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SVLearn: a dual-reference machine learning
approach enables accurate cross-species
genotyping of structural variants

QimengYang 1,7, Jianfeng Sun 2,7, XinyuWang1, JiongWang1, Quanzhong Liu3,
Jinlong Ru4, Xin Zhang3, Sizhe Wang3, Ran Hao3, Peipei Bian1, Xuelei Dai 1,5,
Mian Gong 1,6, Zhuangbiao Zhang1, Ao Wang1, Fengting Bai1, Ran Li1,
Yudong Cai 1 & Yu Jiang 1

Structural variations (SVs) are diverse forms of genetic alterations and drive a
wide range of human diseases. Accurately genotyping SVs, particularly
occurring at repetitive genomic regions, from short-read sequencing data
remains challenging. Here, we introduce SVLearn, a machine-learning
approach for genotyping bi-allelic SVs. It exploits a dual-reference strategy to
engineer a curated set of genomic, alignment, and genotyping features based
on a reference genome in concert with an allele-based alternative genome.
Using 38,613 human-derived SVs, we show that SVLearn significantly outper-
forms four state-of-the-art tools, with precision improvements of up to 15.61%
for insertions and 13.75% for deletions in repetitive regions. On two additional
sets of 121,435 cattle SVs and 113,042 sheep SVs, SVLearn demonstrates a
strong generalizability to cross-species genotype SVs with a weighted geno-
type concordance score of up to 90%. Notably, SVLearn enables accurate
genotyping of SVs at low sequencing coverage, which is comparable to the
accuracy at 30× coverage. Our studies suggest that SVLearn can accelerate the
understanding of associations between the genome-scale, high-quality geno-
typed SVs and diseases across multiple species.

Structural variations (SVs) are ubiquitously present in genomes and
have been associated with various biological traits1–3 and human
diseases4–6. In recent years, the advent of long-read sequencing tech-
nologies has significantly enhanced the ability to detect SVs7–9. Given
the high cost and scarcity of long-read sequencing data, SVs in larger
populations, especially at the sequence-resolved level, have still pri-
marily been genotyped from short-read sequencing data10–14. Yet, there
is a long-standing challenge in correctly calling SVs from short reads

for several reasons, such as their insufficient coverage of genomic
regions and the limited information to resolve complex
rearrangements15,16. To address this, several studies have experimented
with both short-read and long-read sequencing technologies for
accurately calling SVs17–19. In these cases, long reads are first used to
generate accurate SV sets or graph pangenomes, while a large cohort
of short reads are then applied to genotype known variant sets. As
such, long-read-derived SV sets, which are able to be genotyped
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directly from short reads, have been accumulated rapidly across var-
ious species20–22. These resulting genotyping data can be seamlessly
integrated into the downstream analysis workflows of genome-wide
association study (GWAS)23, selection2,22, and introgression18,21.

Computational strategies for identifying genotypes of SVs begin
by constructing a graph to which short reads are aligned using geno-
mic sequences of both reference and alternative alleles24,25. These
graph-based methods have been shown effective in elevating geno-
typing accuracy in that biases towards the reference allele linked to a
single linear genome are vastly reduced26. With a remarkable increase
in the availability of computational algorithms and the volume of SV
data, several established approaches, such as Paragraph27 and
GraphTyper228, have opted to omit the elimination of reference allele
biases, but instead, directly project reads (aligned to SV loci in a linear
reference genome) onto localized SV graphs at the cost of computa-
tional efficiency. However, the lack of information about those
unmapped short reads also makes genotyping some certain types of
SVs challenging25. Some recently released methods, such as Giraffe26

and PanGenie29, gain better genotyping accuracy at a noticeably
increasing computational cost by mapping raw sequenced reads to
graph-based reference pangenome or using k-mers that rely on
haplotype-resolved graph pangenome for known variant genotyping.
Nevertheless, the graph-based strategies compromise between geno-
typing accuracies and computational costs. Yet another computational
effort, called Reference flow30, has spearheaded read mapping in a
graph-free fashion, which improves both the quantity and quality of
mapped reads by leveraging a concatenated reference genome from a
hybrid of populations. The alignment accuracy and bias avoidance
bear a close resemblance to those by graph aligners yet are achieved at
a much faster speed and a much lower memory cost.

Here, we present SVLearn, a machine-learning-based genotyper,
for accurately genotyping SVs from a large population of samples
sequenced with short reads. It leverages a dual-reference strategy to
boost the abundance of reads at SV loci by building a reference gen-
omeand an alternative genomecontaining alternative allele sequences
of known biallelic insertions/deletions. The genotyping results have
proven the advantages of using these aligned reads and the features
extracted from them. A variety of SVLearn models are optimized with
stratified k-fold cross-validation, hyper-parameter fine-tuning, and the
leave-one-out strategy based on genome, alignment, and genotyping
features. Our genome-relevant features are extracted based on
2 × 150bp short reads while genotypes are sourced from PacBio HiFi
long reads. Comparedwith other existing tools, SVLearndemonstrates
a remarkable improvement in genotyping both our internally crafted
SVs and externally expert-curated SVs (Genome-in-a-Bottle
consortium31) from human individuals. Additionally, this tool demon-
strated the ideal generalizability of genotyping SVs from two livestock
animals, cattle and sheep.

Results
Overview of SVLearn
SVLearn is a machine learning-based tool for genotyping SVs derived
from short reads. Using the reference (REF) genome as the backbone,
an alternative (ALT) genome is generated by replacing the reference
allele sequence with the alternative allele sequence at each known bi-
allelic SV locus in the VCF file (Fig. 1 and Supplementary Fig. 1). Dif-
ferent from the REF genome, the ALT genome contains insertions
sequences but omits deletions sequences. The dual-reference genome
is built for optimizing alignment outcomes and extracting 10 SV fea-
tures (Supplementary Table 4). Short reads are separately mapped to
the REF and ALT genomes. The resulting REF BAM and ALT BAM files
are utilized to extract 8 alignment features about breakpoint coverage
and read depths at each SV locus and 6 genotyping-relevant features
by running the Paragraph tool. The SV genotypes are derived from
PacBioHiFi reads of 15 humans, 15 cattle, and 15 sheep individuals from

which training and validation individuals are split according to a ratio
of 14: 1. SVLearn models were trained with 18 features (excluding
Paragraph features) and 24 features (including Paragraph features),
respectively. Detailed information about database mugging, feature
extraction, and modelling training, can be found in section Methods.
Moreover, SVLearn takes advantage of tandem repeat features and
multi-coverage reads to amplify the SVgenotyping accuracy andworks
as a powerful, multifaceted tool in a broad range of scenarios.

Profiles of SV genotypes
We collected 15 human individuals from the Human Pangenome
Reference Consortium (HPRC), each with over 30× coverage of PacBio
HiFi reads (31.19–41.70×) and Illumina short reads (29.97-35.06×,
Supplementary Table 1). We aligned the PacBio HiFi reads of 15 indi-
viduals to the reference genome GRCh38, and then called SVs across
all autosomes and sex chromosomes (Box 1). After two filtering steps,
we retained 38,613 bi-allelic variations (17,007 deletions and 21,606
insertions) as Human SV Set (Fig. 2a). Genotypes in HG002 served as
the validation set (Val-label), while genotypes in the remaining 14
individuals served as the training labels (Train-label). The homozygous
reference (0/0), heterozygous (0/1), and homozygous alternate (1/1)
genotypes were distributed over the 15 individuals in an average ratio
of approximately 0.583:0.234:0.183, with similar distributions for
deletions and insertions (Fig. 2b).

The ALT genome of the Human SV Set was generated using the
REF genome GRCh38. In the REF and ALT genomes, we annotated the
repeat class of SVs and categorized them into ten types (Fig. 2c, Sup-
plementary Table 5). We found that the variable number of tandem
repeats (VNTR) was most abundantly observed among all SVs
( ~ 37.81%). In addition, SVs were enriched for those classified as the
short interspersed nuclear element (SINE) and the long interspersed
nuclear element (LINE), which fall within ~320 bp and ~6 kb in size,
respectively.

To reduce alignment bias, we determined the genomic loci of
short reads by combining decisions from mapping them to both REF
and ALT genomes. This can also be conducive to improving mapping
quality in terms of insertion regions within the ALT genome. Intrigu-
ingly, we found that using both genomes for mapping led to
approximately a 3-fold increase in the average number of mapped
reads in insertion regions across the 15 individuals compared to that if
the REF genome is solely used (Fig. 2d). Overall, the average number of
reads mapped to SV loci increased by 45.56%. In short, the use of both
genomes significantly reinforces the discovery of short reads available
for SV genotyping.

Selection of best-performing models and identification of
informative features
Random Forest was demonstrated as best-performing among six
machine learning algorithms upon completion of the whole training
process (Supplementary Fig. 3). Then, we set out to optimize the best-
performing model with the leave-one-out strategy (Supplementary
Figs. 4-5), suggesting that the performance of SV genotyping is reliable
and not significantly influenced by any specific test individual.
Through an importance analysis of features, we found that in the final
models (Human 18 Feature Model and Human 24 Feature Model),
several Alignment features are top-ranked in terms of the importance
of correctly genotyping SVs (Fig. 2e, f and Supplementary Fig. 6).
Additionally, two Paragraph features, Ref_GT and Alt_GT, which were
indicative of the preliminary SV genotyping, contributed most to the
performance of Human 24 Feature Model. While the contribution of
most of the SV features seems to be limited, the length-associated
features (e.g., SV length and TR length) stuck out as useful for geno-
typing. In addition, we performed a cumulative feature ablation ana-
lysis to assess the contribution of our handcrafted SV features to the
performance of SV genotyping in tandem repeat (TR) regions. The
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DEL1 1/1 87 0.00 ... 0/1 1/1 ...-37.32 -9.33 ...

INS1 0/1 131 1.00 ... 0/1 0/1 ...-28.96 -5.42 ...

INS2 0/0 63 0.07 ... 0/0 0/0 ...-0.01 -10.53 ...
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ID Predicted GT

Variation1 1/1

Variation2 0/1

Variation3 0/0
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REF
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DEL1 INS1
VCF format

REF Genome

ALT Genome

Annotating SVs based on two genomes
Mapping

Short reads

REF BAM

ALT BAM

Training label SV feature Alignment feature Paragraph feature (optional)

Training model

Input

Feature matrix of genotyping samples Random Forest genotyping model Predicted genotype VCF

Result 1

Result 2

Result N

Decision trees

Voting

Variation4 0/1

Variation5 0/0

Fig. 1 | Workflow of SVLearn. Based on a known SV set, an alternative (ALT)
genome was constructed relative to the reference (REF) genome. Short reads were
mapped to REF and ALT genomes to generate REF BAM and ALT BAM files,
respectively. SV featureswere extracted from the twogenomes. Alignment features

and Paragraph features (optional) were extracted for each SV from the REF BAM
and ALT BAM files. The true genotype (GT) of each SV is taken as the label used for
training. The model then takes the feature matrix as input and outputs the pre-
dicted genotypes of SVs used.
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results show an average decrease of 7.55% in weighted genotype con-
cordance (wGC)29 values within TR regions, compared to an average
decrease of 1.77% in non-TR regions (Supplementary Fig. 7), high-
lighting the critical role of these features in improving the accuracy of
SV genotyping in genomic repeat regions.

Evaluation of SV genotyping performance
We compared the genotyping performance of SVLearn with
Paragraph27, BayesTyper32, GraphTyper228, and SVTyper33 across mul-
tiple coverage levels (30×, 20×, 10×, and 5×) using evaluation metrics
(Supplementary Fig. 2), including precision, recall, genotype rates, F1
scores, and weighted genotype concordance (wGC). To comprehen-
sively examine the ability of SV genotyping, we derived SVs from a
variety of trustworthy resources (Box 1), including PacBio HiFi long
reads, haplotype-resolved genomes, as well as datasets from the
Genome-in-a-Bottle Consortium (GIAB)31 and the Human Genome
Structural Variation Consortium (HGSVC)34.

Overall, SVLearn shows a much more pronounced improvement
than other tools for genotyping long-read-derived insertions and
deletions in the Human SV Set. (Fig. 3a, b, Supplementary
Figs. 8 and 14). The best-performing variant model of SVLearn,
Human 24 Feature Model, gains wGC of 85.37% at 30× coverage,
which is approximately 3% better than the second best model,
Human 18 Feature Model. Both models demonstrate superior SV
genotyping performance compared to other existing tools (Fig. 3a).
For example, they outperform Paragraph by 9.35% and 6.85% in
terms of wGC. In addition, SVLearn is superior to other tools in terms
of precision, recall, and F1 scores. For instance, the two SVLearn
models achieve F1 scores of 0.7922 and 0.7678, whereas all the other

tools only have F1 scores of below 0.7 (Fig. 3b). Moreover, we noticed
that BayesTyper, one of the representative external tools, while
robust in wGC at 30× coverage, performs poorly in light of the
genotyping rate (45.27%) compared to the rest of genotyping tools
( > 95%). Our results also show that SVLearn leads to varying degrees
of improvement with respect to SV lengths ranging from 50 to
5000bp (Supplementary Fig. 15).

Our results show that, SVLearn gains a slightly better performance
in genotyping SVs derived from haplotype-resolved genomes (termed
assembly-based) than those obtained by mapping long reads to the
GRCh38 reference genome (termed read-based) (Supplementary
Fig. 9). The average difference between the two types of SVs is rela-
tively minor, with both F1-scores and wGC values differing by only 1%
to 2%. Additionally, Human 24 Feature Model and Human 18 Feature
Model, trained using the Human SV Set (read-based), show highly
consistent genotyping performance when applied to both assembly-
based and read-based SV sets (Fig. 3a, b and Supplementary Fig. 10),
suggesting their reliable generalizability.

To further validate the generalization capability of SV genotyping
tools, we collected the HG002_SVs_Tier1_v0.6_plus dataset from GIAB,
consisting of a total of 16,451 expert-curated SVs, which are indepen-
dent of the Human SV Set for the HG002 individual. Detailed data
processing procedures can be found in section Methods. As seen in
Fig. 3c, Human 24 Feature Model of SVLearn achieves the best wGC,
reaching 81.09% and 80.33% at 30× and 20× coverage, respectively.
Also, Human 18 Feature Model exhibits strong genotyping perfor-
mance, with wGC of 78.11% and 77.3% at the same coverage levels.
However, at 10× and 5× coverage, this model is surpassed by both
Human 24 Feature Model and Paragraph by a large margin, as

BOX 1

Overview of the protocol for constructing SVLearn

2. Feature extraction based on a dual-reference strategy

Based on REF and ALT genomes Based on REF and ALT short-read BAMs

Alignment featuresSV features

Length
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Repeat content
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Alt GT

Ref FT
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Ref GT

DP

PL

4. Evaluation of SV genotyping performance

3. Model training in different species
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1/1 87 0.00 ...

0/0 63 0.07 ...

... ... ... ...

Hyperparameter tuning
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Naive Bayes

K-Nearest Neighbors

Random Forest

Support Vector Machines

Gradient Boosting

Random Forest 18/24 feature genotyping model

Result 1

VotingResult 2

Result N

Predicted 
genotype

PacBio HiFi long reads

Reference sequence

Read-based SV calling (Sniffles2)

Human SV Set

Cattle SV Set

Sheep SV Set

Reference sequence

Assembly-based SV calling (PAV)

Haplotype-resolved genomes

Human Assembly-based SV Set

Compare SV genotyping performance of different tools on test samples

SVLearn 24 feature SVLearn 18 feature Paragraph BayesTyperGraphTyper2 SVTyper

Human SV Set Human Assembly-
based SV Set SV set from GIAB SV set from HGSVC Cattle SV Set Sheep SV Set

1. Construction of SV sets and ground truth genotypes

This box outlines a comprehensive approach for constructing and
evaluating SV genotyping models across different species. The work-
flow is divided into four key steps. 1) SV sets and ground truth geno-
types are generated using PacBio HiFi long reads for 15 individuals per
species (human, cattle, sheep). For human, an additional assembly-
based SV set and their corresponding ground truth genotypes are
generated based on haplotype-resolved genomes. 2) For each SV set,
an alternative (ALT) genome is generated relative to the corresponding
reference (REF) genome that is primarily used to characterize the
surroundings of each SV in a fine-grainedmanner. Short reads are then
mapped toboth REF andALT genomes, generating BAM files per each.
For each SV, ten SV features are extracted directly from the REF and
ALT genomes. Eight alignment features and six paragraph features are
derived from the aforementioned BAM files. 3) For each species, SVs
derived from 14 individuals are used for training, while those from the

remaining one are used for testing. To evaluate the contribution of
paragraph features to SV genotyping performance, two feature sets
(i.e., including and excluding paragraph features) are formed to train
random forest models, respectively, resulting in SVLearn. 4) The per-
formance between SVLearn and other genotyping tools is evaluated
on a held-out test sample for each species. A total of six SV sets were
used to comprehensively evaluate the SV genotyping ability of the
tools, including four SV sets generated in this study, as well as two
external SV sets from the Genome-in-a-Bottle Consortium (GIAB) and
the Human Genome Structural Variation Consortium (HGSVC). The
human, cattle, and sheep silhouettes were collected from PhyloPic
(https://www.phylopic.org) and created by Malio Kodis, T. Michael
Keesey, and Mozillian, respectively. The silhouettes are made freely
accessible according to the CC0 1.0 Universal Public Domain
Dedication.
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evidenced by significantly decreased wGC from 69.87% at 10× to
59.38% at 5×.

Accurately genotyping SVs—which are called from a large number
of individuals—in an individual has proved challenging due to the
intrinsic nature of the SVs, such as multiple overlapped SVs situated in
a genomic region10. Our results indicate that genotyping accuracy
progressively decreases as the SV set size increases (Supplementary
Fig. 16). However, compared to othermethods, SVLearn demonstrates
a relatively smaller decrease in F1 score and exhibits greater overall
stability. For instance, in the 30×data fromHG002, as the total number
of SVs increases from 45 k to 164 k, the F1-score of SVLearn 24-feature
models decreases moderately from 0.6019 to 0.4301. In contrast,
Paragraph, which initially performs similarly to SVLearn with an F1-
score of 0.5917, experiences a sharp drop to 0.3027. Compared to

Paragraph, SVLearn exclusively incorporates multiple SV and align-
ment features in its training process, potentially enhancing its cap-
ability to accurately genotype complex SVs.

Performance improvement in genotyping SVs in tandem repeat
regions
We then performed a stratified analysis of genotyping SVs from the
Human SV Set within and beyond regions of tandem repeats (TRs)
since we observed substantially high proportions of our collected SVs
associated with TRs (68.81% of deletions and 84.93% of insertions
according to Tandem Repeats Finder, Supplementary Table 6). Our
results show that SVLearn significantly improves SV genotyping in TR
regions (Supplementary Fig. 8). The precision of genotyping deletions
and insertions in TR regions using Human 24 Feature Model was at
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least 13.75% and 15.61% higher than that of all the other tools at 30×
coverage, except for BayesTyper. Additionally, SVLearn models
demonstrated the best recall for genotyping all types of SVs (i.e.,
deletions inside andoutside TRs and insertions inside andoutsideTRs)
across all benchmarked tools, regardless of whether these SVs are
associated with TRs.

Impact of sequencing coverage on model performance
Subsequently, we investigated the impact of different sequencing
coverage levels on genotyping performance. To this end, we first
down-sampled the raw reads of the 14 individuals from 30× coverage
to 20×, 10×, and 5× coverage, re-generated training data with 18 and 24
respective features, and performed re-training procedures, leading to

the followingmodels: Human 18 Feature 20×Model, Human 18 Feature
10×Model,Human 18 Feature 5×Model, Human 24 Feature 20×Model,
Human 24 Feature 10× Model, Human 24 Feature 5× Model. These
models were then validated using Human SV Set of HG002 at the four
coverage levels. Our results show that the genotyping performance
decreases progressively at the inter-coverage level as the coverage
decreases, suggesting that an inadequate cohort of genetic material
has a detrimental impact on accurate genotyping of SVs (Fig. 4). For
example, using 18 features, the best-performing model at 30× cover-
age, Human 18 Feature 30×model, achieves wGCof over 82%. Yet, this
metric is slightly above 80% for the best-performingmodel (Human 18
Feature 5×model) at 5× coverage. At the intra-coverage level, the best
performance peaks at the model that is specifically trained at its
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Fig. 3 | Comparison of genotyping tools. a Weighted genotype concordance
(wGC) and genotyping rate for Human SV Set. b Precision and recall for Human SV
Set, with contour lines in the figure representing F1 scores ranging from 0.2 to 0.9.
c Weighted genotype concordance (wGC) and genotyping rate for
HG002_SVs_Tier1_v0.6_plus SV dataset. d Precision and recall for

HG002_SVs_Tier1_v0.6_plus SV dataset. The performance of Paragraph, BayesTy-
per, GraphTyper2, SVTyper, SVLearn_18 (Human 18 Feature Model), and
SVLearn_24 (Human 24 FeatureModel) was evaluatedwith the HG002 individual in
different coverage settings.
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corresponding sequencing coverage. For example, it is observed that
at 5× coverage, theHuman 18 Feature 5×model achieved amuchbetter
wGC value (80.23%) than the Human 18 Feature 30× model (62.18%)
(Fig. 4a), in line with F1 score improving from 0.4666 to 0.6787 (Sup-
plementary Fig. 11). In addition, SVLearn models overall show a better
genotyping result than other state-of-the-art tools at different cover-
age levels. For instance, the Human 18 Feature 10× Model and Human
24 Feature 10× Model achieve wGC values of 82.88% and 84.08%,
respectively, while Paragraph gains only 74.32% at 10× coverage
(Supplementary Fig. 12).

Moreover, it is observed that the fluctuation of these evaluation
metrics between different SVLearn models turns to subside at each
coveragemore clearly if the 6 Paragraph features are added. Human24
Feature 30×Model genotypes SVs with wGC of 74.68% and an F1 score
of 0.5974 at 5× coverage. Notably, wGC and F1 score increased to
81.73% and 0.6781, respectively, by Human 24 Feature 5× Model
(Fig. 4b and Supplementary Fig. 11). These findings suggest that
coverage-specific training (i.e., matching the training coverage levels
to the test coverage levels) significantly improves SVLearn’s genotyp-
ing performance at different coverage levels (Supplementary Fig. 12).

Propensity for classifying SV genotypes
To fathom the propensity for classifying SV genotypes, we calculated
confusionmatrices to gain theproportions of correctly and incorrectly
classified genotypes. Overall, our results show a significant improve-
ment of using SVLearn to genotype SVs across all three genotypes (0/

0, 0/1, 1/1) at all coverage levels compared with BayesTyper, Graph-
Typer2, Paragraph, and SVTyper (Supplementary Fig. 13).

While all tools encounter challenges in accurately classifying
heterozygous SVs (0/1), often misclassifying them as 0/0, SVLearn
demonstrates improved performance in addressing this issue. For
instance, at 30× coverage of the HG002 individual, SVLearn_24 (24-
feature SVLearnmodels) achieved a genotyping accuracy of 75.34% for
0/1, significantly outperforming all other tools. SVLearn misclassified
0/1 as 0/0 at a rate of only 16.4%, whereas other tools exhibited mis-
classification rates exceeding 20%. At 5× coverage, the genotyping
accuracy for 0/1 by Paragraph dropped significantly from 70.44% to
51.14%, whereas SVLearn demonstrated a more stable performance
(from 75.34% to 67.22%). We conjecture that the dual-reference strat-
egy enables more reads to be mapped to the genome, thus leading to
the generation of more informative features to handle the classifica-
tion of different SV genotypes.

In the meantime, we found that SVLearn_24 exhibited minimal
genotype flipping at all coverage levels. For instance, SVLearn_24
achieved 85.75% accuracy for 1/1 in the HG002 individual at 30× cov-
erage (Supplementary Fig. 13). Among the misclassified 1/1 SVs, 9.6%
were labeled as 0/1, while only 4.65% were completely misclassified as
0/0. This represents the lowest full-flip rate among all the tools tested.

Assessment in cattle and sheep
We also built a series of models specialized for another two critical
livestock species: cattle and sheep. We collected PacBio HiFi reads
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(20× coverage) and 2 × 150 bp short reads of 15 cattle and 15 sheep
individuals from previously published studies (Supplementary
Tables 1 and 2). Following the same procedures for generation of the
Human SV Set, we identified a total number of 121,435 SVs from the
cattle individuals (dubbed Cattle SV Set, Supplementary Fig. 17) and
113,042 SVs from the sheep individuals (dubbed Sheep SV Set, Sup-
plementary Fig. 18). We extracted Charolais from the cattle individuals
and Romanov from the sheep individuals for validation and left the
rest of the individuals for training. Similarly, after feature extraction
and training, we obtained Cattle 18 Feature Model, Cattle 24 Feature
Model, Sheep 18 Feature model, and Sheep 24 Feature Model. The
model training and selectionprocesses canbe found in Supplementary
Figs. 3–6. In line with the human results, the SVLearn models achieve
the best genotyping performance compared to other tools on cattle
SVs (Fig. 5a, b) and sheepSVs (Fig. 5c, d). In particular,Cattle 24 Feature
Model yields wGC of 90.07% at 30× coverage and F1 score of 0.853 for
Charolais, while Sheep 24 Feature Model gives wGC of 91.29% and
F1 score of 0.8687 for Romanov. Besides, SVLearn improves the SV
genotyping performance by approximately 4%-6% in both metrics for
both species compared to the start-of-the-art tool, Paragraph. Fur-
thermore, SVLearn significantly improved the precision of genotyping
SVs in TR regions (Supplementary Figs. 19-20).

Examination of cross-species genotyping performance
Lastly, we set out to examine the cross-species genotyping ability of
SVLearn. To this end, we tested the best-performing model using 24
features, which was trained specifically for one of the three species, on
the SV sets of the remaining two species each time. It can be observed
from Fig. 5e that the gain or loss in genotyping performance is not
sensitive to the change in the types of species. We also find that the

model trained specifically on human-derived SVs performs worse at
low levels of coverage compared to the other two species. This pos-
sibly arises from the constrained availability of human SV samples for
training and the sequencing coverage exclusive to a certain level. The
number of human SVs thatwewere able to collect for training is nearly
three times lower than that of either cattle or sheep SVs, leaving the
model for humans comparatively insufficiently trained. In addition,
there is a substantial difference in sequencing coverage levels between
these species. In our case, the sequencing coverage of short reads is
~32× for humans versus ~17× for cattle and ~19× for sheep (Supple-
mentary Table 3). We speculate that the genomic features extracted
from reads at high coverage potentially avail Human 24 FeatureModel
capable of genotyping SVs at similar levels of coverage, and conse-
quently, it performs better at 30× and 20× coverage. The model for
humans might be relatively underfitted at low coverage, especially 5×,
compared to themodels for cattle and sheep. At 10× coverage, there is
only a minimal difference in wGC values (79.38%, 78.97%, and 79.83%)
and F1 scores (0.6936, 0.6875, and 0.6999) between the human, cattle,
and sheep models for genotyping the HG002, respectively (Fig. 5e,
Supplementary Fig. 21).

Discussion
SVLearn presented in this study has been demonstrated as a practical
approach for accurate genotyping of SVs. The addition of an alter-
native genome to the reference genome using alternative allele
sequences has proven to be of great avail to further boost the per-
formance of SV genotyping. Compared to using only the reference
genome, the number of short readsmapped to SV loci in the reference
and alternative genomes increased by 45.56% (Fig. 2d). To our
knowledge, this scheme has not been implemented and tested by
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Fig. 5 | SVLearn validation in cattle and sheep data. a Weighted genotype con-
cordance (wGC) and genotyping rate for Cattle SV Set. b Precision and recall for
Cattle SV Set, with contour lines in the figure representing F1 scores ranging from
0.2 to 0.9. The performance of various tools, including SVLearn with Cattle 18
Feature Model (SVLearn_18) and Cattle 24 Feature Model (SVLearn_24), as well as
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Set. d Precision and recall for Sheep SV Set, with contour lines in the figure
representing F1 scores ranging from 0.2 to 0.9. The performance of various tools,
including SVLearn with Sheep 18 FeatureModel (SVLearn_18) and Sheep 24 Feature
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previously released tools (e.g., Paragraph and GraphTyper2). Accurate
genotyping of insertions by previous tools is typically found incredibly
challenging and its performance is usually significantly inferior to that
for deletions. However, our strategy results in a similar, strong ability
of genotyping SVs in insertion regions to that in deletion regions
(Supplementary Figs. 14, 15).

Features used for training SVLearn integrate multisource infor-
mation fromgenomes, alignments, and genotyping statistics. Through
the feature importance analysis and using the leave-one-out strategy,
the inclusion of each class of these features proves necessary to pro-
gressively improve the genotyping performance. The addition of
repeat-related features imparts SVLearnwith a notable advantage over
other tools in accurately genotyping SVs in repeat regions (Supple-
mentary Fig. 8). The sensitivity of SVLearn models to coverage pri-
marily hinges on the diversity of coverage in our training SVs and the
robustness of its selected features. The 18-feature model relatively
lacks the global smoothing benefit gained fromParagraph, rendering it
more vulnerable to coverage-induced noise. By tapping into the gen-
otyping output of Paragraph, our 24-feature model remains more
stable under moderate or low coverage.

Our exploration reveals that the genotyping ability of SVLearn is
largely affected by the coverage of short reads at both intra- and inter-
species levels. The highest genotyping performance is achieved by the
model that is specifically trained at that coverage. At the inter-species
level, we show that the performance of SVLearn does not significantly
rest upon the species fromwhich training SVs are derived, suggesting a
robust generalizability of SVLearn produced especially from cattle and
sheep individuals. Even without relying on the haplotype-resolved
graph pangenome, the performance of SV genotyping has been
improved markedly by SVLearn models trained only with sequence-
resolved SVs. This paves the way for rapidly studying the spectrum of
large-scale SVs in human and other species populations. We have
streamlined the training process in the SVLearn package for mass-
producing cross-species models.

Despite the aforementioned advantages, it also has some limita-
tions, such as high computational consumption in handling short
reads due to two rounds of mapping to dual references (Supplemen-
tary Table 9). Due to the dual-reference strategy, the current version of
SVLearn only supports biallelic SV genotyping rather thanduplications
and inversions. We anticipate that genotyping those SVs beyond the
current study can be accelerated by our streamlined processes of
feature extraction and model training. Additionally, the information
about the local linkage single nucleotide polymorphisms (SNPs) has
been successfully used in PanGenie29 to increase thenumber of typable
SVs and significantly improve the genotyping rate (nearly 100%). This
strategy could potentially improve the future versions of SVLearn.

Methods
Sequencing data collection
Sequencing data used throughout this study were sourced from pub-
licly available databases. A total of 45 individuals were collected, of
which 15 human individuals were obtained from the Human Pangen-
omeReferenceConsortium35, 15 sheep individualswere derived froma
sheep pangenome study22, and 15 cattle individuals were obtained
from five different studies (Charolais36, Holstein37, NxB and OxO38,
Yunling39, the remaining ten individuals21). Each individual includes
PacBio HiFi long reads and 2×150bp paired-end short reads (Supple-
mentary Table 1).

Construction of ground truth sets for SV genotypes
Minimap240 (version 2.26) was used to align the PacBio HiFi long reads
of each human individual to the reference genome GRCh38 (https://
ftp.ncbi.nlm.nih.gov/1000genomes/ftp/technical/reference/GRCh38_
reference_genome/GRCh38_full_analysis_set_plus_decoy_hla.fa). Sub-
sequently, we used Sniffles241 (version 2.2) in multi-sample mode with

parameter --minsupport 4 to derive SVs and their genotypes across 15
human individuals. We retained only the insertions and deletions
within the range between 50bp and 1Mb on the chromosomes
(autosomes and XY). To curate high-quality data, we removed any two
SVs that were separated by less than 300bp. This arises from the fact
that closely arranged SVs are often characterized intricately and thus
difficult to detect by computational methods17,35,42. SVs with missing
genotypes in any individualwere also removed, resulting in theHuman
SV Set containing genotypes for all 15 individuals.We applied the same
procedure to obtain SVs and their genotypes for 15 cattle and 15 sheep
individuals using PacBio HiFi long reads, generating the Cattle SV Set
and Sheep SV Set, respectively. The reference genome ARS-UCD1.2
(GCF_002263795.1) was used for mapping cattle individuals, while
ARS-UI_Ramb_v2.0 (GCF_016772045.1) was used for mapping sheep
individuals.

For genotyping performance comparison,we additionally derived
SVs and their genotypes based on haplotype-resolved genomes of 15
human individuals. We downloaded haplotype-resolved genomes of
the 15 human individuals from the Human Pangenome Reference
Consortium (HPRC)35. First, we excluded potentially contaminated
contigs based on a previously published list (https://github.com/
human-pangenomics/HPP_Year1_Assemblies/blob/main/genbank_
changes/y1_genbank_remaining_potential_contamination.txt). Next,
we called SVs and their genotypes using PAV17 (version 2.3.4) with
default parameters, which were then merged using Jasmine43 (version
1.1.5). The parameters for Jasmine are provided in the Supplementary
Methods. Quality control was subsequently performed using the same
criteria applied to the Human SV Set. After removing those SVs over-
lapped with genomic gap regions, we were left with a total of 39,746
SVs and the genotypes (referred to as the Human Assembly-
based SV Set).

Generation of ALT genome
An ALT sequence from the ATL genome was constructed by applying
alterations inducedbySVs to its corresponding REF sequence from the
REF genome. A genomic segment can be overwhelmed by multiple SV
events detected from different individuals, such as those 2 small-sized
deletions overlapped with 1 large-sized deletion (Supplementary
Fig. 1). These overlapping SVs can create multi-allelic bubbles35,44,
thereby undermining the fidelity of SVs as biallelic. To avoid this, we
devised two strategies, threshold-based and pseudo-contig-based
sequence assemblies, to generate ALT sequences.

Using the threshold-based strategy, SVs occurring in a REF
sequence are classified as either overlapping or non-overlapping. An
SV is considered as non-overlapping if there exists a distance of at least
300bp between the SV and each of its adjacent SVs. Finally, only non-
overlapped SVs are utilized to construct each ALT sequence. However,
this strategy often leads to a significant decrease in the number of SVs
retained for assembling the ALT genome. For instance, in dataset
“variants_GRCh38_sv_insdel_alt_HGSVC2024v1.0”, we were left with
51,110 SVs, less than one third of the raw SVs.

To maximize the retention of SVs, we employed the pseudo-
contig-based strategy (Supplementary Fig. 1b), which builds a primary
ALT sequence and several pseudo-contigs based on a single REF
sequence containing overlapped SVs. The primary sequence was built
by replacing the reference sequence at the leftmost overlapped SV
(such as DEL2) with its ALT allele. Then, for each of the other over-
lapped SVs, a pseudo-contig (such as DEL3 and DEL4) for a deletion
was built by concatenating 150bp of flanking sequences on both the
upstream and downstream sides of the deletion together, while a
pseudo-contig for an insertion (such as INS3) was built by truncating
the insertion and incorporating 150 bp of flanking sequences on each
side. This approach effectively prevents the overwriting of previously
replaced segments on the main chromosome and minimizes disrup-
tions to read alignment.
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Finally, genomic positions of the ALT sequences were recorded.
Using the ALT sequence and positional information, BED and VCF files
of SVs were then produced.

Short reads mapping
Short reads were mapped to the REF and ALT genomes using BWA-
MEM245 (version 2.2.1) and the mapped reads in the BAM files were
sorted using SAMtools46 (version 1.17). PCR duplicates were removed
using Sambamba47 (version 1.0.1) by setting parameter markdup to -r,
yielding BAM files for the two genomes, respectively. The CRAM files
aligned to GRCh38 were downloaded for 14 of the 15 human indivi-
duals, except for HG002. Subsequently, SAMtools was used to convert
the CRAM to BAM. Bazam48 (version 1.0.1) was employed to extract
short reads from the BAM files and remap them to the ALT genome.
Mosdepth49 (version 0.3.6) was utilized to calculate the coverage of
both short and long reads with parameters --fast-mode --no-per-base
--by 300. We analyzed short reads mapped to SV sites in reference
(REF) and alternative (ALT) BAM files for 15 human individuals under
30× coverage. During the counting process, we excluded secondary
alignments, PCR duplicates, and reads with a mapping quality of zero,
as these reads are generally unsuitable for SV genotyping. To ensure
data uniqueness, each read was counted only once when calculating
the number of mapped reads in the REF and ALT BAM files.

SV feature
We built ten SV features based on the REF and ALT genomes (Box 1).
Using the REF genome, we first extracted three features, SV type
(deletion or insertion), SV length, and GC content. The length of the
longest allele sequence at an SV locus was regarded as the SV length.
The GC content of the SV was calculated based on the longest allele
sequence.

Since the longest allele sequences for deletions or insertions are
determined exclusive to the use of the REF or ALT genome, the
remaining seven features related to deletions and insertions were
calculated with different genomes.

Next, interspersed repeats were annotated using RepeatMasker50

(version 4.1.5). NCBI/RMBLAST (version 2.14.0) was used to search
against the Dfam database51 (version 3.7) and the RepBase database
(release 20181026). Tandem repeats were identified using Tandem
Repeats Finder52 (version 4.09)with parameters 2 7 7 80 10 50 500 -h -f
-d. For each SV, the repeat classes and contents were finally deter-
mined with the annotations from both RepeatMasker and Tandem
Repeats Finder. There are a total of ten repeat classes: short inter-
spersed nuclear element (SINE), long interspersed nuclear element
(LINE), long terminal repeat (LTR), DNA Transposons, Mixed_TEs,
Satellite, variable number of tandem repeat (VNTR), short tandem
repeat (STR),Mixed_repeat, and Low_Repeat. An SVwas assigned SINE,
LINE, LTR, DNA, Satellite, VNTR, or STR if the sequence of the repeat
covers over 80%of the SV sequence. An SVwas classified as aMixed_TE
if the combined length of SINE, LINE, LTR, and DNA Transposons
exceeded 80% of the length of the SV sequence. An SVwas classified as
Mixed_repeat if the combined length of all the repeat sequences
exceeded 80% of the length of the SV sequence. Otherwise, the SV was
classified as Low_Repeat. The repeat content was calculated by the
percentage of all the repeat sequences in the SV sequence.

To characterize the negative impact of tandem repeats (TRs) on
SV genotyping, we used their two compositional features, namely, the
length and content of TRs at an SV locus, and calculated them from the
output of Tandem Repeats Finder. We only considered the segments
of TRs overlapped with the SV sequence. Similarly, the TR repeat
content was measured using the percentage of all the TRs in the SV
sequence.

For the annotation of segmental duplications (SDs) in themasked
genomes, BISER53 (version 1.4) was used. Subsequently, the regions of
SDs in the REF and ALT genomes were picked based on the following

criteria54: 1) a minimum of 90% gap-compressed identity, 2) a max-
imum of 50% gapped sequences in the alignment, 3) at least 1 kbp of
aligned sequence, and 4) a maximum of 70% satellite sequences
determined by RepeatMasker. An SV was assigned an SD class if over
80% or more than 200bp of its sequence was within SD regions and a
non-SD class, otherwise. The SD content was determined as the per-
centage of the SV sequence in SD regions.

GenMap55 (version 1.3.0) was used to calculate genome mapp-
ability for REF and ALT genomes with parameters -K 50 -E 1 -fl. The
medianmappability index of the deletion and insertion region of an SV
in the REF and ALT genomes was seen as the final mappability.

Alignment feature
We next extracted eight alignment-based features (Alignment fea-
tures) for each SV from REF and ALT BAM files. An alignment feature
can further be categorized into a BreakPoint or ReadDepth class
according to whether the information of breakpoints or read depths is
required.

Each SV site has three possible genotypes G: homozygous refer-
ence HR (0/0), heterozygous HT (0/1), and homozygous alternate HA
(1/1), which we refer to as Gxy. Read mapping statistics at SV break-
points were used to calculate genotype likelihoods via a Bayesian
classification method similar to SVTyper33. SðGxyÞ represents the prior
probability of observing an alternate read in a single trial given any
genotypeGxy at a locus. These priors were set to 0.001, 0.5, and0.9 for
HR,HT , andHA, respectively, as suggested by SVTyper (version 0.7.1).

In the REF BAM, reads spanning SV breakpoints were treated to
associate with the reference allele, while split-reads were considered
supportive of the alternative allele. There is the other way around for
the ALT BAM that reads spanning SV breakpoints were treated to
associate with the alternative allele, while split-reads were considered
supportive of the reference allele. Specifically, reads spanning SV
breakpoints (NM<3) were indicative of the current allele, while split-
reads at SV breakpoints ( ± 3 bp) were supportive of the other allele.
Reads with a mapping quality of zero were discarded. In cases where
the allele type of a read became inconclusive, we further calculated an
alignment score (Ali) to settle the conflict, such that

Ali=M � 2×NM ð1Þ

Here, M stands for the match base number. The allele type with
the highest Ali score was retained. Moreover, a read was discarded if
both allele types had the same Ali score. The number of readsmapped
to SV sites for different genotypes is subjected to a binomial
distribution33, BðNR +NA, SðGxyÞÞ.

PðNR,NAjGxyÞ=
ðNR +NAÞ!
NR!�NA!

�SðGxyÞNA �ð1� SðGxyÞÞNR ð2Þ

Here, NR and NA denote the counts of reads supporting the
reference and alternative alleles, respectively. Assuming that the prior
probabilities of the three genotypes PðGxyÞ are known to be 1/3, their
conditional probabilities upon the number of the two allele types
PðHRjNR,NAÞ, PðHT jNR,NAÞ, and PðHAjNR,NAÞ can be calculated using
Bayes’ theorem, serving as three Breakpoint features: BP_HOMRE-
F_likelihood, BP_HET_likelihood, and BP_HOMALT_likelihood.

PðGxyjNR,NAÞ=
PðNR,NAjGxyÞ�PðGxyÞ

PðNR,NAÞ
=

PðNR,NAjGxyÞ�PðGxyÞ
ΣGxy2GPðNR,NAjGxyÞ�PðGxyÞ

ð3Þ

We exploited the information about the read depth (RD) to fur-
ther delineate the quality of sequenced reads at SV loci. We con-
structed a global read depth (RD_Global) feature and two local read
depth features (RD_SVd and RD_SVi) according to whether SV loci are
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concerned with deletions or insertions. Initially, genome-wide
sequencing depths for each 300 bp window were calculated using
Mosdepth. After GC correction following CNVcaller56, we treated the
median of the window-placed sequencing depths across the whole
genome as RD_Global.

Next, we constructed RD_SVd upon correction for GC bias and
removal of reads with mapping quality of zero and base quality of
below 20, which was given by the following mapping f

f sð Þ= dðRsÞ, Rs � REF

maxð0,RDGlobal � d Rs

� �Þ, otherwise

(

ð4Þ

Here, d is a function used to calculate the median sequencing
depth at deletion locus s. Rs is a set of reads at the locusmapped to the
REF BAM. This feature can reflect the depths of reads supportive of the
reference and alternative alleles, respectively28. Similarly, to calculate
RD_Svi at insertion locus, we constructed a mapping g based on the
ALT BAM

g sð Þ= dðRsÞ, Rs � ALT

max ð0,RDGlobal � d Rs

� �Þ, otherwise

(

ð5Þ

The conditional probabilities of the three genotypes were calcu-
lated as akin to the BreakPoint feature. The resulting ReadDepth fea-
tures were denoted as RD_HOMREF_likelihood, RD_HET_likelihood,
and RD_HOMALT_likelihood. Prior probabilities of genotypes HR, HT ,
and HA for observing alternate read (SðGxyÞ) were set to 0.0625, 0.5,
and 0.99, respectively, as suggested byGraphTyper228. Note that there
is a slight change for the last value as a result of optimization of our in
silico experiments.

To enhance the ability to genotype SVs within tandem repeat
regions of the genome, we sought to characterize SVs using their
upstream and downstream sequences, leading to two features

RDupstream =
RDREF

up

RDREF
up +RDALT

up

ð6Þ

RDdownstream =
RDREF

down

RDREF
down +RD

ALT
down

ð7Þ

Here, RDREF
up and RDREF

down are RDs for each SV locus in the 1 kb
regions upstream and downstream calculated using the REF BAM,
respectively. RDALT

up and RDALT
down are RDs for each SV locus in the 1 kb

regions upstream and downstream calculated using the ALT BAM,
respectively. These two features indicate the changes in the coverage
of upstream and downstream sequences in the presence or absence of
an SV sequence.

Paragraph feature
We used the Paragraph27 tool for genotyping of SVs and obtained a
total of six features. Using the REF and ALT BAMs, we generated two
versions of Paragraph-predicted genotyping results for a given SV
locus. The two predicted genotypes were used as the first feature and
denoted as Ref_GT and Alt_GT, respectively. It should be noticed, in
terms of Alt_GT, that the two genotypes 0/0 and 1/1 predicted by
Paragraphwere converted to 1/1 and0/0, respectively, as deletions and
insertions were treated as one another if the ALT BAM was used. Yet
another three features were extracted directly from the fields in the
Paragraph output files, including FORMAT/FT, FORMAT/DP, and
FORMAT/PL. The FORMAT/FT field accommodates a variety of filter-
ing strategies to classify genotypes of SVs, and denoted as the FTREF

and FTALT features. The FORMAT/DP field (DPREF and DPALT ) provides
information relevant with the total sequencing depths of SVs. The
FORMAT/PL field displays Phred-scaled likelihoods of genotypes of

SVs. The second smallest PL values from this field were extracted as
features and denoted as PLREF and PLALT . In addition, we designed two
features to quantify the difference between these existing measure-
ments from the REF and ALT BAMs, which were computed by

DP =DPREF � DPALT ð8Þ

PL= PLREF � PLALT ð9Þ

Training machine learning models
We trained various machine learning models using two feature sets
built with and without the Paragraph features, respectively.

The HG002 individual was used for testing and the remaining 14
individuals were used for training. The genotypes of SVs for all indi-
viduals were derived from the BAM of mapped PacBio HiFi reads. To
ensure a high-quality dataset, we did not perform data imputation but
removed those SVs with missing features instead. Discrete features
were uniformly one-hot encoded. A more detailed representation of
the features can be found in Supplementary Table 4. Similar pre-
processingwas applied to cattle and sheep training sets, withCharolais
and Romanov as test individuals.

We utilized six classical machine learning algorithms to train SV
genotyping models, including Logistic Regression, Naive Bayes,
K-Nearest Neighbors, Random Forest, Support Vector Machines, and
Gradient Boosting (Box 1). The StratifiedKFold57methodwasemployed
for 10-fold cross validation as stratified sampling can ensure a rela-
tively even distribution over different classes in each fold. To repro-
duce our in silico experiments, we generated random seeds with a
unified random state (random_state=42). The training, testing, and
evaluation procedures were conducted using scikit-learn58 (ver-
sion 1.3.0).

Our training results pinpointed Random Forest as the best-
performingmethod. To further reinforce the performance of Random
Forest models, we performed a fine-tuning analysis using Halv-
ingGridSearchCV to optimize six hyperparameters (Supplementary
Table 7), resulting in sixmodels across three species, includingHuman
18 Feature Model and Human 24 Feature Model, Cattle 18 Feature
Model, Cattle 24 FeatureModel, Sheep 18 FeatureModel, andSheep24
Feature Model. These trained models with respect to the optimal
parameters are displayed in Supplementary Table 8.

We performed 15 rounds of leave-one-out cross-validation
experiments on the Human SV Set and the Human Assembly-based
SV Set, respectively. In each round, SVs and their genotypes from 1 out
of 15 individualswere held out as a test set, while the rest of the SVs and
genotypes were used for training random forest models. After each
round of model training, we used the mean decrease of impurity
(MDI)59 to assess the importance of features by using parameter fea-
ture_importances_ in the scikit-learn package. For categorical features
that were one-hot encoded, we summed the importance of all dummy
variables corresponding to the same original feature. Additionally, we
repeated the same procedures for training models specific to cattle
and sheep.

We trained coverage-specific models by down-sampling short
reads of the 15 human individuals from coverage ~30× to 20×, 10×, and
5×. The Alignment features and the Paragraph features were re-
generated at each coverage. Then, ten SV features were combined to
train 18 feature models and 24 feature models at three different cov-
erages. Human 18 Feature Model and Human 24 Feature Model were
used as the Human 30× models. The models were validated using the
HG002 individual at four different coverages. The coverage-specific
models were trained on the Human SV Set.

We also performed cross-species validation to examine the gen-
otyping performance of Human 24 Feature Model, Cattle 24 Feature
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Model, the Sheep 24 Feature Model on three validation individuals
(HG002, Charolais, and Romanov) across multiple sequencing cover-
age levels.

Finally, a cumulative feature ablation experiment was conducted
to determine the contribution of SV features to genotyping SVs in
repeat genomic regions. Specifically, the process iterated the model
training by cumulatively ablating one SV feature on the human 24-
feature dataset. Upon removal of each feature, themodel performance
was re-evaluated. To ensure the reliability of the results, each model
was trained by 15 rounds of leave-one-out experiments in which
parameters of the model were determined through stratified 10-fold
cross validation.

Comparison with existing genotyping tools
The genotyping performance of SVLearn was compared with Para-
graph (version 2.4a), GraphTyper2 (version 2.7.5), BayesTyper (version
1.5), and SVTyper (version 0.7.1) using the test individual at 30×, 20×,
10×, and 5× coverage. Given that SVTyper is specialized for genotyping
deletions, we treated insertions as deletions in the ALT BAM and then
converted them back to insertions in the REF Genome to gain their
genotypes.

We conducted performance comparisons of different tools using
HG002 as the test individual across SV sets obtained using four dif-
ferent strategies. In addition to generating the Human SV Set derived
from long reads and the Human Assembly-based SV Set derived from
haplotype-resolved genomes in this study, we further validated the
generalization capability of SVLearn using reliable SV sets publicly
available from the Genome-in-a-Bottle Consortium (GIAB) and the
Human Genome Structural Variation Consortium (HGSVC).

To derive sequence-resolved SVs from GIAB, we first pulled 7281
insertions and 5464 deletions from the HG002_SVs_Tier1_v0.631 data-
set. Different from our Human SV Set, a total of 12,745 SVs were
detected through alignment of raw sequencing reads of HG002 to the
GRCh37 Genome. To expand the volume of SVs, we additionally
derived a set of SVs of the HG005 individual from the GIAB HG005
PacBio CCS dataset60. The genotype of these SVs is homozygous
reference (0/0) for HG002. Upon removal of SVs that are less than
500 bp away from those in the HG002_SVs_Tier1_v0.6, we retained
3706 SVs that were all located within the benchmark intervals of
HG002_SVs_Tier1_v0.6.bed. Altogether, we built a set of 16,451 SVs,
dubbed HG002_SVs_Tier1_v0.6_plus, for benchmarking the general-
ization capability of models.

We also derived a large set of SVs from HGSVC. The most recent
version of the Phase 3 SV set (variants_GRCh38_sv_insdel_alt_
HGSVC2024v1.0) fromHGSVC34, containing 176,231 insertion/deletion
(SV) events from 65 individuals. We first removed 1406 SVs located
within genomic gap regions or whose reference sequences mismatch
the genome, leaving 174,825 SVs. Next, we chose the HG002 individual
of interest and excluded 10,354 SVs due to a lack of genotypic infor-
mation for this individual. We selected subsets of 20,000; 40,000;
60,000; 80,000; 100,000; 120,000; and all 139,254 0/0 SVs (absent in
HG002). Each subset was then combined with the 25,217 0/1 or 1/1 SVs
present in HG002, resulting in seven SV sets ranging from 45 k to 164 k
in size (Supplementary Fig. 16). We then re-genotyped seven SV sets
using different tools. Furthermore, we employed the prepareAlt --no-
filter-overlaps parameters to retain as many SVs as possible for geno-
typing and used coverage-specific models to maximize SVLearn’s
genotyping performance across different coverage levels. To validate
the robustness of our approach, we included the analysis of another
sample HG00514 and repeated the same data pre-processing proce-
dures.Wewere left with a set of 164,749 SVs after removing 10,076 SVs
with missing genotypic data from 174,825 SVs.

We also compared SVLearn with other tools using the Cattle SV
Set and Sheep SV Set, where Charolais served as the test sample for

cattle and Romanov served as the test sample for sheep. The detailed
commands for running each genotyping tool are accessible at https://
github.com/yangqimeng99/svlearn/wiki/Compare-with-other-tools.

Evaluation metrics
Unlike variant calling that identifies SVs and their genomic positions,
genotyping is destined for determining the genotypes of known SVs.
Thus, the performance of genotyping tools is only evaluated with
predicted and known genotypes. We use the predicted and ground-
truth labels to compute precision, recall, F1 score, genotype rate, and
weighted genotype concordance29 (wGC) (Supplementary Fig. 2).
Particularly, wGC can balance the weights assigned to the genotyping
concordance of all three genotypes, preventing the overrepresented
category of genotype 0/0 from overshadowing the performance on
the less frequent but biologically important 0/1 and 1/1 genotypes
(Supplementary Fig. 2). The evaluation process was automated in the
SVLearn package. Furthermore, to gain deeper insights into the per-
formance nuances of each genotyping tool, we conducted a stratified
analysis based on specific SV features by differentiating insertions and
deletions. We performed detailed evaluations from two perspectives:
SV size variations (genotyping performance in regard to SV sizes) and
genomic locations (genotyping performance in regard to whether SVs
are located in tandem repeat regions).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The 2 × 150bp paired-end short reads and PacBio HiFi long reads were
obtained from https://s3-us-west-2.amazonaws.com/human-
pangenomics/index.html?prefix=working for 15 human individuals,
from BioProject accession no. PRJNA945429 for 15 sheep individuals,
from BioProject accession no. PRJEB55064 for Charolais, from https://
ngdc.cncb.ac.cn/gsa/browse/CRA006888 for Holstein, from BioPro-
ject accession no. PRJEB42335 for NxB and OxO, and from BioProject
accession no. PRJNA978937 for Yunling. For the rest of the cattle
individuals, their sequenced reads were all obtained from BioProject
accession no. PRJNA786777. The haplotype genomes of 15 human
individuals were downloaded from https://github.com/human-
pangenomics/HPP_Year1_Assemblies/blob/main/assembly_index/
Year1_assemblies_v2_genbank.index. The GIAB HG002_SVs_Tier1_v0.6
SV benchmark set was downloaded at https://ftp.ncbi.nlm.nih.gov/
ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_
son/NIST_SV_v0.6/. The GIAB HG005 PacBio CCS dataset was down-
loaded at https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/
data/ChineseTrio/analysis/PacBio_CCS_15kb_20kb_chemistry2_
12072020/HG005/HG005.hs37d5.pbsv.vcf.gz. The HGSVC Phase3 SV
set was downloaded at https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
data_collections/HGSVC3/release/Variant_Calls/1.0/GRCh38/variants_
GRCh38_sv_insdel_alt_HGSVC2024v1.0.vcf.gz. The accession number
for HG00514 short reads is ERR3988781. The SV genotyping models
generated in this study are available from Zenodo [https://doi.org/10.
5281/zenodo.11144997]61. The SV sets, as well as the training and vali-
dation datasets produced in this study, are available from Zenodo
[https://doi.org/10.5281/zenodo.13309024]62. Source Data are pro-
vided with this paper.

Code availability
SVLearn is available at GitHub (https://github.com/yangqimeng99/
svlearn) andZenodo [https://doi.org/10.5281/zenodo.14897730]63. The
code used for analysis in this study can also be found at GitHub
(https://github.com/yangqimeng99/svlearn-paper-code) and Zenodo
[https://doi.org/10.5281/zenodo.14891769]64.
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