fundamental statistical ques-
tion we address is the following: what parameters can be inferred from local observations of
the sum of a martingale and a correlated fractional process, and what are the optimal rates of
convergence as the sample size increases? To this end, we first derive in Section 2 a stable
central limit theorem (CLT) for the empirical autocovariances of the increments of a mixed
semimartingale process as the sampling frequency increases to infinity (Theorem 2.1). In line
with Theorem 1.1, the population autocovariance consists of three terms with different scal-
ing exponents. Most importantly, the leading order term only contains information about the
parameter σ (if H > 1

2 ) or (ρ,H) (if H < 1
2). To optimally estimate all parameters, it is thus

necessary to utilize the information in the asymptotically smaller contributions to the autoco-
variance. In particular, in Section 3, we combine the results of Theorem 2.1 with an optimal
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generalized methods of moments (GMM) procedure to construct consistent and asymptoti-
cally mixed normal estimators for all identifiable model parameters in Theorem 3.1. Interest-
ingly, the rates of convergence are non-standard and depend on the parameter value H . This
phenomenon can be traced back to the utilization of autocovariance information of smaller
asymptotic order than the leading term. To make the GMM method feasible, we exhibit in
Corollary 3.3 consistent estimators of the asymptotic (co-)variances. In Section 4, we return
to the parametric setting of mfBm and show in Theorem 4.1 that the rates of our estimators
in Theorem 3.1 are optimal in the minimax sense. Section 5 presents Monte Carlo evidence
for the estimators from Theorem 3.1. Sections 6 and 7 contain the proofs of our main results,
except for Theorem 2.1, which is proved, in a more general setting, in Appendices A–D.
Appendix E contains additional simulation results.

Since our principal aim is to analyze the impact of cross-correlation, we do not include
jumps [1, 28], irregular observation times [6, 10, 25] or rounding errors [19, 31, 40] in our
analysis. To simplify the exposition, we further refrain from studying mixed fractional models
with more than two components. In what follows, C denotes a constant in (0,∞), whose
value may change from line to line. We also write A≲B if A≤CB.

2. Central limit theorem for sample autocovariances. On a filtered space (Ω,F ,F=
(Ft)t≥0,P) satisfying the usual conditions, consider a mixed semimartingale

(2.1) Yt = Y0 +

∫ t

0
as ds+

∫ t

0
σs dBs +

∫ t

0
g(t− s)ρs dBs +

∫ t

0
g(t− s)ρ′s dB

′
s,

where B and B′ are two independent one-dimensional standard F-Brownian motions and a,
σ, ρ and ρ′ are one-dimensional predictable processes. Moreover, we assume that g : R→R
is a kernel of the form

(2.2) g(t) =K−1
H tH− 1

21{t>0} + g0(t), t ∈R,

where H ∈ (0,1) \ {1
2},

(2.3) KH =

√
1

2H
+

∫ ∞

1

(
rH− 1

2 − (r− 1)H− 1

2

)2
dr =

Γ(H + 1
2)√

sin(πH)Γ(2H + 1)
,

and g0 : R → R is a continuously differentiable function with g0(x) = 0 for all x ≤ 0. By
(2.2), the kernel g behaves as a power-law kernel around 0, but due to the addition of g0, the
behavior of g outside of 0 is not further specified. In particular, because g is not specified at
infinity, the increments of Y may have long or short memory, irrespective of the value of H .

Let ∆n be a small time step such that ∆n → 0 and define

(2.4) ∆n
i Y = Yi∆n

− Y(i−1)∆n

(and similarly for other processes). Our goal is to prove a CLT as ∆n → 0 for the (normalized)
autocovariances of the increments of Y , given by

V n
r,t =∆1−2H

n

[t/∆n]−r∑
i=1

∆n
i Y∆n

i+rY, V̂ n
r,t =

[t/∆n]−r∑
i=1

∆n
i Y∆n

i+rY

for r ∈N0. This will then be used in Section 3 to derive feasible estimators of H and

CT =

∫ T

0
cs ds=

∫ T

0
σ2s ds, ΛT =

∫ T

0
λs ds=

∫ T

0
σsρs ds, ΠT =

∫ T

0
(ρ2s + ρ′2s )ds,

whenever possible. We impose the following structural assumptions:
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ASSUMPTION (CLT). Consider the process Y from (2.1) and let

(2.5) N(H) = [1/|2H − 1|].

1. The kernel g is of the form (2.2) where H ∈ (0,1)\{1
2} and g0 ∈C1(R) satisfies g0(x) =

0 for all x≤ 0.
2. The drift process a is locally bounded, F-adapted and càdlàg. Moreover, B is a standard

F-Brownian motion.
3. If H > 1

2 , the volatility process σ takes the form

(2.6) σt = σ
(0)
t +

∫ t

0
σ̃s dBs +

∫ t

0
σ̃′s dB

′
s +

∫ t

0
σ̃′′s dB

′′
s , t≥ 0,

where
a) σ(0) is an F-adapted locally bounded process such that for all T > 0, there are γ ∈

(12 ,1] and K1 ∈ (0,∞) with

(2.7) E[1∧ |σ(0)t − σ(0)s |]≤K1|t− s|γ , s, t ∈ [0, T ];

b) σ̃, σ̃′ and σ̃′′ are F-adapted locally bounded processes such that for all T > 0, there are
ε ∈ (0,1) and K2 ∈ (0,∞) with

(2.8) E[1∧ |σ̃t − σ̃s|]≤K2|t− s|ε, s, t ∈ [0, T ],

and an analogous bound for σ̃′ and σ̃′′.
c) B′′ is a standard F-Brownian motion that is independent of (B,B′).
If H < 1

2 , we have (2.6) but with σ, σ(0), σ̃, σ̃′ and σ̃′′ replaced by ρ and some processes
ρ(0), ρ̃, ρ̃′ and ρ̃′′ satisfying conditions analogous to (2.7) and (2.8).

4. If H > 1
2 , the process ρ is F-adapted and locally bounded. Moreover, for all T > 0, there

is K3 ∈ (0,∞) such that

(2.9) E[1∧ |ρt − ρs|]≤K3|t− s|
1

2 , s, t ∈ [0, T ].

If H < 1
2 , we have the same condition but with ρ replaced by σ.

These assumptions are fairly standard in high-frequency statistics (cf. [2, 26]). As usual,
the most restrictive assumptions are (2.6) and (2.9), which essentially demand that the volatil-
ity processes σ and ρ be no rougher than a continuous Itô semimartingale. In particular, they
do not cover the case of rough volatility (see [22]). However, we conjecture that the CLTs
do remain valid even in the presence of rough volatility. This is due to the special structure
of quadratic functions, which has been exploited for instance in [16] in a slightly different
context.

For the following theorem, which is the main result of this section, we use the notation

(2.10) ΓH
0 = 1 and ΓH

r =
1

2

(
(r+ 1)2H − 2r2H + (r− 1)2H

)
, r ≥ 1,

and

(2.11) ΦH
0 =

2K−1
H

H + 1
2

, ΦH
r =

K−1
H

H + 1
2

(
(r+ 1)H+ 1

2 − 2rH+ 1

2 + (r− 1)H+ 1

2

)
, r ≥ 1.

Note that (ΓH
r )r≥0 is the autocovariance function of fractional Gaussian noise (i.e., of

(B(H)n+1 − B(H)n)n∈N) and ΦH
r = ΦH

0 ΓH
r . We also use st

=⇒ to denote functional sta-
ble convergence in law in the space of càdlàg functions equipped with the local uniform
topology.
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THEOREM 2.1. Suppose that Assumption (CLT) holds and let V n
t = (V n

0,t, . . . , V
n
r−1,t)

T

and V̂ n
t = (V̂ n

0,t, . . . , V̂
n
r−1,t)

T for some fixed r ∈ N. Further define ΓH = (ΓH
0 , . . . ,Γ

H
r−1)

T ,
ΦH = (ΦH

0 , . . . ,Φ
H
r−1)

T and e1 = (1,0, . . . ,0)T ∈Rr .

1. If H > 1
2 , then

(2.12) ∆
− 1

2
n

{
V̂ n
t − e1Ct −∆

H− 1

2
n ΦHΛt −∆2H−1

n ΓHΠt

}
st

=⇒Z ′,

where Z ′ = (Z ′
t)t≥0 is an Rr-valued process, defined on a very good filtered extension

(Ω,F , (F t)t≥0,P) of the original probability space (Ω,F , (Ft)t≥0,P) (see [26, Chap-
ter 2.1.4]), that conditionally on F is a centered Gaussian process with independent in-
crements and covariance process C′

t = (C′ij
t )r−1

i,j=0 given by

(2.13) C′ij
t = E[Z ′i

t Z
′j
t | F ] = 21{i=0}

∫ t

0
σ4s ds1{i=j}.

2. If H < 1
2 , then

∆
− 1

2
n

{
V n
t − ΓHΠt −∆

1

2
−H

n ΦHΛt − e1∆
1−2H
n Ct

}
=∆

1

2
−2H

n

{
V̂ n
t − e1Ct −∆

H− 1

2
n ΦHΛt −∆2H−1

n ΓHΠt

}
st

=⇒Z,
(2.14)

where Z = (Zt)t≥0 is an Rr-valued process defined on (Ω,F , (F t)t≥0,P) that condition-
ally on F is a centered Gaussian process with independent increments and covariance
process Ct = (Cij

t )r−1
i,j=0 given by

(2.15) Cij
t = E[Z ′i

t Z
′j
t | F ] = Cij

∫ t

0
(ρ2s+ρ

′2
s )

2 ds, Cij = vH,0
ij +

∞∑
k=1

(vH,k
ij +vH,k

ij ),

with

(2.16) vH,k
ij =ΓH

k ΓH
|i−j+k| +ΓH

|k−j|Γ
H
k+i.

Theorem 2.1 is a special case of Theorems A.1 and A.2, which are stated and proved in the
Appendix. Note that if H > 3

4 , the term ∆2H−1
n ΓHΠt in (2.12) is dominated by the Gaussian

fluctuation process ∆1/2
n Z ′ and can thus be omitted in this case. The same comment applies

to (2.14), where the term e1Ct can be dropped if H < 1
4 .

3. Semiparametric estimation of mixed semimartingales. In order to construct rate-
optimal estimators of ΘT = (H,CT ,ΛT ,ΠT ), we combine Theorem 2.1 with a GMM ap-
proach. The idea is to choose r lags and, at stage n, a symmetric positive weight matrix
Wn ∈ Rr×r (which can be a random statistic) and to obtain an estimator of ΘT by solving
the minimization problem

argmin
θ=(H,C,Λ,Π)

∥∥∥W1/2
n

(
V̂ n
T − e1C −∆

H− 1

2
n ΦHΛ−∆2H−1

n ΓHΠ
)∥∥∥2

2
,(3.1)

where ∥·∥2 is the Euclidean norm. More precisely, we construct an estimator Θ̂n
T =

(Ĥn, Ĉn
T , Λ̂

n
T , Π̂

n
T ) of ΘT by solving the estimating equation

(3.2) Fn(θ) = 0,
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where Fn(θ) = ∇θ∥W
1/2
n (V̂ n

T − µn(θ))∥22 = −2Dθµn(θ)
TWn(V̂

n
T − µn(θ)) ∈ R4 and

µn(θ) = µn(H,C,Λ,Π) = e1C + ∆
H−1/2
n ΦHΛ + ∆2H−1

n ΓHΠ ∈ Rr . Using the theory of
estimating equations (see [27, 33]), we can derive the asymptotic properties of this estimator.

THEOREM 3.1. Suppose that conditions 2–5 in Assumption (CLT’) hold for the processes
specified in (A.2). Further assume that r ≥ 5 and that W and Wn are (possibly random)
symmetric positive definite matrices in Rr×r such that Wn

P−→W . If H < 1
2 , suppose that

ΠT > 0 almost surely; if H > 1
2 , suppose that ΛT ̸= 0 almost surely.

1. If H ∈ (14 ,
1
2), there exists a sequence Θ̂n

T = (Ĥn, Ĉn
T , Λ̂

n
T , Π̂

n
T ) of estimators of ΘT =

(H,CT ,ΛT ,ΠT ) such that P(Fn(Θ̂
n
T ) = 0)

P−→ 1 and

(3.3) D−1
n (Θ̂n

T −ΘT )
st−→E−1(∂HΓHΠT , e1,Φ

H ,ΓH)TWZT ,

where

Dn =


∆

1

2
n 0 0 0

0 ∆
2H− 1

2
n 0 0

0 0 ∆H
n 0

2∆
1

2
n log∆−1

n ΠT 0 0 ∆
1

2
n

 ,

E = (∂HΓHΠT , e1,Φ
H ,ΓH)TW(∂HΓHΠT , e1,Φ

H ,ΓH) ∈R4×4,

(3.4)

and Z is the same process as in Theorem 2.1. The matrix E in the last display is regular.
Moreover, the sequence Θ̂n

T is locally unique in the sense that any other sequence Θ̃n
T of

estimators such that P(Fn(Θ̃
n
T ) = 0)

P−→ 1 and P(∥Θ̃n
T −ΘT ∥2 ≤ 1/(log∆−1

n )2)
P−→ 1

satisfies P(Θ̃n
T = Θ̂n

T )
P−→ 1.

2. If H ∈ (0, 14), define F
(1)
n (θ(1)) = ∇θ∥W

1/2
n (V̂ n

T − µ
(1)
n (θ(1)))∥22, where µ

(1)
n (θ(1)) =

µ
(1)
n (H,Λ,Π) = ∆

H−1/2
n ΦHΛ + ∆2H−1

n ΓHΠ. Then there is a locally unique sequence
Θ̂

n,(1)
T = (Ĥn,(1), Λ̂

n,(1)
T , Π̂

n,(1)
T ) of estimators of Θ(1)

T = (H,ΛT ,ΠT ) with the property

P(F (1)
n (Θ̂

n,(1)
T ) = 0)

P−→ 1 such that (3.3) remains valid for Θ̂n,(1)
T −Θ

(1)
T with the second

row and column (out of four) deleted from all vectors and matrices appearing in (3.3) and
(3.4).

3. If H ∈ (12 ,
3
4), Part 1 of the theorem remains true if (3.3) and (3.4) are replaced by

(3.5) D−1
n (Θ̂n

T −ΘT )
st−→E−1(∂HΦHΛT , e1,Φ

H ,ΓH)TWZ ′
T ,

and

Dn =


∆1−H

n 0 0 0

0 ∆
1

2
n 0 0

∆1−H
n log(∆−1

n )ΛT 0 ∆1−H
n 0

0 0 0 ∆
3

2
−2H

n

 ,

E = (∂HΦHΛT , e1,Φ
H ,ΓH)TW(∂HΦHΛT , e1,Φ

H ,ΓH) ∈R4×4,

(3.6)

respectively, and Z ′ is the same process as in Theorem 2.1.
4. If H ∈ (34 ,1), define F

(2)
n (θ(2)) = ∇θ∥W

1/2
n (V̂ n

T − µ
(2)
n (θ(2)))∥22, where µ

(2)
n (θ(2)) =

µ
(2)
n (H,C,Λ) = e1C +∆

H−1/2
n ΦHΛ. Then there is a locally unique sequence Θ̂

n,(2)
T =

(Ĥn,(2), Ĉ
n,(2)
T , Λ̂

n,(2)
T ) of estimators of Θ(2)

T = (H,CT ,ΛT ) satisfying P(F (2)
n (Θ̂

n,(2)
T ) =
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0)
P−→ 1 such that (3.5) remains valid for Θ̂n,(2)

T −Θ
(2)
T with the last row and column (out

of four) deleted from all vectors and matrices appearing in (3.5) and (3.6).
5. In the setting of Part 2 (resp., Part 4), if a sequence of estimators Θ̂n

T = (Ĥn, Ĉn
T , Λ̂

n
T , Π̂

n
T )

satisfies P(Fn(Θ̂
n
T ) = 0)→ 1, then the weak convergence statements in Part 2 (resp., Part

4) remain valid with Θ
n
T = (Ĥn, Λ̂n

T , Π̂
n
T ) instead of Θ̂n,(1)

T (resp., Θn
T = (Ĥn, Ĉn

T , Λ̂
n
T )

instead of Θ̂n,(2)
T ).

The proof will be given in Section 6. Note that a nondiagonal rate matrix also occurs in
similar situations where a self-similarity parameter is estimated; see [7, 12, 33], for example.

In the case H ∈ (14 ,
3
4), all parameters of the model are identifiable, and Parts 1 and 3

of Theorem 3.1 describe how the exact value of H affects the asymptotic behavior of the
estimators. In the case H /∈ (14 ,

3
4), the model is only partially identifiable: if H < 1

4 (Part 2),
we cannot consistently estimate CT , while if H > 3

4 (Part 4), we cannot consistently estimate
ΠT . Parts 2 and 4 of Theorem 3.1 state that in these partially identifiable cases, one may
obtain asymptotically normal estimators by reducing the GMM equations to only include
identifiable parameters. However, these estimators are infeasible if the regime of H is not
known. Fortunately, by Part 5, the feasible GMM estimator (3.1) can still be employed in the
regime H /∈ (14 ,

3
4) to derive asymptotically normal estimators for all identifiable parameters.

REMARK 3.2. The assumption ΛT ̸= 0 is important in Theorem 3.1 if H > 1
2 to en-

sure identifiability of all parameters. For example, in the case of an mfBm as in (1.1),
if λ = 0, then by [43] there is no way to consistently estimate H and ρ if H > 3

4 .
Moreover, by Theorem 1.1, it will not be possible to asymptotically distinguish the
model (H,σ,λ, ρ) = (H0, σ0, λ0, ρ0) ∈ (34 ,1) × (0,∞) × (0,1] × (0,∞) from the model
(H,σ,λ, ρ) = (H1, σ1,0, ρ1) if H1 =

1
2(

1
2 +H0), σ1 = σ0 and ρ1 = (2λ0ρ0σ0/(KH0

(H0 +
1
2)))

1/2. To see this, note that the process Y in the model (H0, σ0, λ0, ρ0) has the same
law as σ0W + ρ1W (H1) + ρ0W (H0) by Theorem 1.1. Moreover, by [43], the laws
of σ0W + ρ0W (H0) and σ0W are locally equivalent, so we deduce that the laws of
σ0W + ρ0W (H0) + ρ1W (H1) and σ0W + ρ1W (H1) are equivalent by noting that con-
volution of measures preserves equivalence. However, since σ remains the same in both
models, this local equivalence has no consequence for estimating σ, which often (e.g., in
econometrics) is the main parameter of interest. We also note that if 1

2 <H < 3
4 and ΛT = 0,

then the rate of convergence for estimating H will be slower (equal to ∆
3/2−2H
n , see [21]),

as one can no longer rely on the fictitious fBm for inferring H .

In order to make the CLTs of Theorem 3.1 feasible, we adapt the results of [30] to construct
consistent estimators of the involved asymptotic covariance matrices. This further allows us
to choose an optimal weight matrix Wn. We choose two integer sequences kn and ℓn and
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define

Σ̂n = Σ̂(0)
n +

ℓn∑
ℓ=1

w(ℓ, ℓn)(Σ̂
(ℓ)
n + (Σ̂(ℓ)

n )T ),

Σ̂(ℓ)
n =∆n

[T/∆n]−r+1∑
i=ℓ+1

ψ(i)(ψ(i−ℓ))T ∈Rr×r, ψ(i) = (ψ
(i)
0 , . . . ,ψ

(i)
r−1)

T ,

ψ
(i)
j =∆n

i Y∆n
i+jY − m̂n,j

i , m̂n,j
i =

1

kn

kn−1∑
k=0

∆n
i+kY∆n

i+k+jY,

η̂n = (∆2Ĥn

n Π̂n
T (∂HΓĤn − 2(log∆−1

n )ΓĤn

) +∆Ĥn+1/2
n Λ̂n

T (∂HΦĤn − (log∆−1
n )ΦĤn

),

∆ne1,∆
Ĥn+1/2
n ΦĤn

,∆2Ĥn

n ΓĤn

) ∈Rr×4

(3.7)

for some deterministic weight function w.

COROLLARY 3.3. Assume the conditions of (any part of) Theorem 3.1 and suppose that
kn, ℓn → ∞ with ℓn/

√
kn → 0 and ℓn

√
kn∆n → 0. Further assume that w is uniformly

bounded and satisfies w(ℓ, ℓn)→ 1 for every ℓ≥ 1. If we denote the diagonal entries of

(3.8) Vn =∆n(η̂
T
nWnη̂n)

−1η̂TnWnΣ̂nWnη̂n(η̂
T
nWnη̂n)

−1 ∈R4×4

by VH
n , VC

n , VΛ
n and VΠ

n , then asymptotic γ-confidence intervals for H , CT (if H > 1
4 ), ΛT

and ΠT (if H < 3
4 ) for γ ∈ (0,1) are given by

[Ĥn ±Φ−1((1− γ)/2)
√

VH
n ], [Ĉn

T ±Φ−1((1− γ)/2)
√

VC
n ],

[Λ̂n
T ±Φ−1((1− γ)/2)

√
VΛ
n ], [Π̂n

T ±Φ−1((1− γ)/2)
√

VΠ
n ],

respectively, where Φ is the cumulative distribution function of the standard normal law and
Θ̂n

T = (Ĥn, Ĉn
T , Λ̂

n
T , Π̂

n
T ) is the solution to (3.2).

REMARK 3.4 (Optimal GMM). If we choose Wn = Σ̂−1
n and we have H ∈ (14 ,

1
2) (resp.,

H ∈ (12 ,
3
4)), then the right-hand side of (3.3) (resp., (3.5)) has a centered Gaussian distribu-

tion with mean 0 and covariance matrixE−1 with W = C−1
T (resp., W = (C′

T )
−1). Analogous

statements hold if H ∈ (0, 14) and H ∈ (34 ,1).

4. Statistical lower bounds. To derive a statistical lower bound, we consider the para-
metric setup of an mfBm

(4.1) Yt =

∫ t

0
σ dBs + ρ

∫ t

−∞
hH(t, s)dBs + ρ′

∫ t

−∞
hH(t, s)dB′

s,

where hH(t, s) =K−1
H [(t− s)

H−1/2
+ − (−s)H−1/2

+ ], σ > 0, ρ, ρ′ ∈R, and B and B′ are two
independent standard Brownian motions. Note that this model is a special case of (A.1) but
with as = (H − 1

2)K
−1
H

∫ 0
−∞(s − r)H−3/2(ρdBr + ρ′ dB′

r), which is unbounded as s ↓ 0

if H < 1
2 . Nevertheless, one can show that any small neighborhood around 0 only has a

negligible impact on the asymptotics in V n
t , so Theorem 2.1 remains valid.

The methods presented in Section 3 therefore yield estimators of the parameters H , σ2,
Π= ρ2 + ρ′2 and Λ= ρσ, with rates given in Table 1. We show that these rates are optimal,
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TABLE 1
Rates of convergence of the estimators presented in Section 3.

Parameter H ∈ (0, 12 ) H ∈ (12 ,1)

H ∆
1
2
n ∆1−H

n

σ2 ∆
2H− 1

2
n (if H > 1

4 ) ∆
1
2
n

Λ ∆H
n ∆1−H

n |log∆n|

Π ∆
1
2
n |log∆n| ∆

3
2
−2H

n (if H < 3
4 )

by establishing matching minimax lower bounds. To this end, consider model (4.1) with
parameter vector θ = (H,σ2,Λ,Π)⊂Θ for the open parameter set

Θ= {(H,σ2,Λ,Π) ∈R4 :H ∈ (0,1) \ {1
2}, σ

2 > 0, Λ ̸= 0, Π> 0, Λ2 < σ2Π}.

We use the notation H(θ) = θ1, σ2(θ) = θ2 etc. For θ0 ∈Θ, define the local parameter set

Dn(θ0) = {θ ∈Θ : ∥θ− θ0∥ ≤ 1/|log∆n|}
and the rate vector

Rn(θ0) =

{
(∆

1

2
n ,∆

2H− 1

2
n ,∆H

n ,∆
1

2
n/|log∆n|) if H(θ0)<

1
2 ,

(∆1−H
n ,∆

1

2
n ,∆1−H

n /|log∆n|,∆
3

2
−2H

n ) if H(θ0)>
1
2 .

For the regime H ∈ (0, 14), the parameter σ2 is not identifiable, as evidenced by the deterio-
rating rates of convergence. The same holds for Π in the regime H ∈ (34 ,1).

THEOREM 4.1. Let θ0 ∈Θ be such that Λ(θ0) ̸= 0. If H(θ0) ∈ (14 ,
3
4) \ {

1
2}, there exists

some c > 0 such that

(4.2) limsup
n→∞

inf
θ̂n

sup
θ∈Dn(θ0)

Pθ

(
|(θ̂n − θ)k| ≥ cRn(θ0)k

)
> 0, k = 1,2,3,4,

where the infimum is taken among all measurable functions θ̂n of {Yi∆n
: i= 1, . . . , [1/∆n]}.

If H ∈ (0, 14 ] (resp., H ∈ [34 ,1)), then (4.2) remains true for k = 1,3,4 (resp., k = 1,2,3).

While our current methods do not allow us to determine the sharp value of the constant c in
(4.2), we conjecture that the GMM estimators from the previous section (if the weight matrix
is chosen as in Remark 3.4) are close to being asymptotically efficient. Figure 1 plots the
value of the constant

√
C(H) as a function of H , where C(H) is the asymptotic variance of

the optimal GMM estimator Ĥn from Theorem 3.1 in the mfBm model (1.1), that is, C(H)

is the constant that satisfies ∆−1/2
n (Ĥn−H)

d−→N(0,C(H)/T ) ifH < 1
2 and ∆H−1

n (Ĥn−
H)

d−→N(0,C(H)( σ
λρ)

2/T )) if H > 1
2 .

As we can see, while the rate of convergence of Ĥn for H > 1
2 improves as H ↓ 1

2 , the
associated constant deteriorates. This happens because in the limit asH ↓ 1

2 , mfBm converges
in distribution to Brownian motion, with the consequence that the fBm and the BM parts can
no longer be separately identified. The same argument clearly applies when H ↑ 1

2 , except
that here the convergence rate itself does not change with H . The divergence of C(H) as
H → 1

2 will have an impact on the finite-sample performance of our estimators, as we shall
see momentarily in a Monte Carlo simulation. Besides the singular behavior at H ≈ 1

2 we
also find the asymptotic variance to be very large in absolute terms. This demonstrates the
intrinsic difficulty of the statistical problem.
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FIG 1. Constant in the asymptotic variance of the optimal GMM estimator of H in an mfBm model.

5. Simulation study. In order to evaluate the performance of the estimators from The-
orem 3.1, we simulate {Yi∆n

: i = 1, . . . , [T/∆n]} from the mfBm model (1.1) with ∆n =
1/23,400 and T = 20, which in a typical financial context corresponds to sampling every sec-
ond and aggregating one month of data. We considerH ∈ {0.1,0.2,0.3,0.4,0.6,0.7,0.8,0.9}
and λ ∈ {−0.9,−0.5,0,0.5,0.9} and further take σ = 0.02. In order to simulate from a set-
ting that is representative of the magnitude of noise in high-frequency financial data (see e.g.,
[3]), we fix the signal-to-noise ratio to 2 : 1, that is, we assume that the increments of Brow-
nian motion are responsible for 2/3 of the variance of ∆n

i Y and compute ρ accordingly. We
also include H = 0.5, in which case we let ρ= λ= 0. In Appendix E, we present additional
simulation results where we fix σ and ρ instead of the signal-to-noise ratio.

Regarding the tuning parameters, we choose r = 31 and kn = 300 ≈ 2∆
−1/2
n in (3.7),

which corresponds to considering autocorrelations up to half a minute and computing the
local autocovariance estimates m̂n,j

i over 5-minute blocks (if ∆n has the meaning of one
second). We also experimented with r = 16 and obtained similar results. In (3.7), we
further choose the Parzen kernel w(ℓ, ℓn) = w(ℓ/(ℓn + 1)), where w(x) = (1 − 6x2 +
6x3)1{x≤1/2} + 2(1 − x)31{x>1/2} and the sequence ℓn is chosen according to the opti-
mal procedure by [37] (with the details given in Table I B and Table II C of the reference).
With this choice, Σ̂n is positive semidefinite in finite samples and ℓn is of order ∆−1/5

n and
hence satisfies ℓn/

√
kn → 0 and ℓn

√
kn∆n → 0 if kn is order ∆−1/2

n .
For every simulated path, we first use a classical Ljung–Box test statistic Qn

T =

⌊T/∆n⌋(⌊T/∆n⌋ + 2)
∑r−1

ℓ=1(R
n
ℓ )

2/(⌊T/∆n⌋ − ℓ), where Rn
ℓ is the sample autocorrela-

tion coefficient of {∆n
i Y : i = 1, . . . , ⌊T/∆n⌋} at lag ℓ, to discriminate whether H = 1

2 or

not. Indeed, if H = 1
2 , we have Sn

T
d−→ χ2

r−1, while Sn
T

P−→∞ in the case H ̸= 1
2 because

Rn
ℓ

P−→ ΓH
ℓ ̸= 0. If the Brownian case H = 1

2 is not rejected, we let (Hn,Cn,Λn,Πn) =

(12 , V̂
n
0,T ,0,0) be the estimated parameter vector. This initial test is necessary because as

H → 1
2 , the mfBm model collapses to Brownian motion. Thus, if H = 1

2 (or close to 1
2 ), sim-

ply minimizing (3.1) typically produces a value of H which is very close to 1
2 and arbitrary

splits the total variance among C , Π and Λ. This is in line with the behavior of the asymptotic
variance as H → 1

2 depicted in Figure 1. Therefore, the initial test we perform can be seen
as shrinking our estimators towards the Brownian model to circumvent the weakly identified
regime.

If H = 1
2 is rejected, we let (Hn,Cn,Λn,Πn) be a numerical solution to (3.1) found in

the following way: For each candidate H , we first we run a weighted linear regression of
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TABLE 2
Median and interquartile range of Hn based on 1,000 simulated paths.

λ

H −0.9 −0.5 0 0.5 0.9

0.1 0.0995 0.0989 0.0960 0.0976 0.1492
[0.0939, 0.1058] [0.0860, 0.1133] [0.0467, 0.1364] [0.0582, 0.1951] [0.1123, 0.2499]

0.2 0.2000 0.1996 0.1975 0.2104 0.2590
[0.1959, 0.2038] [0.1868, 0.2121] [0.1139, 0.2443] [0.1769, 0.3203] [0.2237, 0.3646]

0.3 0.2999 0.2992 0.2902 0.3292 0.3603
[0.2953, 0.3044] [0.2806, 0.3166] [0.2071, 0.3615] [0.2887, 0.4081] [0.3184, 0.4198]

0.4 0.3994 0.3981 0.3789 0.4019 0.4148
[0.3818, 0.4084] [0.3192, 0.4157] [0.3493, 0.4287] [0.3699, 0.4389] [0.3775, 0.4679]

0.5 0.5000
[0.5000,0.5000]

0.6 0.5999 0.5986 0.5954 0.5977 0.5818
[0.5942, 0.6133] [0.5888, 0.6441] [0.5726, 0.6463] [0.5663, 0.6255] [0.5428, 0.6151]

0.7 0.6994 0.6991 0.6983 0.7044 0.6629
[0.6922, 0.7071] [0.6888, 0.7107] [0.6739, 0.7336] [0.6298, 0.7332] [0.6012, 0.6962]

0.8 0.7978 0.7975 0.7981 0.7975 0.7879
[0.7916, 0.8055] [0.7897, 0.8072] [0.7856, 0.8126] [0.7688, 0.8364] [0.7354, 0.8081]

0.9 0.8918 0.8913 0.8905 0.8895 0.8885
[0.8819, 0.9058] [0.8801, 0.9062] [0.8778, 0.9074] [0.8727, 0.9118] [0.8635, 0.9067]

W1/2
n V̂ n

T on W1/2
n e1, ∆H−1/2

n W1/2
n ΦH and ∆2H−1

n W1/2
n ΓH (with intercept forced to be

0 and the optimal weight matrix Wn = Σ̂−1
n ) with the constraint that C , Λ and Π must

satisfy Π ≥ 0, C ≥ 0 and Λ2 ≤ ΠC . This is to reflect the fact that ρ2 ≥ 0, σ2 ≥ 0 and
Λ2
T ≤ ΠTCT . Denoting the resulting coefficients by Cn(H), Λn(H) and Πn(H), we con-

struct Hn by minimizing the objective function H 7→ score(H) on the interval (0,1), where
score(H) is the sum of squared residuals in the regression analysis associated with H but set
to score(H) =∞ if Cn(H)/(Πn(H)∆2H−1

n +ΦH
0 Λn(H)∆

H−1/2
n +Cn(H))> 0.99. In the

latter case, we consider the fractional part as practically absent if the Brownian motion part
accounts for more than 99% of the variance of increments. Indeed, if H is close to or equal to
1
2 , it can happen that adding a tiny fractional component with H very close to 0 can achieve
a higher score value, which is undesirable in practice.

Finally, we define the remaining estimators by Cn = Cn(Hn), Λn = Λn(Hn) and
Πn = Πn(Hn). If score(H) = ∞ for all H , we let Hn = 0.5 and (Hn,Cn,Λn,Πn) =

(12 , V̂
n
0,T ,0,0). Comparing with Theorem 3.1, we note that (Hn,Cn,Λn,Πn) is equal to

(Ĥn, Ĉn
T , Λ̂

n
T , Π̂

n
T ) unless one of the constraints or exceptions above occur (which happen

with asymptotically vanishing probability). Having obtained these estimators using T = 20
days of data, we further estimate integrated volatility on the last day, that is, C20−C19 = σ2,
by rerunning the weighted and constrained linear regression mentioned above, but using only
data of the last day and with H fixed at Hn (which was previously obtained using 20 days
of data). We denote this estimator by C [19,20]

n . In a financial context, this mimics daily esti-
mation of integrated volatility based on an estimate of H obtained from a moving window of
one month.

Table 2 summarizes the results for Hn. If λ = −0.9 or λ = −0.5, the estimator Hn is
centered around the true value of H with only low to moderate dispersion uniformly for all
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TABLE 3
Median and interquartile range of C[19,20]

n /σ2 based on 1,000 simulated paths.

λ

H −0.9 −0.5 0 0.5 0.9

0.1 1.0005 1.0009 1.0064 1.0199 1.0229
[0.9614, 1.0390] [0.9539, 1.0461] [0.9585, 1.0553] [0.9728, 1.0738] [0.9698, 1.0940]

0.2 0.9994 0.9984 1.0103 1.0442 1.0465
[0.9532, 1.0491] [0.9325, 1.0753] [0.9506, 1.1020] [0.9774, 1.1547] [0.9604, 1.1942]

0.3 1.0004 1.0029 1.0302 1.0759 1.0722
[0.9232, 1.0882] [0.8592, 1.1809] [0.9414, 1.2249] [0.9576, 1.3396] [0.9246, 1.4233]

0.4 0.9092 0.8077 1.0487 1.1634 1.2228
[0.4252, 1.3912] [0.5862, 1.4440] [0.8745, 1.4470] [0.9696, 1.6896] [0.9840, 2.0461]

0.5 1.0007
[0.9942,1.1068]

0.6 0.8722 0.8084 1.0727 1.1545 1.1850
[0.3602, 1.7096] [0.4232, 1.5999] [0.8752, 1.6210] [0.9570, 1.5893] [0.9590, 1.7388]

0.7 1.0109 1.0158 1.0128 1.0727 1.0874
[0.7115, 1.3561] [0.7783, 1.2695] [0.9008, 1.2201] [0.9859, 1.2302] [0.9627, 1.3477]

0.8 1.0240 1.0058 0.9995 1.0215 1.0297
[0.8769, 1.1752] [0.8721, 1.1419] [0.9220, 1.0882] [0.9783, 1.0730] [0.9862, 1.0846]

0.9 1.0305 1.0005 0.9879 1.0035 1.0208
[0.9144, 1.1296] [0.8994, 1.1160] [0.9251, 1.0768] [0.9647, 1.0469] [0.9875, 1.0553]

considered values of H . At λ = 0 or λ = 0.5, Hn is still relatively centered around its true
value but there is a noticeable increase in the variability of the estimates. At λ = 0.9, the
estimator Hn exhibits a clear upward (resp., downward) bias for H < 0.5 (resp., H > 0.5). It
is interesting that this bias together with an increase in the spread only appears at the positive
end but not at the negative end of λ. In fact, additional plots (not shown here to save space)
reveal that for negative values of λ, the empirical distribution of Hn has a symmetrical bell
shape around the true value of H , while for positive values of λ, the empirical distribution of
Hn becomes bimodal, with one local maximum around H and another one at some value not
far from 1

2(
1
2 +H). We believe that this is due to the fact that the original fBm with Hurst

index H and the fictitious one with Hurst parameter 1
2(H + 1

2) in the case of positive (resp.,
negative) λ introduce return autocorrelations with the same (resp., opposite) sign, making it
harder (resp., easier) to separate them.

The situation is different for the volatility estimator C [19,20]
n , as Table 3 reveals. Here the

results vary much less with λ but mainly with the value of H itself. Both the median bias
and the interquartile range tend to increase as H gets closer to but does not reach 1

2 . This
is because the fBm, the fictitious fBm and the Brownian motion collapse to one in the limit
as H → 1

2 , making it harder to distinguish the three as H approaches 1
2 (see the discussion

at the end of Section 4). It is interesting to note that the volatility estimator performs quite
well even if H < 1

4 , even though in theory volatility is not identifiable in this case. This, of
course, is due to our simulation setup, in which we fix the signal-to-noise ratio rather than σ
and ρ. Indeed, if we fix σ and ρ instead, then the signal-to-noise ratio decreases sharply with
H (e.g., if σ = ρ and ∆n = 23,400, the signal-to-noise ratio will be in the range 1:3000 to
1:3200, depending on λ, at H = 0.1). In additional simulations in Appendix E, where we fix
σ and ρ, we do see that the variance of C [19,20]

n increases as H becomes smaller.
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TABLE 4
Median and interquartile range of Λn/

√
CnΠn (defined as 0 if Πn = 0) based on 1,000 simulated paths.

λ

H −0.9 −0.5 0 0.5 0.9

0.1 -0.9005 -0.5007 0.0104 0.5690 0.5619
[-0.9069, -0.8949] [-0.5248, -0.4749] [-0.1297, 0.2866] [0.0162, 0.9707] [-0.0461, 0.7417]

0.2 -0.9001 -0.4999 0.0113 0.5377 0.4909
[-0.9050, -0.8945] [-0.5382, -0.4569] [-0.1839, 0.4411] [-0.1937, 0.6355] [-0.3396, 0.6186]

0.3 -0.8996 -0.4970 0.0162 0.4539 0.4700
[-0.9089, -0.8903] [-0.5864, -0.3905] [-0.4076, 0.6350] [-0.4873, 0.5873] [-0.4875, 0.6017]

0.4 -0.9040 -0.4844 0.5423 0.5490 0.5130
[-0.9265, -0.8240] [-0.6839, 0.8631] [-0.4863, 0.6871] [-0.3783, 0.6134] [-0.5045, 0.9777]

0.6 -0.9209 -0.5482 -0.1145 0.6914 0.6545
[-0.9997, -0.9035] [-0.6673, 0.9978] [-0.4754, 0.8584] [-0.3639, 0.7694] [-0.3771, 0.9811]

0.7 -0.9020 -0.5082 -0.0196 0.6289 0.4570
[-0.9171, -0.8824] [-0.5955, -0.3894] [-0.2687, 0.3519] [-0.2415, 0.8973] [-0.4257, 0.8507]

0.8 -0.9046 -0.5117 -0.0089 0.4797 0.8148
[-0.9166, -0.8866] [-0.5536, -0.4564] [-0.1019, 0.1021] [0.2148, 1.0000] [0.2354, 0.9998]

0.9 -0.9071 -0.5226 -0.0317 0.4544 0.8219
[-0.9174, -0.8929] [-0.5552, -0.4771] [-0.0952, 0.0486] [0.3233, 0.6273] [0.5653, 1.0000]

Next, we report simulation results for Λn/
√
CnΠn as an estimator of λ in Table 4. Here

the picture is closer to what we observed for Hn. For nonpositive values of λ, the estimator
performs relatively well (with exceptions), while biases start to show up as λ moves into the
positive range. In fact, comparing the results between λ= 0.5 and λ= 0.9, it seems that the
estimator Λn/

√
CnΠn has a hard time distinguishing between these two cases. We do not

have a plausible explanation for this behavior.
Finally, we consider the simulation results for Πn, which can be found in Table 5. Here

the impact of λ is particularly striking: the estimator shows a relatively good performance for
negative values of λ and is practically useless for positive values of λ. We conjecture that the
cause is the same as before: with positive values of λ, both the original and the fictitious fBm
components lead to autocorrelations of the same sign, making it difficult to separate them.

In summary, we draw the following conclusions from the simulation study for a scenario
where the signal-to-noise ratio is fixed:

• The statistical estimation of mixed semimartingale models is a hard task in general.
Even in a parametric mfBm model, the behavior of the estimators Hn, Πn, C [19,20]

n and
Λn/

√
ΠnCn is quite different for different true parameter values.

• If λ is negative and H is bounded away from 1
2 , all estimators Hn, Πn, C [19,20]

n and
Λn/

√
ΠnCn perform relatively well. This is exactly the case where the statistical prop-

erties of the fractional component, the fictitious fractional component and the Brownian
motion component are sufficiently distinct to separate them from each other.

• In all other cases, at least two of three are statistically similar, making it intrinsically diffi-
cult to disentangle them.

6. Proof of Theorem 1.1, Theorem 3.1, Corollary 3.3 and Theorem 4.1.

PROOF OF THEOREM 1.1. One could derive the first statement of the theorem from gen-
eral results about multivariate fractional Brownian motion [4]. For the sake of complete-
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TABLE 5
Median and interquartile range of Πn/(20ρ

2) based on 1,000 simulated paths.

λ

H −0.9 −0.5 0 0.5 0.9

0.1 0.9868 0.9726 0.9040 0.8409 3.8838
[0.8626, 1.1509] [0.7019, 1.3861] [0.2543, 2.5844] [0.2994, 14.5667] [1.5175, 84.0271]

0.2 0.9998 0.9858 0.9354 1.1647 6.7238
[0.9008, 1.1021] [0.7025, 1.3560] [0.0912, 3.5754] [0.4954, 44.1307] [2.5029, 323.7322]

0.3 0.9954 0.9829 0.8002 2.0526 8.1592
[0.8723, 1.1385] [0.5547, 1.6563] [0.0457, 8.3227] [0.6617, 81.7545] [2.5609, 228.6105]

0.4 0.9831 0.9140 0.1906 0.8187 2.8029
[0.4771, 1.4473] [0.0331, 2.0469] [0.0851, 4.9195] [0.2751, 13.0497] [0.6495, 97.6562]

0.6 1.0076 1.0299 1.1053 0.8441 1.5601
[0.8997, 1.0551] [0.7188, 1.1265] [0.5266, 1.5510] [0.6166, 3.2883] [1.1024, 6.5762]

0.7 0.9935 0.9992 1.0033 1.0671 1.3798
[0.9484, 1.0526] [0.9406, 1.0637] [0.9400, 1.0914] [0.8951, 1.2127] [1.0304, 1.9491]

0.8 0.9669 0.9662 0.9681 0.9780 0.9236
[0.8898, 1.0709] [0.8805, 1.0889] [0.8674, 1.1212] [0.8290, 1.1729] [0.8048, 1.0568]

0.9 0.8405 0.8333 0.8348 0.8388 0.8157
[0.6926, 1.1298] [0.6825, 1.1369] [0.6746, 1.1419] [0.6578, 1.1673] [0.6453, 1.1054]

ness, we give a short direct proof here. Since both Y and Ỹ are centered Gaussian processes
with stationary increments, it suffices to study the variance of increments. On the one hand,
E[(Ỹt+h− Ỹt)2] = σ2h+2λρσ(KH(H+ 1

2))
−1h2H+ρ2h2H ; on the other hand, we can com-

pute E[(Yt+h−Yt)2] via Itô’s isometry. Writing hH(t, s) =K−1
H [(t−s)H−1/2

+ −(−s)H−1/2
+ ],

we have that B(H)t =
∫ t
−∞ hH(t, s)dB̃s and

(6.1) E[(Yt+h − Yt)
2] = σ2h+ ρ2h2H + 2λρσ

∫ t+h

t
[hH(t+ h, s)− hH(t, s)] ds,

where the last integral equals
∫ h
0 [hH(h, s) − hH(0, s)] ds = K−1

H

∫ h
0 (h − s)H− 1

2 ds =

h2H/(KH(H + 1
2)). Thus, E[(Yt+h − Yt)

2] = E[(Ỹt+h − Ỹt)
2] and (Yt)t≥0

d
= (Ỹt)t≥0.

It remains to show that Y is not a semimartingale for λ > 0. To this end, we may employ
the same arguments as [11]: If H < 1

2 , the process has an infinite quadratic variation, which
contradicts the semimartingale property. If H ∈ (34 ,1), then the law of σW + ρW (H) is lo-
cally equivalent to that of σW . Thus, Y is locally equivalent to σW + (2λρσ/(KH(H +
1
2)))

1/2W (H). Since H ∈ (12 ,
3
4), [11, Theorem 1.7] shows that Y is not a semimartingale.

If H ∈ (12 ,
3
4 ], then Y is the sum of three independent (fractional) Brownian motions. The

proof given in [11, Section 4], which is presented for two components, straightforwardly
generalizes to the case of three fractional Brownian motions, showing that Y is not a semi-
martingale.

PROOF OF THEOREM 3.1. We want to apply [33, Theorem A.2], so we verify the asso-
ciated conditions called (E.1) and (E.2)’. Note that the latter theory is formulated for classi-
cal weak convergence but readily extends to stable convergence. We only consider the case
H ∈ (14 ,

1
2) ∪ (12 ,

3
4) as the other two cases H ∈ (0, 14) and H ∈ (34 ,1) are analogous. For
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(E.1), define the matrices An =An(θ),Bn =Bn(θ) ∈R4×4 as

An =∆
1

2
−2H

n Bn, Bn =


∆1−2H

n 0 0 2∆1−2H
n log(∆−1

n )Π
0 1 0 0

0 0 ∆
1

2
−H

n 0
0 0 0 ∆1−2H

n

 for H < 1
2 ,

An =∆
− 1

2
n Bn, Bn =


∆

1

2
−H

n 0 ∆
1

2
−H

n log(∆−1
n )Λ 0

0 1 0 0

0 0 ∆
1

2
−H

n 0
0 0 0 ∆1−2H

n

 for H > 1
2 .

Since Dθµn(θ) = (∆
H− 1

2
n (∂HΦH −ΦH log∆−1

n )Λ+∆2H−1
n (∂HΓH − 2ΓH log∆−1

n )Π, e1,

∆
H− 1

2
n ΦH ,∆2H−1

n ΓH) ∈Rr×4, we have by Theorem 2.1 that{
An(ΘT )Fn(ΘT )

st−→−2(∂HΓHΠ, e1,Φ
H ,ΓH)TWZT for H ∈ (14 ,

1
2),

An(ΘT )Fn(ΘT )
st−→−2(∂HΦHΛ, e1,Φ

H ,ΓH)TWZ ′
T for H ∈ (12 ,

3
4).

This proves (E.1) in [33].
For (E.2)’, note that continuous differentiability of Fn(θ) around ΘT is clear. Next, we

observe that

DθFn(θ) =−2D2
θµn(θ)

TWn(V̂
n
T − µn(θ)) + 2Dθµn(θ)

TWnDθµn(θ).

A straightforward computation shows that 2Bn(ΘT )[Dθµn(θ)
TWnDθµn(θ)]Bn(ΘT )

T P−→
2E, locally uniformly in a shrinking neighborhood of size rn = 1/(log∆−1

n )2 around ΘT .
Applying Theorem 2.1, we further have Bn(ΘT )D

2
θµn(θ)

TWn(V̂
n
T − µn(θ))Bn(ΘT )

T P−→
0 locally uniformly. Hence,

(6.2) sup
θ : |θ−ΘT |≤1/(log∆−1

n )2
∥Bn(ΘT )DθFn(θ)Bn(ΘT )

T − 2E∥ P−→ 0.

Finally, by (3.4) and (3.6), we can check that ∥Bn(ΘT )
T ∥∥Bn(ΘT )An(ΘT )

−1∥/rn
P−→ 0 in

the range of H we consider, which proves (E.2)’ in [33], with Cn =BT
n and W = 2E.

The matrix E is regular because the vectors e1, ∂HΓH ,ΦH ,ΓH ∈Rr are linearly indepen-
dent. For r→∞, this is evident as all four vectors have different decay rates. For r ≥ 5 fixed,
we can check that the 3× 3 submatrix consisting of the entries two, three, and five (i.e. lags
1,2,4) of ∂HΓH ,ΦH ,ΓH has a non-zero determinant. We have verified that this is the case
for H ̸= 1

2 , using a computer algebra system. Analogously, we have verified the regularity of
the same matrix based on ∂HΦH ,ΦH ,ΓH . Thus, [33, Theorem A.2] yields, for H ∈ (14 ,

1
2),

An(ΘT )Bn(ΘT )
−1E(Bn(ΘT )

−1)T (Θ̂n
T −ΘT )

st−→ (∂HΓHΠT , e1,Φ
H ,ΓH)TWZT ,

which is equivalent to (3.3). For H ∈ (12 ,
3
4), we obtain (3.5).

Part 2 (resp., Part 4) of the theorem can be derived along the same lines, but with the second
(resp., fourth) row and column (out of four) deleted from all vectors and matrices. For Part
5, we restrict ourselves to the setting of Part 3, where H ∈ (34 ,1) (the proof in the setting of
Part 2 is similar). On the event Fn(Θ̂

n
T ) = 0, which happens with probability converging to

1, we have

0 = Fn(Θ̂
n
T ) =−2Dθµn(Θ̂

n
T )

TWn(V̂
n
T − µn(Θ̂

n
T )).
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Next, we introduce the matrix Gn(θ) = ((∂HΓH − 2ΓH log∆−1
n )∆2H−1

n Π,0,0) ∈Rr×3 and
denote the restriction of a matrix M ∈ R4×4 to the upper left 3× 3-corner by M (2) and the
restriction of a vector v ∈ R4 to the first three entries by v(2). Now, applying (·)(2) to both
sides of the previous display and multiplying the result by A(2)

n (Θ
(2)
T ) (recall the definition of

An(θ) and Bn(θ) from the beginning of this proof), we obtain

0 =−2A(2)
n (Θ

(2)
T )(Dθ(2)µ(2)n (Θ

n
T ) +Gn(Θ̂

n
T ))

TWn(V̂
n
T − µ(2)n (Θ

n
T )−∆2Ĥn−1

n ΓĤn

Π̂n
T )

=−2A(2)
n (Θ

(2)
T )Dθ(2)µ(2)n (Θ

n
T )

TWn(V̂
n
T − µ(2)n (Θ

n
T )) + oP(1)

=A(2)
n (Θ

(2)
T )F (2)

n (Θ
n
T ) + oP(1).

For the second equality, note that H ∈ (34 ,1) and that A(2)
n (Θ

(2)
T ), A(2)

n (Θ
(2)
T )Gn(Θ̂

n
T )

T and
Dθ(2)µ

(2)
n (Θ

n
T ) have matrix norms of order ∆−1/2

n , ∆H−1
n log∆−1

n and 1, respectively, while
V̂ n
T − µ

(2)
n (Θ

n
T ) =OP(∆

1/2
n ) by Theorem 2.1. With high probability, F (2)

n (Θ̂
n,(2)
T ) = 0, so in

this case, Taylor’s theorem gives us some Θ̃n
T between Θ

n
T and Θ̂

n,(2)
T such that

0 =A(2)
n (Θ

(2)
T )Dθ(2)F (2)

n (Θ̃n
T )(Θ

n
T − Θ̂

n,(2)
T ) + oP(1)

=A(2)
n (Θ

(2)
T )B(2)

n (Θ
(2)
T )−1[B(2)

n (Θ
(2)
T )Dθ(2)F (2)

n (Θ̃n
T )B

(2)
n (Θ

(2)
T )T ]

× (B(2)
n (Θ

(2)
T )T )−1(Θ

n
T − Θ̂

n,(2)
T ) + oP(1)

As in (6.2), one can show that B(2)
n (Θ

(2)
T )Dθ(2)F

(2)
n (Θ̃n

T )B
(2)
n (Θ

(2)
T )T

P−→ 2E(2). Since
A

(2)
n (Θ

(2)
T )B

(2)
n (Θ

(2)
T )−1 =∆

−1/2
n Id3, ∆1/2

n B
(2)
n (Θ

(2)
T ) =D

(2)
n and E(2) is regular, we con-

clude that (D(2)
n )−1(Θ

n
T − Θ̂

n,(2)
T )

P−→ 0.

PROOF OF COROLLARY 3.3. As before, we only consider one case, namely when H ∈
(12 ,

3
4). The other cases are similar. Let

mn,j
i = σ2(i−1)∆n

1{j=0} + σ(i−1)∆n
ρ(i−1)∆n

ΦH
j ∆H−1/2

n + (ρ2(i−1)∆n
+ ρ′2(i−1)∆n

)ΓH
j ∆2H−1

n

and ψ
(i)
j (resp., Σ(ℓ)

n , Σn) be defined in the same way as ψ(i)
j (resp., Σ(ℓ)

n , Σn) but with mn,j
i

(resp., ψ
(i)

, Σ(ℓ)
n ) substituted for m̂n,j

i (resp., ψ(i), Σ̂(ℓ)
n ). Then, because σ, ρ and ρ′are at least

1
2 -Hölder continuous in L2, one can borrow from classical results concerning spot volatility
estimation (e.g., [26, Chapter 13.3]) to show that ∆−1

n (mn,j
i −mn,j

i ) =OP(k
−1/2
n ∨

√
kn∆n)

uniformly in j, which implies ∆−2
n (Σ̂n − Σn) = OP(ℓn(k

−1/2
n ∨

√
kn∆n))

P−→ 0 by our
assumptions on ℓn and kn. Next, again because σ, ρ and ρ′ are 1

2 -Hölder continuous in L2,
we have ∆−2

n Σn =
∫ T
0 [c

(0)
n (s)+

∑ℓn
ℓ=1w(ℓ, ℓn)(c

(ℓ)
n (s)+c

(ℓ)
n (s)T )] ds+OP(ℓn

√
∆n), where

c(ℓ)n (s)jj′ = σ4s(21{ℓ=j=j′=0} + 1{ℓ=0,j=j′>0}) + σ2ρ2(ΦH
ℓ ΦH

|j′−j−ℓ| +ΦH
|j′−ℓ|Φ

H
j+ℓ)∆

2H−1
n

+ (ρ2s + ρ′2s )
2(ΓH

ℓ ΓH
|j′−j−ℓ| +ΓH

|j′−ℓ|Γ
H
j+ℓ)∆

4H−2
n

+ σ3sρs(Φ
H
|j′−j|(1{ℓ=0} + 1{ℓ=j′−j}) +ΦH

j+j′(1{ℓ=j′} + 1{ℓ=j=0}))∆
H−1/2
n

+ σ2s(ρ
2
s + ρ′2s )(Γ

H
|j′−j|(1{ℓ=0} + 1{ℓ=j′−j}) + ΓH

j+j′(1{ℓ=j′} + 1{ℓ=j=0}))∆
2H−1
n

+ σsρs(ρ
2
s + ρ′2s )(Φ

H
ℓ ΓH

|j′−j−ℓ| +ΓH
ℓ ΦH

|j′−j−ℓ| +ΦH
|j′−ℓ|Γ

H
j+ℓ +ΓH

|j′−ℓ|Φ
H
j+ℓ)∆

3H−1/2
n .
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Note that all terms defining c(ℓ)n (s)jj′ are summable in ℓ becauseH < 3
4 and ΓH

r =O(r2H−2)

and ΦH
r =O(rH−3/2) as r→∞. Therefore, we have ∆−2

n Σn = diag(2,1, . . . ,1)
∫ T
0 σ4s ds+

OP(ℓn
√
∆n ∨∆

H−1/2
n )

P−→C′
T . Since ∆

−3/2
n η̂nDn

P−→ (∂HΦHΛT , e1,Φ
H ,ΓH), we obtain

D−1
n Vn(D

−1
n )T =∆n(D

T
n η̂

T
nWnη̂nDn)

−1DT
n η̂

T
nWnΣ̂nWnη̂nDn(D

T
n η̂

T
nWnη̂nDn)

−1

P−→E−1(∂HΦHΛT , e1,Φ
H ,ΓH)TWC′

TW(∂HΦHΛT , e1,Φ
H ,ΓH)E−1.

Recalling (3.5), we have shown that Vn consistently estimates the asymptotic covariance
matrix of Θ̂n

T , which is the claim of the corollary.

For the proof of Theorem 4.1, we assume ∆n = 1
n to simplify notation. Since Y0 = Ỹ0 = 0,

observing {Yi/n : i = 1, . . . , n} is equivalent to observing the increments {∆n
i Y : i =

1, . . . , n}. These increments constitute a stationary centered Gaussian time series with some
covariance matrix Σ̃n(θ) ∈Rn×n. Noting that (6.1) is also valid for λ < 0, we find that

(6.3) Σ̃n(θ) = σ2 n−1In +Πn−2HΣn(H) + Λb(H)n−2HΣn(H),

where H = 1
2(H + 1

2), b(H) = 2/Γ(H + 3
2) and Σn(H) = (ΓH

|i−j|)
n
j,k=1 is the covariance

matrix of n consecutive normalized increments of a fractional Brownian motion with Hurst
parameter H . Given θ0 ∈ Θ and four nonnegative sequences r1,n, r2,n, r3,n, r4,n → 0, we
define θn ∈Θ by

(6.4)
H(θn) =H + r1,n, σ2(θn) = σ2 + r2,n,

Λ(θn) = Λ
b(H)

b(H + r1,n)
nr1,n(1 + r3,n), Π(θn) = Πn2r1,n(1 + r4,n),

abbreviating (H,σ,Λ,Π) = (H,σ,Λ,Π)(θ0). The parameter θn is chosen carefully such that

Σ̃n(θn) = (σ2 + r2,n)n
−1In + (1+ r4,n)Πn

−2HΣn(H + r1,n)

+ (1 + r3,n)Λb(H)n−2HΣn(H + r1,n
2 ).

(6.5)

For now, we only assume that ri,n → 0 as n→∞ for i= 1,2,3,4.
Following the general approach outlined in [42, Chapter 2], we shall prove Theorem 4.1

by deriving sharp KL divergence estimates. Recall that for two covariance matrices Σ1,Σ2 ∈
Rn×n, the KL divergence of the corresponding centered Gaussian distributions is given by

KL(Σ1 ∥Σ2) = KL(N (0,Σ1) ∥ N (0,Σ0)) =
1

2

{
tr(Σ−1

0 Σ1)− n+ log
detΣ0

detΣ1

}
.

In the next proposition, which is the main technical estimate in the proof of Theorem 4.1, we
establish an upper bound on the KL divergence

KL(θn ∥ θ0) = KL(Σ̃n(θn) ∥ Σ̃n(θ0)).

We give the proof in Section 7.

PROPOSITION 6.1. Suppose that H =H(θ0) ∈ (0, 12). For any δ > 0 sufficiently small,
there exists a C =C(θ0, δ) such that

KL(θn ∥ θ0)≤C


r22,n n+ (r21,n + r23,n)n

3−4H + r24,n n
δ if H ∈ [34 ,1),

r22,n n+ (r21,n + r23,n)n
3−4H + r24,nn

3−4H if H ∈ (12 ,
3
4),

r22,n n
4H−1 + (r21,n + r24,n)n+ r23,n n

1−4(H−H) if H ∈ (14 ,
1
2),

r22,n n
δ + (r21,n + r24,n)n+ r23,n n

1−4(H−H) if H ∈ (0, 14 ].
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TABLE 6
Choice of r1,n, . . . , r4,n in the proof of Theorem 4.1.

H ∈ (0, 14 ) H ∈ (14 ,
1
2 ) H ∈ (12 ,

3
4 ) H ∈ (34 ,1)

r1,n n−
1
2 n−

1
2 n2H− 3

2 n2H− 3
2

r2,n 0 n
1
2
−2H n−

1
2 n−

1
2

r3,n n2(H−H)− 1
2 n2(H−H)− 1

2 n2H− 3
2 n2H− 3

2

r4,n n−
1
2 n−

1
2 n2H− 3

2 0

PROOF OF THEOREM 4.1. For any θ0 = (H,σ2,Λ,Π) ∈Θ, we define θn as in (6.4) and
ri,n = r0n

αi(H) as shown in Table 6. In view of Proposition 6.1, these rates are chosen such
that KL(θn ∥ θ0)≤ r20C(θ0) . Upon setting r0 small enough, we find that

KL(θn ∥ θ0)≤ 1
9 .(6.6)

Moreover, from (6.4), it is simple to derive a lower bound on the errors θn − θ0, component
by component. In particular, since r1,n = o(1/ logn), we have

|Λ(θn)−Λ(θ0)|=Ω(r1,n logn+ r3,n), |Π(θn)−Π(θ0)|=Ω(r1,n logn+ r4,n),

where Ω denotes an asymptotic lower bound, that is, an =Ω(bn) if bn =O(an). The resulting
bounds on θn − θ0 are exactly the rates Rn(θ) of Theorem 4.1 (listed in Table 1).

In order to translate these KL estimates into statistical lower bounds, we follow [42, Chap-
ter 2]. Intuitively speaking, if θn satisfies (6.6), we cannot consistently decide whether θn or
θ0 is the true parameter. Hence, no estimator can converge towards θ0 faster than θn. To make
this mathematically precise, let θ̂n be any measurable function of {Yi/n : i= 1, . . . , n}. Note
that θn ∈Dn(θ0) for n large enough. Then, for any c > 0,

sup
θ∈Dn(θ0)

Pθ

(
|(θ̂n − θ)k| ≥ c|(θn − θ0)k|

)
≥ 1

2Pθ0

(
|(θ̂n − θ0)k| ≥ c|(θn − θ0)k|

)
+ 1

2Pθn

(
|(θ̂n − θn)k| ≥ c|(θn − θ0)k|

)
≥ 1

2
Pθ0

(
|(θ̂n − θ0)k| ≥ c|(θn − θ0)k|

)
+ 1

2Pθ0

(
|(θ̂n − θn)k| ≥ c|(θn − θ0)k|

)
− 1

3 .

In the last step, we used that the fact that the total variation distance between Pθn and Pθ0

is upper bounded by
√

KL(θn ∥ θ0)/2 ≤
√

KL(θn ∥ θ0) ≤ 1
3 . Now use the union bound to

obtain

Pθ0

(
|(θ̂n − θ0)k| ≥ c|(θn − θ0)k|

)
+ Pθ0

(
|(θ̂n − θn)k| ≥ c|(θn − θ0)k|

)
≥ Pθ0

(
|(θ̂n − θ0)k| ∨ |(θ̂n − θn)k| ≥ c|(θn − θ0)k|

)
≥ Pθ0

(
|(θn − θ0)k| ≥ 2c|(θn − θ0)k|

)
= 1,

where the last equality holds for c≤ 1
2 . Hence,

sup
θ∈Dn(θ0)

Pθ

(
|(θ̂n − θ)k| ≥ c|(θn − θ0)k|

)
≥ 1

6 .

Because |(θn − θ0)k|=Ω(Rn(θ0)k), this establishes the claimed minimax rates.
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7. Proof of Proposition 6.1. Let A(h) = hΣ̃n(θn)+ (1−h)Σ̃n(θ0) and δn = Σ̃n(θn)−
Σ̃n(θ0). By Taylor expansion,

KL(A(1) ∥A(0))

=
d

dh
KL(A(h) ∥A(0))

∣∣∣
h=0

+
1

2

∫ 1

0

∫ s

0

d2

dh2
KL(A(h) ∥A(0))

∣∣∣
h=v

dv ds,

where
d

dh
KL(A(h) ∥A(0)) = 1

2
tr(A(0)−1δn)−

1

2
tr(A(h)−1δn) =

1

2
tr([A(0)−1 −A(h)−1]δn),

d2

dh2
KL(A(h) ∥A(0)) = 1

2
tr(A(h)−1δnA(h)

−1δn).

Hence,

KL(A(1) ∥A(0)) = 1

4

∫ 1

0

∫ s

0
tr(A(h)−1δnA(h)

−1δn)dhds

≤ 1

4
sup

h∈[0,1]
tr(A(h)−1δnA(h)

−1δn).

(7.1)

In order to find an upper bound for (7.1), we will use the following technical lemma.

LEMMA 7.1. Let B be a symmetric matrix and A and A0 be symmetric positive semidef-
inite matrices such that A−A0 is positive semidefinite, too. Then

tr(A0BA0B)≤ tr(ABA0B) = tr(A0BAB)≤ tr(ABAB).

PROOF. Denote C = BA0B, which is symmetric positive semidefinite. Von Neumann’s
trace inequality yields tr((A−A0)C)≥

∑n
i=1 aibn−i+1, where ai and bi are the descending

eigenvalues of A − A0 and C , respectively. Since ai, bi ≥ 0, we conclude that tr(A0C) ≤
tr(AC), which proves the first inequality and, consequently, the second.

To bound (7.1), we therefore need a lower bound on A(h) and an upper bound on δn.

LEMMA 7.2. For any θ0 ∈Θ and δ > 0, there exists c= c(θ0, δ)> 0 such that

(7.2) A(h)≥ c[n−1In + n−2HΣn(H − δ)], h ∈ [0,1].

Here, ≥ denotes the Loewner partial order on the cone of positive semidefinite matrices.

PROOF OF LEMMA 7.2. Since A(h) is a convex combination, it suffices to establish the
lower bounds for A(1) and A(0). Note that by definition,

√
Πσ2b(H)n−2HΣn(H)jk

=Cov

(
|σ|

∆n
jB

∆
1/2
n

,
√
Π
∆n

kB(H)

∆H
n

)
+Cov

(
|σ|

∆n
kB

∆
1/2
n

,
√
Π
∆n

jB(H)

∆H
n

)
,

where B(H)t =
∫ t
−∞ hH(t, s)dBs. Since XY T + Y XT ≤XXT + Y Y T for X,Y ∈Rn×n,

it follows that
√
Πσ2b(H)n−2HΣn(H)≤ σ2n−1In+Πn−2HΣn(H) and therefore, by (6.3),

Σ̃n(θ)≥
(
1− |Λ|√

Πσ2

)
(σ2n−1In +Πn−2HΣn(H)).
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If we apply this to θ = θ0, we immediately obtain (7.2) for A(0) = Σ̃n(θ0). To derive the
estimate for A(1) = Σ̃n(θn), we apply the above to θ = θn, which yields

A(1)≥ 1

2

(
1− |Λ|√

Πσ2

)
(σ2n−1In +Πn−2HΣn(H + r1,n))

for all sufficiently large n. Since Λ2 <Πσ2, this implies (7.2) for h= 1.

We proceed to finding an upper bound on δn.

LEMMA 7.3. For any θ0 ∈ Θ and δ > 0, there exists C = C(θ0, δ) > 0 such that δn ≤
CBn(θ0, δ), where

Bn(θ0, δ) = r2,nn
−1In + (r1,n + r4,n)n

−2HΣn(H + δ) + (r1,n + r3,n)n
−2HΣn(H + δ).

PROOF OF LEMMA 7.3. By [41, Proposition 7.2.9], we have that

Σn(H) = Tn(fH),

where

(7.3) Tn(f)j,k =

∫ π

−π
f(λ)e−iλ|j−k| dλ

and the spectral density fH is given by

fH(λ) =
Γ(2H + 1) sin(πH)

π
(1− cosλ)

∑
k∈Z

|λ+ 2kπ|−2H−1.

In particular, by (6.5),

δn = Σ̃n(θn)− Σ̃n(θ) = r2,nn
−1In +Πn−2H [(1 + r4,n)Σn(H + r1,n)−Σn(H)]

+ Λb(H)n−2H [(1 + r3,n)Σn(H + r1,n
2 )−Σn(H)] = Tn(g̃n),

where

g̃n = r2,n
n−1

2π +Πn−2H [(1 + r4,n)fH+r1,n − fH ] + Λb(H)n−2H [(1 + r3,n)fH+
r1,n

2

− fH ]

≤C(θ0)
[
r2,nn

−1 + n−2Hr4,n|fH+r1,n |+ n−2H |fH+r1,n − fH |

+ n−2Hr3,n|fH+
r1,n

2

|+ n−2H |fH+
r1,n

2

− fH |
]

and C(θ0) may change its value from line to line. For large n, we have that

|fH+r1,n(λ)| ≤C(θ0)|λ|1−2H−2r1,n ≤C(θ0)|λ|1−2H−2δ,

|fH+
r1,n

2

(λ)| ≤C(θ0)|λ|1−2H−r1,n ≤C(θ0)|λ|1−2H−2δ,

|fH+r1,n(λ)− fH(λ)| ≤C(θ0)r1,n|λ|1−2H−2r1,n |log |λ|| ≤C(θ0)r1,n|λ|1−2H−2δ,

|fH+
r1,n

2

(λ)− fH(λ)| ≤C(θ0)r1,n|λ|1−2H−r1,n |log |λ|| ≤C(θ0)r1,n|λ|1−2H−2δ

for all λ ∈ [−π,π]. Hence, g̃n(λ)≤C(θ0)ĝn(λ) for all λ ∈ [−π,π], where

g̃n ≤C(θ0)
[
r2,n

n−1

2π + (r1,n + r4,n)n
−2HfH+δ + (r1,n + r3,n)n

−2HfH+δ

]
,

which yields the claim.
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LEMMA 7.4. Let g : [−π,π]→R be a symmetric function such that g(λ) =O(|λ|−β) as
λ→ 0 for some β ∈ [0,1). Then, for all δ > 0 and H ∈ (0,1),

tr(Tn(g)Tn(g)) =O(n∨ n2β+δ),

tr
(
Σn(H)−1Tn(g)Σn(H)−1Tn(g)

)
=O(n∨ n2(β−2H+1)+δ).

PROOF OF LEMMA 7.4. We apply [32, Theorem 5 in the full version] to the spectral den-
sities f = fH and g with α= α(θ) = 2H − 1 and β as above.

PROOF OF PROPOSITION 6.1. By (7.1) and Lemmas 7.2 and 7.3, we obtain for δ > 0,

KL(θn ∥ θ0)≤

{
C(θ0)n

2tr(BnBn) if H > 1
2 ,

C(θ0)n
4Htr

(
Σn(H − δ)−1BnΣn(H − δ)−1Bn

)
if H < 1

2 ,

where Bn =Bn(θ0, δ) as in Lemma 7.3.
If H > 1

2 , the Cauchy–Schwarz inequality yields

tr(BnBn)≤ 3r22,nn
−2tr(I2n) + 3(r1,n + r4,n)

2n−4Htr(Σn(H + δ)2)

+ 3(r1,n + r3,n)
2n−4Htr(Σn(H + δ)2).

Clearly, tr(I2n) = n. Moreover, since Σn(H + δ) and Σn(H + δ) satisfy the conditions of
Lemma 7.4 with β = 2H + 2δ− 1 and β = 2H + 2δ− 1, respectively, we have that

tr(Σn(H + δ)2) =O(n∨ n4H+5δ−2), tr(Σn(H + δ)2) =O(n∨ n4H+5δ−2).

Since δ > 0 was arbitrary, we find that tr(BnBn) =O(zn), where

zn = r22,nn
−1 + (r1,n + r4,n)

2(n1−4H ∨ nδ−2) + (r1,n + r3,n)
2(n1−4H ∨ nδ−2).

This establishes the KL upper bound for the cases H ∈ (12 ,
3
4) and H ∈ [34 ,1).

If H < 1
2 , we may again apply Lemma 7.4 to find that

tr
[
(Σn(H − δ)−1In)

2
]
=O(n∨ n2−4H+5δ),

tr
[
(Σn(H − δ)−1Σn(H + δ))2

]
=O(n∨ n4(H−H)+5δ),

tr
[
(Σn(H − δ)−1Σn(H + δ))2

]
=O(n∨ n5δ).

Since δ > 0 was arbitrary, we find that tr[Σn(H−δ)−1BnΣn(H−δ)−1Bn] =O(wn), where

wn = r22,n(n
−1 ∨ n−4H+δ) + (r1,n + r3,n)

2(n1−4H ∨ n−4H+δ)

+ (r1,n + r4,n)
2(n1−4H ∨ n−4H+δ).

This yields the KL upper bound for the remaining cases H ∈ (14 ,
1
2) and H ∈ (0, 14 ].

APPENDIX A: CENTRAL LIMIT THEOREM FOR GENERAL VARIATION
FUNCTIONALS

In this section, we state and prove a CLT for general variation functionals of multivari-
ate mixed semimartingale processes. To this end, we consider a d-dimensional mixed semi-
martingale of the form

(A.1) Yt = Y0 +

∫ t

0
as ds+

∫ t

0
σs dBs +

∫ t

0
g(t− s)ρs dBs,
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where now B is a d′-dimensional Brownian motion, a (resp., σ and ρ) is Rd-valued (resp.,
Rd×d′

-valued) and predictable and g : R→ R is given by (2.2). Since d′ may be larger than
d, (A.1) includes the case where the martingale and the fractional part of Y are driven by
correlated (and not necessarily identical) Brownian motions. In fact, the situation considered
in Section 2 can be embedded into the current setting by defining d′ = 2 and

(A.2) B(A.1) = (B,B′), σ(A.1) = (σ,0), ρ(A.1) = (ρ, ρ′)

(the superscript stands for “from Equation (A.1)”). In particular, Theorem 2.1 then becomes
a special case of Theorems A.1 and A.2 below.

Let f : Rd×L → RM for some L,M ∈ N. For Y and similarly for other d-dimensional
processes, we define

(A.3) ∆n
i Y = Yi∆n

− Y(i−1)∆n
∈Rd, ∆n

i Y = (∆n
i Y,∆

n
i+1Y, . . . ,∆

n
i+L−1Y ) ∈Rd×L.

Our goal is to formulate and prove a CLT for normalized variation functionals of the form

(A.4) V n
f (Y, t) =∆n

[t/∆n]−L+1∑
i=1

f

(
∆n

i Y

∆
H∧(1/2)
n

)
, t≥ 0,

where [·] denotes the floor function. In what follows, ∥ · ∥ denotes the Euclidean norm in Rn

for any n ∈ N. Also, if z is some matrix in Rn×m for any n,m ∈ N, then ∥z∥ is defined by
viewing z as a vector in Rnm. We introduce the following assumptions.

ASSUMPTION (CLT’). Consider the process Y from (A.1) and recall N(H) from (2.5).
We make the following assumptions:

1. The function f : Rd×L →RM is even (i.e., satisfies f(−x) = f(x) for all x) and belongs
to C2N(H)+1(Rd×L,RM ), with all partial derivatives up to order 2N(H) + 1 (including
f itself) being of polynomial growth.

2. The kernel g is of the form (2.2) where H ∈ (0,1)\{1
2} and g0 ∈C1(R) satisfies g0(x) =

0 for all x≤ 0.
3. The drift process a is d-dimensional, locally bounded, F-adapted and càdlàg. Moreover,
B is a d′-dimensional standard F-Brownian motion.

4. If H > 1
2 , the volatility process σ takes the form

(A.5) σt = σ
(0)
t +

∫ t

0
σ̃s dBs, t≥ 0,

where
a) σ(0) is an F-adapted locally bounded Rd×d′

-valued process such that for all T > 0,
there are γ ∈ (12 ,1] and K1 ∈ (0,∞) with

(A.6) E[1∧ ∥σ(0)t − σ(0)s ∥]≤K1|t− s|γ , s, t ∈ [0, T ];

b) σ̃ is an F-adapted locally bounded Rd×d′×d′
-valued process such that for all T > 0,

there are ε ∈ (0,1) and K2 ∈ (0,∞) with

(A.7) E[1∧ ∥σ̃t − σ̃s∥]≤K2|t− s|ε, s, t ∈ [0, T ].

If H < 1
2 , we have (A.5) but with σ, σ(0) and σ̃ replaced by ρ and some processes ρ(0)

and ρ̃ satisfying conditions analogous to (A.6) and (A.7).
5. If H > 1

2 , the process ρ is F-adapted, locally bounded and Rd×d′
-valued. Moreover, for

all T > 0, there is K3 ∈ (0,∞) such that

(A.8) E[1∧ ∥ρt − ρs∥]≤K3|t− s|
1

2 , s, t ∈ [0, T ].

If H < 1
2 , we have the same condition but with ρ replaced by σ.
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To state the CLT, we need more additional notation. For suitable v = (vkℓ,k′ℓ′)
d,d,L,L
k,k′,ℓ,ℓ′=1, q =

(qkℓ,k′ℓ′)
d,d,L,L
k,k′,ℓ,ℓ′=1 ∈R(d×L)×(d×L), define

µf (v) = (E[fm(Z)])Mm=1 ∈RM ,

γf (v, q) = (Cov(fm(Z), fm′(Z ′)))Mm,m′=1 ∈RM×M , γf (v) = γf (v, v),
(A.9)

where (Z,Z ′) ∈ (Rd×L)2 is multivariate normal with mean 0 and Cov(Zkℓ,Zk′ℓ′) =
Cov(Z ′

kℓ,Z
′
k′ℓ′) = vkℓ,k′ℓ′ and Cov(Zkℓ,Z

′
k′ℓ′) = qkℓ,k′ℓ′ . Furthermore, given a multi-index

χ= (χkℓ,k′ℓ′)
d,d,L,L
k,k′,ℓ,ℓ′=1 ∈N(d×L)×(d×L)

0 , we define

(A.10) |χ|=
d∑

k,k′=1

L∑
ℓ,ℓ′=1

χkℓ,kℓ′ , χ! =

d∏
k,k′=1

L∏
ℓ,ℓ′=1

χkℓ,k′ℓ′ !, vχ =

d∏
k,k′=1

L∏
ℓ,ℓ′=1

v
χkℓ,k′ℓ′

kℓ,k′ℓ′

and the partial derivatives

(A.11) ∂χµf (v) =
∂|χ|µf

∂v
χ11,11

11,11 · · ·∂vχdL,dL

dL,dL

(v) ∈RM .

For s≥ 0, we also define

c(s)kℓ,k′ℓ′ = (σsσ
T
s )kk′1{ℓ=ℓ′},

πr(s)kℓ,k′ℓ′ = (ρsρ
T
s )kk′ΓH

|ℓ−ℓ′+r|, π(s)kℓ,k′ℓ′ = π0(s)kℓ,k′ℓ′ ,

λ(s)kℓ,k′ℓ′ = 2−1{ℓ=ℓ′}(σsρ
T
s 1{ℓ≤ℓ′} + ρsσ

T
s 1{ℓ≥ℓ′})kk′ΦH

|ℓ−ℓ′|

(A.12)

for all k, k′ ∈ {1, . . . , d} and ℓ, ℓ′ ∈ {1, . . . ,L}, where ΓH
r and ΛH

r are defined in (2.10) and
(2.11), respectively.

THEOREM A.1. If Assumption (CLT’) holds with H > 1
2 , then

(A.13) ∆
− 1

2
n

{
V n
f (Y, t)− Vf (Y, t)−A′n

t

}
st

=⇒Z ′,

where Vf (Y, t) =
∫ t
0 µf (c(s))ds and

(A.14) A′n
t =

N(H)∑
j=1

∑
|χ|=j

1

χ!

∫ t

0
∂χµf (c(s))

(
∆

H− 1

2
n λ(s) +∆2H−1

n π(s)
)χ

ds

and Z ′ = (Z ′
t)t≥0 is an RM -valued process, defined on a very good filtered extension

(Ω,F , (F t)t≥0,P) of the original probability space (Ω,F , (Ft)t≥0,P) that conditionally on
F is a centered Gaussian process with independent increments and covariance function

(A.15) C′
t = (E[Z ′m

t Z ′m′

t | F ])Mm,m′=1 =

∫ t

0
γf (c(s))ds.

THEOREM A.2. If Assumption (CLT’) holds with H < 1
2 , then

(A.16) ∆
− 1

2
n

{
V n
f (Y, t)−

∫ t

0
µf (π(s))ds−An

t

}
st

=⇒Z,

where

(A.17) An
t =

N(H)∑
j=1

∑
|χ|=j

1

χ!

∫ t

0
∂χµf (π(s))

(
∆

1

2
−H

n λ(s) +∆1−2H
n c(s)

)χ
ds
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and Z = (Zt)t≥0 is an RM -valued process defined on (Ω,F , (F t)t≥0,P) that conditionally
on F is a centered Gaussian process with independent increments and covariance function

Ct = (E[Zm
t Zm′

t | F ])Mm,m′=1

=

∫ t

0

{
γf (c(s)) +

∞∑
r=1

(γf (π(s), πr(s)) + γf (π(s), πr(s))
T )

}
ds.

(A.18)

The proof of the two results is given in Appendices B–D. Apart from the term A′n
t , The-

orem A.1 is exactly the CLT of semimartingale variation functionals (see [26]). Similarly, if
we ignore An

t , Theorem A.2 is the CLT for variation functionals of a fractional process with
roughness parameter H (cf. [5, 18]). The two processes A′n

t and An
t respectively play the

role of higher-order bias terms (for the estimation of the integrated volatility or noise volatil-
ity functional). However, these processes are also key to identifying all other quantities of
interest in Y . If λ ≡ 0 and H < 1

2 , Theorem A.2 reduces to [15, Theorem 3.1]. If λ ̸≡ 0,
additional terms involving λ appear in both A′n

t and An
t .
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APPENDIX B: PROOF OF THEOREM A.1

Except for Proposition B.3 below, we may and will assume that M = 1. Also, by stan-
dard localization results and since g0 only contributes a finite variation process with locally
bounded density to Y , there is no loss of generality if we replace Assumption (CLT’) by

ASSUMPTION (CLT”). We have Assumption (CLT’) with g0 ≡ 0. Moreover,

sup
(ω,t)∈Ω×[0,∞)

{
∥at(ω)∥+ ∥σt(ω)∥+ ∥ρt(ω)∥+ ∥σ(0)t (ω)∥+ ∥σ̃t(ω)∥

}
<∞

and for every p > 0, there is Kp > 0 such that for all s, t > 0,

E[∥ρt − ρs∥p]
1

p ≤Kp|t− s|
1

2 , E[∥σ(0)t − σ(0)s ∥p]
1

p ≤Kp|t− s|γ ,

E[∥σ̃t − σ̃s∥p]
1

p ≤Kp|t− s|ε.
(B.1)

Under these assumptions, g(t) =K−1
H tH−1/21{t>0} and Yt =X0 +At +Xt +Zt, where

(B.2) At =

∫ t

0
as ds, Xt =

∫ t

0
σs dBs, Zt =K−1

H

∫ t

0
(t− s)H− 1

2 ρs dBs.

Furthermore, we have ∆n
i Y =∆n

i A+∆n
i X +∆n

i Z . For all s≥ 0 and i, n ∈N, define

∆n
i g(s) = g(i∆n − s)− g((i− 1)∆n − s)

∆n
i g(s) = (∆n

i g(s),∆
n
i+1g(s), . . . ,∆

n
i+L−1g(s)),

(B.3)

such that we can rewrite

∆n
i Z =

(∫ ∞

0
∆n

i g(s)ρs dBs,

∫ ∞

0
∆n

i+1g(s)ρs dBs, . . . ,

∫ ∞

0
∆n

i+L−1g(s)ρs dBs

)
=

∫ ∞

0
ρs dBs∆

n
i g(s)

(B.4)

in matrix notation. The proof of Theorem A.1 is divided into four steps.

Step 1: Truncation of fractional increments. While increments ofX are given by stochas-
tic integrals over disjoint intervals, (B.4) shows that all increments of Z overlap. However, it
can be shown that only the portion of the integral closest to i∆n is asymptotically relevant.

PROPOSITION B.1. Under Assumption (CLT”), if θn = [∆−θ
n ] where θ is chosen such

that

(B.5) 1− 1

4− 4H
=

3
2 − 2H

2− 2H
< θ <

1

2

and if we define

(B.6) ∆n
i Y

tr =∆n
i A+∆n

i X +

∫ (i+L−1)∆n

(i−θn)∆n

ρs dBs∆
n
i g(s),

then

(B.7) ∆
− 1

2
n

(
V n
f (Y, t)−∆n

[t/∆n]−L+1∑
i=θn+1

f

(
∆n

i Y
tr

√
∆n

))
L1

=⇒ 0.
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Step 2: Centering and removing the fractional component. In contrast to ∆n
i Y , two trun-

cated increments ∆n
i Y

tr and ∆n
i′Y

tr are defined on disjoint intervals as soon as |i − i′| ≥
L + θn. By centering with the corresponding conditional expectations, we obtain a partial
martingale structure, allowing us to show the following—in our opinion surprising—result:

PROPOSITION B.2. If θ is chosen according to (B.5), then

∆
1

2
n

[t/∆n]−L+1∑
i=θn+1

{
f

(
∆n

i Y
tr

√
∆n

)
−E

[
f

(
∆n

i Y
tr

√
∆n

) ∣∣∣Fn
i−θn

]}

−∆
1

2
n

[t/∆n]−L+1∑
i=θn+1

{
f

(
σ(i−1)∆n

∆n
i B√
∆n

)
−E

[
f

(
σ(i−1)∆n

∆n
i B√
∆n

) ∣∣∣Fn
i−1

]}
L1

=⇒ 0.

(B.8)

We find this result surprising because upon centering by conditional expectations, the frac-
tional component becomes negligible for all H > 1

2 . Note that for H ↓ 1
2 , the local regularity

of Z becomes closer and closer to that of X . Since we are interested in convergence at a rate
of 1/

√
∆n, one would therefore expect that there is some critical value H0 such that Propo-

sition B.2 holds for all H >H0, while there is a bias due to the fractional part if H <H0.

Step 3: Martingale CLT. After centering by conditional expectations and eliminating the
fractional part, we obtain the following CLT:

PROPOSITION B.3. Under Assumption (CLT”),

(B.9) ∆
1

2
n

[t/∆n]−L+1∑
i=1

{
f

(
σ(i−1)∆n

∆n
i B√
∆n

)
−E

[
f

(
σ(i−1)∆n

∆n
i B√
∆n

) ∣∣∣Fn
i−1

]}
st

=⇒Z,

where Z is exactly as in (A.13).

Step 4: Convergence of conditional expectations. The last step is to show that the condi-
tional expectations

∆n

[t/∆n]−L+1∑
i=θn+1

E
[
f

(
∆n

i Y
tr

√
∆n

) ∣∣∣Fn
i−θn

]
that appear in (B.8) converge to Vf (Y, t), after removing the asymptotic bias term A′n

t .

PROPOSITION B.4. Grant Assumption (CLT”). If θ satisfies (B.5), then

(B.10) ∆
− 1

2
n

{
∆n

[t/∆n]−L+1∑
i=θn+1

E
[
f

(
∆n

i Y
tr

√
∆n

) ∣∣∣Fn
i−θn

]
−
∫ t

0
µf (c(s))ds−A′n

t

}
L1

=⇒ 0.

PROOF OF THEOREM A.1. The theorem immediately follows from Propositions B.1–B.4
and standard properties of stable convergence in law.

Concerning the proofs of Propositions B.1–B.4, notice that since the fractional part plays
no role in Proposition B.3, it is a special case of [13, Theorem 11.2.1]. Moreover, the proof of
Proposition B.1 is very similar to that of [15, Lemma C.1] (which was for the case H < 1

2 ),
so we postpone it to the Appendix C.
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The main novelty is in the proof of Propositions B.2 and B.4, which we detail in the
following. Here, the fact that the martingale and the fractional components of Y are driven
by the same Brownian motion (instead of independent ones) starts to play a pivotal role. In
what follows, we make repeated use of so-called size estimates and martingale size estimates.
While the underlying ideas have existed since the beginnings of high-frequency statistics, we
refer to [15, Appendix A] for a more formal and more explicit version of these estimates.
Another important estimate that we use many times and is true under Assumption (CLT”) is
the following (cf. [15, Equation (B.3)]): for every p > 0,

(B.11) E
[∣∣∣∣∫ (i−θn)∆n

0
∆n

i g(s)ρs dBs

∣∣∣∣p] 1

p

≲∆H+θ(1−H)
n .

B.1. Proof of Proposition B.2. Since A is Lipschitz and both σ and ρ are 1
2 -Hölder

continuous in Lp, it is easy to see that replacing ∆n
i Y

tr/
√
∆n by

∆n
i Ỹ

tr

√
∆n

= σ(i−θn)∆n

∆n
i B√
∆n

+ ξ̃ni

= σ(i−θn)∆n

∆n
i B√
∆n

+
1√
∆n

∫ (i+L−1)∆n

(i−θn)∆n

ρ(i−θn)∆n
dBs∆

n
i g(s)

(B.12)

only leads an asymptotically negligible error. Indeed, since each term in

∆
1

2
n

[t/∆n]−L+1∑
i=θn+1

{
f

(
∆n

i Y
tr

√
∆n

)
− f

(
∆n

i Ỹ
tr

√
∆n

)
−E

[
f

(
∆n

i Y
tr

√
∆n

)
− f

(
∆n

i Ỹ
tr

√
∆n

) ∣∣∣Fn
i−θn

]}
is Fn

i+L-measurable with zero Fn
i−θn

-conditional expectation, a size estimate shows that the

previous display is of order
√
θn[∆

1/2
n + (θn∆n)

1/2]≤ 2∆
1/2−θ
n , which tends to 0 by (B.5).

The main work now consists in showing that we can drop ξ̃ni in (B.12). Then (B.8) fol-
lows by moving the time point at which σ is frozen from (i− θn)∆n to (i− 1)∆n (which,
analogously to what we just proved, is asymptotically negligible). The difficulty here is that a
simple martingale size estimate is not sufficient: since ξ̃ni is of magnitude ∆

H−1/2
n , dropping

it would lead to an error which is bounded by
√
θn∆

H−1/2
n . And this only goes to 0 (for

the smallest possible θ in (B.5)) if H > 1− 1
2
√
2
≈ 0.65. As a consequence, we need a more

sophisticated argument.
We start by expanding

f

(
∆n

i Ỹ
tr

√
∆n

)
− f

(
σ(i−θn)∆n

∆n
i B√

∆n

)

=

K∑
k=1

∑
|χ|=k

1

χ!
∂χf

(
σ(i−θn)∆n

∆n
i B√

∆n

)
(ξ̃ni )

χ + oP(∆
(H− 1

2
)K

n )

into a Taylor sum, where K = N(H) + 1 and N(H) is the same number as in Theo-
rem A.1. As K ≥ 1

2H−1 , if we use a martingale size estimate, the oP-term contributes
√
θn∆

1/2
n =∆

1/2−θ
n at most, which is negligible. For the remaining terms, we make the sim-

plifying assumption that d= L= 1; the subsequent arguments easily extend to any d,L ∈N
but require more cumbersome notation in the general case. To give the intuition behind our
approach, consider χ= k = 1 in which case (ξ̃ni )

χ =∆
−1/2
n

∫ i∆n

(i−θn)∆n
∆n

i g(s)ρ(i−θn)∆n
dBs.

The important observation is now the following: On the one hand, if s is far from i∆n, say,
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(i − θn)∆n ≤ s ≤ (i − θ
(1)
n )∆n for some θ(1)n = o(θn), the corresponding part of the inte-

gral is of size ∆
H−1/2
n (θ

(1)
n )−(1−H) by (B.11), which is smaller than ∆

H−1/2
n . On the other

hand, if s is close to i∆n, the Fn
i−θn

-conditional expectation of the integral restricted to

s ≥ (i − θ
(1)
n )∆n agrees with its Fn

i−θ
(1)
n

-conditional expectation, which constitutes an im-
provement when we apply a martingale size estimate.

It turns out that in order to make this argument work in general, we need to choose not just
one but a certain (potentially large but always finite) number of intermediate scales θ(q)n =
[∆−θ(q)

n ] for q = 1, . . . ,Q − 1, where Q ∈ N and θ(q), q = 0, . . . ,Q are chosen such that
θ = θ(0) > θ(1) > · · ·> θ(Q−1) > θ(Q) = 0 and

(B.13) θ(q) >
1

2− 2H
θ(q−1) −

H − 1
2

1−H
, q = 1, . . . ,Q.

Earlier versions of this trick appear in [5, 13, 14, 15, 18]. By solving the underlying recur-
rence equation, the reader can check that such a choice exists. We also let θ(Q)

n = 0. By the
multinomial theorem, for each χ= k ∈ {1, . . . ,K}, we have that

(ξ̃ni )
k =

∑
j1+···+jQ=k

(
k

j1, . . . , jQ

) Q∏
q=1

(∫ (i−θ(q)
n )∆n

(i−θ
(q−1)
n )∆n

∆n
i g(s)ρ(i−θn)∆n

dBs

)jq

.

For fixed k and j1, . . . , jQ, let qmin =min{q = 1, . . . ,Q : jq ̸= 0}. Then

E
[
∂χf

(
σ(i−θn)∆n

∆n
i B√

∆n

) Q∏
q=1

(∫ (i−θ(q)
n )∆n

(i−θ
(q−1)
n )∆n

∆n
i g(s)ρ(i−θn)∆n

dBs

)jq ∣∣∣Fn
i−θn

]

= E
[
∂χf

(
σ(i−θn)∆n

∆n
i B√

∆n

) Q∏
q=1

(∫ (i−θ(q)
n )∆n

(i−θ
(q−1)
n )∆n

∆n
i g(s)ρ(i−θn)∆n

dBs

)jq ∣∣∣Fn
i−θ

(qmin−1)
n

]
.

Hence, by a martingale size estimate, its contribution to

∆
1

2
n

[t/∆n]−L+1∑
i=θn+1

{
f

(
∆n

i Y
tr

√
∆n

)
− f

(
σ(i−θn)∆n

∆n
i B√

∆n

)

−E
[
f

(
∆n

i Y
tr

√
∆n

)
− f

(
σ(i−θn)∆n

∆n
i B√

∆n

) ∣∣∣Fn
i−θn

]}
is of order√

θ
(qmin−1)
n ∆

(H− 1

2
)k

n

Q∏
q=1

∆θ(q)jq(1−H)
n ≤

√
θ
(qmin−1)
n ∆

H− 1

2
n ∆θ(qmin)(1−H)

n ,

which tends to zero by (B.13). □

B.2. Proof of Proposition B.4. Let us first remark that, in contrast to Proposition B.2,
we cannot drop the fractional component when we determine the asymptotic behavior of the
conditional expectations in Proposition B.4. In fact, the fractional part is precisely the reason
why intermediate limits appear and have to be subtracted to obtain convergence to Vf (Y, t)
at a rate of 1/

√
∆n.
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In a first step, we discretize both σ and ρ in ∆n
i Y

tr. Recalling (B.13), we define

ξn,di =
1√
∆n

∫ (i+L−1)∆n

(i−θn)∆n

Q∑
q=1

ρ(i−θ
(q−1)
n )∆n

1((i−θ
(q−1)
n )∆n,(i−θ

(q)
n )∆n)

(s)dBs∆
n
i g(s),

∆n
i Y

dis = σ(i−1)∆n
∆n

i B +
√

∆nξ
n,d
i .

LEMMA B.5. Under the assumptions of Proposition B.4,

(B.14) ∆
1

2
n

[t/∆n]−L+1∑
i=θn+1

{
E
[
f

(
∆n

i Y
tr

√
∆n

) ∣∣∣Fn
i−θn

]
−E

[
f

(
∆n

i Y
dis

√
∆n

) ∣∣∣Fn
i−θn

]}
L1

=⇒ 0.

The proof is quite technical, but the dependence of the Brownian motions driving the
martingale and the fractional part of Y do not play any role here, which is why we defer it to
the Appendix C.

PROOF OF PROPOSITION B.4. By Lemma B.5, we are left to show that

(B.15) ∆
1

2
n

[t/∆n]−L+1∑
i=θn+1

{
E
[
f

(
∆n

i Y
dis

√
∆n

) ∣∣∣Fn
i−θn

]
− Vf (Y, t)−A′n

t

}
L1

=⇒ 0.

To this end, we recall (A.12) and define vn,i0 , vn,i ∈ (Rd×L)2 by

(vn,i0 )kℓ,kℓ′ = c((i− 1)∆n)kℓ,k′ℓ′

+ (σ(i−1)∆n
ρT
(i−θ

(Q−1)
n )∆n

1{ℓ≤ℓ′} + ρ(i−θ
(Q−1)
n )∆n

σT(i−1)∆n
1{ℓ′≤ℓ})kk′

×
∫ (i+ℓ∧ℓ′−1)∆n

(i+ℓ∧ℓ′−2)∆n

∆n
i+ℓ∨ℓ′−1g(s)

∆n
ds

+

Q∑
q=1

(ρ(i−θ
(q−1)
n )∆n

ρT
(i−θ

(q−1)
n )∆n

)kk′

∫ (i−θ(q)
n )∆n

(i−θ
(q−1)
n )∆n

∆n
i+ℓ−1g(s)∆

n
i+ℓ′−1g(s)

∆n
ds

(B.16)

and

(B.17) (vn,i) = c((i− 1)∆n) + λ((i− 1)∆n)∆
H− 1

2
n + π((i− 1)∆n)∆

2H−1
n ,

respectively. Observe that vn,i0 is the covariance matrix of ∆n
i Y

dis/
√
∆n if σ and ρ are de-

terministic. We separate the proof of (B.15) into four parts:

∆
1

2
n

[t/∆n]−L+1∑
i=θn+1

{
E
[
f

(
∆n

i Y
dis

√
∆n

) ∣∣∣Fn
i−θn

]
− µf

(
E[vn,i0 | Fn

i−θn ]
)}

L1

=⇒ 0.(B.18)

∆
1

2
n

[t/∆n]−L+1∑
i=θn+1

{
µf

(
E[vn,i0 | Fn

i−θn ]
)
− µf (v

n,i
0 )

}
L1

=⇒ 0,(B.19)

∆
1

2
n

[t/∆n]−L+1∑
i=θn+1

{µf (vn,i0 )− µf (v
n,i)} L1

=⇒ 0,(B.20)

∆
1

2
n

[t/∆n]−L+1∑
i=θn+1

{µf (vn,i)− Vf (Y, t)−A′n
t } L1

=⇒ 0.(B.21)
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Concerning the first part, by a change of variable and (C.3), the second term on the right-
hand side of (B.16) equals

(σ(i−1)∆n
ρT
(i−θ

(Q−1)
n )∆n

1{ℓ≤ℓ′} + ρ(i−θ
(Q−1)
n )∆n

σT(i−1)∆n
1{ℓ′≤ℓ})kk′

∫ ∆n

0

∆n
|ℓ−ℓ′|+1g(s)

∆n
ds

=
1

21{ℓ=ℓ′}
(σ(i−1)∆n

ρT
(i−θ

(Q−1)
n )∆n

1{ℓ≤ℓ′} + ρ(i−θ
(Q−1)
n )∆n

σT(i−1)∆n
1{ℓ′≤ℓ})kk′∆

H− 1

2
n ΦH

|ℓ−ℓ′|.

With this in mind, the remaining proof of (B.18) is completely analogous to that of [15,
Lemma D.2] if, in the notation of the reference, we define

Yn,r
i =

1√
∆n

∫ (i+L−1)∆n

(i−θn)∆n

r∑
q=1

ρ(i−θ
(q−1)
n )∆n

1((i−θ
(q−1)
n )∆n,(i−θ

(q)
n )∆n)

(s)dBs∆
n
i g(s),

(Υn,r
i )kℓ,k′ℓ′ = c((i− 1)∆n)kℓ,k′ℓ′ +

(
σ(i−1)∆n

ρT
(i−θ

(Q−1)
n )∆n

1{ℓ≤ℓ′}

+ ρ(i−θ
(Q−1)
n )∆n

σT(i−1)∆n
1{ℓ′≤ℓ}

)
kk′

∫ (i+ℓ∧ℓ′−1)∆n

(i+ℓ∧ℓ′−2)∆n

∆n
i+ℓ∨ℓ′−1g(s)

∆n
ds

+

Q∑
q=r+1

(ρ(i−θ
(q−1)
n )∆n

ρT
(i−θ

(q−1)
n )∆n

)kk′

∫ (i−θ(q)
n )∆n

(i−θ
(q−1)
n )∆n

∆n
i+ℓ−1g(s)∆

n
i+ℓ′−1g(s)

∆n
ds

and realize upon using (B.11) that for any p > 0,

E[|Yn,r
i |p]

1

p ≲∆θ(r)(1−H)
n ∆

H− 1

2
n ,

E
[∣∣∣E[Υn,r

i | Fn
i−θ

(r)
n
]−E[Υn,r

i | Fn
i−θ

(r−1)
n

]
∣∣∣p] 1

p

≲ (θ(r−1)
n ∆n)

1

2∆
H− 1

2
n .

(For the last inequality, first note that the ds-integrals in Yn,r
i are O(∆

H−1/2
n ). Then observe

that the two conditional expectations will become equal if we shift time in the coefficients
defining Yn,r

i to i− θ(r−1)
n ∆n, which comes with an error of (θ(r−1)

n ∆n)
1/2.) Similarly, apart

from obvious modifications, the proof of [15, (D.10)] can be reproduced almost identically to
show (B.19). For (B.20), the proof in our setting (with H > 1

2 ) is, in fact, much simpler than
the analogous statement in [15, (D.11)]. Indeed, by (C.2), (C.3) and (C.4), vn,i0 − vn,i is of
size (θ

(Q−1)
n ∆n)

1/2∆
H−1/2
n +

∑Q
q=1(θ

(q−1)
n ∆n)

1/2∆
θ(q)(2−2H)
n ∆2H−1

n +∆
θ(2−2H)
n ∆2H−1

n ,
which is o(

√
∆n) by (B.13) and (B.5) and thus yields (B.20) by the mean-value theorem.

Concerning (B.21), we recall the multi-index notations introduced in (A.10) and (A.11).
We then express the difference µf (vn,i) − µf (c((i − 1)∆n)) in a Taylor expansion of or-
der N(H) (which is possible since f is 2(N(H) + 1)-times continuously differentiable by
assumption, see [13, (D.45), (D.46)]) to obtain

∆
1

2
n

[t/∆n]−L+1∑
i=θn+1

{
µf (v

n,i)− µf (c((i− 1)∆n))−A′n
i

}
=Kn

1 (t) +Kn
2 (t),

where

A′n
i =

N(H)∑
j=1

∑
|χ|=j

1

χ!
∂χµf (c((i− 1)∆n))

(
∆

H− 1

2
n λ((i− 1)∆n) +∆2H−1

n π((i− 1)∆n)
)χ
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and

Kn(t) =∆
1

2
n

[t/∆n]−L+1∑
i=θn+1

∑
|χ|=N(H)+1

1

χ!
∂χµf (χ

n
i )(v

n,i − c((i− 1)∆n))
χ

for some χn
i between vn,i and c((i− 1)∆n).

By simple size estimates and the definition of N(H) in (2.5),

E
[
sup

t∈[0,T ]
|Kn(t)|

]
≲∆

− 1

2
n ∆

(N(H)+1)(H− 1

2
)

n → 0

as n→∞. Our last step is to remove the discretization in time, that is, to show that

∆
− 1

2
n

{
∆n

[t/∆n]−L+1∑
i=θn+1

{
µf (c((i− 1)∆n)) +A′n

i

}
− Vf (Y, t)−A′n

t

}
L1

=⇒ 0.

To see this, observe that ∆−1/2
n {∆n

∑[t/∆n]−L+1
i=θn+1 µf (c((i − 1)∆n)) − Vf (Y, t)}

L1

=⇒ 0 by
[26, Lemma 11.2.7]. At the same time, note that changing c((i− 1)∆n), λ((i− 1)∆n) and
π((i−1)∆n) to c(s), λ(s) and π(s) for s ∈ ((i−1)∆n, i∆n) induces an error of order

√
∆n,

respectively, by Assumption (CLT”). Because there is at least a factor of ∆H−1/2
n present in

A′n
i , the mean-value theorem shows that

E
[
sup

t∈[0,T ]

∣∣∣∣∆− 1

2
n

(
∆n

[t/∆n]−L+1∑
i=θn+1

A′n
i −A′n

t

)∣∣∣∣]≲∆
− 1

2
n ∆

1

2
+(H− 1

2
)

n → 0.

APPENDIX C: TECHNICAL RESULTS FOR THE PROOF OF THEOREM A.1

We start with some estimates on the kernel g.

LEMMA C.1. Recall the definitions in (2.2), (2.3), (2.11) and (2.10) and assume that
H ∈ (0,1) \ {1

2} and g0 ≡ 0.

1. For any k,n ∈N,

(C.1)
∫ ∞

0
∆n

kg(t)
2 dt=K−2

H

{
1

2H
+

∫ k

1

(
rH− 1

2 − (r− 1)H− 1

2

)2
dr

}
∆2H

n .

2. For any k, ℓ,n ∈N with k < ℓ,

(C.2)
∫ ∞

−∞
∆n

kg(t)∆
n
ℓ g(t)dt=∆2H

n ΓH
ℓ−k.

3. For r ≥ 0,

(C.3)
∫ ∆n

0

∆n
r+1g(s)

∆2H∧1
n

ds=∆
|H− 1

2
|

n 2−1{r=0}ΦH
r

4. For any θ ∈ (0,1), setting θn = [∆−θ
n ], we have for any i > θn and r ∈N,

(C.4)
∫ (i−θn)∆n

−∞
∆n

i g(s)∆
n
i+rg(s)ds≲∆2H+θ(2−2H)

n .

PROOF. The third statement follows from a direct calculation. All other statements follow
from [15, Lemma B.1] (the proof of which applies to both H < 1

2 and H > 1
2 ).
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PROOF OF PROPOSITION B.1. Note that the left-hand side of (B.6) is given by

∆
1

2
n

θn∑
i=1

f

(
∆n

i Y√
∆n

)
+∆

1

2
n

[t/∆n]−L+1∑
i=θn+1

{
δni −E[δni | Fn

i−θn ]
}
+∆

1

2
n

[t/∆n]−L+1∑
i=θn+1

E[δni | Fn
i−θn ],

where δni = f(∆n
i Y /

√
∆n)−f(∆n

i Y
tr/

√
∆n). Clearly, the first term in the previous display

is of size ∆1/2−θ
n and hence negligible by (B.5). Regarding the second term, note that |f(z)−

f(z′)|≲ (1 + P (z) + P (z′))∥z − z′∥ by Assumption (CLT’), where P is a polynomial. So
by the contraction property of conditional expectations and a size estimate,

E
[
(δni −E[δni | Fn

i−θn ])
2
]
≤ 4E[(δni )2]≲∆−1

n

∫ (i−θn)∆n

0
∥∆n

i g(s)∥2 ds≲∆2H−1+2θ(1−H)
n ,

where the last step follows from [15, (B.3)]. Moreover, δ
n
i is Fn

i+L−1-measurable with van-
ishing Fn

i−θn
-conditional expectation. Therefore, a martingale size estimate shows that

E
[
sup

t∈[0,T ]

∣∣∣∣∆ 1

2
n

[t/∆n]−L+1∑
i=θn+1

{
δni −E[δni | Fn

i−θn ]
}∣∣∣∣]≲ θ

1

2
n∆

H− 1

2
+θ(1−H)

n ≤∆
(H− 1

2
)(1−θ)

n → 0.

Next, define

ζni =
∆n

i Y −∆n
i Y

tr

√
∆n

=
1√
∆n

∫ (i−θn)∆n

0
ρs dWs∆

n
i g(s),

ξni = σ(i−θn)∆n

∆n
i B√
∆n

+
1√
∆n

∫ (i+L−1)∆n

(i−θn)∆n

ρ(i−θn)∆n
dWs∆

n
i g(s).

Then Taylor’s theorem implies that

δni =
∑
α

∂αf

(
∆n

i Y
tr

√
∆n

)
(ζni )α +

1

2

∑
α,β

∂2αβf(η
n,1
i )(ζni )α(ζ

n
i )β

=
∑
α

∂αf(ξ
n
i )(ζ

n
i )α +

1

2

∑
α,β

∂2αβf(η
n,2
i )(ζni )α

(
∆n

i Y
tr

√
∆n

− ξni

)
β

+
1

2

∑
α,β

∂2αβf(η
n,1
i )(ζni )α(ζ

n
i )β,

where α,β ∈ {1, . . . , d}×{1, . . . ,L} and ηn,1i (resp., ηn,2i ) is some point on the line between
∆n

i Y/
√
∆n and ∆n

i Y
tr/

√
∆n (resp., ∆n

i Y
tr/

√
∆n and ξni ). If δn,1i , δn,2i and δn,3i denote the

last three terms in the previous display, then

∆
1

2
n

[t/∆n]−L+1∑
i=θn+1

E[δni | Fn
i−θn ] =

3∑
j=1

Dn
j (t) with Dn

j (t) =∆
1

2
n

[t/∆n]−L+1∑
i=θn+1

E[δn,ji | Fn
i−θn ].

Since ζni is Fn
i−θn

-measurable, E[∂αf(ξni )(ζni )α | Fn
i−θn

] = (ζni )αE[∂αf(ξni ) | Fn
i−θn

] = 0 be-
cause ξni has a centered normal distribution given Fn

i−θn
and f has odd first partial derivatives

(as f is even). It follows that Dn
1 (t)≡ 0. For the two remaining terms, we combine size esti-

mates with [15, (B.3)] and the Hölder properties of σ and ρ to obtain

E
[
sup

t∈[0,T ]
|Dn

2 (t)|
]
≲∆

− 1

2
+(H− 1

2
)+θ(1−H)

n

[
∆

1

2
n + (θn∆n)

1

2

]
≤ 2∆

(H− 1

2
)(1−θ)

n → 0,

E
[
sup

t∈[0,T ]
|Dn

3 (t)|
]
≲∆

− 1

2
n ∆

2(H− 1

2
+θ(1−H))

n =∆
− 3

2
+2H+θ(2−2H)

n → 0,
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where the last step follows from (B.5).

PROOF OF LEMMA B.5. The left-hand side of (B.14) is given by Hn
1 (t) +Hn

2 (t) where

Hn
1 (t) =∆

1

2
n

[t/∆n]−L+1∑
i=θn+1

∑
α

E
[
∂αf

(
∆n

i Y
dis

√
∆n

)
(κni )α

∣∣∣Fn
i−θn

]
,

Hn
2 (t) =∆

1

2
n

[t/∆n]−L+1∑
i=θn+1

∑
α,β

1

21{α=β}
E
[
∂2αβf(ξ

′n,d
i )(κni )α(κ

n
i )β

∣∣Fn
i−θn

]
.

Here κni = (∆n
i Y

tr −∆n
i Y

dis)/
√
∆n, ξ′n,di is some point on the line between ∆n

i Y
tr/

√
∆n

and ∆n
i Y

dis/
√
∆n, and α and β run through {1, . . . ,N} × {1, . . . ,L}.

For α= (k, ℓ), we have

(κni )α =
∆n

i+ℓ−1A
k

√
∆n

+
1√
∆n

∫ (i+ℓ−1)∆n

(i+ℓ−2)∆n

d′∑
ℓ′=1

(σkℓ
′

s − σkℓ
′

(i−1)∆n
)dBℓ′

s

+
1√
∆n

Q∑
q=1

∫ (i−θ(q)
n )∆n

(i−θ
(q−1)
n )∆n

∆n
i+ℓ−1g(s)

d′∑
ℓ′=1

(ρkℓ
′

s − ρkℓ
′

(i−θ
(q−1)
n )∆n

)dBℓ′

s .

(C.5)

Since θ(q) < 1
2 for all q, we have E[supt∈[0,T ]

∣∣Hn
2 (t)

∣∣] ≲ ∆
−1/2
n (2∆

1/2
n + ∆

H−1/4
n )2 →

0 by a size estimate. Splitting Hn
1 (t) = Hn

11(t) + Hn
12(t) + Hn

13(t) into three parts ac-
cording to (C.5), we can use another size estimate to show that Hn

13(t) is of order
∆H−1

n

∑Q
q=1(θ

(q−1)
n ∆n)

1/2∆
θ(q)(1−H)
n , which tends to 0 by (B.13). In order to show that

Hn
11(t) and Hn

12(t) are asymptotically negligible, we need further arguments.
Concerning Hn

11(t), we decompose, for fixed α= (k, ℓ),

∆
1

2
n

[t/∆n]−L+1∑
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E
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2
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E
[
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(
∆n

i Y
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√
∆n

)
1√
∆n
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i−θn

]

+∆
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2
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E
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i Y
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√
∆n

)√
∆na

k
(i−θn)∆n

∣∣∣Fn
i−θn

]
.

(C.6)

By the contraction property of conditional expectations and Hölder’s inequality, the uniform
L1-norm up to time T of the first term on the right-hand side is bounded by

C

[T/∆n]−L+1∑
i=θn+1

E
[∣∣∣∣∫ (i+ℓ−1)∆n

(i+ℓ−2)∆n
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)ds
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p

≲∆
1− 1

p
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i=θn+1

E
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(i+ℓ−2)∆n

|aks − ak(i−θn)∆n
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] 1
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E
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(i+ℓ−2)∆n

|aks − ak(i−θn)∆n
|p ds
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p
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= E
[∫ ([T/∆n]−L+ℓ)∆n

(θn+ℓ−1)∆n

|aks − ak([s/∆n]−(ℓ−2+θn))∆n
|p ds

] 1

p

for some p > 2. Since a is càdlàg and bounded, the last integral above vanishes by dominated
convergence as n→∞.

Next, we use Taylor’s theorem to write the second term on the right-hand side of (C.6) as

∆n

[t/∆n]−L+1∑
i=θn+1

ak(i−θn)∆n

{
E
[
∂αf

(
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,

where ξ′′n,di is a point between ∆n
i Y

dis/
√
∆n and σ(i−1)∆n

∆n
i B/

√
∆n. A simple size esti-

mate shows that the second part vanishes as n→∞. By first conditioning on Fn
i−1, we further

see that the first conditional expectation is identically zero, because σ(i−1)∆n
∆n

i B/
√
∆n has

a centered normal distribution given Fn
i−1 and ∂αf is an odd function.

Thus, it remains to analyze Hn
12(t). To keep the presentation simple, and since the general

case does not involve any additional arguments, we assume d= d′ = k = ℓ= L= 1. Then

σs − σ(i−1)∆n
= (σ(0)s − σ

(0)
(i−1)∆n

) +

∫ s

(i−1)∆n

b̃r dr+

∫ s

(i−1)∆n
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We then split Hn
12(t) into Hn,1

12 (t) +Hn,2
12 (t) +Hn,3

12 (t) where
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]
,

Hn,2
12 (t) =∆

1

2
n

[t/∆n]∑
i=θn+1

E
[
f ′
(
∆n

i Y
dis

√
∆n

)
1√
∆n

∫ i∆n

(i−1)∆n

(∫ s

(i−1)∆n

b̃r dr

)
dBs

∣∣∣∣Fn
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1

2
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]
.

Given Assumption (CLT”), a size estimate shows thatHn,1
12 (t) andHn,2

12 (t) are of size ∆γ−1/2
n

and ∆
1/2
n , respectively, both of which go to 0 as n→∞ (since γ > 1

2 ). Thus, the last term
to be considered is Hn,3

12 (t), for which we must resolve to a last decomposition. We write
Hn,3

12 (t) =Hn,3,1
12 (t) +Hn,3,2
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12 (t) with
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Hn,3,3
12 (t) =∆

1

2
n

[t/∆n]∑
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E
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(
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∆n
i B√
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.

By the Hölder properties of σ̃, we can use a size estimate to see that Hn,3,1
12 (t) is

of size ∆
−1/2
n ∆

1/2+ε′

n = ∆ε′
n , which vanishes for large n. Similarly, since (∆n

i Y
dis −

σ(i−1)∆n
∆n

i B)/
√
∆n = ξn,di , we can use the mean-value theorem and a size estimate to

see that Hn,3,2
12 (t) is of size ∆

−1/2
n ∆

H−1/2
n ∆

1/2
n , which goes as n→∞ by (B.13). Finally, if

we first condition on Fn
i−1 in Hn,3,3

12 (t), then because f is even and σ(i−1)∆n
∆n

i B/
√
∆n is

centered Gaussian given Fn
i−1, it follows that f ′(σ(i−1)∆n

∆n
i B/

√
∆n) belongs to the direct

sum of all Wiener chaoses of odd orders. At the same time, the double stochastic integral
in Hn,3,3

12 (t) belongs to the second Wiener chaos (see [38, Proposition 1.1.4]). Since Wiener
chaoses are mutually orthogonal, conditioning on Fn

i−1 shows that Hn,3,3
12 (t)≡ 0.

APPENDIX D: PROOF OF THEOREM A.2

If λ(s) ≡ 0, Theorem A.2 is exactly [15, Theorem 3.1]. If λ(s) ̸≡ 0, there are only two
places in the proof that require modifications: one is the proof of Lemma C.2 and the other
is the statement of Lemma C.3 in the reference. Concerning the latter, the only difference
is that we now have an additional term λ((i− 1)∆n)kℓ,k′ℓ′∆

1/2−H
n in [15, Equation (C.7)].

Note that the same term (with 1
2 −H replaced by H − 1

2 ) appeared in (B.17) in the case
where H > 1

2 . Thus, a straightforward combination of the proof of Proposition B.4 with the
proof of [15, Lemma C.3] yields an “update” of the latter that covers the case λ(s) ̸≡ 0.

In the following, we detail how to prove the statement of [15, Lemma C.2] if λ(s) ̸≡ 0. As

shown at the beginning of the proof of [15, Lemma C.2], it suffices to prove Un L1

=⇒ 0, where
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]}(D.1)

and ξn,disi =
∫ (i+L−1)∆n

(i−θn)∆n
ρ(i−θn)∆n

dBs∆
n
i g(s). We further decompose ξn,disi = ξn,1i + ξn,2i ,

where

ξn,1i =

∫ (i−1)∆n

(i−θn)∆n

ρ(i−θn)∆n
dBs∆

n
i g(s), ξn,2i =

∫ (i+L−1)∆n

(i−1)∆n

ρ(i−θn)∆n
dBs∆

n
i g(s).

Since (N(H) + 1)(12 −H)> 1
2 by (2.5), applying Taylor’s theorem twice, we obtain

f

(
σ(i−1)∆n

∆n
i B + ξn,disi

∆H
n

)
− f

(
ξn,disi

∆H
n

)

=

N(H)∑
j=1

∑
|χ|=j

1

χ!
∂χf

(
ξn,disi

∆H
n

)(
σ(i−1)∆n

∆n
i B

∆H
n

)χ

+ oP(∆
1

2
n)
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=

N(H)∑
j,j′=1

∑
|χ|=j

∑
|χ|=j′

1

χ!χ′!
∂χ+χ′

f

(
ξn,1i

∆H
n

)(
ξn,2i

∆H
n

)χ′(
σ(i−1)∆n

∆n
i B

∆H
n

)χ

+ oP(∆
1

2
n).

For each i, if we condition on Fn
i−1, Itô’s representation theorem implies that(

ξn,2i

∆H
n

)χ′(
σ(i−1)∆n

∆n
i B

∆H
n

)χ

= E
[(

ξn,2i

∆H
n

)χ′(
σ(i−1)∆n

∆n
i B

∆H
n

)χ ∣∣∣Fn
i−1

]
+

∫ (i+L−1)∆n

(i−1)∆n

ζn,χ,χ
′

i (s)dBs

(D.2)

for some process ζn,χ,χ
′

i (s) that is OP(∆
−H
n ), uniformly in χ, χ′, i and s, because |χ| ≥ 1.

The stochastic integral in the last line is Fn
i+L−1-measurable with a zero Fn

i−1-conditional
expectation. Therefore, by a martingale size estimate, its contribution to Un is of magnitude
∆

1/2−H
n , which is negligible. Therefore, it remains to consider the conditional expectation in

(D.2). Note that

E
[(

ξn,2i

∆H
n

)χ′(
σ(i−1)∆n

∆n
i B

∆H
n

)χ ∣∣∣Fn
i−1

]

= E
[(

ξn,2i

∆H
n

)χ′(
σ(i−θn)∆n

∆n
i B

∆H
n

)χ ∣∣∣Fn
i−1

]
+OP((θn∆n)

1

2 )

= E
[(

ξn,2i

∆H
n

)χ′(
σ(i−θn)∆n

∆n
i B

∆H
n

)χ ∣∣∣Fn
i−θn

]
+OP((θn∆n)

1

2 ),

with exact equality between the last two conditional expectations. Clearly, the last conditional
expectation does not contribute to Un, since it is removed by the second line of (D.1). So the
proof is complete upon noticing that the contribution of the OP((θn∆n)

1/2)-term to Un is
negligible by a martingale size estimate. □

APPENDIX E: ADDITIONAL SIMULATION RESULTS

In this appendix, we report additional simulation results in a setting where σ and ρ are
fixed (instead of the signal-to-noise ratio). Everything is chosen and defined in the same way
as in Section 5 with the following exceptions: We take σ = 0.02 and ρ= 0.02/

√
10 if H < 1

2

and σ = 0.02/
√
10 and ρ= 0.02 if H > 1

2 . Moreover, as the noise can become small now as
H → 1, we do not set score(H) =∞ if in the estimated model, noise accounts for less than
1% of the return variance. Tables 7–10 summarize the results in this new setup.

The results for Hn are similar to those in Table 2, except that for λ= 0.5 and λ= 0.9, the
bias is smaller now if H < 1

2 and bigger ifH > 1
2 . This makes sense because with fixed ρ, the

noise accounts for a higher (resp., lower) percentage of the total return variance if H is small
(resp., large), making inference of H easier (resp., more difficult). The situation is different
for Cn: since ρ is fixed, estimation of volatility faces two challenges at the same time. On the
one hand, if H is small, volatility can no longer be estimated consistently according to our
theory. On the other hand, if H gets closer to 1

2 , separating the fractional and the Brownian
components becomes increasingly difficult (see the discussion at the end of Section 4). This
is why in Table 8, we can see that the performance of Cn worsens both as H gets close to 0
and as H gets close to 1

2 , with this effect being stronger for positive values of λ. Regarding
estimation of λ itself, we can see as in Section 5 that estimation is easier for negative values
of λ but now also if H is small, leading to a good performance on the upper-left part of
Table 9. Finally, as we can see from Table 10, the estimator Πn performs well if H is small
or larger but close to 1

2 , with better results for negative values of λ.
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TABLE 7
Median and interquartile range of Hn based on 1,000 simulated paths.

λ

H −0.9 −0.5 0 0.5 0.9

0.1 0.1001 0.1001 0.1001 0.1002 0.1010
[0.0979, 0.1031] [0.0968, 0.1034] [0.0966, 0.1039] [0.0977, 0.1042] [0.0993, 0.1044]

0.2 0.2000 0.2000 0.2000 0.2001 0.2022
[0.1956, 0.2046] [0.1939, 0.2058] [0.1916, 0.2076] [0.1933, 0.2095] [0.1982, 0.2112]

0.3 0.3000 0.2999 0.2999 0.3004 0.3064
[0.2948, 0.3049] [0.2867, 0.3115] [0.2710, 0.3208] [0.2835, 0.3309] [0.2967, 0.3383]

0.4 0.3996 0.3958 0.3979 0.4218 0.4317
[0.3787, 0.4200] [0.2733, 0.4641] [0.3516, 0.4916] [0.3806, 0.5053] [0.3955, 0.5111]

0.5 0.5000
[0.5000,0.5000]

0.6 0.5996 0.5970 0.5948 0.5838 0.5732
[0.5880, 0.6119] [0.5639, 0.6558] [0.5394, 0.6306] [0.5223, 0.6113] [0.5116, 0.6010]

0.7 0.7001 0.6985 0.6969 0.6918 0.6802
[0.6901, 0.7099] [0.6762, 0.7244] [0.6532, 0.7783] [0.6334, 0.7323] [0.6205, 0.7047]

0.8 0.8010 0.7997 0.7974 0.7735 0.7534
[0.7691, 0.8264] [0.7509, 0.8441] [0.7221, 0.9220] [0.6934, 0.8178] [0.6791, 0.7879]

0.9 0.8911 0.9002 0.7437 0.8160 0.7956
[0.8527, 0.9219] [0.7834, 0.9734] [0.5000, 0.9780] [0.7006, 0.8887] [0.6963, 0.8558]

TABLE 8
Median and interquartile range of C[19,20]

n /σ2 based on 1,000 simulated paths.

λ

H −0.9 −0.5 0 0.5 0.9

0.1 1.1205 1.0224 1.0854 1.2041 1.4105
[0.6911, 1.8850] [0.2629, 1.9885] [0.2288, 2.1059] [0.5416, 2.3145] [0.8991, 2.5605]

0.2 0.9998 1.0129 1.0062 1.0993 1.2680
[0.7152, 1.3542] [0.5855, 1.4849] [0.4822, 1.6647] [0.6873, 1.8406] [0.9197, 2.0637]

0.3 0.9964 0.9950 1.0260 1.1928 1.3398
[0.8904, 1.1313] [0.7486, 1.3184] [0.7168, 1.5686] [0.8755, 1.8944] [0.9798, 2.1662]

0.4 0.9796 0.9339 1.3600 2.0031 2.6196
[0.7744, 1.3489] [0.7267, 3.4177] [0.9757, 7.7919] [1.1330, 12.5047] [1.2537, 15.6350]

0.5 1.0006
[0.9942,1.0070]

0.6 1.0247 1.0804 1.5038 2.3624 3.3730
[0.6932, 1.4451] [0.5475, 3.4861] [0.8567, 11.9466] [1.0950, 31.4528] [1.2548, 40.4074]

0.7 0.9995 1.0032 1.0183 1.0879 1.1341
[0.9527, 1.0548] [0.9245, 1.1143] [0.9502, 1.1973] [0.9906, 1.3255] [0.9882, 1.4884]

0.8 1.0040 1.0011 1.0083 1.0243 1.0237
[0.9734, 1.0394] [0.9692, 1.0436] [0.9861, 1.0540] [0.9828, 1.0821] [0.9742, 1.1045]

0.9 1.0078 1.0038 1.0055 1.0128 1.0119
[0.9930, 1.0252] [0.9871, 1.0290] [0.9953, 1.0206] [0.9888, 1.0533] [0.9830, 1.0619]
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TABLE 9
Median and interquartile range of Λn/

√
CnΠn (defined as 0 if Πn = 0) based on 1,000 simulated paths.

λ

H −0.9 −0.5 0 0.5 0.9

0.1 -0.9130 -0.5415 -0.0022 0.4947 0.8934
[-0.9998, -0.8791] [-0.6219, -0.4669] [-0.2094, 0.4411] [0.1439, 1.0000] [0.4077, 1.0000]

0.2 -0.9055 -0.4986 0.0004 0.4948 0.8875
[-0.9181, -0.8934] [-0.5836, -0.3861] [-0.2166, 0.3359] [0.1079, 0.9999] [0.3431, 1.0000]

0.3 -0.8994 -0.5003 -0.0085 0.4986 0.9108
[-0.9122, -0.8860] [-0.6107, -0.3427] [-0.3566, 0.6503] [-0.2141, 0.9998] [-0.1568, 0.9999]

0.4 -0.8991 -0.4771 0.0549 0.5632 0.5502
[-0.9251, -0.8742] [-0.9071, 0.2298] [-0.9277, 0.7623] [-0.9263, 0.9942] [-0.9356, 0.9974]

0.6 -0.9013 -0.5357 -0.1335 0.1554 0.2608
[-0.9310, -0.8597] [-0.8635, 0.5909] [-0.9319, 0.9977] [-0.9630, 0.9981] [-0.9626, 0.9982]

0.7 -0.9010 -0.5013 -0.0178 0.3951 0.6199
[-0.9029, -0.8989] [-0.5617, -0.4484] [-0.3057, 0.5923] [-0.2607, 0.9602] [-0.3045, 1.0000]

0.8 -0.9147 -0.5159 -0.0105 0.3719 0.5060
[-0.9453, -0.8897] [-0.5441, -0.4991] [-0.1827, 0.4771] [-0.0893, 0.6337] [-0.0772, 0.7574]

0.9 -0.9988 -0.8723 0.0000 0.2020 0.2100
[-0.9999, -0.9503] [-1.0000, -0.4769] [-0.1706, 0.1241] [-0.1490, 0.4384] [-0.1413, 0.5077]

TABLE 10
Median and interquartile range of Πn/(20ρ

2) based on 1,000 simulated paths.

λ

H −0.9 −0.5 0 0.5 0.9

0.1 1.0034 1.0015 1.0006 1.0023 1.0243
[0.9521, 1.0769] [0.9257, 1.0872] [0.9206, 1.0968] [0.9454, 1.1051] [0.9825, 1.1117]

0.2 1.0027 0.9974 1.0006 1.0018 1.0565
[0.8924, 1.1230] [0.8500, 1.1664] [0.8002, 1.2292] [0.8289, 1.2977] [0.9521, 1.3675]

0.3 1.0023 1.0005 0.9923 0.9878 1.1980
[0.8586, 1.1562] [0.6625, 1.4375] [0.3942, 1.9990] [0.5689, 2.8596] [0.8900, 3.8269]

0.4 0.9888 0.8557 0.7420 1.9439 4.5755
[0.4800, 2.1476] [0.0096, 28.9549] [0.0986, 109.5318] [0.3489, 160.2848] [0.8019, 196.3857]

0.6 1.0066 1.0344 1.0434 0.9439 1.0730
[0.9526, 1.0821] [0.7128, 1.6410] [0.6644, 3.0806] [0.8191, 4.0318] [0.9700, 4.2804]

0.7 1.0017 0.9969 1.0364 1.0590 1.1455
[0.9178, 1.0935] [0.8803, 1.1761] [0.9405, 1.1606] [0.9048, 1.2191] [0.9799, 1.4538]

0.8 0.9999 0.9977 0.9899 0.8877 0.9944
[0.6222, 1.4662] [0.5992, 1.6541] [0.6365, 1.8533] [0.7572, 1.0697] [0.8877, 1.1227]

0.9 0.7287 0.9678 0.3615 0.6399 0.7288
[0.3366, 1.5829] [0.1343, 2.4936] [0.0000, 1.7291] [0.4181, 1.0834] [0.5455, 1.0401]
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