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movement disorder syndromes has also been instrumental 
in the identification of several disease genes in a “forward 
genetics” approach using linkage analysis. Paradigmatic 
examples are the discovery of SGCE as main gene for the 
syndrome “myoclonus-dystonia” [1] and RFC1 as the gene 
associated with the triad cerebellar ataxia, sensory neuropa-
thy and vestibular areflexia (CANVAS) [2].

In an opposite “reverse genetics” approach, an ever-
growing list of monogenic etiologies for early-onset, clini-
cally less well-defined phenotypes, commonly referred to as 
“neurodevelopmental disorders” (NDDs) has been unveiled 
[3]. The term NDDs was introduced in the fifth edition of 
the Diagnostic and Statistical Manual of Mental Disorders 
(DSM-5) as an overarching category for a group of con-
ditions with onset in the developmental period that result 
in functional impairment in multiple domains [4]. NDDs 
include intellectual disability, communication disorders, 
autism spectrum disorder (ASD), attention deficit hyper-
activity disorder (ADHD), specific learning disorder, and 
motor disorders (including developmental coordination 
disorder, stereotypic movement disorder, and tic disorders) 
[4]. The definition of NDDs also extends to other condi-
tions outside the domain of DSM-5, such as cerebral palsy 

Introduction

Neurologists, particularly movement disorders specialists, 
are trained to classify and discriminate disease entities based 
on the finest details of clinical phenomenology. Beyond the 
mere exercise of diagnostic skills, the definition of an accu-
rate movement disorder phenotype is the essential starting 
point for localizing the site of brain damage and guiding 
appropriate diagnostic workup and symptomatic therapy. 
With the genetic revolution, the recognition of clear-cut 

	
 Elisabetta Indelicato
elisabetta.indelicato@i-med.ac.at

1	 Center for Rare Movement Disorders Innsbruck, Department 
of Neurology, Medical University Innsbruck, Anichstrasse 
35, Innsbruck 6020, Austria

2	 Institute of Neurogenomics, Helmholtz Munich, Neuherberg, 
Germany

3	 Institute of Human Genetics, School of Medicine, Technical 
University of Munich, Munich, Germany

4	 Institute for Advanced Study, Technical University of 
Munich, Garching, Germany

Abstract
Purpose of Review  Large-scale studies using hypothesis-free exome sequencing have revealed the strong heritability of 
neurodevelopmental disorders (NDDs) and their molecular overlap with later-onset, progressive, movement disorders phe-
notypes. In this review, we focus on the shared genetic landscape of NDDs and movement disorders.
Recent Findings  Cumulative research has shown that up to 30% of cases labelled as “cerebral palsy” have a monogenic 
etiology. Causal pathogenic variants are particularly enriched in genes previously associated with adult-onset progressive 
movement disorders, such as spastic paraplegias, dystonias, and cerebellar ataxias. Biological pathways that have emerged 
as common culprits are transcriptional regulation, neuritogenesis, and synaptic function.
Summary  Defects in the same genes can cause neurological dysfunction both during early development and later in life. 
We highlight the implications of the increasing number of NDD gene etiologies for genetic testing in movement disorders. 
Finally, we discuss gaps and opportunities in the translation of this knowledge to the bedside.
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(CP) and epileptic encephalopathies [5]. The frequency of 
comorbidity among the NDDs is higher than that expected 
by chance [6] and provides the rationale for lumping them 
in a clinical continuum [7]. Due to the extremely hetero-
geneous and mostly non-specific clinical pictures, NDDs 
are usually tackled with a “genotype-first” approach using 
chromosomal microarrays and unbiased exome sequencing 
[3]. The latter tool has greatly accelerated gene discovery in 
NDDs [8] and highlighted the molecular overlap with other 
seemingly unrelated phenotypes, such as adult-onset move-
ment disorders [9–15]. As a result, our perspective is gradu-
ally changing. From a dichotomous paradigm distinguishing 
neurodevelopmental dysfunction and neurodegeneration, 
cumulative evidence outlines a nuanced clinical spectrum 
due to genetically determined developmental brain dysfunc-
tion [6], whose modulating factors remain elusive.

The present review focuses on the shared molecular 
landscape of movement disorders and NDDs. We begin our 
discussion with the genetic discoveries in CP, the epitome 
of disease of the movement and the developing brain. We 
then review selected biological pathways that emerged as 
common culprits of neurological dysfunction both in early 
development and later in life. Finally, we discuss the clini-
cal implications of the increasing NDDs-gene etiologies in 
movement disorders.

The Cerebral Palsy Paradigm

Cerebral palsy (CP) is a clinical diagnosis describing neu-
rodevelopmental phenotypes that primarily affect move-
ment and posture [16]. CP is attributed to nonprogressive 
disturbances occurring early in the fetal or infant brain [16]. 
Birth asphyxia secondary to intrapartum complications has 
long been considered its leading cause [17–19]. Large-scale 
genetic studies using chromosomal microarray analysis and 
subsequently exome or genome sequencing have challenged 
this dogma, demonstrating a genetic etiology in 31.1% of 
cases on average [20]. The diagnostic yield of exome 
sequencing may approximately double if CP cases without 
hints of perinatal brain injury according to clinical history 
and/or brain MRI are selected [21]. When the broad clini-
cal umbrella of CP is re-evaluated based on the clinics, the 
presence of a hyperkinetic movement disorder phenotype 
(dystonic and/or dyskinetic) is another predictive factor for 
a monogenic etiology [22]. Similar to other NDDs [23–26], 
the rate of de novo variants in CP is high [21] and may 
explain the relatively constant frequency of these disorders 
associated with reduced fitness despite the improvement of 
perinatal care in developed countries [27].

Looking at the molecular pathways involved, the most 
common monogenic etiologies associated with CP cluster in a 
few complex processes with a key role in neurodevelopment, 

such as transcriptional regulation (CTNNB1, FOXG1, 
MECP2), neuritogenesis (ATL1, KIF1A, SPAST, TUBA1A, 
TUBB4A), and synaptic transmission (CACNA1A, GNAO1, 
KCNQ2, SCN1A) [20]. Notably, several of these genes have 
been previously implicated in classic adult-onset movement 
disorders, such as autosomal dominant TUBB4A-related 
dystonia [28, 29], spastic paraplegia type 4 (SPAST) [30], 
or inherited cerebellar ataxia phenotypes (CACNA1A) [31, 
32]. In the following sections, we will focus on these three 
overarching biological processes and their involvement in 
both NDDs and specific movement disorder phenotypes.

Transcriptional Dysregulation as Driver of 
Neurodevelopmental Brain Dysfunction

Complex processes underlying neurodevelopment and 
neural function throughout life depend on the coordinated 
expression of myriads of genes in specific cells at the appro-
priate time [33, 34]. Beyond the large number of players at 
a purely genetic level, the ultimate phenotypic complexity 
underlying neural function is determined by a multifaceted 
regulation of gene expression. Thus, it is not surprising 
that an increasing number of genes with DNA-, RNA-, and 
histone-binding functions are emerging in the landscape of 
NDDs [35].

Sequential expression of different transcription fac-
tors in specific time windows drives the differentiation of 
neural precursors [33]. For example, NKX2-1 expression 
in neural progenitors is required for GABAergic interneu-
ron commitment [36] and basal ganglia development [37]. 
NKX2-1 (Mendelian Inheritance in Man (MIM) *600635) 
is a well-established human disease gene, initially associ-
ated with thyroid and lung developmental defects and later, 
also with neurological symptoms. One group identified five 
index patients with additional neurological features such as 
choreoathetosis, muscular hypotonia, ataxia, and develop-
mental delay in the screening of patients with congenital 
hypothyroidism, which did not respond to substitution with 
L-thyroxine, prompting a search for a differential diagnosis 
[38]. In the same year, another independent group published 
the association of NKX2-1 variants with the well-known 
clinical entity “benign hereditary chorea”, a childhood-
onset form of chorea not associated with intellectual decline 
(see also Table 1) [39].

Beyond direct gene activation and repression, chroma-
tin modification offers another level of control on a large 
scale. DNA-binding proteins that recruit chromatin- and 
RNA-modifying factors, such as those of the CHD family, 
have an established role in NDDs [23, 40, 41] and an emerg-
ing role in movement disorders [11, 42]. Perhaps the most 
interesting converging biological pathway in NDDs and 
movement disorders is DNA methylation, a key regulatory 
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process affecting both ends of the life course [34]. In the 
zygote, a wave of demethylation occurs prior to methylation 
imprinting [43]. Alterations in this dynamic process have 
been implicated in NDDs such as Rett, Prader-Willi and 
Angelman syndromes [34]. On the other hand, the extent 
of methylation later in life has been shown to be consistent 
with the concept of an “epigenetic clock” as a strong predic-
tor of life expectancy [44]. Methylation and demethylation 
of lysine residues on histone tails is a key dynamic chroma-
tin modification that is mediated by specific methyltransfer-
ases (KMTs) and demethylases (KDMs) [45]. Twenty-seven 
KMT- and 24 KDM-encoding genes are known, and to date, 
22 have been associated with NDDs [35]. KMT2B (MIM 
*606834) encodes histone lysine N-methyltransferase 2B, 
an epigenetic writer that, like other KMT2 enzymes, mod-
ulates transcriptional regulation by methylating a specific 
lysine residue (K4) of the histone 3 (H3) protein [46]. H3K4 
methylation by KMT2B is associated with active transcrip-
tion and plays an essential role in the normal development 
and maturation of brain circuits involved in motor control 
[46–48]. The first association between KMT2B and human 
disease was described in patients with childhood-onset 
isolated dystonia carrying heterozygous loss-of-function 
variants [49, 50]. Cumulative reports gradually revealed a 
much broader phenotype in which developmental features 
may represent the first or predominant manifestation (see 
also Table  1) [15, 45], as opposed to adult-onset incom-
pletely penetrant dystonia at the other end of the clinical 
spectrum [51]. Recently, a unique DNA methylation pattern 
at CpG sites in peripheral blood from KMT2B patients was 
described, as the so-called epi-signature [52]. This unique 

biomarker corroborated some of the genotype-phenotype 
correlations observed in KMT2B-related disease. For 
instance, the KMT2B missense variant p.Ala1541Val asso-
ciated with adult-onset dystonia [51] caused more subtle 
methylation changes compared to truncating variants seen 
in early-onset, developmental cases [52]. The importance of 
proper H3K4 methylation dosage in normal development is 
further highlighted by the involvement of at least six KMT2 
genes in human disease, despite their seemingly redundant 
enzymatic function [45, 53, 54]. Elucidating the relation-
ship between dysregulated KMT2 function and neurologi-
cal disease is of particular interest for the development of 
therapeutic strategies. Indeed, methylation is a dynamic and 
potentially reversible or inducible process, as suggested by 
the striking therapeutic effect of deep brain stimulation in 
the setting of certain KMT2B variants [15].

Defective Neuritogenesis in Developmental Motor 
Disorders

Neuritogenesis is a crucial step in neurodevelopment [55]. 
Early-stage neurons appear as round bodies, in which the 
growth of actin-rich filopodia and lamellipodia marks the 
step to the acquisition of cellular polarity [56]. Stabilization 
by microtubules leads to the development of neurites, which 
then differentiate into axons and dendrites as the cell acquire 
their mature neuronal morphology [55]. Proper neurite for-
mation is essential for establishing neuronal morphology 
such as arborization and synapse formation, which in turn 
influences connectivity in the brain. The same guidance 
molecules play an important role in directing axonal growth 

Table 1  Genes at the intersection between NDDs and movement disorders
Gene
MIM number

Phenotype Phenotype MIM 
number

Inheritance

NKX2-1
*600635

Chorea, hereditary benign 118700 AD
Choreoathetosis, hypothyroidism, and neonatal respiratory distress 610978 AD

KMT2B
*606834

Dystonia 28, childhood-onset 617284 AD (de novo variants 
in most patients)

Intellectual developmental disorder, autosomal dominant 68 619934 AD (de novo variants 
in most patients)

KIF1A
*601255

NESCAV syndrome 614255 AD (de novo variants)
Neuropathy, hereditary sensory, type IIC 614213 AR
Spastic paraplegia 30, autosomal dominant 610357 AD
Spastic paraplegia 30, autosomal recessive 620607 AR

CACNA1A
*601011

Developmental and epileptic encephalopathy 42 617106 AD (de novo variants 
in most patients)

Episodic ataxia, type 2 108500 AD
Migraine, familial hemiplegic, 1 141500 AD
Migraine, familial hemiplegic, 1, with progressive cerebellar ataxia 141500 AD
Spinocerebellar ataxia 6 183086 AD

Selected genes implicated both in NDDs and movement disorders are listed along with the associated phenotypes and mode of inheritance. 
AD: autosomal dominant; AR: autosomal recessive; MIM: Mendelian inheritance in man; NESCAV: NEurodegeneration-Spasticity-Cerebellar 
Atrophy-cortical visual impairment syndrome
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carrying missense variants at the position 13 (such as R13H 
and R13C) are at a high risk of ASD [65, 67].

Synaptic Dysfunction in Focus: the Example of 
CACNA1A Disease Spectrum

Proper neural morphogenesis and branching is instrumen-
tal to the development of brain connectivity. The human 
central nervous system contains ∼1015 synapses between 
∼1012 neurons, building a hyper-wired interconnectome 
[70]. Intense synaptogenesis occurs during embryonic and 
early postnatal stages, persists throughout adolescence and 
up to the third decade [71]. Not surprisingly, disruption of 
synaptic transmission and plasticity leads to a wide range 
of NDDs. In this regard, synaptic ion channel dysfunction 
is particularly associated with epileptic encephalopathies, 
devastating neurological disorders characterized by early 
onset of multiple seizure types, psychomotor regression, 
and a variety of focal neurological signs [72]. A prototype 
is Dravet syndrome (MIM #607208), in which loss-of-func-
tion variants of SCN1A, a sodium channel gene expressed 
almost exclusively in inhibitory interneurons, result in net-
work hyperexcitability [73]. Less straightforward are the 
molecular and cellular mechanisms underpinning the devel-
opmental cognitive and motor impairments associated with 
early-onset channelopathies [74]. Altered synaptic plasticity 
during early cortical development likely contributes to the 
disease phenotype.

With respect to motor dysfunction, channelopathies are 
a classic etiology of paroxysmal movement disorders [75] 
as well as neurodegenerative diseases such as hereditary 
cerebellar ataxias [76]. In hereditary ataxias, Purkinje neu-
rons in the cerebellum are particularly susceptible to degen-
eration. Notably, Purkinje cells are autonomous pacemaker 
neurons that maintain firing at 40 Hz even in the absence 
of synaptic input [77]. Thus, perturbations in ion channel 
expression and function have the potential to profoundly 
affect these neuronal types and cause motor impairment 
[78]. The CACNA1A disease spectrum is paradigmatic for a 
channelopathy at the interface between neurodevelopmen-
tal dysfunction and neurodegeneration (see Fig. 1; Table 1). 
CACNA1A (MIM *601011) is a bicistronic gene which 
encodes both the pore-forming α1A-subunit of the neuronal 
P/Q Ca2+ channel [79] and the transcription factor α1ACT 
which drives maturation of the Purkinje cells in the early 
development [80]. The first association of CACNA1A with 
human disease dates back to 1996 [32, 81]. On the one hand, 
it contains a CAG repeat motif that can undergo expansion, 
causing spinocerebellar ataxia type 6, a well-characterized, 
pure cerebellar disorder with onset in the 5th -6th decade 
[81]. On the other hand, single nucleotide variants (SNVs) 
in CACNA1A have been associated with a variety of other 

and influencing synaptic plasticity during development and 
later in life [57]. As such, variants in axon guidance genes 
have been implicated in both developmental conditions and 
neurodegenerative diseases. Cumulative evidence pointed 
out inappropriate connectivity due to abnormal neuronal 
density, dendritic arborization and/or cortical layering as 
one of the causes of ASD [58, 59]. Disturbances of neu-
ritogenesis is also a recurring leitmotif in motor disorders 
with predominant pyramidal tract dysfunction. Variants in 
proteins involved in microtubule dynamics (SPAST), axo-
nal maintenance (ATL1) and transport (KIF1A) are among 
the most common genetic etiologies both of cerebral palsy 
mimicries [20] and of hereditary spastic paraplegia (HSP) 
[60]. HSPs are progressive, neurodegenerative disorders 
with later, often adult, onset in many cases [61]. Spastic-
ity in the lower limbs is the most prominent clinical sign, 
which can occur isolated or in combination with several 
other neurological features [61]. Notably, early onset with 
protracted clinical stability has previously been identified as 
an endophenotype in a subset of patients in HSP families, 
resembling the non-progressive course of CP [61].

The selective susceptibility of motoneurons to defect 
of neuritogenesis is plainly explained by their character-
istic morphology: extremely long axons with extensive 
terminal branching. This pose exceptional challenges for 
the targeted delivery of presynaptic components from the 
soma, where they are mostly synthetized, as well as for the 
removal of defective organelles which must be retrogradely 
transported. Motor proteins such as kinesins and dyneins, 
along with several adaptors and scaffolding elements, are 
in charge of the bidirectional transport of synaptic cargos 
to ensure precise assembly, maintenance, and remodeling 
of synapses [62]. At least 23 genes coding for such cargo 
machinery have been associated with NDDs [62]. A particu-
larly broad phenotypic spectrum is associated with variants 
in the KIF1A (MIM *601255) [63], a kinesin responsible 
for the anterograde transport of synaptic vesicle precursors 
along axonal and dendritic microtubules (see also Table 1) 
[63]. More than 100 disease-associated KIF1A variants have 
been described in the literature [64]. The broad spectrum 
of clinical symptoms encompasses both neurodevelopmen-
tal and neurodegenerative categories such as developmen-
tal delay, intellectual/learning disability, autism, epilepsy, 
microcephaly, spastic CP, HSP, peripheral neuropathy, optic 
nerve atrophy, and cerebellar atrophy [64–68]. Consider-
ing that anterograde transport of presynaptic components 
is required for both development of the brain and mainte-
nance of axons functionality through life, this variability is 
not surprising. KIF1A variants can be dominantly and reces-
sively inherited, as in HSP families, or appear de novo in the 
most severe phenotypes [64, 69]. Some further genotype-
phenotype correlations are known. For instance, patients 
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constant duration of interspike intervals. In ataxic mice car-
rying CACNA1A variants, Purkinje neurons show irregular 
spiking compared to wild-type controls, as evidenced by 
an increase in the coefficient of variation of the interspike 
interval between action potentials [78, 89]. In contrast, the 
pathophysiological basis of NDDs due to pathogenic CAC-
NA1A variants remains largely unexplored [90]. Both P/Q 
calcium currents and the transcription factor α1ACT have 
established roles in the early cerebellar maturation. Pertur-
bations in the developing cerebellum underpinned by P/Q 
channel and α1ACT dysfunction may contribute to the onset 
of neuropsychiatric disorders early in life by altering cere-
bellar tuning to cognitive cortical networks, consistent with 
the notion of a “cerebellar cognitive-affective syndrome” 
[91, 92].

NDD Genes in Movement Disorders: Insights from 
Genetic Studies in Dystonia

Among movement disorders, dystonia shares perhaps the 
greatest genetic overlap with NDDs [9]. Dystonia is highly 
heterogeneous in terms of phenomenology, comorbidity, 
and underlying pathogenic mechanisms [93]. In contrast 
to other movement disorders, neuropathological studies 
in most monogenic dystonias have not demonstrated any 

phenotypes featuring both chronic cerebellar and neuropsy-
chiatric symptoms as well as episodic manifestations, rang-
ing from hemiplegic migraine to epilepsy [31, 82–85]. After 
the initial association of CACNA1A SNVs with human dis-
ease in a landmark study [32], a number of reports noticed 
the recurrence of early onset phenotypes with develop-
mental delay, intellectual disability, ADHD, ADS in the 
offspring of CACNA1A families (see Fig. 1) [83]. With the 
advent of large-scale exome sequencing-based genetic stud-
ies, de novo SNVs in CACNA1A have been definitely pin-
pointed as a relevant etiologies in the NDDs spectrum, for 
developmental and epileptic encephalopathies [41] as well 
as CP [20]. Complemented by the first large-scale clinical 
registry [86], an extreme phenotypic variability of “non-
polyglutamine” CACNA1A disorders is emerging, with 
genotype-phenotype correlations being difficult to discern 
so far [86]. Taken together, these cumulative findings sug-
gest an age-dependent phenotype of CACNA1A variants, in 
which the clinical severity is associated with a disease onset 
early in life and de novo occurrence [87, 88].

Early studies in mice highlighted the importance of P/Q 
channels for the firing activity of Purkinje neurons, provid-
ing a pathophysiological correlate for the motor dysfunction 
seen in human disease. In healthy conditions, autonomous 
spiking in Purkinje neurons is very precise, with roughly 

Fig. 1  Neurodevelopmental 
dysfunction and neurodegenera-
tion in CACNA1A variants. Panel 
(a) shows a CACNA1A pedigree 
and its clinical spectrum across 
generations (red upper right 
quadrant: hemiplegic migraine, 
blue lower right quadrant: pro-
gressive cerebellar ataxia, green 
lower left quadrant: develop-
mental delay). The index patient 
(subject 1 in Panel a) suffered 
from hemiplegic migraine since 
his teens and later developed 
progressive cerebellar ataxia with 
clear evidence of neurodegen-
eration on brain imaging (panel 
b: T1-weighted sagittal plane 
shows marked cerebellar atrophy, 
most pronounced in the vermis). 
The youngest family members 
(subjects 5 and 6 in panel a) were 
initially referred for developmen-
tal delay; patient 5’s brain MRI 
(panel c) was unremarkable
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for selective vulnerability of specific neuronal populations 
in later-onset degenerative diseases.

Notwithstanding the increasing association between the 
two clinical constructs at the genetic level, the movement 
disorder phenotype in several NDDs is often poorly recog-
nized or underreported due to clinical complexity. Identify-
ing a movement disorder in NDDs is important as it has a 
major impact on quality of life and symptom management 
[101, 102]. Moreover, the syndromic nature of a clinical pre-
sentation with both a movement disorder and neurodevelop-
mental features represents a hint for a monogenic etiology 
[10, 103, 104]. Proper characterization of movement disor-
ders early in life may be challenging [102]. Inter-rater agree-
ment for movement disorders in infancy is poor [102]. On 
the other hand, it may also be difficult to recall subtle abnor-
malities early in life in a subject who presents for the first 
time to the neurological clinic in adulthood. In general, lack 
of awareness and perceived low clinical benefit have limited 
access of adult cohorts to screening projects for unsolved 
rare diseases [105]. Another increasingly recognized chal-
lenge is furthermore posed by the evolving nature of neu-
rologic manifestations, which often depend on the specific 
time point in life [106, 107]. Anecdotal reports highlight this 
issue, showing that delayed diagnostic work-up in adulthood 
was only triggered by the eventual emergency of a specific 
movement disorder [10]. This emphasizes the importance of 
ongoing, regular neurological surveillance, especially dur-
ing the transition from the child-centered to adult-centered 
health care [98]. Accurate characterization of the long-term 
natural history of rare neurogenetic disorders is critical, as 
it may facilitate the identification of novel molecular targets 
that are relevant early in the disease course and allow the 
subsequent development of truly disease-modifying inter-
ventions. Just as the clinical evaluation must be regular and 
thorough, the genetic approach at the time of diagnosis must 
be comprehensive. Most importantly, the genes investigated 
in movement disorders should include those associated with 
NDDs [108].

Elucidating the common biological basis of neurodevel-
opmental dysfunction and neurodegeneration is a critical 
step in formulating a translational approach that promotes 
potential therapeutic strategies. Relevant aspects of neuro-
developmental dysfunction that may also play a role in later 
disease involve dynamic changes related to gene expression 
and epigenetics. Modulation of these phenomena [15, 109] 
may open a window of opportunity for therapeutic interven-
tions before progressive degeneration and structural brain 
damage manifest.

consistent structural brain abnormalities or neurodegenera-
tion [94]. Instead, cumulative evidence supports the concept 
of dystonia as a network disorder, arising from dysfunc-
tional connectivity involving several brain regions [95]. In 
recent years, the application of unbiased exome sequencing 
in large cohorts revealed an even greater heterogeneity in 
its genetic landscape [21, 96]. Key findings were provided 
by a landmark study of 764 unselected index patients with 
variable manifestations ranging from (i) isolated dystonia 
to (ii) dystonia “combined” with other movement disor-
ders or (iii) “complex” dystonia associated with other non-
movement disorder neurological features [21]. Unbiased 
exome sequencing yielded a genetic diagnosis in 135 of 
764 index cases (19%). Notably, the majority of diagnoses 
(n = 94, 69.6%) were related to variants in genes previously 
associated with NDDs [21]. These included classic genes 
first characterized in ASD (MECP2, CHD8, SHANK3), 
intellectual disability and global developmental delay 
(AUTS2, ZMYND11, ZEB2, SLC9A6, PPP2R5D, PAK1). As 
expected, the largest contribution of variants in NDD-asso-
ciated genes was found in cases with “complex dystonia”, 
who had a variety of developmental disabilities and other 
associated features. However, even in cases of isolated and 
combined dystonia, up to one third of the diagnoses were 
due to variants in NDD genes. Based on this study and its 
validation [21, 96], a scoring algorithm has been outlined to 
guide the choice of genetic testing in dystonia. This algo-
rithm lists as positive predictors for the yield of genetic test-
ing: (i) a higher severity of the clinical syndrome of dystonia 
(generalized versus focal/segmental), (ii) the association 
with other movement disorders or non-movement disorder 
neurological features, and (iii) a younger age at onset (< 21 
years) [21]. With increasing score, both the yield of exome 
sequencing and the percentage of diagnoses attributable to 
NDD-associated genes increase [96].

Conclusion

Brain disorders have traditionally been classified into 
early-onset neurodevelopmental and late-onset neurode-
generative disorders [97]. Much of this dogmatic separa-
tion is due to the dichotomous approach of clinicians, as 
pediatricians deal with the neurodevelopmental phase of 
the disease, whereas the later neurodegenerative phase is 
managed by adult neurologists [98]. Instead, the shared 
cellular and molecular processes involved in both neurode-
velopmental and neurodegenerative disorders are increas-
ingly recognized [34, 97]. It is also becoming clear that the 
pathogenesis of some classic neurodegenerative diseases is 
associated with neurodevelopmental aberrations [99, 100]. 
Furthermore, an abnormal development may set the stage 
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