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ABSTRACT
Background: Elevated low-frequency activity (4–12 Hz) within the globus pallidus internus (GPi) has been consistently associ-
ated with dystonia. However, the impacts of the genetic etiology of dystonia on low-frequency GPi activity remain unclear; yet it 
holds importance for adaptive deep brain stimulation (DBS) treatment.
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Methods: We compared the properties of GPi electrophysiology acquired from 70 microelectrode recordings (MER) trajectories 
of DYT-GNAL, DYT-KMT2B, DYT-SGCE, DYT-THAP1, DYT-TOR1A, DYT-VPS16, and idiopathic dystonia (iDYT) patients who 
underwent GPi-DBS surgery across standard frequency bands.
Results: DYT-SGCE patients exhibited significantly lower alpha band activity (2.97%) compared to iDYT (4.44%, p = 0.006) and 
DYT-THAP1 (4.51%, p = 0.011). Additionally, theta band power was also significantly reduced in DYT-SGCE (4.42%) compared to 
iDYT and DYT-THAP1 (7.91% and 7.00%, p < 0.05). Instead, the genetic etiology of dystonia did not affect the spatial characteris-
tics of GPi electrophysiology along MER trajectories.
Conclusion: Considering the genetic etiology of dystonia in closed-loop DBS treatments and utilizing theta and alpha activity for 
GPi stimulation may optimize clinical outcomes. MER-based DBS lead placement can proceed independently of the underlying 
genetic cause.

1   |   Introduction

Dystonia is a movement disorder causing abnormal, often repet-
itive movements or postures due to muscle contractions, with 
genetic forms resulting from pathogenic mutations in causative 
genes leading to diverse clinical presentations [1, 2]. Deep brain 
stimulation (DBS) targeting the globus pallidus internus (GPi) is 
an effective therapy for the drug-resistant form of dystonia [3]. 
Intraoperative microelectrode recordings (MERs) are routinely 
used to confirm the DBS lead placements, also reveal the patho-
physiology of movement disorders [4, 5].

Elevated low-frequency (4–12 Hz) activity in local field poten-
tials (LFPs) of the GPi [6, 7] and subthalamic nucleus (STN) 
[8, 9] has been consistently associated with dystonia. This ac-
tivity could potentially serve as a biomarker for closed-loop DBS 
in dystonia [9, 10]. Therefore, examining the impact of genetic 
etiology on low-frequency GPi electrophysiology could enable 
personalized adaptive DBS (aDBS) treatments.

Herein, we compared the properties of low-frequency GPi activ-
ity extracted from MERs collected during GPi-DBS surgery from 
patients with various genetic and idiopathic forms of dystonia. 
A significant reduction in low-frequency activity (4–12 Hz) was 
observed in patients with DYT-SGCE compared to DYT-THAP1 
and idiopathic dystonia, highlighting the potential for personal-
ized aDBS based on genetic factors in dystonia patients. Finally, 
our findings indicate that genetic etiology has no significant 
impact on the spatial characteristics of GPi electrophysiology. 
Therefore, MER-based DBS lead placement can be performed 
independently of the genetic etiology of dystonia.

2   |   Materials and Methods

The study was conducted with genetic and idiopathic dystonia 
patients who underwent bilateral GPi-DBS surgery under propo-
fol and remifentanil anesthesia (Table S1) at Fondazione IRCCS 
Istituto Neurologico Carlo Besta. Before 2000, only TOR1A was 
tested in patients. Between 2000 and 2015, individuals who were 
negative for TOR1A were retested via Sanger sequencing as new 
genes were identified. Since 2015, an NGS-customized dystonia 
gene panel has been employed [11], (Table S1).

The surgeries were conducted bilaterally and under stereotactic 
conditions with the Leksell (Elekta Inc.) or Maranello (Eidos22) 

frames. A thorough description of our standard surgical proce-
dure is available elsewhere [12]. Identification of the nuclei bor-
ders, the sensorimotor GPi, and MER depths was performed by 
using the Distal Atlas [13] in Montreal Neurological Institute 
space (p > 0.5 threshold) with Lead DBS v2.3 [14] and an expert 
electrophysiologist. At the preoperative and postoperative fol-
low-up evaluations, the Burke–Fahn–Marsden Dystonia Rating 
Scale (BFMDRS) was employed to assess the motor severity. The 
demographic and clinical profiles of the patients are presented 
in Table 1.

We adopted the methodology used to compare STN electro-
physiology in monogenetic and idiopathic forms of Parkinson's 
disease (PD) [15]. Briefly, we divided MERs into 50 ms seg-
ments, computed the root mean square (RMS), and labeled 
segments stable if their RMS values were within three stan-
dard deviations of the median RMS. The longest stable sec-
tion of each recording was selected for further analysis [16]. 
To estimate the power spectral density (PSD), we rectified the 
stable raw signal and subtracted the mean to reveal the low-
frequency envelope. The PSD was estimated with a resolution 
of 1/3 Hz and normalized to the total power within the analysis 
range (2–200 Hz) to mitigate the influence of varying RMS val-
ues across patients [16]. The length of the detected GPi region 
was normalized to 1, where 0 represents the GPi entry [15]. 
Trajectories were included in analyses if they had a minimum 
GPi length of 2 mm and recordings from at least four distinct 
depths (Figure S1). Theta (4–8 Hz), alpha (8–12 Hz), beta (12–
30 Hz), and gamma (30–100), band activity was extracted using 
a four-pole Butterworth band-pass filter. The fraction of power 
and the ratio between these bands were measured as electro-
physiological features.

Kruskal–Wallis and post hoc Dunn's test with Holm–Bonferroni 
correction were used for group comparison. Spearman's cor-
relation with permutation testing was used to assess the sig-
nificance of linear relationships between variables, with 
Benjamini/Hochberg (FDR) correction applied to the p values 
for measured correlations. All tests were two-tailed, and statis-
tical significance was defined as p ≤ 0.05. We employed a linear 
mixed model (LMM) with the Wald test to investigate the in-
teraction between normalized depths and spectral properties 
within the GPi by considering genetic factors as random effects. 
This approach allowed us to assess the influence of GPi depth on 
spectral properties while accounting for random variation from 
genetic factors and individual differences.
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3   |   Results

In total, 597 MERs were collected from 70 trajectories across 30 
patients in the cohort (Table S2). All analyzed MER trajectories 
passed through the sensorimotor portion of the GPi. Therefore, 
we do not anticipate spatial confounders affecting the electro-
physiology (Figure 1A).

Elevated relative power in the theta and alpha bands compared 
to the baseline (median power of the whole spectrum up to 100 
Hz) was observed across dystonia syndromes (Figures  S2 and 
S3). We detected statistically significant differences between pa-
tient groups in all spectral features except for the alpha/theta 
ratio (p ≤ 0.05, Kruskal–Wallis test with Holm–Bonferroni cor-
rection) (Table S4). The fraction of alpha band activity remained 
significantly lower for DYT-SGCE (2.97%) compared to iDYT 
(4.44%, p = 0.006, Dunn's test with Holm–Bonferroni correc-
tion) and DYT-THAP1 (4.51%, p = 0.011) patients (Figure  1B). 
Similarly, the fraction of power in the theta band was signifi-
cantly lower in DYT-SGCE (4.42%) compared to the iDYT (7.91%, 
p = 0.002) and DYT-THAP1 (7.00%, p = 0.019) (Figure 1B,C). The 
fraction of gamma power for the DYT-VPS16 group (37.04%) 
was significantly higher than the remaining groups, apart from 
DYT-SGCE (Figure 1B).

We investigated whether the observed electrophysiological dif-
ferences were linked to motor symptom severity rather than ge-
netic etiology. This was accomplished by calculating Spearman's 
correlation between the median values of electrophysiological 
features for patients and their corresponding baseline BFMDRS 
scores, as well as the percentage change observed in these 
scores between the preoperative and postoperative evaluations 
(Figure 1D). We observed a moderate effect size (0.4–0.6) in the 
relationship between certain clinical and spectral feature pairs, 
but none reached statistical significance (p > 0.05, Spearman's 
correlation with FDR correction) (Figure 1D). Although no sig-
nificant correlation was found, the power spectral characteris-
tics of the GPi in iDYT cases appeared to be more associated 
with disease severity compared to genetic dystonia syndromes 
(Figure S4).

Additionally, we sought to elucidate the spatial characteristics 
of GPi electrophysiology along MER trajectories by measuring 
the linear relationship between the normalized depths (GPi 
entry = 0, GPi exit = 1) and spectral features. The beta/theta and 
beta/alpha ratios (rs = 0.30, p = 0.049) demonstrated significant 
linear characteristics between the borders of the GPi in DYT-
VPS16 patients (Figure  1E). Finally, no evidence was found 
to support the role of genetic etiology in spatially modulating 
the electrophysiological properties of MER recordings within 
the GPi (LMM, Wald test with Holm–Bonferroni correction, 
p > 0.05) (Table S5).

4   |   Discussion

Here, we presented the potential of dystonia genetic etiology 
to influence the low-frequency components of GPi electro-
physiology. Reductions in theta and alpha band activities were 
observed in DYT-SGCE compared to DYT-THAP1 and iDYT pa-
tients. These differences cannot be attributed to the severity of Id
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FIGURE 1    |    Electrophysiological characterization of power spectral properties of GPi for genetic and idiopathic dystonia syndromes. (A) 
Reconstruction of MER trajectories in MNI space, color-coded according to genetic etiology. (B) Statistical comparison of power spectral features 
was performed with Dunn's test with Holm–Bonferroni correction; significant results are indicated by color coding. (C) Box plots displaying the 
distributions of theta and alpha power fraction across dystonia groups. (D) Correlation matrix depicting linear relationship between spectral and 
clinical features, as determined by Spearman's correlation coefficient. The magnitude of each correlation score is indicated by the size and color of 
the marker. Regression plots highlight significant correlations between selected feature pairs, with scatter color-coded based on the genetic etiolo-
gy. (E) Heatmap showing the correlation between normalized depth levels and electrophysiological features across patient groups. Regression plots 
depict the behavior of selected electrophysiological features along normalized depth levels, with the degree of correlation indicated by Spearman's 
correlation coefficient.
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dystonia, as no significant correlation was found between these 
components and the severity of motor symptoms. We further 
demonstrated that the genetic etiology of dystonia is irrelevant 
to MER-based lead localization in GPi-DBS surgeries, as the spa-
tial characteristics of spectral features remain consistent when 
genetic factors are treated as random effects in LMM.

Weill and colleagues proposed that genetic heterogeneity in PD 
is not associated with robust electrophysiological differences in 
STN [15]. In our case, we found significant differences between 
the low-frequency activity of DYT-SGCE from DYT-THAP1 and 
iDYT in the GPi. It has been proposed that distinct oscillatory 
circuit disruptions may underlie dystonia and parkinsonism, 
even in the same anatomical structure [9]. In this context, the 
effects of genetic etiology on different movement disorders and 
brain regions can exhibit differences. Our results align with this 
study, as we did not observe any impact of genetic etiology on the 
spatial characteristics of GPi electrophysiology.

We previously analyzed the pallidal single-unit activity in a 
larger genetic dystonia cohort [17], including the patients an-
alyzed here. We observed convergence among dystonia genes 
toward either strong bursts or tonic behavior, with SGCE and 
THAP1 exhibiting opposite behaviors. This is consistent with 
the differing low-frequency activity of the GPi associated with 
these two genes at the population level in the present work [17].

It should be noted that our study has several limitations. The 
limited sample size may impact the findings, though the high 
number of single MER epochs could mitigate this to some ex-
tent. The limited number of trajectories per patient prevented 
a consistent evaluation of potential spatial confounding factors 
along the anteroposterior and mediolateral directions. Lastly, 
electrophysiological activity recorded from the GPi using mi-
croelectrodes reflects considerably smaller neuronal popula-
tions compared to LFPs recorded with DBS macroelectrodes. 
Therefore, the potential effects of genetic etiology should also be 
investigated in LFP recordings.

In conclusion, we suggest the genetic etiology may potentially 
impact low-frequency activity within the GPi, especially in pa-
tients with DYT-SGCE, where these bands seem to be underrep-
resented. An adaptive DBS paradigm for dystonia based on the 
spectral fluctuations of recorded activity should then take into 
account potential differences between genetic dystonia profiles. 
However, further studies with larger sample sizes and a broader 
range of dystonia genes are needed to evaluate the clinical rele-
vance of our hypothesis.
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