
Tuberculosis 152 (2025) 102619

Available online 24 February 2025
1472-9792/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-
nc/4.0/).

A novel method for detecting Lipoarabinomannan in urine with the promise
of meeting the WHO target product profile for the diagnosis of tuberculosis

Katharina Budde a, Christoph Lange a,b,c,d, Maja Reimann a,b,c, Nika Zielinski a,b,c,
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A B S T R A C T

The diagnosis of tuberculosis largely relies on the detection of Mycobacterium tuberculosis (M. tuberculosis) via
pathogen-specific DNA or bacterial culture from sputum samples. As the only point-of-care test so far, urinary
lipoarabinomannan (LAM) has been endorsed by the World Health Organization for the diagnosis of tuberculosis
in people living with HIV.

In this study, the electrochemiluminescence LAM research assay (EclLAM) was used to measure LAM in the
urine of HIV-sero-negative individuals with pulmonary tuberculosis and to monitor anti-tuberculosis treatment.
Urine samples from 18 patients with microbiologically confirmed tuberculosis were analyzed before and after the
initiation of anti-tuberculosis therapy and 17 healthy controls via the S4-20/A194-01 antibody pair.

The assay identified 13/18 (72.2 %) patients with tuberculosis and was negative in 17/17 (100.0 %) controls
(AUC 0.88). The results of the reactive urine LAM tests correlated with the detection of M. tuberculosis growth in
culture (r = 0.94, p < 0.05).

In conclusion, the LAM-specific antibody assay is promising to fulfill the WHO target product profile for the
diagnosis of tuberculosis.

1. Introduction

Tuberculosis (TB) is a leading cause of morbidity and mortality
worldwide. Following the Severe Acute Respiratory Syndrome Corona-
virus type 2 (SARS-CoV-2) TB has been the second leading cause of death
in the field of infectious diseases in the year 2022 and the 13th leading
cause of death overall [1].

The most prominent site of infection in humans is the lung, leading to
pulmonary TB (PTB). Commonly used tests and WHO-endorsed methods
for the diagnosis of active TB are sputum smear microscopy, liquid
culture of Mycobacterium tuberculosis (M. tuberculosis) with drug sus-
ceptibility testing (DST), tuberculin skin test (TST) or interferon-γ
release assay (IGRA), LAM lateral flow, and Xpert MTB/RIF, however
the gold standard remains growth in culture [2]. In culture,

M. tuberculosis, a slow-growing bacteria, has a doubling time of 12–24 h
[3], making microbiological detection a time-consuming process. While
M. tuberculosis is cultured from sputum samples, bacterial components
can be detected from different sample types, such as bronchoalveolar
lavage, stool or urine, with differing degrees of sensitivity and specificity
[3].

TB is mostly curable with appropriate treatment [1]. Treatment
response monitoring plays a crucial role to reach treatment success in
TB. Current gold standards for monitoring TB are sputum smear mi-
croscopy and culture-based assays [4]. Limitations of both tests include
highly developed infrastructure, trained staff, and the availability of
results after several weeks restrict the outcome of these methods [5].
The electrochemiluminescence LAM research assay (EclLAM) with Meso
Scale Discovery Inc. (MSD) technology is based on the ELISA-like
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technique and measures potential biomarkers present in M. tuberculosis
and released during TB drug therapy [6]. The best described
pathogen-component used as a TB biomarker is lipoarabinomannan
(LAM), which is a component of mycobacterial cell walls and acts as a
virulence factor. The lipopolysaccharide is detectable in urine [4,7], but
may also be found in sputum [8] and blood [9] as well as in breath
condensates [10] of TB patients. Since not all patients can produce
sputum, especially children, the preferable test for detecting LAM is in
urine or breath, which are non-invasive methods.

LAM is produced by all mycobacteria and accords with their re-
quirements for growth [11]. It has different capping motifs resulting in
various structural variants such as ManLAM, which is most abundant in
slow growing pathogen species such as M. tuberculosis and M. bovis [12].
The different epitopes that are unique toM. tuberculosis are important for
detecting LAM, as different antibodies bind to various epitopes with
varying sensitivities towards capping motifs [7]. In particular, the
discovered methylthiopentosyl residue attached to the mannosyl caps of
LAM, which have an α-xylo configuration, is specific to M. tuberculosis
and may play an important role in the oxidative protection of the bac-
terium [13]. Other epitopes consist of polyarabinose Ara4 and Ara6
structures that can be uncapped and capped with mannopyranose
(Manp) oligosaccharides (Supplement Fig. S1) [14]. The monoclonal
antibody (mAb) A194-01 recognizes the uncapped Ara4 and Ara6
structures with the exception of the inositol phosphate-capped Ara4. The
S4-20 antibody is uniquely specific for Manp-capped structures with an
MTX residue. In particular, the modified di- and trimannose – capped
structures bind strongly to this antibody [14].

Current diagnostic methods that are used to detect the concentration
of LAM in urine are the clinical point of care tests (POCTs) Fujifilm
SILVAMP TB lipoarabinomannan (FujiLAM) and Alere Determine TB
LAM Ag (AlereLAM). Both tests are lateral flow assays resulting in a
semi-quantitative analysis with sensitivities of 10.8 % (AlereLAM) and
53.2 % (FujiLAM) [15]. An alternative method is the laboratory-based
EclLAM assay based on MSD technology and reader. This method
comprises a quantitative sandwich immunoassay run in a multi-well
plate format with a sensitivity of 66.7 % when S4-20 is used as the
capture antibody and A194-01 as the detection antibody [15]. The
methods mentioned above can be used for people living with HIV
(PLHIV) and HIV-sero-negative patients. All characteristics in addition
to the WHO target product profiles (TPPs) for a biomarker test [16] are
summarized in Supplement Table S2.

In contrast to previously published data, the present study was
conducted to ascertain whether the S4-20/A194-01 antibody pair
reached the WHO benchmark TTPs for the detection of LAM in urine of
TB+/HIV-sero-negative patients and whether the assay is suitable for
monitoring the response to anti-TB treatment.

2. Methods

For this retrospective cohort study, the EclLAM assay based on MSD
technology (Rockville, Maryland, United States) was used to measure
LAM concentrations in urine of TB+/HIV-sero-negative patients.

2.1. Clinical subjects and samples

Patients with PTB confirmed by culture were enrolled. The patients’
sputum samples were tested with molecular biological methods be-
forehand (i.e., GeneXpert (Cepheid Inc., Sunnyvale, California, United
States), detection of rifampicin/isoniazid resistance) and M. tuberculosis
growth was confirmed by culture. Sputum culture was done in tripli-
cates. In addition, healthy individuals were included as controls. The
samples used in this study were collected at the “Research Center Bor-
stel, Leibniz Lung Center” between 2015 and 2022 as part of the
“Identification of Biomarkers for multidrug-resistant (MDR) tuberculosis
therapy response assessment” trial. The inclusion and exclusion criteria
are listed in the Supplement Table S3. The participants had not yet

started therapy before the collection of samples at the first time point.
Before proceeding further, the approval of an independent ethics com-
mittee (Ethical Review Board of the University Lübeck, Ratzeburger
Allee 160, 23538 Lübeck, Germany; file number 12–233), regulatory
authorities and written informed consent from all participants was ob-
tained. The study was carried out following the Helsinki Declaration
contents. In Table 1, the different time points for study visits with
sampling of sputum, blood and urine are listed.

Sputum- and M. tuberculosis culture conversion as well as the char-
acterization of TB-strains and DST were also obtained.

At least 200 mL of urine was collected from each participant at each
time point. The urine was aliquoted in two Falcon tubes (15 mL) with 10
mL each. EDTA (0.5 mL) was added to one aliquot of each sample. In this
study, we investigated urine samples with and without the addition of
EDTA. The samples with EDTA were used if the samples from the pa-
tients without EDTA were missing. After further processing, the samples
were stored at − 80 ◦C. The same procedure was done for controls at T0.
Since the cohort was enrolled within a longitudinal observation study,
patients were not randomized to specific treatment arms. This study
aimed to analyze biomarkers to monitor TB therapy independent of
treatment.

2.2. Antibodies and control materials

Purified LAM was obtained from BEI Resources, NIAID, NIH (Man-
assas, Virginia, United States):Mycobacterium tuberculosis, Strain H37Rv,
Purified Lipoarabinomannan (LAM), NR-14848. This product was used
as a control. For immunoassay analysis to measure LAM concentrations,
the monoclonal antibodies S4-20 and A194-01 were kindly provided by
FIND (Geneva, Switzerland).

2.3. Procedure

Prior to the actual ELISA-like EclLAM assay the capture antibody
needed to be conjugated with biotin to bind to streptavidin on the plate.
In addition, the detection antibody needed to be conjugated with
SULFO-TAG (MSD (Rockville, Maryland, United States), catalogue
#R31AA) to emit light due to the chemiluminescence reaction. First, the
capture antibody S4-20 was diluted in diluent 100 (MSD (Rockville,
Maryland, United States), catalogue #R50AA) until a final concentra-
tion of 1.00 μg/mL was reached. The same was done with the detection
antibody A194-01 in diluent 3 (MSD (Rockville, Maryland, United
States), catalogue #R50AP) until an end concentration of 2.00 μg/mL
was reached. The standard samples were generated by adding purified
LAM (BEI Resources, Manassas, Virginia, United States) to pooled urine
samples from four healthy controls (not included in the EclLAM assay
analysis). The starting concentration of 50,000 pg/mL was diluted 1:4 to
0.00 pg/mL.

The MSD GOLD™ Small Spot Streptavidin SECTOR™ Plates (MSD
(Rockville, Maryland, United States), catalogue #L45SA) were coated
with 25 μL of capture antibody (1.00 μg/mL S4-20) per well and incu-
bated at 23 ◦C (20 ◦C 25 ◦C) for 1 h. The plate was shaken at 750 rpm
(VWR Microplate Shaker (Darmstadt, Germany), catalogue # 12620).
After incubation, the plate was washed three times with 150 μL/well of
PBS +0.05 % Tween-20 (PBS-T). Furthermore, the plates were coated

Table 1
Study visits of participants with sampling of sputum, blood and urine. The table
outlines the scheduled time points for collection.

Time point When?

T0 0–2 days before therapy start
T1 13 days after therapy start ± 3 days
T2 Sputum conversion ± 3 days
T3 8 weeks after culture conversion ± 7 days
T4 6 months after therapy start ± 7 days
T5 After 10 months ± 7 days
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with 50 μL/well of standards and samples in duplicate and incubated at
4 ◦C overnight. The next day, the plates were washed again as previously
described. 25 μL of detection antibody (2.00 μg/mL A194-01) was then
added to each well and incubated at 23 ◦C (20 ◦C 25 ◦C) for 1 h while
shaken at 750 rpm (VWR Microplate Shaker (Darmstadt, Germany),
catalogue # 12620). Three washing steps with 150 μL/well of PBS-T
followed. In the last step, 150 μL of MSD GOLD Read Buffer B (MSD
(Rockville, Maryland, United States), catalogue #R60AM) was added to
each well, and the plate was read immediately.

The cut-off for the EclLAM assay was calculated based on our data at
13.35 pg/mL to achieve a sensitivity above 65 %. However, according to
other studies with a larger sample size, this cut-off was set at 11.0 pg/mL
[7]. Since we worked with a small cohort size and aimed to align our
results with the broader population, we decided to adopt the cut-off of
11.0 pg/mL for our study. Below this value, the measurements will be
identified as negative for active TB.

2.4. Statistical analysis

The data were statistically analyzed with GraphPad Prism 8.0.1
(Dotmatics, Boston, Massachusetts, United States) and R (version 4.3.2).

Numerical data are reported as the median (x̃) ± 95 % confidence
interval (95 % CI). To test whether there was a significant difference in
the LAM concentration or fold change between different treatment days,
the Wilcoxon-signed rank test was used. The correlation between LAM
and the bacterial load was calculated via Spearman’s rank coefficient.
The TTPs that were measured by the laboratory in Borstel at the time of
sample collection were used as surrogate markers for the bacterial load.
For the calculation of the diagnostic yield among all those diagnosed
with TB the number of people with a positive diagnosis by the test is
divided by the total number of people diagnosed with TB.

If indeterminate or missing test results were the case, the test was
repeated, or the participant was excluded. If the data was above a co-
efficient of variation (CV) of 20 % the data was not applicable and
excluded for quantitative analysis.

3. Results

3.1. Demographic and clinical characteristics of the study participants

Eighteen randomly chosen participants from a subcohort of the
German DZIF TB cohort were included in the study: 10 female and 8
male patients aged between 19 and 57 years (Fig. 1). All patients were

tested sputum smear and/or Xpert positive. Seven out of the 18 patients
were cigarette smoker. Ten of the patients had confirmed drug-
susceptible TB (DS-TB), five out of 18 patients had multidrug-resistant
TB (MDR-TB) and three of the patients had extensively drug-resistant
TB (XDR-TB) (Table 2). Eleven patients were originally from Europe,
and five and two were immigrants from Asia and Africa.

Nine healthy male and 8 healthy female participants aged between
21 and 57 years (x = 34.8) were included as controls. All were born in
Europe. There were no information about the TST/IGRA positivity given
but control participants presented to the hospital with no symptoms.
Five out of 15 participants were cigarette smokers. No information was
given about the cigarette smoking characteristics of two control
participants.

3.2. EclLAM assay

To measure LAM concentrations in urine of TB+/HIV-sero-negative
patients who received therapy and healthy controls, the EclLAM assay
based on MSD technology and reader was used. This assay combines an
indirect ELISA-like test with electrochemiluminescence detection by the
addition of voltage. Time points 1 to 5 are represented in average days
from the start of therapy. The average days and standard deviations (SD)
are 13 days (SD: 1.34), 72 days (SD: 40.8), 104 days (SD: 25.2), 189 days
(SD: 23.8), and 316 days (SD: 31.8) for time points 1 to 5. Time point 5
comprises 10 months of therapy for DR-TB patients. Time points 4 and 5
take into account the end of therapy for DS-TB patients, which might
deviate from the rule. This explains the high standard deviations later
on.

3.2.1. LAM concentration measurement
A comparison of the LAM concentrations of the samples obtained

prior to the start of therapy (x̃= 35.0 pg/mL, 13.4–87.5 pg/mL) and day
189 of therapy (x̃ = 5.90 pg/mL, 0.00–157.9 pg/mL) revealed a signif-
icant difference (p < 0.05, Fig. 2a). This observation was also observed
after 13 days of therapy (x̃= 48.0 pg/mL, 11.4–137.8 pg/mL) where the
differences from day 104 (x̃ = 4.34 pg/mL, 0.00–49.0 pg/mL) and day
189 were also statistically significant (p < 0.05). When comparing the
concentration between baseline and 13 days after the initiation of
therapy, an increase in concentration becomes evident, which subse-
quently decreases again. Total LAM concentrations between 0.00 pg/mL
and 857.8 pg/mL were recorded over the course of 316 days of anti-TB
therapy (Fig. 2a).

To evaluate the magnitude of the variation in concentration the fold
change was calculated. Significant differences in fold change between
day 13 (x̃ = 0.91, 0.00 to 1.49) compared to day 189 (x̃ = 0.22, 0.00 to
0.40) were observed (p < 0.05, Fig. 2b). Fold changes between 0.00 and
6.67 during 316 days of anti-TB treatment were observed (Fig. 2b).

The most substantial reductions from baseline occurred at days 104
and 316, with the steepest decline observed between day 13 (x̃ = 48.0
pg/mL) and day 72 (x̃ = 14.8 pg/mL). No significant correlations were

Fig. 1. Flow of participants and healthy controls. *In this study, XDR-TB is
defined as resistance to Rifampicin, Isoniazid, any fluorchinolone as well as to
one of the WHO II drugs, namely Amikacin, Capreomycin or Kanamycin, ac-
cording to the WHO definition at the time of cohort recruitment. DS-TB, drug-
susceptible tuberculosis; MDR-TB, multidrug-resistant tuberculosis; XDR-TB,
extensively drug-resistant tuberculosis.

Table 2
Demographic data of 18 study participants and 17 healthy controls. *In this
study, XDR-TB is defined as resistance to Rifampicin, Isoniazid, any fluo-
rchinolone as well as to one of the WHO II drugs, namely Amikacin, Capreo-
mycin or Kanamycin, according to the WHO definition at the time of cohort
recruitment. NA, not available; DS-TB, drug-susceptible tuberculosis; MDR-TB,
multidrug-resistant tuberculosis; XDR-TB, extensively drug-resistant
tuberculosis.

Characteristics TB patients (n = 18) Healthy controls (n =

17)

Mean age, years 33.1 (19.0–57.0) 34.8 (21.0–57.0)
Sex, M/F 8/10 (44.4 %/55.6 %) 9/8 (52.9 %/47.1 %)
Smoker, yes/no 7/11 (38.9 %/61.1 %) 5/10 (33.3 %/66.7 %)
DS-TB/MDR-TB/XDR-

TB*
10/5/3 (55.6 %/27.8 %/16.6
%)

NA
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found between LAM concentration and culture time to positivity (TTP)
from time points 0 to 1 (r = − 0.28, p = 0.14) as well as culture con-
version (r = − 0.01, p = 0.99), respectively.

3.2.2. Diagnosis
At the time of diagnosis, the LAM concentration in samples from

patients at baseline and healthy controls was compared. The receiver
operating characteristic (ROC) curve of the antibody pair for detecting
M. tuberculosis is shown in Fig. 3. The sensitivity was 72.2 % (95 % CI
46.5 %–90.3 %), with an area under the curve (AUC) of 0.88 (95 % CI
0.76–1.00) with a cut-off value of 11.0 pg/mL (Fig. 3). The same was
observed with a cut-off value set to 13.35 pg/mL. The specificity for this
antibody pair was 100.0 % (95 % CI 80.5 %–100.0 %). M. tuberculosis
growth in culture was the reference test (gold-standard) and had 100.0
% sensitivity at baseline measurements.

3.2.3. Treatment monitoring
During therapy, the number of positive LAM tests steadily declined.

With a cut-off value of 11.0 pg/mL, at baseline, 72.2 % of the patients
tested positive for LAM. The diagnostic yield among all those diagnosed
was 0.72. This percentage declined to 70.6 % on day 13 to 35.7 % on day
72 of therapy. On day 104, 18.8 % of the samples were positive for LAM,
whereas on day 189, 22.2 % were positive. By day 316 of therapy, a total
of 12.5 % of the tests were positive for LAM. The same results were
observed with a cut-off value of 13.35 pg/mL, except for deviations on
days 13 and 189. From day 72 onwards the antibody pair identified
more positive tests for LAM than M. tuberculosis in culture, staying
positive late in treatment after culture turns negative (Table 3). With the
cut-off value either set at 11 pg/mL or at 13.35 pg/mL, the number of
positive LAM tests significantly correlated with the number of positive
tests for M. tuberculosis growth in culture (p < 0.05; r = 0.94, r = 0.95,
respectively).

4. Discussion

This study evaluated the effectiveness of the EclLAM assay, using the
S4-20/A194-01 antibody pair, for detecting LAM in the urine of TB+/
HIV-sero-negative patients. LAM levels in urine were also quantified as a
surrogate marker for microbiological findings to monitor the response to
anti-TB treatment. The antibody pair correctly discriminated HIV-
seronegative patients with PTB from healthy controls with a sensi-
tivity and diagnostic yield of 72.2 % and a specificity of 100.0 % (AUC

Fig. 2. LAM concentrations in urine of 18 TBþ/HIV-sero-negative participants during therapy. The results are shown as the median (x̃) ± 95 % CI. The
therapy days represent time points 1 to 5. The time points 3 to 5 are average values of therapy days from 18 participants.
(a) The absolute values of the LAM concentrations in urine of 18 participants during TB treatment are shown. The dashed line shows the cut-off value of 11.0 pg/mL.
An increase in LAM concentration was detected after 13 days of therapy. A significant decrease in the LAM concentration was measured at day 189 compared with
that at baseline. (b) The fold change from baseline in LAM concentrations is shown to compare the different relative concentration values from 18 participants.
Compared with the baseline measurements, a significant decrease was measured after 189 days. Since the median at 316 days of therapy is 0 for both measurements,
the value is not displayed in the diagram. The antibody pair that was used for this measurement was 1 μg/mL S4-20 as the capture antibody and 2 μg/mL A194-01 as
the detection antibody. *p < 0.05.

Fig. 3. ROC curve with a cut-off set at 11 or 13.35 pg/mL. The calculated
and the already published cut-off values [7] give the same sensitivity and
specificity values on the ROC curve. An AUC of 0.88 (95 % CI 0.76–1.00)
was measured.

K. Budde et al.
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0.88). The diagnostic yield among all those diagnosed is defined as the
proportion of people in whom a diagnostic test identifies TB among TB
positive people for whom testing is attempted, which is an important
metric for the evaluation of the usage of a diagnostic test [17]. This
might offer a real-life implementation indicator that enhances conven-
tional accuracy metrics due to the consideration of access, sensitivity,
specimen availability, and test completion [17]. The sensitivity and
specificity estimates of the test of 72.2 % and 100.0 % were higher than
the WHO’s TPP recommendations of 65.0 % and 98.0 %, respectively.
Setting the cut-off value at 11.0 pg/mL, as previously published by Sigal
et al. [7], instead of the calculated 13.35 pg/mL allows for better stan-
dardization across a larger population, given the limited size of our
cohort. Although a cut-off of 13.35 pg/mL resulted in the same
measured sensitivity, it may be less applicable to studies with larger
sample sizes, potentially limiting its broader utility. The test cost was
$1.00 less than the WHO TPP recommended limit [16]. Thus, the anti-
body pair met the WHO TPP criteria for sample type, sensitivity, spec-
ificity, and cost per test. However, this conclusion should be interpreted
cautiously due to the small sample size in the study. A key advantage of
the LAM test is its low cost of US$5.00 per test and its ability to be
performed in non-sterile environments, making it ideal for use in
low-resource settings without the need for specialized laboratories. The
primary expense is the plate reader and its maintenance. Additionally,
the antibody pair was effective for treatment monitoring, as evidenced
by the strong correlations between positive LAM tests and positive cul-
ture results.

In other studies using the LAM-ELISA (Chemogen, So. Portland,
Maine, United States) as a diagnostic method, the overall sensitivity
ranged from 17.8 % to 76.5 % (x̃ = 54.9 %) with an overall specificity
ranging from 86.9 % to 99.0 % (x̃ = 88.4 %) [18–23], generally lower in
HIV-sero-negative patients compared to PLHIV [20,21]. In 2009,
Mutetwa et al., reported a difference in sensitivity of 31.0 % (HIV-ser-
o-negativity: 21.0 %; PLHIV: 52.0 %) [21]. Reither et al. reported similar
results (HIV-sero-negativity: 21.1 %; PLHIV: 62.0 %) [20]. The test
specificity in HIV-sero-negative patients was 91.1 % [20] and 93.0 %
[21], respectively. Higher specificity (99.0 %) was obtained when un-
processed fresh urine samples were used [19]. The increased sensitivity
in PLHIV is likely due to immunosuppression, which higher bacterial
burden [24]. Since the WHO Target Product Profile (TPP) criteria were
met even with samples from HIV-sero-negative patients, it is possible
that results would improve further when using samples from PLHIV.

The initial increase in LAM concentrations during early TB treatment
suggests that large quantities of dying mycobacteria are being freely
filtered into the urine, leading to higher LAM levels [25]. This obser-
vation differs from previous reports [25,26]. The strong correlation (r =
0.94) between the number of positive LAM tests and positive culture
tests (p < 0.05) highlights the relationship between LAM detection and
active infection. The most significant decline in both LAM and
M. tuberculosis culture-positive tests was found between day 13 and day
72 of therapy, which is consistent with findings by Wood et al. in 2012,
who observed the greatest reduction in LAM optical density between
weeks 2 and 8 of therapy [25]. After week 8, all culture tests were
negative, marking the time to culture conversion, defined as the absence
of M. tuberculosis growth. Ideally, no positive LAM tests should occur

after this point. However, the detection of positive LAM tests after cul-
ture conversion on day 72 suggests the presence of non-viable bacteria
[25]. LAM is secreted into the urine regardless of the infection site and
independently of bacilli excretion in sputum [18]. Additionally, in this
study, LAM concentrations did not significantly correlate with the TTP
within the first two weeks of anti-TB therapy. These factors may explain
the occurrence of positive LAM tests even when M. tuberculosis culture
results are negative or fewer in number.

This study has several limitations: (i) We included only a small
number of participants, which might compromise the accuracy and
replicability of statistical analyses. More patients would lead to the
meaningful statement that this test fulfilled the WHO’s TPPs. (ii) The
study design was retrospective, which might lead to missing or incom-
plete data and biases due to existing data. Prospective studies might lead
to more control and less confounding. (iii) The data often exhibited a
coefficient of variation above 20 %, resulting in the exclusion of these
values from qualitative analysis. As a result, only qualitative conclusions
could be drawn. For a better quantiative analysis, particularly the con-
centration measurement, the experiments would need to be repeated.
(iv) Not all ethnic groups and ages as well as participants from endemic
areas were included, which could lead to biases in drug response and
identification of risks and benefits. Especially the inclusion of partici-
pants from regions where TB is endemic is needed since lower sensi-
tivities of diagnostic tests were found in high endemic regions [27].
Also, the diversity of TB strains as well as the immune response vari-
ability [28] can impact the accuracy of the test. Ensuring that all ethnic
groups, ages and individuals from regions with a high disease burden are
included in a larger cohort would produce results that are more gener-
alizable to the broader population. (v) The EclLAM assay as well as the
antibodies are not commercially available. Users wishing to run the
assay must acquire the antibodies independently from FIND and estab-
lish the assay in their own laboratory. The accessibility of the antibodies
is therefore not given. Commercially available technology and anti-
bodies would thus be more practical for a broader audience.

In conclusion, the EclLAM assay using the S4-20/A194-01 antibody
pair demonstrated a sensitivity of 72.2 % and a specificity of 100 %
(AUC 0.88), indicating its potential to meet the WHO TPP standards for
diagnosing active PTB in HIV-sero-negative individuals. For treatment
monitoring, the EclLAM assay showed a strong correlation with
M. tuberculosis culture results. Overall, these findings underscore the
potential of LAM as a biomarker for both diagnosis and treatment
monitoring. Further research should prioritize the development of non-
invasive, sensitive, specific, and quantitative LAM tests.
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Table 3
Detection of LAM andM. tuberculosis in 18 participants. The TTP was only measured until day 13. In culture, the number of positive tests decreased until day 72 of
therapy. After this time point no positive culture tests were identified. The number of positive LAM tests decreased steadily until day 316 of treatment, resulting in 2
positive LAM tests by the end of therapy. TTP, culture time to positivity. IQR, interquartile range. NA, not available. COV, cut-off value.

COV 11 pg/mL COV 13.35 pg/mL Culture TTP in days (Median, IQR)

Baseline 13/18 (72.2 %) 13/18 (72.2 %) 18/18 (100.0 %) 9.00 (6.25–13.5)
Day 13 12/17 (70.6 %) 11/17 (64.7 %) 16/17 (94.1 %) 25.0 (17.3–37.5)
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