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ABSTRACT This paper presents a deep learning-enabled method for human pose estimation using radar
target lists, obtained through a low-cost radar system with three transmitters and four receivers in a multiple-
input multiple-output setup. We address challenges in previous research that often relied on extracting
ground truth poses from RGB data, which are constrained by the need for 3D mapping and vulnerability to
occlusions. To overcome these limitations, we utilized optical motion capture, which is widely recognized as
the gold standard for precise human motion analysis. We conducted an extensive optical motion capture study
involving various recorded movement activities, which resulted in mmRadPose, a new dataset that enhances
existing benchmarks for radar-based pose estimation. This dataset has been made publicly accessible.
Building on this approach, we designed an application-tailored radar signal processing chain to generate
suitable input for the machine learning algorithm. We further developed an attentional recurrent-based
deep learning model, PntPoseAT, which predicts 24 keypoints of human poses using radar target lists. We
employed cross validation to thoroughly evaluate the model. This model surpasses previous approaches and
achieves an average mean per-joint position error of 6.49 cm with a standard deviation of 3.74 cm on totally
unseen test data. This excellent accuracy of the reconstructed keypoint positions is particularly remarkable
when you consider that a very simple radar was used for the measurements. Additionally, we conducted
a comprehensive analysis of the model’s performance by exploring aspects such as network architecture,
the use of long short-term memory versus gated recurrent units, input data selection, and the integration of
multi-head self-attention mechanisms.

INDEX TERMS Human pose estimation, radar, optical motion capture, millimeter wave, target list, point
cloud, machine learning, deep learning.
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I. INTRODUCTION
Human pose estimation is a highly engaging field [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38],
[39], [40], [41], [42] with a wide range of applications across
multiple domains. In healthcare and rehabilitation [15], [19],
[20], [21], [22], [23], [24], [25], [26], [27], it plays a crucial
role in monitoring patients’ movements during recovery by
ensuring that exercises are performed correctly to optimize
outcomes. In sports and fitness, human pose estimation en-
ables quantitative performance analysis, which helps athletes
and trainers optimize their routines while minimizing injury
risks [28], [29], [30], [31], [32], [33]. By analyzing movement
patterns, coaches and athletes can make informed decisions
to sustainably improve performance. In human-computer in-
teraction [34], [35], [36], [37], [38], [39], [40], human pose
estimation significantly enhances user interfaces by enabling
gesture-based commands for more intuitive interactions. This
opens up exciting possibilities for virtual and augmented real-
ity experiences [37], [43] as well as innovations in smart home
applications, gaming, and entertainment [41], [42].

State-of-the-art human pose estimation techniques primar-
ily rely on RGB(-D) data [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11], thereby leveraging advancements in deep learn-
ing and computer vision. These methods utilize sophisticated
neural networks to analyze and interpret visual information to
provide accurate and efficient pose detection.

However, despite their effectiveness and advancements, no-
table limitations remain. First, they rely on visible light, which
makes them sensitive to changes in lighting conditions, such
as poor illumination, bright sunlight, or reflective surfaces.
Second, privacy concerns arise when visual images are cap-
tured in sensitive environments. Third, occlusions present a
challenge as RGB-D sensors cannot penetrate through ma-
terials, which limits their usability when parts of the body
are obscured. Radar technology overcomes some of these
shortcomings and makes it a promising alternative as it is
unaffected by lighting conditions [17], [19], [22], [44] and
poses fewer privacy concerns [22], [45], [46], [47]. Being
dependent on the utilized frequency range, radar can even
penetrate certain materials, such as clothing, foliage, or thin
walls [22], [44], [48], [49], [50]. By exploiting multipath ef-
fects, it is possible to achieve a robust human pose estimation,
even with partially occluded individuals.

The literature that investigates radar-based human pose es-
timation offers several approaches. A summary of the key
approaches is presented in Table 1.

Zhao et al. [12] employed a multiple-input multiple-output
(MIMO) radar to predict 14 keypoints in a multi-person
scenario using convolutional neural network (CNN)-driven
feature extraction. Their method consisted of two key com-
ponents: one that detected the presence of a person in
the region and another that estimated the corresponding
pose. To generate a ground-truth label for the keypoints,
they utilized a multi-view camera setup combined with a

deep learning-enabled 2D image-based pose extraction. The
recorded dataset consisted of 16 hours of data from office and
indoor environments with people moving randomly. However,
the hardware configuration with an SIMO array was elaborate
and quite bulky in the 7 GHz frequency range.

In [13], a target list-based approach to human pose esti-
mation was introduced. The authors transformed target-list
information into the channels of an image and applied a CNN.
However, the dataset was relatively small, and two separate
orthogonal radars are required to be able to measure both solid
angles, which makes the setup more complex.

An et al. [14] proposed an mmWave-based assistive rehabil-
itation system for smart healthcare that processes radar point
clouds from a MIMO radar system to provide feedback to
the user about the correctness of the movement. Their deep
learning model was a CNN-based approach, and an RGB-D
camera was utilized to generate ground truth. The dataset
comprised rehabilitation movements, such as limb extensions,
squats, and lunges. However, the point cloud data was further
processed and tailored to the specific approach and neglected
additional information or disturbance. Based on this work, the
same authors introduced in [15] a new, extended dataset with
an increased number of synchronized radar and RGB frames
as well as synchronized IMU data.

Yu et al. [16] suggested RFPose-OT. In contrast to previous
work, the model was based on an optimal-transport-theory
approach, which seeks the most cost-effective way to trans-
form one probability distribution into another. They used two
orthogonally mounted radars with a performant MIMO array
setup of with 4 transmitting and 16 receiving antennas, which
enabled a good spatial resolution but at the same time gen-
erated a high data load. They recorded data in an office and
an outdoor environment. People moved randomly without in-
structed actions. In terms of overall precision, it outperformed
the model shown in [12].

Lee et al. [19] created a dataset for human pose estimation
using two orthogonal radars to receive important information
in both the elevation and azimuth dimensions. A cost-effective
and simple radar sensor with three transmitters and four
receivers was utilized. Simple activity movements were per-
formed in front of the radars, such as walking, standing, and
waving hands. However, unlike the other works, they only
proposed a 2D human pose estimation. As a reference, they
extracted 2D keypoints of human poses from RGB images
using the HR-Net [52]. The incorporation of an additional
neural network, for instance, such as VideoPose3D [51], is
necessary to map 2D information into 3D space, which inher-
ently improves prediction accuracy but consequently reduces
comparability.

Ho et al. [17] added another sensor modality to the mea-
surement setupa and exploited lidar data in addition to RGB
data to accurately annotate the ground-truth labels. A high-
performance state-of-the-art MIMO radar consisting of 12
transmitter and 16 receiver channels was used to record a
dataset with indoor and outdoor environments, where simple
movements were performed. With a CNN-based backbone,
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FIGURE 1. Paper content overview: We conducted a motion study with healthy participants performing various activities in front of a radar system using
optical motion capture (OMC) markers for ground-truth validation. We developed a radar processing chain to convert raw radar data into target lists
containing seven features. Finally, we designed and trained a neural network that used these target lists as input to estimate 24 human skeleton
keypoints.

TABLE 1. Overview of Related Work: A Comparison of Relevant Aspects of Previous Work in Human Pose Estimation

the deep learning approach generates a body center probabil-
ity map together with a keypoint offset map. For comparison,
the authors trained models from previous human pose esti-
mation work in [13], [18], and [12] with their dataset. They
showed a significant improvement in terms of mean per-joint
position error (MPJPE) in their work. However, the annotation
process was partially hand-crafted and, therefore, very time-
consuming.

The aforementioned works primarily relied on ground-truth
labeling from RGB images. Despite the ongoing advance-
ments in image-based 2D human pose estimation models,
uncertainty persists, especially when projecting 2D poses into
3D space. To overcome this limitation, optical motion capture
(OMC) systems can be employed to generate precise ground-
truth data for training, which offers several key advantages
over traditional RGB-based methods. Unlike RGB systems,
OMC inherently provides position data in a 3D coordinate
system, thereby eliminating the need for conversion from 2D
images to 3D coordinates, which reduces mapping inaccuracy
through further processing. Additionally, OMC excels in par-
ticular in handling occlusions. It can infer the positions of
hidden body parts based on their last known locations and the
positions of visible markers, whereas RGB systems struggle

with this operation, which often results in lost or inaccurate
tracking.

Therefore, Xue et al. [18] introduced a radar-based hu-
man pose estimation method based on OMC. In their work,
they proposed a dynamic human mesh reconstruction method
using mmWave radar combined with deep learning. The
dataset included 20 participants performing eight common
daily activities. However, the radar only provided a limited
field of view due to the use of serial-fed patch antennas,
and it suffered from significantly reduced resolution in one
angular direction (only two antennas). This resulted in a de-
creased sensitivity to movements in the elevation direction,
particularly when the movements occured near the radar. Fur-
thermore, one significant limitation was that correlated data
(data from the same participant) from the training set was also
used in the test set, which significantly improved performance
but deteriorated the generalizability of the network.

In this article, we propose PntPoseAT, a radar-based human
pose estimation method that uses deep learning to predict
skeleton keypoints, with an overview illustrated in Fig. 1.
To enable this approach, we conducted a motion study using
OMC with 12 participants performing 12 actions in three
different angles toward the radar to form an extensive dataset
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FIGURE 2. (a) Sketch of the applied skeleton pose: We predict a skeleton
consisting of 24 joints. The denotation of the joints is shown in Table 2. (b)
Layout of the room and sensor setup where the activities were performed.
(c) Orientations toward radar: The activities were recorded from different
orientations toward the radar: 0◦, 45◦, and 90◦.

named mmRadPose. We designed the dataset so that typical
human activity movements were performed with the limbs
equally including movements of both the upper and lower
body. We utilized a human skeleton model with the 24 most
relevant keypoints as depicted in Fig. 2(a) and denoted in
Table 2. Our approach leverages data from a state-of-the-art,
commercially available MIMO radar to generate target lists
(point clouds with further attributes, such as velocity, SNR,
and intensity) which are then processed by a deep learning
network. We employed a relatively simple radar system with a
MIMO array with 3 transmit and 4 receive antennas to demon-
strate the applicability and performance of low-cost radar
hardware, thereby emphasising the potential of its scalability
in the application. However, due to the sensor design, the radar
provided a wide field of view and a resolution in both solid
angles. This approach highlights the potential for widespread
deployment across various sectors, including smart homes,
healthcare, and industry.

We developed a deep learning model by adapting the Point-
Net [53] architecture to extract key features. We used a
long short-term memory (LSTM) [54] architecture to effec-
tively capture and utilize temporal long-range dependencies
over consecutive radar frames in the sequential time data.
Furthermore, the multi-head self-attention (MHSA) mecha-
nism was applied, which is commonly used in transformer
models [55] and allows the model to focus on different parts
of an input sequence simultaneously and capture various rela-
tionships by applying multiple attention functions in parallel.

We compared and reported the MPJPE and standard de-
viation for these different deep learning architectures. A
persistent challenge in human pose estimation using deep

TABLE 2. Joint Number, Designation, and Abbreviations Referring to the
Keypoints of the Skeleton in Fig. 2

learning is the ambiguity in many papers regarding which
data was used solely for training and which was reserved for
testing, which resultes in a lack of comparability. To address
this, we explicitly ensured that our models were tested on
unseen data.

The remainder of this paper is structured as follows. In
Section II the utilized sensor system setup is explained in
detail. Section III describes the recorded dataset and explains
the movements performed in the study. The radar signal pro-
cess to yielded target lists used as inputs for deep learning is
explained in Section IV. Our proposed deep learning model
and results are presented in Section V. We then discuss these
findings in Section VI and conclude our study in Section VII.

II. MEASUREMENT AND SENSOR SETUP
In this section, we outline the measurement and sensor setup
used to collect the radar and OMC data. Measurements were
carried out at the motion capture laboratory at the Institute
of Microwaves and Photonics (LHFT), Friedrich-Alexander-
Universität Erlangen-Nürnberg (FAU). The room’s dimen-
sions were 10.60 m long, 4.72 m wide and 3.27 m high. Our
developed sensor system, “RadarBox”, (depicted in Fig. 3)
was positioned on a table at one end of the room, directed
toward the center of the room. A picture of the room is shown
in Fig. 4. An OMC system was set up in the room for accurate
localization and tracking. To prevent interference with the
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FIGURE 3. The study’s measurement setup: Our “RadarBox” with an
multipe-input multiple-output integrated frequency-modulated
continuous-wave radar (Texas Instruments evaluation board) and RGB-D
camera (Microsoft Azure Kinect). The box provides interfaces to
synchronize with other sensor systems, such as optical motion capture.
(The camera was not used for ground truth in this paper.).

FIGURE 4. A photograph of the measurement setup shows corner
reflectors with optical motion capture (OMC) markers attached positioned
in front of the radar to align the coordinate systems. The OMC cameras,
highlighted by yellow circles, track the markers’ positions. For accurate
registration of the radar and OMC coordinate systems, a common target
must be detectable at the same location by both systems.

OMC system’s infrared signals, a shutter on the windows was
installed and closed during measurements.

A. OPTICAL MOTION CAPTURE
We utilized an OMC system to precisely determine the joint
positions and the poses of the participants to be used as
ground-truth data for the study. In this study, the Optitrack
Flex 131 was utilized. The systems consisted of 12 infrared
cameras distributed on the walls in the room enabled different
camera perspectives to ensure tracking reliability. A photo-
graph of the room showing the OMC cameras is shown in

1[Online]. Available: https://optitrack.com/cameras/flex-13

Fig. 4. The participants were instructed to wear a suit, hat,
and shoes equipped with infrared markers sensitive to the
OMC system. We used Optitrack’s Motive:Body2 software
(version 2.3.1) to track these markers. Motive includes sev-
eral predefined full-body marker sets that specify biological
landmarks where the markers must be attached to the mo-
tion capture suit. In this study, we used the Conventional3

full-body marker set, which consists of 39 markers. When the
markers are correctly placed, Motive automatically generates
a model-based skeleton. However, due to occlusion, manual
hand-crafted post-labeling was required to ensure accurate
pose reconstruction. To ensure time synchronization, the sys-
tem was synchronized with the radar via a hardware input
trigger with a frame rate of 15 Hz.

B. RADAR SYSTEM SETUP
The radar system employed during the measurement study
is included in our “RadarBox” setup shown in Fig. 3. The
RGB-D camera (Microsoft Azure Kinect) was not used in
this research. The radar system consisted of the Texas In-
struments IWR6843AOPEVM4, which is an evaluation board
with integrated antennas-on-package. It features four receiver
antennas and three transmitter antennas arranged in an L-
shaped virtual antenna array. The on-package patch antennas
deliver a wide field of view in both azimuth and elevation,
which results in extensive coverage area. Additionally, we
used the MMWAVEICBOOST5 and DCA1000EVM6 evalua-
tion boards from Texas Instruments to capture raw radar data.
The system operates in a frequency-modulated continuous-
wave (FMCW) mode using time-division multiplexing MIMO
methods to separate the channels. We installed a hardware
trigger output to enable time synchronization with other
sensor systems. Table 3 summarizes the key radar system
parameters that were utilized. We opted for a high update
rate of 15 Hz to accurately track human body movements.
Moreover, we chose a high number of chirps within a frame
to decrease the Doppler resolution, which allowed for clearer
separation in the range-Doppler domain between the Doppler
components of the individual body limbs.

C. CALIBRATION OF COORDINATE SYSTEMS
To align the two sensors originating from the different co-
ordinate systems, registration in a joint coordinate system
(Cartesian coordinates) is required. First, each sensor system
(OMC and radar) is individually calibrated within its own
coordinate system space. Moreover, to register the two coordi-
nate systems, a target is required that can be localized properly
in both coordinate systems. The registration measurement
setup is depicted in Fig. 4. To achieve this, four metallic corner
reflectors were mounted on a styrofoam-like bar to maximize

2[Online]. Available: https://optitrack.com/software/motive
3[Online]. Available: https://docs.optitrack.com/markersets/full-

body/conventional-39
4[Online]. Available: https://ti.com/tool/IWR6843AOPEVM
5[Online]. Available: https://ti.com/tool/MMWAVEICBOOST
6[Online]. Available: https://ti.com/tool/DCA1000EVM
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TABLE 3. Radar System Parameter Settings

reflected power at the corner reflector’s phase center position
and minimize clutter from other adjacent static reflectors. A
tiny infrared-sensitive marker ball was afficed to the corner
of the corner reflectors so that the phase reflection center of
both coordinate systems matched. Finally, to spatially register
the two systems, we formulated an optimization problem as
follows [56]:

Ropt, T opt = arg min
R,T

‖Xomc − (RX radar + T )‖2
F , (1)

where R is an orthogonal rotation matrix (RᵀR = I), T is
a translation matrix, X represents the coordinates in their
respective systems, and ‖ · ‖2

F denotes the Frobenius norm.
We applied Procrustes analysis [56], [57], [58] to estimate the
optimal rotation Ropt and translation T opt parameters.

III. DATASET
An extensive study involving OMC and radar motion analysis
was conducted. A total of 12 healthy participants (4 female
and 8 male aged 28.92 ± 3.15 years with a height of 176.25
± 6.25 cm and weighing 72.33 ± 12.37 kg) participated
in the measurement activity. The study received approval
from the ethics committee of Friedrich-Alexander-Universität
Erlangen-Nürnberg (Protocol #22-437-B), and all participants
provided written informed consent prior to participation.

The participants were instructed to perform 12 specific
movements from three different angles toward the radar (see
Fig. 2(b)). The test area, a 3.55 m × 3.05 m rectangular space,
was marked in the center of the room. This area was within the
radar’s field of view, and the OMC cameras were strategically
positioned to fully capture the movements. All recordings
took place within this defined space (see Fig. 2(c) for a top-
down view of the setup). All movements started from the

initial position that is marked with an “X” (action spot) in
Fig. 2(c).

The activity set comprised eleven distinct movements along
with a static T-pose and are visualised in Fig. 5:
� T-pose
� Left upper limb extension
� Right upper limb extension
� Bilateral upper limb extension
� Bicep curls
� Front arm rotation
� Torso forward bending
� Left front lunge
� Right front lunge
� Squats
� Side lower limb extension
� Front lower limb extension
Each movement sequence was recorded for a duration of

36 seconds and repeated three times from different angle
perspectives (0◦, 45◦, and 90◦). To ensure the extraction of
a reliable skeleton from the OMC system, each sequence
began with a T-pose followed by the action shortly after the
recording started. We cropped the frames to start when the
activity commenced after the T-pose. This process resulted in
432 total sequences of varying lengths, depending on when
the action began. In total, we extracted 203,149 synchronized
frames, which was equivalent to approximately 226 minutes
of active movements. Our dataset was published7 with addi-
tional detailed information about the dataset.

IV. RADAR DATA PROCESSING
In this work, we utilized radar target lists to predict human
poses. The goal was to drastically reduce the input data size
for the downstream machine learning compared to raw radar
data while ensuring suitability for applications on edge de-
vices. Therefore, radar point clouds needed to be processed
from raw radar data. For radar signal processing, we used
the time-division multiplexing MIMO FMCW chirp-sequence
processing chain [59], [60] depicted in Fig. 6. This chain
is specifically tailored for applications focused on extracting
human motion in indoor environments. Raw radar data from
each virtual channel per frame was captured and organized
into a complex-valued 4D radar cube X [i, j, k, l]. The first
two axes (i and j) corresponded to the fast-time and slow-
time elements, with 64 elements along the fast-time axis (i),
and 128 elements along the slow-time axis ( j). The axes in
direction k and l correspond to the virtual antennas (channels)
in spatial direction. Due to the antenna array shape, four ele-
ments in this sub-matrix were filled with zeros.

We implemented a static clutter removal algorithm to elimi-
nate non-moving objects from the frame, which is essential for
three main reasons. First, it enables the distinction between
human movements and static objects. Second, it enhances
the system’s sensitivity to small movements originating from
smaller body parts. This step is particularly important because

7[Available]. Online: https://doi.org/10.5281/zenodo.14738837
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FIGURE 5. The 11 activities that were performed at an angle of 0◦ (facing the radar) as depicted in Fig. 2. The static T-pose is omitted.
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FIGURE 6. Applied radar signal processing: The raw radar data was processed by a 2D fast Fourier transform (FFT) to convert it to more descriptive
range-Doppler information. Subsequently, a 2D ordered-statistic constant false-alarm rate (OS-CFAR) was applied to extract the relevant scatterer in the
range-Doppler domain and apply a 2D FFT beamforming to infer the position of the scatterer.

strong static reflections from elements like metallic ventilation
pipes or door frames can obscure decisive movement-related
data. Third, this process reduces the radar data’s dependence
on the specific static environmental features of a room. To
remove these static reflections, we subtracted the mean value
within each chirp:

XSCR[i, j, k, l] = X [i, j, k, l] − X̄ [i, j, k, l], (2)

where X̄ [i, j, k, l] represents the mean value across the entries
in the j-direction and is expanded to the same dimensions
as X [i, j, k, l]. Subsequently, we applied a window func-
tion W [i, j, k, l] on the fast-time and slow-time axis (e.g.,
the Hann function) to reduce side-lobes and transform it
via 2D fast Fourier transform (FFT) into frequency domain
Y [m, n, k, l], where m and n corresponded to range and
Doppler (velocity).

Y [m, n, k, l] = FFT{W [i, j, k, l] · XSCR[i, j, k, l]}. (3)

An exemplary plot from a range-Doppler matrix (20 ·
log10|Y [m, n, 1, 1]|) is illustrated in Fig. 6(a) without clutter
removal and in Fig. 6(b) using the clutter removal algorithm.
A 2D ordered-statistic constant false-alarm rate (CFAR)CFAR
algorithm [61], [62], [63] was applied to the range-Doppler
matrix to extract the most dominant scatterer from the range-
Doppler domain, as seen in Fig. 6(c). This ensured that the
extracted targets belonged to relevant objects in the scene
rather than being artifacts of noise. A 2D angular beam-
forming was applied to estimate the angle of arrival of the
reflection. Therefore, another 2D FFT was processed on the
radar cube on the dimensions of the virtual array k and l to
transform into elevation o and the azimuth p domain:

Z[m, n, o, p] = FFT{Y [m, n, k, l]}. (4)

To optimize computational efficiency, the second FFT
was only applied and evaluated at specific range-Doppler
bins where the ordered-statistic CFAR algorithm had de-
tected a target. An exemplary elevation-azimuth plot (20 ·
log10|Z[16, 90, o, p]|) is shown in Fig. 6(d). Multi-object
beamforming was used to extract multiple targets from a
single range-Doppler bin as it is common in such complex
human-related scenarios for two or more reflections to occur

within the same range bin and at the same velocity. To address
this, the CLEAN algorithm [64] was used, which enables the
extraction of multiple reflections from a single range-Doppler
bin. The processed data was then converted into Cartesian
coordinates as seen in Fig. 6(e). Using the range, Doppler,
elevation, and azimuth information, the system can deter-
mine each target’s position and corresponding radial velocity
relative to the radar. Additionally, key metrics, such as signal-
to-noise ratio (SNR), noise level, and intensity for each target
were filled in the target list. These target lists were the input
data for the machine learning model. Due to the necessity of a
fixed input size, the maximal number of targets per frame was
set at 64. Target lists with less than 64 detected targets were
extended with zeros.

V. PREDICTION OF HUMAN POSES
To accurately estimate the skeleton keypoints’ positions based
on radar target lists, we developed a deep learning model
which was adapted from Pointnet [53]. We implemented our
method and the proposed framework in PyTorch using Python.
In the next sections, we describe the architecture and training
of our model.

A. POSE ESTIMATION MODEL
Our deep learning model design is depicted in Fig. 7. We
used a multi-stage approach for skeleton keypoints prediction
using temporal and spatial correlations in our input data. We
used the upper section in Fig. 7, PntPose, for single-frame
high-level feature extraction and extended the network with
a recurrent neural network (RNN) and an MHSA mechanism
as illustrated in the lower section of Fig. 7. As an input to
the deep learning model, we used a tensor featuring seven pa-
rameters including position (x-, y-, z-components from point
clouds), corresponding velocity, SNR, noise, and intensity
∈ R7×1. The prediction of our network was 24 joint keypoints
skeleton ∈ R24×3.

The feature extraction of PntPose is based on the well-
established PointNet model from [53]. It extracts relevant
features from point cloud data while being invariant to the
order of the input features, which is achieved through max
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FIGURE 7. Architectures of the proposed keypoints-extracting networks: PntPose (blue) predicts the skeleton keypoints ∈ R
24×3 from a single-frame

input tensor ∈ R
7×1. PntPoseAT (yellow) is a multi-frame input network that predicts the skeleton keypoints from multiple consecutive frames using a

long short-term memory (LSTM) and the multi-head self-attention (MHSA) mechanism. MLP: multi-layer perceptron, T-Net: transformation network, LSTM:
long short-term memory.

pooling layers. Through multiple linear and transformation
layers, the model learns the spatial structure of the input data.

To exploit the temporal correlations in the kinematic tree
of the estimated poses, an RNN was used. Two different
RNN architectures were compared: an LSTM-based [54] and
a gated recurrent unit (GRU)-based [65] network. The GRU
cell comprises fewer parameters than an LSTM cell and,
therefore, is easier and faster to train. On the other hand,
GRU cells can suffer from exploding gradients by design [66],
a problem that is solved by the more complex LSTM cell.
Thus, the challenge of finding a suitable architecture bal-
ances simplicity and performance. Additionally, in line with
state-of-the-art models in radar-based human pose estimation,
we incorporated an attention mechanism in our network to
increase prediction accuracy [13], [19]. In our hybrid solution,
we upgraded the LSTM cell with an MHSA [55] mechanism
across the hidden states of the RNN, thereby effectively cir-
cumventing the problem of information loss by hidden state
accumulation with weighted attention processing [67] and
linear reprojection to the output size. For example, if we had a
tensor X in ∈ RB×T ×H as the output hidden state sequence of
the RNN, where B is the batch, T is the sequence length, and
H is the hidden state dimension, and we process this tensor
with an MHSA layer. The query, key, and value matrices are
computed as linear projections of the input sequence X in by
multiplying it with the learned weight matrices: the query ma-
trix Q = X inW Q, the key matrix K = X inW K , and the value
matrix V = X inWV , where W Q, W K , and WV are the learned
weight matrices, respectively. MHSA can then be computed
as

Attention(Q, K,V ) = softmax

(
QK�
√

dk

)
V , (5)

where dk is the dimensionality of the key matrix. The attention
output is then implemented with an additive residual connec-
tion

Xout = Attention(Q, K,V ) + X in. (6)

To obtain the next prediction, this output matrix is then flat-
tened over the time dimension and linearly reprojected to the
output dimension for the next keypoint prediction with a linear
layer.

B. TRAINING, OPTIMIZATION, AND EVALUATION
For the training and optimization of our deep learning model,
we initially split the dataset participant-wise into three sub-
sets: train, validation, and test. The test set, which comprising
two participants randomly chosen from the 12 participants
(participant 3 (male) and participant 9 (female)), was set aside
for the entire development and optimization process. The
remaining 10 participants were further divided into training
and validation sets, to implement cross validation, thereby
optimizing the hyperparameters within every training fold in-
dependently. We employed a five-fold cross validation, with
eight participants in the training set and two in the validation
set for each fold. This ensured that each participant was used
exactly once for validation. To speed up the hyperparameters
optimization process, we used 30% of the data per activity,
thereby ensuring multiple repetitions of each activity move-
ment in the training set. In each fold, we trained the model on
the eight participants by employing early stopping to prevent
overfitting, with training limited to a maximum of 50 epochs.
The initial learning rate was set to 0.001, with a learning rate
decay applied after 30 epochs, thus reducing it to 0.0001.
We optimized the network weights by minimizing the mean
squared error loss using the Adam optimizer and a batch size
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TABLE 4. Layer Overview of the Optimized Model Using Cross Validation

TABLE 5. Lowest Average Mean Per-Joint Position Error (MPJPE) on the
Validation Set Per Fold From Cross Validation With the Optimized
Hyperparameter Configuration Set

of 64. We selected the best hyperparameters for our final
model by averaging the lowest validation loss for each fold
within every hyperparameter configuration. This allowed us
to identify the configuration that performed best overall. As
a result of the cross validation, an overview of the optimized
model’s layers is provided in Table 4.

We used the MPJPE metric to assess and compare the mod-
els’ performance. It is defined by:

MPJPEk = 1

NS

NS∑
i=1

‖xpred,i,k − xgt,i,k‖2, (7)

where NS is the number of considered samples (skeletons),
xpred,i,k is the predicted position of keypoint k in sample i,
and xgt,i,k is the ground-truth position of keypoint k in sample
i. The average MPJPE is calculated as the mean MPJPE across
all keypoints.

The average MPJPE results for every cross validation fold
using the optimized hyperparameter configuration are pre-
sented in Table 5, with an average MPJPE of 8.18 cm and a
standard deviation of 4.96 cm.

Once the optimal hyperparameters were identified, we
trained the model using the combined training and validation
data and evaluated the performance of the overall model Pnt-
PoseAT on the unseen test set. Training was performed for up
to 60 epochs by utilizing early stopping to prevent overfitting
and ensure the selection of the optimal model.

C. EXPERIMENTAL RESULTS
The MPJPE and their corresponding standard deviation for
each skeleton keypoint are shown in Fig. 8. While the key-
points on the hips, spine, and neck show small mean position

errors in the range of 5.25 cm to 5.69 cm, keypoints on the
limbs — especially the hands (RH: right hand, LH: left hand)
and elbows (LFA: left forearm, RFA: right forearm) — display
higher MPJPEs, from 7.81 cm to 11.33 cm.

To gain deeper insights into our model’s performance, we
conducted a series of experiments focusing on the evalua-
tion of individual model components. Table 6 presents the
performance metrics for various network architectures and
input data configurations. Our reference model, PntPoseAT,
achieved pose predictions with an average MPJPE of 6.49 cm
and a standard deviation of 3.74 cm. Comparatively, the basic
PntPose framework, which predicts human poses on a frame-
by-frame basis, demonstrated a higher average MPJPE of
10.11 cm, which was 56% greater than that of the PntPoseAT.
Substitution of the LSTM with a GRU in the network archi-
tecture resulted in a similar average MPJPE of 6.53 cm. It was
observed that reducing the input data components negatively
impacted the accuracy across all network variations. We delve
into a detailed discussion of these results in the following
section.

VI. DISCUSSION
Initially, we concentrate on the results utilizing all seven
target list components as an input. As seen in Fig. 8, the
limbs showed a higher average MPJPE and standard deviation
compared to the pelvis components. This was expected as
the limbs anatomically undergo more movement during the
activity compared to the hips, spine, and neck, which makes
accurate prediction of these keypoints more challenging. This
behavior was already reported in previous works, e.g., in
Cao et al. [68]. Models enhanced with an LSTM or GRU
cell to capture temporal changes showed improved regression
results. Incorporating an MHSA mechanism further boosted
the model’s performance. Additionally, as a GRU does not
have a cell state contrary to LSTMs, it reduces the learnable
parameters by 25%, thereby making it a plausible alternative
for applications with limited processing memory and power.
In fact, replacing the GRU with an LSTM in our model led
only to a slight reduction of 0.04 cm of average MPJPE,
which prompted cost-effectiveness considerations tailored to
the specific application.

Next, we examined how the model’s performance depended
on the characteristics of the input data. The results showed
that reducing the input data from a tensor containing x-, y-
, z-coordinates, velocity, SNR, noise, and intensity to only
x-, y-, z-coordinates led to a drop in performance across all
network architecture. This demonstrated that including addi-
tional information beyond the basic point cloud data helped
the network to better capture the pose. However, the disparity
in average MPJPE between the compared networks decreased
when the LSTM and MHSA units were applied. This suggests
that the recurrence and attention mechanisms can effectively
mitigate the impact of reduced input data.

Considering that this study utilized a relatively simple radar
system, the results are highly promising. Despite using a
MIMO radar array with three transmitters and four receivers,
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FIGURE 8. Results of the mean per-joint position error (MPJPE) using PntPoseAT: The mean value (red) and its standard deviation (blue) of the
prediction. The designations of the abbreviations for the respective joints are shown in Table 2.

TABLE 6. Comparison of the Performance of Different Network Components and Input Data

we were able to achieve results comparable to or even better
than previous work with the same [14], [15], [18] or even
larger antenna arrays [12], [16], [17], thereby resulting in
inherently better spatial resolution. However, for a better com-
parison, it is essential to evaluate the methods using a uniform
dataset.

Moreover, our model predicted a very detailed human
skeleton with 24 keypoints. To the best of our knowledge,
Sengupta et al. [13] is the only work that has proposed a
model predicting more keypoints than ours, with a total of
25 keypoints, but, due to inaccuracies, they reduced the count
to 17 in their evaluation. A higher number of predicted key-
points, however, is favorable for downstream tasks, such as
full-body biomechanical analysis [69].

Unlike other approaches that relied on multiple orthogonal
radar units [13], [16], [19], our method only required a single
radar, thus reducing the complexity and volume of data to
process. This demonstrates the potential of our approach to
provide accurate pose estimation with fewer resources, which
would make it not only efficient but also scalable for real-
world applications. Moreover, the reduced hardware and data
requirements enable deployment in more constrained or cost-
sensitive environments. Coupled with recent advancements in
radar technology, including enhanced on-device processing
capabilities, tasks like CFAR calculation can now be executed

directly on the device (e.g., TI-IWR29448). This makes our
network an ideal solution for running human pose estimation
applications on edge devices, thereby drastically reducing the
input size of the deep learning network and eliminating the
need for extensive raw data transfer as well as reliance on
external processing resources [16], [17], [19].

In this study, we focused on scenarios involving a single
individual within a constrained area of the room. However, in
complex real-world applications, situations often arise where
multiple people are randomly distributed throughout the
room. There are existing approaches to address this challenge.
For instance, Zhao et al. [12] and Ho et al. [17] tackled this
issue by dividing the neural network into two components:
one component identified a region of interest that encom-
passes a single person, while the other treated this region as a
single-person human pose estimation problem — an approach
that is well-established in computer vision [70], [71], [72].
Additionally, by incorporating three different angles facing
the radar, we demonstrated that human pose estimation is pos-
sible regardless of the person’s orientation toward the radar.
Consequently, it is crucial to effectively separate individuals
in at least one dimension of the radar data. Given the radar’s
excellent resolution in the range and Doppler domains, along

8[Available]. Online: www.ti.com/product/IWR2944
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with reasonable angular resolution, this separation is assumed
to be feasible. We plan to investigate this topic in future work.

Our dataset was specifically designed to capture human
movements during activity. To enhance the diversity of body
motion patterns, we recorded each activity from three distinct
angles. Additionally, we ensured a balanced representation of
arm and leg movements, thus preventing the network from fa-
voring predictions for one part of the body over another. This
extends existing human motion and rehabilitation datasets, but
we recognize the need for further expansion. In the future,
we plan to enhance the dataset by incorporating more partici-
pants and a wider variety of activities to further enhance deep
learning performance in terms of position error and generaliz-
ability.

VII. CONCLUSION
This paper presents a novel radar-based human pose esti-
mation approach using deep learning by leveraging accurate
OMC data as ground truth. An extensive, published dataset
— mmRadPose — was generated to develop and train a
deep learning model. We hope our dataset will be a valu-
able resource for researchers working in the field of machine
learning-enabled radar-based pose and activity estimation. We
present PntPoseAT, a multi-stage deep learning model that
captures both temporal and spatial correlations of the input
data. This approach outperforms comparable existing human
pose estimation models in terms of mean per-joint position
error with an overall average mean per-joint position error of
6.49 cm. We explored additional aspects of the model design
by analyzing the performance gains contributed by individ-
ual components within our deep learning model. The results
demonstrate the high potential of radar technology as a viable
alternative to RGB-based methods that offer enhanced privacy
protection and eliminates reliance on lighting conditions. Ad-
ditionally, we demonstrated that accurate keypoint predictions
can be achieved with relatively cost-efficient and unsophisti-
cated radar sensors, thus enabling their versatile use in a wide
range of environments, such as smart homes, healthcare, and
industry.
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