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Abstract 

Avian influenza virus (AIV) currently causes a panzootic with extensive mortality in wild birds, poultry, and wild mammals, thus posing 
a major threat to global health and underscoring the need for efficient monitoring of its distribution and evolution. We here utilized 
a well-defined AIV strain to systematically investigate AIV genetic characterization through rapid, portable nanopore sequencing by 
comparing the latest DNA and RNA nanopore sequencing approaches and various computational pipelines for viral consensus sequence 
generation and phylogenetic analysis. We show that the latest direct RNA nanopore sequencing updates improve consensus sequence 
generation, but that the application of the latest DNA nanopore chemistry after reverse transcription and amplification outperforms, 
such native viral RNA sequencing by achieving higher sequencing accuracy and throughput. We additionally leveraged the direct RNA 
nanopore sequencing data for the detection of RNA modifications, such as N6-methyladenosine and pseudouridine, which play a role 
in viral immune evasion. Finally, we applied these sequencing approaches together with portable AIV diagnosis and quantification 
tools to environmental samples from a poultry farm, demonstrating the feasibility of nanopore sequencing for on-site non-invasive 
AIV monitoring in real-world outbreak scenarios. 
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Introduction
Avian influenza virus (AIV) is currently responsible for the largest 
and deadliest panzootic in Europe, South America, and North 
America (Adlhoch et al. 2023); it is known to have spilled over from 
wild bird populations to poultry and humans, posing a risk for 
causing a future pandemic (Mostafa et al. 2018). Wild birds are the 
main reservoir of low-pathogenicity AIV (LPAIV), in particular the 
Anseriformes (waterfowl) and Charadriiformes (shorebirds) orders 
(Webster et al. 1992). These birds are asymptomatic to LPAIV and 
can spread the virus to poultry around the globe (Swayne 2008). 
Once in gallinaceous species (landfowl), LPAIV can evolve into 
high pathogenicity AIV (HPAIV), resulting in animal welfare, finan-
cial, and social issues due to high poultry mortality, economic 
loss, and food insecurity (Adlhoch et al. 2023). LPAIV and HPAIV 
further have the potential to adapt and spread to mammalian 
species. Since the emergence of H5N1 HPAIV in a domestic goose 

in Guangdong China in 1996 (“Gs/GD lineage”), it has become 
clear that HPAIV can also be transmitted back to and subse-
quently maintained in wild bird populations (Verhagen et al. 2021). 

As many Anseriformes and Charadriiformes populations perform 

long-distance migrations, they can rapidly spread AIV variants 

across countries and continents (Mathieu et al. 2017).
AIV is a segmented, negative-strand RNA virus from the 

Orthomyxoviridae family. Its error-prone polymerase, which results 

in a high mutation rate, as well as its segmented genome in com-

bination with mixed infections allow this virus to be in continuous 
evolution due to antigenic drift and antigenic shift (Swayne 2008). 

One such example is the frequent mutation of LPAIV into HPAIV 

after recurrent replication in poultry, which provides the perfect 
environment for the virus to adapt due to the high density of sus-

ceptible, genetically similar hosts (Van Oosterhout 2021). This evo-
lutionary plasticity of AIV means that the application of rapid DNA 
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and RNA sequencing to determine their genome composition can 
help to quickly characterize AIV genomic variation, allowing vir-
ulence prediction, the reconstruction of transmission dynamics, 
and determination of outbreak’s origin (de Vries et al. 2022).

The application of on-site real-time nanopore sequencing 
technology by Oxford Nanopore Technologies provides a unique 
genetics-based method to characterize AIV in a fast, straightfor-
ward, and cost-efficient manner (Urban et al. 2023), which can 
make viral surveillance accessible in low- and middle-income 
countries as well as in remote field setting for wild bird monitor-
ing. This technology has been established for AIV genetic char-
acterization through sequencing of complementary DNA (cDNA) 
after reverse transcription (RT) and multisegment PCR amplifica-
tion (M-RTPCR) using DNA-optimized nanopores (“R9” chemistry) 
(de King et al. 2020, Crossley et al. 2021, Vries et al. 2022, Croville 
et al. 2024). While a variety of computational pipelines have sub-
sequently been used for data analysis and consensus sequence 
generation, they have not yet been systematically assessed and 
compared (de Shepard et al. 2016, Keller et al. 2018, Rambo-Martin 
et al. 2020, Crossley et al. 2021, King et al. 2022, Vries et al. 2022, 
Nabeshima et al. 2023, Croville et al. 2024). Keller and Rambo-
Martin et al. (Keller et al. 2018) have further applied direct RNA 
nanopore sequencing to the viral RNA (vRNA) of AIV, which can 
circumvent biases introduced through cDNA synthesis (Viehweger 
et al. 2019). This protocol can additionally be faster than cDNA 
protocols because it omits M-RTPCR, making its duration com-
parable to those amplification protocols with fewer amplification 
cycles (Thielen 2022). It further allows for the detection of RNA 
modifications (Abebe et al. 2022), which have been shown to play 
a role in viral immune evasion (Furuse 2021; Lu et al. Mijia et al. 
2020). Such direct RNA sequencing (“RNA002” chemistry) has, 
however, been based on the existing DNA-optimized nanopore 
technology (R9 chemistry) and has therefore suffered from high 
sequencing error rates and low-sequencing throughput, as well as 
from a lack of multiplexing options for efficient sample processing 
(Keller et al. 2018, Miten et al. 2022).

Here, we used a well-defined viral culture to conduct a sys-
tematic study for AIV genetic characterization through nanopore 
sequencing by comparing cDNA and vRNA sequencing of AIV 
in terms of sequencing data throughput, read-level accuracy, 
and consensus sequence accuracy. Besides the previously bench-
marked nanopores (R9 chemistry) for DNA and RNA sequencing of 
AIV, we for the first time applied the latest improvements in DNA 
nanopore sequencing (“R10” chemistry) with increased sequenc-
ing accuracy, and in RNA sequencing with increased sequencing 
throughput due to novel RNA-specific nanopores (“RNA004” chem-
istry). We further systematically assessed the performance of 
different computational analysis pipelines based on subsampling 
experiments of our nanopore data. We also leveraged data from 
the novel RNA-specific nanopores to, for the first time, detect and 
characterize RNA modifications in AIV directly from viral RNA. We 
finally included the comparison of portable approaches for on-site 
viral diagnosis and quantification with standard laboratory-based 
approaches, and applied our portable AIV diagnosis and genetic 
characterization pipeline to non-invasively collected dust samples 
from a poultry farm during an AIV outbreak.

Materials and methods
Viral diagnosis and quantification

H1N1 LPAIV was isolated from a duck sample in 2006 (strain 
A/duck/Italy/281 904/2006) and isolated in specific pathogen-

free (SPF) eggs as previously described (Brauer and Chen 2015). 
The high-quality reference genome was obtained from Sanger 
sequencing data [(Schoch et al. 2020), GenBank accession num-
ber: FJ432771]. We extracted RNA from egg allantoic fluids using 
Macherey–Nagel’s NucleoSpin RNA Virus extraction kit, and quan-
tified the extracted RNA using the Qubit RNA BR assay. We addi-
tionally used Biomeme’s M1 Sample Prep Cartridge Kit for RNA 2.0 
(de Vries et al. 2022) and Lucigen’s Quick Extract DNA Extraction 
Solution kit to assess the performances of faster and portable RNA 
extraction approaches. For Quick Extract, we followed the man-
ufacturer’s instructions and, additionally, an alternative method 
adapted for SARS-CoV-2 RNA extraction (Ladha et al. 2020). We 
then compared the performance of the different kits in terms of 
detection and quantification rates using standard RT-PCR (Applied 
Biosystems 7500 Fast Instrument, Thermo Fisher) and portable 
RT-PCR [Magnetic Induction Cycler quantitative PCR (Mic qPCR), 
Bio Molecular Systems]. We targeted a highly conserved region of 
99 bases of the AIV MP gene using the same primers and probe as 
well as amplification conditions as previously described to detect 
and quantify AIV using RT-PCR (Spackman et al. 2002, Sánchez-
González et al. 2020). We found that the NucleoSpin RNA Virus 
kit was the most efficient RNA extraction approach, yielding the 
lowest Ct (cycle threshold) values (Ct of 12–10). While we there-
fore continued our analyses with this kit, the portable Biomeme 
M1 Sample Prep Cartridge Kit, which allows for RNA extraction 
in just 5 min, yielded only slightly higher Ct values (Ct of 15–12) 
and should therefore constitute a fully portable alternative (Sup-
plementary Fig. S7). The standard Applied Bio 7500 and portable 
Mic qPCR systems further showed comparable performance (Sup-
plementary Fig. S7); we therefore continued our analyses with the 
portable Mic qPCR machine.

Nanopore sequencing
We performed nanopore sequencing of the NucleoSpin RNA 
extracts. First, we performed direct vRNA sequencing using the 
RNA002 and RNA004 chemistries. We specifically targeted AIV 
RNA following the protocol described by Keller and Rambo-Martin 
et al. (Keller et al. 2018). Briefly, direct RNA nanopore sequenc-
ing requires a reverse transcriptase adapter (RTA), which usually 
captures poly(A) tails of the messenger RNA (mRNA); a sequenc-
ing adapter then ligates to the RTA and directs the mRNA to the 
nanopore. To target AIV RNA, we used a modified RTA, i.e. a custom 
oligonucleotide that is complementary to the 3′-region that is con-
served across all AIV segments. As these conserved regions differ 
slightly across segments, we used two custom oligonucleotides, 
RTA-U12 and RTA-U12.4, which were mixed at a molar ratio of 
2:3 to a total concentration of 1.4 μM (Keller et al. 2018). We sub-
sequently used the portable MinION Mk1c device for nanopore 
sequencing; for the R9 chemistry sequencing, we used a FLO-
MIN106 R9.4.1 flow cell, and for the RNA chemistry, we used a 
FLO-MIN004RA flow cell.

Second, we performed cDNA sequencing using the R10.
4.1 chemistry and rapid barcoding library preparation (SQK-
RBK114.24) after cDNA conversion of the extracted RNA and 
multisegment amplification through M-RTPCR. M-RTPCR was per-
formed as described previously, targeting the conserved regions 
across all AIV segments (Kampmann et al. 2011, Thielen 2022). 
Briefly, the extracted RNA was mixed with Superscript III One-Step 
PCR reaction buffer and the previously defined primers, the PCR 
reactions were run on a portable Mic qPCR device. For sequencing, 
we used three barcodes with the same sample to increase the total 
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quantity of cDNA added to the final sequencing library. We subse-
quently used the portable MinION Mk1c device and a FLO-MIN114 
R10.4.1 flow cell for nanopore sequencing.

Data processing
We obtained raw nanopore sequencing data in fast5 format 
and in pod5 format in the case of RNA004. For the fast5 
files, we used the Guppy (v6.4.8 + 31becc9) high-accuracy base-
calling model (HAC; rna_r9.4.1_70bps_hac model for vRNA, 
dna_r10.4.1_e8.2_400bps_hac model for cDNA); for the pod5 
files, we used the Dorado (v0.4.3 + 656766b) HAC model for RNA 
(rna004_130bps_hac). After removing short reads (<50 bases) using 
SeqKit (v2.4.0) (Shen et al. 2016), we used Minimap2 (v2.26) (Heng 
2018) with the -ax map-ont configuration for cDNA and the -ax splice 
-uf -k7 configuration for vRNA reads to align the resulting fastq 
files to our ground-truth reference genome (GenBank accession 
number: FJ43277). We converted the resulting sam files to bam 
files, indexed, and sorted them using SAMtools (v1.17) (Heng et al. 
2009) to obtain the genome coverage distribution and to deter-
mine if a minimum average genome coverage >50× was attained 
(Khrenova et al. 2022). The read-level percent identity was calcu-
lated using BLAST identity and pomoxis (v0.3.16) (https://github.
com/nanoporetech/pomoxis) as the official read accuracy metric 
proposed by Oxford Nanopore Technologies (https://labs.epi2me.
io/quality-scores/).

While data processing was performed on a high-performance 
compute cluster for this study, we successfully tested its imple-
mentation on portable laptops (for example, on the 8 GB NVIDIA 
GeForce RTX 4070 GPU, 16 GB 5200 MHz RAM, and an Intel i7-
13800 H CPU with 14 cores and 20 threads) (Sauerborn et al. 
2024).

Data subsampling
To compare all nanopore sequencing results, we subsampled the 
three sequencing datasets using seqtk (v1.4) (Shen et al. 2016) 
from the raw data to the mean genome coverage of the dataset 
with the smallest mean coverage (“subsampled” data). This prac-
tically meant subsampling the cDNA fastq file to 10% and the 
RNA004 fastq file to 20% of its original number of reads. We further 
subsampled this subsampled data to simulate results from less 
sequencing data or from samples with lower viral load, namely to 
10% and 1% of the subsampled data.

Consensus sequence generation
For reference-based consensus sequence generation, we mapped 
each dataset to a reference database generated for each segment 
from the NCBI Influenza Virus Database, which contains all AIV 
nucleotide sequences from Europe (as of 04 March 2023). We 
excluded the true reference sequence of our H1N1 virus from all 
segment-specific reference databases in order to simulate a real-
istic situation where the true genomic sequence of our AIV strain 
would not yet be known. We indexed the reference databases 
and mapped our sequencing reads against the databases using 
Minimap2. We then indexed and sorted the sam files and con-
verted them to bam files using samtools. Using samtools idxstats, 
we selected the segment reference to which most reads mapped 
across every segment. All our reads were then mapped to the best 
reference for each of the eight segments of the influenza genome 
using Minimap2.

We then tested two standard reference-based computational 
pipelines to generate the consensus sequence from this align-
ment, BCFtools (v1.17) (Danecek et al. 2021) and iVar (v1.4.2) 

(Grubaugh et al. 2019). We additionally used the Iterative Refine-
ment Meta-Assembler (IRMA; v1.0.3) (Shepard et al. 2016) that 
iteratively refines the reference used in the analysis to increase the 
accuracy of the consensus sequence obtained. Using this pipeline, 
the consensus of each segment can be obtained directly from the 
fastq file without intermediate steps required by the user. We used 
the “FLU-minion” configuration for nanopore sequencing data, 
which drops the median read Q-score filter from 30 to 0, raises 
the minimum read length from 125 to 150, raises the frequency 
threshold for insertion and deletion refinement from 0.25 to 0.75 
and 0.6 to 0.75, respectively, and lowers the Smith–Waterman mis-
match penalty from 5 to 3 as well as the gap open penalty from 10 
to 6. We further applied Oxford Nanopore Technologies’ EPI2ME 
(v.5.1.9.) workflow for influenza viruses (“wf-flu”) to our data, 
which is also based on a reference-based consensus sequence gen-
eration approach, but which uses a specific influenza reference 
database which only focuses on the FluA and FluB segments (htt
ps://labs.EPI2ME.io/influenza-workflow/).

For de novo consensus sequence generation, we used Flye 
(v2.9.2) with and without the—meta flag (Kolmogorov et al. 2020), 
followed by assembly polishing using racon (v1.4.3) (Vaser et al. 
2017). We additionally applied the Chan Zuckerberg ID (CZID) 
(Kalantar et al. 2020, Simmonds et al. 2024) pipeline to our 
data, which performs a combination of de novo and reference-
based approaches: It uses metaFlye to assemble the data and 
generate contigs, followed by Minimap2-alignments of the still 
unassembled reads against the NCBI database (Sayers et al.
2021).

To evaluate the consensus sequence generation pipelines, we 
used blastn (v2.15) (Altschul et al. 1990) to align every consensus 
segment to our known reference genome and then calculated the 
BLAST percent identity per segment.

Environmental sample analyses
We finally obtained environmental samples (surface dust col-
lected with dry wipes on building’s walls and feeders) from four 
HPAIV H5N1 Gs/GD lineage outbreaks in 2022 and 2023 in duck 
farms in South-west and West regions of France (Croville et al. 
2024). The environmental samples were processed and analyzed 
as described earlier for the LPAIV H1N1 viral cultures. For the 
phylogenetic tree reconstruction, we incorporated all recent AIV 
strains from Europe (from 1 January 2020 until 1 May 2023) from 
the NCBI Influenza Virus Database; visualization was done using 
IROKI (Moore et al. 2020). Due to the relevance of the HA segment 
for host cell penetration and phylogenetic analysis, we exclusively 
focused the analysis on this segment. We additionally subjected 
RNA from H1N1 LPAIV to a 10-fold serial dilution (1/10 with a Ct
of 15, 1/100 with a Ct of 18, 1/1000 with a Ct of 22, and 1/104 with a 
Ct of 25) and sequenced it using direct RNA sequencing with RNA 
chemistry to determine the limit of detection using our ground-
truth reference genome (GenBank accession number: FJ43277) to 
align the resulting fastq files.

Basecalling of RNA modifications
We identified N6-methyladenosine (m6A) and Pseudouridine 
(pseU) RNA modifications in the RNA004 data using the respective 
Dorado basecalling models (rna004_130bps_sup@v5.0.0_m6A@v1; 
rna004_130bps_sup@v5.0.0_pseU@v1). Subsequent analysis was 
performed using Modkit (v0.2.4.) (https://github.com/nanopo
retech/modkit); modifications called with high confience were 
selected using stringent criteria (i.e. >50% of reads classified as 
modified and at least 1000X coverage).
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Figure 1. DNA- and RNA-based nanopore sequencing of an AIV viral culture using cDNA (R10 chemistry), RNA002 (direct RNA sequencing using R9 
chemistry) and RNA004 (direct RNA sequencing using RNA-specific nanopores). (a) Sequencing read-length distribution of the cDNA, RNA002, and 
RNA004 datasets. (b) Reference genome coverage of the cDNA, RNA002, and RNA004 datasets across all AIV segments (PB1: polymerase basic 1, PB2: 
polymerase basic 2, PA: polymerase acidic, HA: hemagglutinin, NP: nucleoprotein, NA: neuraminidase, M: matrix, NS: nonstructural). The horizontal 
line indicates a coverage of 50× as recommended for short fragments such as these viral reads (Khrenova et al. 2022) (see “Materials and methods” 
section).

Results
DNA- and RNA-based nanopore sequencing of 
AIV culture
We used a known viral culture isolate to briefly compare portable 
viral diagnosis and quantification approaches to standard labo-
ratory approaches (see “Materials and methods” section) to then 
compare the latest DNA- and RNA-based nanopore sequencing 
approaches in terms of on-site AIV genetic characterization (see 
“Materiald and methods” section). The RNA002 chemistry resulted 
in lower sequencing throughput (33,255 sequencing reads) in com-
parison to RNA004 (269,621 reads) and cDNA (326,956 reads), and 
also in a shorter read-length distribution (median read length 
of 538 bases) in comparison to RNA004 (median read length 
579 bases) (Fig. 1a). The median read-level accuracy of RNA002 
was further slightly lower in comparison to RNA004 (90% ver-
sus 90.8%), while the cDNA achieved the highest median read-
level accuracy of 96.6% (see “Materiald and methods” section). 
The alignment of the sequencing reads to the AIV reference seg-
ments showed an uneven coverage distribution across the genome 
(Fig. 1b), with the mean coverage ranging from 537× (range from 
8× to 4070×) in the case of RNA002 to 2809× (range from 1X to 
12 581×) in the case of RNA004 to 5281× (range from 6× to 25 028X) 
in the case of cDNA. All sequencing approaches resulted in to sim-
ilar coverage of the AIV polymerase segments, and both direct 
RNA sequencing approaches resulted in decreased coverage at the 
3′-ends of each segment (Fig. 1b).

Viral consensus sequence generation
We used different computational pipelines to generate the AIV 
consensus sequence and used the percent identity in compar-
ison to the known AIV reference to evaluate the quality of 
the consensus sequences (see “Materials and methods” section). 
Given the uneven sequencing throughput and median genome 
coverage across the cDNA, RNA002, and RNA004 datasets, we 
here performed subsampling to a similar mean genome cover-
age of ∼530×, which represents the mean coverage of the dataset 
RNA002 with the lowest coverage to compare the three differ-
ent sequencing modalities (see Methods; Supplementary Table S1 
and Fig. S2). Besides this “subsampled” datasets, we generated 

“10%-subsampled” and “1%-subsampled” datasets to assess the 
performance of the computational pipelines at even lower cov-
erage (see Table S1 for final mean and standard deviation of the 
coverage of the subsampled datasets).

In the subsampled data of ∼530× mean genome coverage, only 
the reference-based approaches BCFtools and iVar as well as the 
iterative reference-based assembly tool IRMA were able to gen-
erate the consensus sequence of all eight viral segments and 
resulted in a high percent identity of the consensus sequence in 
comparison with the known AIV reference (Fig. 2). The reference-
based EPI2ME did not generate a consensus of the NS and HA 
segments. The hybrid de novo and reference-based approach CZID 
and the de novo assembler metaFlye only assembled the largest 
segments PA, PB1, and PB2, while Flye (without the metagenomics 
configuration) only assembled the PA and PB2 segments.

At even lower coverage (“10%-subsampled” and “1%-
subsampled” datasets), we further found performance differ-
ences between BCFtools, iVar, and IRMA. For all three sequencing 
approaches (cDNA, RNA002, RNA004), BCFtools performed best 
across all viral segments, with IRMA being unable to generate cer-
tain segments at very low coverage after 1%-subsampling, namely 
PB1 for cDNA, and HA and NS for RNA002 (Fig. 2; Supplemen-
tary Table S1). The 1%-subsampled data also revealed differences 
across the sequencing approaches, where RNA004 outperformed 
RNA002 and cDNA surpassed both RNA-based methods with the 
exception of the polymerase segments.

Viral RNA modifications
To show the advantage of direct RNA sequencing, we used the 
RNA004 dataset as the best-performing direct RNA approach 
and basecalled all N6-methyladenosine (m6A) and Pseudouridine 
(pseU) modifications (see “Materials and methods” section). We 
identified 5741 m6A modifications and 6,510 pseU modifications 
(Files S5 and S6). After stringent filtering to identify modified bases 
with high confidence, we found one m6A modification on segment 
M (position 685), and four pseU modifications: one on segment 
PB2 (position 600), one on segment NS (position 235), and two on 
segment NP (position 189 and position 585).
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Figure 2. Evaluation of viral consensus sequence generation from nanopore sequencing datasets (cDNA, RNA002, RNA004) across subsampled 
datasets and the computational tools BCFtools, iVar, and IRMA. The consensus sequence was evaluated across the eight viral AIV segments (PB1: 
polymerase basic 1, PB2: polymerase basic 2, PA: polymerase acidic, HA: hemagglutinin, NP: nucleoprotein, NA: neuraminidase, M: matrix, NS: 
nonstructural) through percent identity in comparison to the known AIV reference (see “Materials and methods” section).

Nanopore-based AIV genetic characterization 
from environmental samples
Given the good performance of cDNA and RN004 data and 
BCFtools analysis for viral consensus sequence generation, includ-
ing from low-coverage data (Fig. 2; Supplementary Table S1), we 
next performed nanopore sequencing and analysis of four envi-

ronmental samples collected from dust on a duck farm in France 

after an AIV outbreak (with M segment Ct (cycle threshold) values 
ranging from 24 to 26; see “Materiald and methods section).

The RNA004 chemistry did not generate any sequencing reads 
aligning with the influenza database; we therefore tested the sen-

sitivity of RNA004 through tenfold serial dilutions of the extracted 

RNA (see “Materials and methods” section). We determined that 
the limit of detection was a Ct of 18 from the 1/100 dilution, 

with higher dilutions leading to higher Ct values and generating a 
higher proportion of failed (at quality score QC < 7) to passed reads 
Supplementary Fig. S3).

The cDNA chemistry resulted in similar read length and 
genome coverage distributions across the four environmental 
samples (Supplementary Fig. S4). BCFtools was able to generate 
consensus sequences of all eight viral segments, except for the 
PA segment from Sample 1 with a Ct value of 24. A phylogenetic 
tree based on the HA segment of the four environmental sam-
ples and known AIV strains from the NCBI influenza database 
(see “Materials and ethods” section) gives some first insights into 
the phylogenetic relationship between our farm’s viral strain and 
previously known AIV strains (Fig. 3).

Discussion
We present an optimized nanopore sequencing pipeline suitable 
for rapid field studies from non-invasively collected environmen-
tal samples. Our fully portable protocols can genetically char-
acterize AIV to the strain level and identify their evolutionary 
trajectory and potential transmission patterns. The implemen-
tation of such strategy for AIV monitoring—including in low- 
and middle-income countries and in remote areas such as along 
long-distance migration routes of potential avian hosts—holds the 
promise of rapidly and appropriately informing prevention and 
control measurements as part of a global “One Health” strategy.

We are the first to show that the latest advances in direct 
viral RNA (RNA004 chemistry) as well as cDNA (R10 chem-
istry) nanopore sequencing provide robust genomic approaches to 
rapidly generate viral consensus sequences even after intensive 
data subsampling when combined with appropriate consensus 
sequence tools such as BCFtools. While previous studies have 
explored the application of nanopore sequencing to AIV, they 
have often been limited to one or a few computational analysis 
pipelines (de Keller et al. 2018, Rambo-Martin et al. 2020, Cross-
ley et al. 2021, King et al. 2022, Vries et al. 2022, Nabeshima et al. 
2023, Croville et al. 2024). While viral RNA sequencing has fur-
ther previously been applied to AIV analysis (Keller et al. 2018), the 
high sequencing error rate and low throughput of the previously 
established direct RNA nanopore sequencing protocols (RNA002 
chemistry) made consensus sequence generation complicated. In 
an application to a highly concentrated viral sample, we here 
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Figure 3. Phylogenetic tree of the cDNA nanopore sequencing- and BCFtools-based AIV consensus sequences from four environmental samples (dust 
samples from a duck farm in France) and known European AIV strains retrieved from the NCBI influenza database (see “Materials and methods” 
section). The tree is based on the AIV HA segment. A branch length of 0.1 represents 10 substitutions per 100 genetic sites.

find that the RNA004 chemistry provides substantially better 
results in terms of sequencing throughput, read-length distribu-
tions, and viral consensus sequence generation than RNA002. This 
chemistry is the first to be based on RNA-optimized nanopores, 
which has been shown to improve sequencing throughput and 
increase read lengths in other benchmarking studies (pers. comm. 
with Oxford Nanopore Technologies). This direct RNA sequencing 
chemistry is even comparable to highly accurate cDNA nanopore 
sequencing (R10 chemistry) of the same AIV culture in terms of 
the quality of the viral consensus sequences. However, in terms of 
read-level sequencing accuracy, we found similar results between 
the RNA004 and RNA002 chemistries, showing that the main 
difference in consensus sequence quality seems to be due to 
sequencing throughput.

We further found uneven viral segment coverage across and 
within viral segments for all three sequencing modalities. Our 
cDNA data showed decreased coverage of the polymerase seg-
ments, while the RNA002 data showed decreased coverage of 
the respective other segments. We hypothesize that these cov-
erage disparities stem from biases introduced through the use 
of universal primers for cDNA amplification and through the 
oligonucleotide adapters targeting AIV for direct RNA sequencing, 
respectively. The newest direct RNA sequencing protocol RNA004, 
on the other hand, relies on an alternative ligase enzyme, which 
might explain its more even coverage across segments. Within 
segments, all nanopore sequencing modalities resulted in uneven 
coverage. This especially applies to the direct RNA sequencing 
approaches, where the systematic decrease in coverage towards 
the end of the segment might be explained by sequencing adapters 
targeting the segments’ conserved 3′-end in combination with 
rapid RNA fragmentation (Keller et al. 2018).

We compared the performance of several reference-based, de 
novo assembly-based, and hybrid computational approaches to 
reconstruct the viral consensus sequence from nanopore data 
at various subsampling thresholds. While web-based tools such 

as EPI2ME and CZID are more user-friendly than the remaining 
tools which rely on the usage of the command line, they did not 
perform well in generating the consensus sequence of all AIV 
segments—even in the datasets with a high mean genome cov-
erage of >500×. In the case of the reference-based EPI2ME tool, 
the poor performance could be due to the analysis’ restriction 
to US AIV references. In the case of the hybrid-assembler CZID, 
only assemblies from the longer viral segments could be obtained. 
We faced the same problem when using the de novo assembly 
command line tool Flye, which can be explained by Flye’s incom-
patibility with reads shorter than 1 kb (which exceeds the entire 
length of some viral segments). We found that the Flye version 
for metagenome assembly (using the—meta flag) worked better 
for reference reconstruction; this might be related to the fact 
that metaFlye does not assume even coverage across the genome, 
which is a suitable configuration for highly diverse RNA viruses 
where amplification or targeting biases might result in uneven 
coverage across segments (Hunt et al. 2015, Kolmogorov et al. 
2020, Meleshko et al. 2021).

The reference-based command line tools BCFtools and iVar as 
well as IRMA which relies on iterative refinement were able to 
generate high-quality viral consensus sequences for all nanopore 
data at high genome coverage. While some of these computa-
tional pipelines have previously been applied to AIV nanopore 
sequencing data, they have not yet been compared to each other, 
especially in application to different nanopore sequencing modal-
ities (Keller et al. 2018, Rambo-Martin et al. 2020, Croville et 
al. 2024, Nabeshima et al. 2023). Subsampling of high-coverage 
data identified BCFtools as the best tool when it comes to gen-
erating consensus sequences across viral segments similar to 
the known reference as measured by high percent identity. This 
demonstrates that high percent identities can be achieved with 
relatively small datatsets, which can be helpful for, for example, 
reducing sequencing time and costs. The good performance of 
BCFtools throughout our analyses might be due to its—in com-
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parison to iVar and IRMA—relatively strong reliance on reference 
data (Grubaugh et al. 2019, Danecek et al. 2021) and our incorpora-
tion of a comprehensive reference database. This suggests that the 
performance of BCFtools might decline when dealing with highly 
divergent and previously unseen RNA viruses, where other tools 
like IRMA or iVar might perform better. We acknowledge this as a 
limitation of our study, which could be addressed in the future by 
incorporating a variety of viral strains.

We further highlight that direct RNA sequencing simultane-
ously allows for RNA modification calling (Abebe et al. 2022). To 
the best of our knowledge, we are the first to identify m6A and 
pseU modifications in AIV using direct RNA nanopore sequenc-
ing technology. Such modifications play a critical role in viral RNA 
viruses, allowing them to mimic host RNA and thereby evade 
the host’s immune system and contribute to viral RNA stability 
and structural integrity, enhancing the virus’s ability to persist 
within host cells, which underscores the significance of direct 
RNA sequencing for epidemiology and immunology (Courtney 
et al. 2017, Mijia et al. 2020, Furuse 2021). However, we only 
detected a few modifications with high confidence, which sug-
gests that data from a single sequencing run might be insufficient 
for this type of analysis. To increase sequencing throughout from 
a single sequencing run, one can try to increase input by multi-
plexing several samples as, for example, suggested by Wiep et al.
(2024).

Finally, we proceeded to the nanopore-based genetic character-
ization of AIV from real-world environmental samples. As direct 
RNA sequencing through RNA004 did not result in any viral reads, 
we experimentally confirmed that the latest direct RNA sequenc-
ing chemistry has a limit of detection at a Ct of 18, which is similar 
to the limit of detection of the previous direct RNA sequencing 
chemistry (Keller et al. 2018). As this is lower than the normal 
range of Ct values of environmental samples (typically ranging 
from 26 to 40) (Coombe et al. 2021, Ahrens et al. 2023), direct viral 
RNA assessments seem to remain impractical for non-invasive 
AIV monitoring at this point. On the other hand, cDNA nanopore 
sequencing is based on multi-segment amplification through M-
RTPCR, which can be applied to samples with Ct values above 30 
(Zhou et al. 2009). In our case, cDNA nanopore sequencing was 
able to reconstruct complete viral consensus sequences from all 
environmental samples. However, cDNA nanopore sequencing did 
not result in a mean genome coverage of 50× in the case of the 
polymerase segments, which is recommended for short fragments 
such as our viral reads (Khrenova et al. 2022); this could be solved 
in the future by adapting the MT-RTPCR primers more to these 
segments.

We leveraged these data to reconstruct a phylogenetic tree and 
to show the phylogenetic relationship between our AIV strains and 
other contemporary H5 AIV strains. We here chose H5 strains from 
the NCBI influenza database that are responsible for the ongoing 
severe HPAIV panzootic (Adlhoch et al. 2023); one of the strains 
(A/turkey/France/22P024731/2022) that was most closely related 
to our environmental strains according to our phylogenetic recon-
struction has recently been responsible for a H5 HPAIV outbreak 
in another French farm.

In summary, our study highlights key aspects for advanc-
ing the rapid on-site genetic characterization and transmission 
surveillance of AIV. Together, these advancements pave the way 
for more holistic and accessible approaches to AIV monitoring, 
with implications for more efficient managing viral outbreaks in 
agricultural, ecological, and human health contexts.
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