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Abstract
Neuroblastoma (NB), a common infantile neuroendocrine tumor, presents a substantial therapeutic challenge when 
MYCN is amplified. Given that the protein structure of N-Myc is disordered, we utilized Alphafold for prediction 
and GROMACS for optimization of the N-Myc structure, thereby improving the reliability of the predicted structure. 
The publicly available datasets GSE49710 and GSE73517 were adopted, which contain the transcriptome data of 
clinical samples from 598 NB patients. Through various machine learning algorithms, FAM13A was identified as a 
characteristic gene of MYCN. Cell functional experiments, including those on cell proliferation, apoptosis, and cell 
cycle, also indicate that FAM13A is a potential risk factor. Additionally, Alphafold and GROMACS were employed 
to predict and optimize the structure of FAM13A. Protein-protein docking and molecular dynamic modeling 
techniques were then used to validate the enhanced protein stability resulting from the interaction between 
N-Myc and FAM13A. Consequently, targeting FAM13A holds the potential to reduce the stability of N-Myc, hinder 
the proliferation of NB cells, and increase the infiltration of immune cells. This multi-faceted approach effectively 
combats tumor cells, making FAM13A a prospective therapeutic target for MYCN-amplified NB.

Keywords  Neuroblastoma, MYCN, Protein structure prediction, Protein–protein docking, Single cell transcriptomes, 
Immune cell infiltration
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Introduction
Neuroblastoma (NB) is a widespread solid tumor origi-
nating from neural crest cells during early infancy. It 
accounts for around 15% of pediatric cancer-related 
mortalities, with a median age of diagnosis at 18 months 
[1]. NB exhibits conspicuous heterogeneity, encompass-
ing a range of clinical outcomes, including spontaneous 
remission, progressive disease, and the development of 
metastases [2]. About 25% of NB patients have MYCN 
oncogene amplification [3], and stage 4 patients with 
MYCN amplification had a 5-year overall survival rate 
of 34% [4]. The identification of amplification of MYCN, 
which encodes N-Myc, has been recognized as a major 
factor with prognostic significance. This is particularly 
relevant in the prediction of unfavorable clinical out-
comes and poor survival rates among high-risk patients 
diagnosed with NB [3]. MYCN belongs to the MYC 
oncogene family and demonstrates prominent expression 
in neural tissue [5]. The protein being examined func-
tions as a key transcriptional regulator in the context of 
neural development, exerting influence over a variety of 
biological processes such as cellular differentiation, pro-
liferation, survival, self-renewal, and metabolic functions 
[3]. However, therapeutic efforts have proven challeng-
ing in combating MYCN-amplified NB, and as a result, 
N-Myc has been labeled as “undruggable” with limited 
treatment options [3]. Determining the indirect regula-
tors of MYCN expression is also urgently required.

FAM13A (family with sequence similarity 13 member 
A) isoform 1 (v2) and isoform 2 (v1) have been iden-
tified as splice variants in humans. The Ras homolo-
gous GTPase-activating protein (RhoGAP) domain in 
FAM13A isoform 1 is critical for the control of cell pro-
liferation and survival [6]. In genome-wide association 
studies (GWAS), the presence of genetic variations in the 
FAM13A gene has been observed to have a correlation 
with lung function in various prevalent chronic lung dis-
eases, including asthma, chronic obstructive pulmonary 
disease (COPD), and idiopathic interstitial pneumonia 
(IIP) [7]. In addition, FAM13A improves insulin sensitiv-
ity in mice by modulating insulin signaling in adipocytes 
and preserving body homoeostasis [8]. Studies have been 
showed that knocking down FAM13A promotes adipo-
cyte development and glucose absorption and improves 
lipogenic differentiation [9]. A recent investigation has 
provided further evidence on the role of FAM13A in 
the regulation of lipid metabolism. Notably, elimination 
of this gene has been found to confer protection to mice 
against the development of fatty liver induced by a high-
fat diet [10]. However, the biological role of FAM13A 
in NB remains unclear, and there is limited knowledge 
regarding the underlying mechanism of this protein 
activity.

The objective of this study was to evaluate the interac-
tion between N-Myc and FAM13A using bioinformatics, 
experimental methods, and single-cell analysis. Addition-
ally, we aimed to clarify the biological role of FAM13A 
in NB. The optimization of the structure of N-Myc and 
FAM13A was performed using GROMACS. Subse-
quently, protein-protein docking and molecular dynam-
ics modeling techniques were employed to validate the 
improved protein stability resulting from the interac-
tion between N-Myc and FAM13A. Hence, the tar-
geting of FAM13A has the potential to decrease the 
stability of N-Myc, impede the proliferation of NB cells, 
and enhance the infiltration of immune cells. This multi-
faceted approach effectively combats tumor cells, making 
FAM13A a prospective therapeutic target for MYCN-
amplified NB.

Materials and methods
Machine learning algorithm analysis of MYCN-related 
characteristic genes
In this study, the publicly available datasets GSE49710 
and GSE73517 were utilized. We analyzed them using 
data - mining techniques such as Support Vector 
Machine Recursive Feature Elimination (SVM - RFE) and 
Random Forest.

Support vector machine recursive feature elimination (SVM-
RFE)
This research method is mainly based on support vec-
tor machine (SVM) and recursive feature elimination 
(RFE) technology, aiming to screen out important fea-
ture genes from MYCN-related data. Through the eval-
uation and visualization of different feature numbers, 
the optimal feature genes were determined and output 
for further analysis and research. The three R packages 
“e1071“ [11],“kernlab“ [12] and “caret“ [13] were intro-
duced using the library function to provide support for 
subsequent machine learning calculations. During the 
feature selection process using the rfe function, sev-
eral key parameters play important roles. First, y = as.
numeric(as.factor(group)) is used to extract the group 
variable from the row names of the data. It is then con-
verted into a factor and further into a numeric type to 
serve as the response variable. This operation transforms 
the grouping information in the data into a numeric form 
suitable for model processing, enabling it to participate 
in subsequent feature selection and model evaluation 
processes. Secondly, sizes = c(2, 4, 6, 8, seq(10, 40, by 
= 3)) defines the range of the number of features to be 
evaluated during the feature elimination process. Spe-
cifically, feature subsets with feature numbers of 2, 4, 6, 
8, as well as those starting from 10 and incrementing by 
3 up to 40 will be considered in sequence. This setting 
aims to systematically screen feature combinations of 
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different scales to find the optimal combination, thereby 
optimizing the performance of the model. Finally, rfe-
Control = rfeControl(functions = caretFuncs, method = 
“cv”) uses caretFuncs in the caret package as the default 
set of evaluation functions and adopts cross - validation 
(method = “cv”) to evaluate the performance of differ-
ent feature subsets in the support vector machine model. 
During the cross - validation process, the dataset is 
divided into multiple subsets. In each iteration, one sub-
set is used as the validation set, and the remaining sub-
sets form the training set. Through multiple iterations, 
the performance of the model under different feature 
combinations can be evaluated more comprehensively 
and reliably.

In terms of validation techniques, the support vector 
machine uses the Radial Basis Function kernel (meth-
ods = “svmRadial”). The Radial Basis Function kernel is 
commonly used to handle non - linearly separable data 
because it can map the original data into a high - dimen-
sional space, making the data that is non - linearly sepa-
rable in the low - dimensional space become linearly 
separable in the high - dimensional space, thus laying the 
foundation for constructing a more accurate classifica-
tion or regression model. Regarding performance evalu-
ation metrics, the Root Mean Square Error (RMSE) is 
chosen as the main measure. By using the rfe function 
to build support vector machine models under different 
feature subsets and perform cross - validation, the cor-
responding RMSE is calculated. The graph of the rela-
tionship between the number of variables (representing 
the size of different feature subsets) and RMSE is stored 
in the SVM - RFE.pdf file, where the x - axis represents 
the number of features and the y - axis represents the 
RMSE. The point with the minimum RMSE is marked on 
the graph, and the feature subset corresponding to this 
point is the optimal feature subset selected through cross 
- validation.

Random forest
This research method mainly utilizes the random forest 
algorithm for model construction and screening of fea-
ture genes. Firstly, the randomForest package is imported, 
and a random seed is set to ensure the reproducibility of 
the results. The input file and working directory are spec-
ified, and after reading the input file, data processing is 
carried out. Next, the randomForest function is used to 
build a random forest model with the number of trees 
set to 500. A chart of the random forest model is plot-
ted to visually observe the model performance. Then, a 
five - fold cross - validation is adopted to evaluate and 
optimize the model to find the point with the minimum 
error. Based on this point, the random forest model is 
reconstructed. At the same time, the importance of genes 
is calculated, and feature genes are screened according to 

the scores. A chart of gene importance is drawn to intui-
tively understand the importance degree of each gene. 
Disease - related feature genes are selected according to 
the importance scores and written into a file. Finally, the 
expression levels of important genes are output and the 
results are written into a file. Through the above steps, 
the aim is to improve the accuracy and reliability of the 
model and provide strong support for the screening and 
research of disease - related feature genes.

Cell culture
The SK-N-BE(2), SK-N-SH human NB cell lines and 
embryonic kidney cells HEK293T were acquired from 
the National Collection of Authenticated Cell Cultures 
(Shanghai, China). The cells were incubated at a tem-
perature of 37  °C in a controlled environment with 5% 
CO2. For SK-N-BE(2), the culture medium employed 
was DMEM/F12 (Thermo Fisher Scientific, USA), while 
for SK-N-SH, alpha-MEM (Thermo Fisher Scientific, 
USA) was used. HEK293T were maintained in DMEM 
(Thermo Fisher Scientific, USA). Both media were sup-
plemented with 10% foetal bovine serum (FBS) (Bio-
logical Industries, USA), and 1% penicillin/streptomycin 
(Beyotime, China).

RNA isolation and qRT-PCR
The RNA was extracted via the RNeasy Mini Kit (Qia-
gen, Germany). The Reverse Transcription System (Pro-
mega, USA) was utilized for reverse transcription. On a 
LightCycler 480 Real-Time System (Roche, Switzerland), 
LightCycler 480 SYBR Green I Master mix (Roche, Swit-
zerland) was utilized for PCR. The 2−ΔΔCt method was 
employed to determine the expression, with GAPDH 
expression utilized as an internal reference [14]. Tsingke 
Biological Technology (Beijing, China) synthesized the 
qPCR primers that were used. Primer sequences of the 
FAM13A, MYCN, HLA-A, HLA-B, HLA-C and GAPDH 
are as follows (forward and reverse, respectively): 
FAM13A, 5´-​A​C​C​C​T​G​T​T​T​G​A​A​G​T​A​G​A​G​T​A​T​A​C​A​
G-3´ and 5´-​A​G​A​C​C​T​C​T​T​T​T​A​C​T​A​T​G​A​T​A​A​G​C​C​T-3´; 
MYCN, 5´-​A​C​C​C​G​G​A​C​G​A​A​G​A​T​G​A​C​T​T​C​T-3´ and 5´-​
C​A​G​C​T​C​G​T​T​C​T​C​A​A​G​C​A​G​C​A​T-3´; HLA-A, 5´-​A​A​A​
A​G​G​A​G​G​G​A​G​T​T​A​C​A​C​T​C​A​G​G-3´ and 5´-​G​C​T​G​T​G​
A​G​G​G​A​C​A​C​A​T​C​A​G​A​G-3´; HLA-B, 5´-​C​T​A​C​C​C​T​G​
C​G​G​A​G​A​T​C​A-3´ and 5´-​A​C​A​G​C​C​A​G​G​C​C​A​G​C​A​A​C​
A-3´; HLA-C, 5´-​C​A​C​A​C​C​T​C​T​C​C​T​T​T​G​T​G​A​C​T​T​C​A​
A-3´ and 5´-​C​C​A​C​C​T​C​C​T​C​A​C​A​T​T​A​T​G​C​T​A​A​C​A-3´; 
GAPDH, 5´-​G​A​A​G​G​T​G​A​A​G​G​T​C​G​G​A​G​T​C-3´ and 5´-​
G​A​A​G​A​T​G​G​T​G​A​T​G​G​G​A​T​T​T​C-3´.

Cell viability assay
The cell counting kit-8 (CCK8) test (Dojindo Molecu-
lar Technologies, Japan) was employed to assess cell 
viability. SK-N-BE(2) cells were prepared as a single cell 
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suspension using Trypsin (Beyotime Biotech, China). 
Then, the cells were seeded into 96-well plates at a den-
sity of 2 × 103 cells per well. The plates were incubated for 
0, 1, 3, 5, and 7 days respectively. After each incubation 
period, CCK8 solution was added to the culture medium 
in the 96-well plates and further incubated for 4 h. Sub-
sequently, the absorbance of the cells was detected using 
spectrophotometry (Thermo Fisher Scientific, USA) at a 
specific wavelength of 450 nm. The cell viability was cal-
culated by comparing the absorbance values between the 
sh-NC and sh-FAM13A groups. Statistical analysis was 
performed on data obtained from three independent rep-
licate experiments.

Cell apoptosis and cell cycle analysis
For apoptosis analysis, cells were extracted using a tryp-
sin solution devoid of EDTA. Then, the cells were washed 
and stained with an Annexin V-FITC kit (Miltenyi Biotec, 
Germany), specifically with Annexin V and propidium 
iodide solution. Subsequently, cytometry analysis was 
performed. For cell cycle analysis, the cells were removed, 
subsequently washed, and then preserved in ice-cold 70% 
ethanol at 4  °C overnight. The following day, cells were 
stained with propidium iodide/RNase A staining solution 
(Sigma-Aldrich, USA) for 20  min at room temperature. 
Flow cytometry was used to examine the samples (Beck-
man Gallios, Germany), and cell apoptosis was analyzed 
by FlowJo v10 (Tree Star, USA), the Q2 and Q3 areas 
were labeled as apoptotic. The cell cycle distribution was 
analyzed with ModFit LT (Verity Software House, USA). 
All data are expressed as the mean ± standard error of the 
mean (SEM) of three independent experiments.

Colony formation assay
NB cells capable of stable gene silencing were inoculated 
at a density of 2,000 per well in six-well plates and cul-
tured for approximately two weeks. The media was dis-
carded after the culture, rinsed three times with cool, 
sterile 1xPBS, preserved with 4% formaldehyde, and 
stained with 0.1% crystal violet. The number of colonies 
was then counted macroscopically.

Immunoprecipitation and Immunoblotting
For immunoblotting, cell lysates were isolated using 
RIPA buffer containing 1 mM PMSF and 1% phosphatase 
inhibitor cocktail. Solubilized proteins were collected by 
centrifugation and quantified in 3 × 10⁶ cells per sample. 
Samples with equal amounts of protein were incubated 
on ice for 30 min and centrifuged at 13,000xg for 10 min 
prior to immunoblotting. The samples were resolved by 
electrophoresis on a 10% gel and transferred to PVDF 
membranes for western blot analysis. The membrane was 
blocked with a 5% skim milk solution in TBST buffer (10 
mM Tris-HCl, 150 mM NaCl, and 1% Tween 20). Then, 

the primary antibody was added and incubated overnight 
at 4 °C. The next day, after three washes with TBST buf-
fer, the PVDF membrane was incubated with a second-
ary antibody in 5% skim milk at room temperature for 
1 h. The PVDF membrane was washed three times with 
TBST buffer, and proteins were detected by standard 
enhanced chemiluminescence (ECL) (Millipore, USA). 
The antibodies used were specific for FAM13A (55401-
1-AP, Proteintech, USA), N-Myc (9405  S, Cell Signaling 
Technology, USA), Cleaved caspase-3 (9661  S, Cell Sig-
naling Technology, USA), PARP (9542  S, Cell Signaling 
Technology, USA), CDK2 (2546T, Cell Signaling Tech-
nology, USA), CDK4 (12790T, Cell Signaling Technology, 
USA), CDK6 (13331T, Cell Signaling Technology, USA), 
MCL-1 (4572 S, Cell Signaling Technology, USA), BCL-2 
(15071T, Cell Signaling Technology, USA), HA (3724  S, 
Cell Signaling Technology, USA), Flag (14793T, Cell Sig-
naling Technology, USA) and GAPDH (MAB373, Milli-
pore, USA).

The Co-IP assay was performed using the Beaver-
Beads™ Protein A/G Immunoprecipitation Kit (22202-
100, Beaver, China). Briefly, cells in 6-well plates were 
collected (1 × 10⁷ SK-N-BE(2) for endogenous IP). IP 
binding buffer (500 ml PBS, 0.3% Tween 20, and 75 mM 
NaCl) was added for lysis on ice for 40 min. Supernatant, 
IgG, and IP were used as inputs. The target antibody was 
added and incubated overnight at 4  °C. The next day, 
after washing with IP binding solution, 20 µL of magnetic 
beads were incubated at 4  °C for 2  h. Subsequently, the 
supernatant was removed and the magnetic beads were 
washed again. For denaturation, 100 µL loading buffer 
was added, mixed with the magnetic beads, and heated 
at 100 °C for 6 min. Finally, a Western blot assay was used 
to measure the protein. The antibodies used were specific 
for HA (3724 S, Cell Signaling Technology, USA).

ShRNA infection and plasmid DNA transfection
For shRNA-mediated knockdown, the sequences of 
shRNA were synthesized by IGE Biotechnology, Ltd. 
(Guangzhou, China), sequences of shFAM13A are as fol-
lows: sh-FAM13A #1, 5´-​T​A​A​T​A​A​C​T​C​T​G​G​A​G​G​T​C​A​
A​A​G-3´; sh-FAM13A #2, 5´-​G​G​A​G​A​A​C​T​C​T​T​A​G​A​A​A​
G​A​A​C​C-3´; sh-FAM13A #3, 5´-​G​C​C​G​G​T​A​A​C​A​A​A​G​A​
A​C​G​A​A​C​G-3´. Lentiviral packaging was performed as 
previously described [15]. If necessary, lentiviral medium 
was concentrated by PEG-8000 (Beyotime, China) pre-
cipitation. Lentiviral particles were applied to infect cells 
in the presence of polybrene (Sigma-Aldrich, USA). After 
puromycin (Sigma-Aldrich, USA) screening, stable deple-
tion cells were established. For overexpression experi-
ments, the HEK293T cell line was transfected with 4 µg 
pcDNA3.1-MYCN-Flag or/and pcDNA3.1-FAM13A-
HA. Cells were transfected after 48 h. Transfections were 
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performed using Lipofectamine 3000 (Thermo Fisher 
Scientific, USA) following the manufacturer´s protocol.

Cleavage under target and release using nuclease 
(CUT&RUN)
CUT&RUN is a sophisticated technique used to study 
protein-DNA interactions. It involves the use of Protein 
G-fused MNase nucleases, which are guided by antibod-
ies to specifically target proteins and induce DNA frag-
mentation near the desired location. The experiment 
adhered to the procedures specified in the Hyperactive 
pG-MNase CUT&RUN Assay Kit for qPCR (HD101-01; 
Vazyme, China). DNA was purified using a MiniElute 
PCR Purification Kit (Qiagen, Germany). Real-time PCR 
was performed using the LightCycler® 480 instrument 
with purified DNA, Power SYBR Green PCR Master 
Mix (Roche, Switzerland). The N-Myc antibody (Catalog 
# 61185, Active Motif, USA) and control IgG antibodies 
(EPR25A, Abcam, UK) were used. Real-time PCR was 
performed with primers designed to cover the regions of 
the FAM13A gene containing MYCN-responsive motifs 
or remote negative control regions. Fold enrichment of 
the FAM13A gene containing the binding regions by the 
anti-N-Myc antibody was calculated by dividing the PCR 
product from this region by the PCR product from the 
negative control region, relative to the input. FAM13A 
forward primer: 5´-​T​C​T​C​T​T​T​C​C​G​C​T​G​A​A​C​C​C​A​C-3´, 
FAM13A reverse primer: 5´-​C​T​C​C​C​T​C​T​A​C​T​T​G​C​C​A​
G​C​A​C-3´; Negative Control forward primer: 5´-​C​T​A​G​
C​T​T​T​T​G​G​A​T​T​A​G​T​T​T-3´, Negative Control reverse 
primer: 5´-​A​G​C​A​C​T​A​A​A​T​G​C​C​C​A​C-3´.

Single cell transcriptomes analysis
We utilized a previously published sc-RNA-seq dataset, 
available in H5AD format from the Neuroblastoma Cell 
Atlas, which can be accessed from ​h​t​t​p​​s​:​/​​/​n​e​u​​r​o​​b​l​a​​s​t​o​​m​
a​-​c​​e​l​​l​-​a​​t​l​a​​s​.​c​o​​g​.​​s​a​n​​g​e​r​​.​a​c​.​​u​k​​/​n​b​​_​G​O​​S​H​_​c​​e​l​​l​x​g​e​n​e​.​h​5​a​d 
[16]. This dataset was processed and analyzed using the 
Scanpy software package to explore cellular landscapes 
and gene dynamics [17]. Following standard preprocess-
ing practices recommended by Scanpy, the data were 
normalized using the ‘normalize_per_cell’ function and 
then log-transformed using the ‘log1p’ function. Highly 
variable genes were selected using the ‘highly_vari-
able_genes’ function. Subsequently, cluster identifica-
tion and visualization were performed using the UMAP 
technique, with distinct clusters detected using the Lou-
vain and Leiden algorithms. Marker gene analysis was 
employed to characterize the identified clusters, and 
pseudo-time analysis was utilized to infer developmental 
trajectories by Scanpy’s ‘scanpy.tl.paga’ function.

Bioinformatic analysis
Data mining
Expression matrix of tumor cell lines: Obtained from 
the Cancer Cell Line Encyclopedia (CCLE) data set at 
the website ​h​t​t​p​​s​:​/​​/​p​o​r​​t​a​​l​s​.​​b​r​o​​a​d​i​n​​s​t​​i​t​u​t​e​.​o​r​g​/​c​c​l​e. RNA 
sequence data and clinical information of neuroblastoma: 
Obtained from the Therapeutically Applicable Research 
to Generate Effective Treatments (Target) project data-
base at the website ​h​t​t​p​​s​:​/​​/​o​c​g​​.​c​​a​n​c​​e​r​.​​g​o​v​/​​p​r​​o​g​r​a​m​s​/​t​a​r​
g​e​t, which contains tissues from 249 tumor patients. At 
the same time, the mRNA profile data and clinical char-
acteristics of neuroblastoma are publicly available on 
an open - access platform. Microarray data: Retrieved 
through the Gene Expression Omnibus (GEO) at the 
website ​h​t​t​p​​s​:​/​​/​w​w​w​​.​n​​c​b​i​​.​n​l​​m​.​n​i​​h​.​​g​o​v​/​g​e​o​/, and the ​o​r​i​g​
i​n​a​l data is obtained by downloading MINiML files.

Data analysis
Enrichment analysis (GO and KEGG): Conducted using 
R software and related bioinformatics analysis packages. 
After obtaining data from specific databases, the gene set 
is pre - processed, and then the analysis is carried out to 
determine the enrichment of genes in biological func-
tions and metabolic pathways. Overall survival analysis: 
The R v4.0.3 software package ggplot2 is used for the 
preliminary study, and the Kaplan - Meier curve is con-
structed using the online platform ​(​​​h​t​t​p​s​:​/​/​r​2​p​l​a​t​f​o​r​m​.​c​o​
m​​​​​)​. According to the gene expression level grouping, the 
relationship with the overall survival of patients is evalu-
ated. Difference analysis: Performed using the limma 
package combined with R software. After obtaining data 
from the database, the mRNA is analyzed, and the dif-
ferential expression threshold is determined for judg-
ment. Gene correlation analysis: The R software package 
ggstatsplot is used to visualize gene correlation. After 
processing the data, the association between genes is dis-
played through this package.

Regarding the differential expression threshold for 
mRNAs, it is determined as “Adjusted P < 0.05 and Log 
(Fold Change) > 1 or Log (Fold Change) < − 1”.

Immune infiltration analysis
CIBERSORT [18] is an algorithm widely used to charac-
terize the cellular composition of the different complex 
tissues by gene expression values in the solid tumors. 
LM22 (a special genetic marker) signature algorithm was 
employed as a special genetic marker, which contains 547 
distinct genes. It can distinguish 22 immune cell subtypes 
downloaded from the CIBERSORT portal (​h​t​t​p​​:​/​/​​c​i​b​e​​r​
s​​o​r​t​​.​s​t​​a​n​f​o​​r​d​​.​e​d​u​/). In this study, CIBERSORT package 
and LM22 algorithm were used to calculate the infiltra-
tion abundance of 22 immune cell subtypes in the NB 
patient samples of Target database between the high and 
low FAM13A expression groups containing the different 

https://neuroblastoma-cell-atlas.cog.sanger.ac.uk/nb_GOSH_cellxgene.h5ad
https://neuroblastoma-cell-atlas.cog.sanger.ac.uk/nb_GOSH_cellxgene.h5ad
https://portals.broadinstitute.org/ccle
https://ocg.cancer.gov/programs/target
https://ocg.cancer.gov/programs/target
https://www.ncbi.nlm.nih.gov/geo/
https://r2platform.com
https://r2platform.com
http://cibersort.stanford.edu/
http://cibersort.stanford.edu/
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T cells, B cells, plasma cells, natural killer cells, and dif-
ferent myeloid subsets. We also analyzed the correlation 
of expression distribution of 22 immune cell subtypes 
between FAM13A high and low expression groups. And 
we also investigated the correlations between FAM13A 
expression and immunodulators, MHC molecules, che-
mokines, and chemokine receptors in NB patients’ sam-
ples from the Target database.

Gene enrichment analysis
The cluster Profiler package [19] (FDR < 0.1) was 
employed for KEGG pathway analysis and GO analysis of 
the DEGs. The expression matrix of the differential genes 
grouped by high and low expressions of FAM13A was 
used for GSEA analysis [20], with msigdb.v7.0.entrez.gmt 
as the selected reference gene set. Then ggPlot2 package 
was utilized to visualize GO, KEGG, and GSEA pathways 
by creating the related bar charts, bubble charts, and 
enrichment maps.

Protein structure prediction
The National Center for Biotechnology Information 
(NCBI) was used to acquire the amino acid sequences of 
N-Myc (​h​t​t​p​​s​:​/​​/​w​w​w​​.​n​​c​b​i​​.​n​l​​m​.​n​i​​h​.​​g​o​v​​/​p​r​​o​t​e​i​​n​/​​N​P​_​0​0​5​3​
6​9​.​2, NP_005369.2) and FAM13A (​h​t​t​p​​s​:​/​​/​w​w​w​​.​n​​c​b​i​​.​n​l​​m​
.​n​i​​h​.​​g​o​v​​/​p​r​​o​t​e​i​​n​/​​N​P​_​0​5​5​6​9​8​.​2, NP_055698.2). Using the 
monomer_casp14 model from Alphafold v2.3.2 [21], we 
predicted the high-resolution structures of N-Myc and 
FAM13A. The following database versions were used: 
uniport 2023-03-01, uniref90 2023-03-01, pdb_mmcif 
2023-03-03, and pdb_seqres 2023-03-03. Addition-
ally, pTM (Predicted Targeting Metric) is employed to 
assess the quality of the protein structures predicted by 
Alphafold.

Protein structure assessment
The SWISS-MODEL online instrument (​h​t​t​p​​s​:​/​​/​s​w​i​​s​s​​m​
o​d​​e​l​.​​e​x​p​a​​s​y​​.​o​r​g​/​a​s​s​e​s​s​s​m​e​n​t) was utilized to evaluate the 
predicted protein structure. This tool utilizes MolPro-
bity version 4.4 to generate Ramachandran diagrams and 
calculate Ramachandran Favoured values. The Ramach-
andran plot is a graph that depicts the energetically favor-
able locations for backbone dihedral angles of amino acid 
residues within the structure of a protein. Typically, if the 
Ramachandran Favoured value of 90% or more, we can 
conclude that the predicted protein model conforms to 
stereochemical principles.

Protein-Protein Docking
This study used Schrödinger software for protein-to-
protein docking. First, preprocess the protein. Then, 
bond-level assignment, hydrogenation, zero-order bond 
assignment to metal atoms, and disulfide bond creation 
were performed on the two proteins. Then, the hydrogen 

bond network was optimized and protein energy mini-
mization was performed using the OPLS_4 force field. 
Then, the Protein-Protein docking (Piper) module in 
Schrödinger was used for molecular docking. The stan-
dard mode is used for docking, and the number of rotat-
able probes for the ligand is defined as 70,000, which 
enables sufficient conformational sampling of the ligand 
protein, and the number of generated conformations is 
defined as 30. For proteins with multiple chains, we only 
use one chain for docking. Finally, among all the confor-
mations generated, Piper clusters the top 1000 rotational 
conformations based on the Root-mean-square deviation 
(RMSD) between each atom, and the representative con-
formation in each class is selected from the conforma-
tion with the most neighbors in this class. Piper ranks the 
generated conformations based on the number of clus-
ters in each category. The top-ranked conformation is the 
conformation with the largest number of clusters, which 
is the optimal binding mode predicted for the FAM13A 
and N-Myc protein interaction.

Molecular dynamics (MD) simulation
On an Ubuntu 20.04.01 platform with an Intel Core 
i9-12900k CPU, GeForce RTX 4070 GPU, and 64 GB of 
RAM, GROMACS (2023.1 single precision) was used to 
conduct the MD simulation. The software SPDBV 4.10 
was initially used to modify the heavy ions and small mol-
ecules of the proteins. Using the CHARMM36 force field, 
the topology structure of the protein was subsequently 
calculated. The TIP3P water model was used to solve 
the complex, which was encircled by a cube-shaped cage 
reaching at least 1.2 nm on all sides. The system was neu-
tralized by adding Na+ and Cl− ions, followed by 0.15 M 
NaCl, which restored it back to a near-physiological state. 
Following that, for 5000 iterations, the steepest descent 
technique was utilized to accomplish energy minimiza-
tion and a maximum force of less than 1000 kJ/mol/nm. 
To achieve a well-equilibrated and stable system, the sys-
tem was subjected to 100 ps of restricted NVT (number 
of particles, volume, temperature) and NPT (number of 
particles, pressure, temperature) equilibration at 310  K 
and 1 bar. Finally, the MD simulation of the complex was 
conducted for 100 ns and 50,000,000 steps. During the 
simulation, the Verlet cut-off scheme and Leap-frog inte-
grator with a 2  fs step size were utilized, and trajectory 
data was saved every 10 ps. Unless explicitly stated other-
wise, the RMSD calculations pertain solely to the protein 
backbone. we utilized the “gmx rms” command to com-
pute RMSD, which initially employs the least-squares 
method to fit the structure to the reference structure 
(t2 = 0), and subsequently quantifies RMSD based on the 
following formula:

https://www.ncbi.nlm.nih.gov/protein/NP_005369.2
https://www.ncbi.nlm.nih.gov/protein/NP_005369.2
https://www.ncbi.nlm.nih.gov/protein/NP_055698.2
https://www.ncbi.nlm.nih.gov/protein/NP_055698.2
https://swissmodel.expasy.org/assesssment
https://swissmodel.expasy.org/assesssment
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Where, M =
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atom i at frame t. Unless explicitly stated otherwise, the 
Root Mean Square Fluctuation (RMSF) calculations per-
tain solely to the protein backbone. The RMSF value is 
determined using the following formula:
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Where, ri (t) is the position vector of the atom i at frame t 
and is the average atom position over all T frames. Radius 
of Gyration (RoG) plays a pivotal role in the evaluation 
of protein structure and its conformational alterations. In 
this research, the RoG value is determined using the fol-
lowing formula:

	
RoG =

(∑
i||ri||2mi∑

imi

)1/2

� (3)

Where, mi is the molecular weight of atom i, ri is the 
position of atom i relative to the center of the molecule. 
The Solvent Accessible Surface Area (SASA) was esti-
mated using GROMACS commands. In this research, the 
SASA value is determined using the following formula:

	
SASA =

∑ R√
R2 − Z2

i

x D x Li� (4)

Where, Li is the length of the arc drawn on a given sec-
tion i; Zi is the perpendicular distance of section i from 
the centre of the sphere. Free energy landscape (FEL) of 
receptor-ligand binding represents a vivid and informa-
tive two- or three-dimensional depiction of the changes 
in free energy that occur during the binding process 
between receptor and ligand. The translational and rota-
tional motion of the MD simulation trajectory was cor-
rected using the gmx trjconv command. Upon obtaining 
the computed results of the RMSD and RoG, the FEL of 
protein-ligand complex stability was calculated using the 
gmx sham command. After analyzing the energy well, the 
gmx trjconv command was used to extract the conforma-
tion of the energy minimum point.

Statistical analysis
The statistical analysis was conducted using Graph-
Pad Prism software (version 8.0, GraphPad Prism Inc.). 
The experimental data is displayed as mean ± standard 
error of the mean (SEM). The Pearson correlation coef-
ficients were computed to ascertain the bivariate corre-
lation between the variables being studied. The student’s 

t-test was used to assess differences between two distinct 
groups, whereas ANOVA was used for more than two 
groups. We used P < 0.05 to evaluate statistical signifi-
cance. The symbols *P < 0.05, **P < 0.01, ***P < 0.001, and 
****P < 0.0001 indicate increasing significance.

Results
Multiple machine learning algorithms identified MYCN 
related feature genes
The presence of multiple copies of the MYCN gene is a 
significant prognostic factor associated with an unfa-
vorable outcome in individuals diagnosed with neuro-
blastoma (NB). Through data mining, we acquired data 
from 623 samples (475 MYCN non-amplified samples 
and 148 MYCN amplified samples) from two data sets 
(GSE49710, GSE73517) in the GEO database. By exam-
ining the differences between the MYCN amplified and 
non-amplified groups, 169 MYCN-related differential 
genes were identified, of which 74 were up-regulated and 
95 were down-regulated. Heat maps and volcano plots 
were depicted in Fig.  1A and B, respectively. As illus-
trated in Fig.  1C-E, support vector machine-recursive 
feature elimination (SVM-RFE), random forest, and other 
machine learning approaches were employed to screen 
the distinctive genes associated with MYCN. As shown 
in Fig. 1F, there are five MYCN feature genes that can be 
screened by both machine learning algorithms: PHGDH, 
FAM13A, KLRG2, RAB3B, and NPW. To further screen 
out the genes that can indirectly affect the expression of 
MYCN in NB for this study, we used the R2 database to 
analyze the GSE62564 data set. The results showed that 
except for the RAB3B gene, when the other four genes 
(PHGDH, FAM13A, KLRG2, and NPW) were highly 
expressed, the prognosis of the patient was poor (Fig. S1). 
Among them, the research on PHGDH has demonstrated 
its role in NB [22]. The research on KLRG2, a recep-
tor expressed on natural killer cells and T cells, mainly 
focuses on its role in immune responses [23]. NPW is 
a secreted protein that is typically secreted by cells into 
the extracellular space or into the blood circulation [24]. 
Since the N-Myc protein is predominantly located in the 
nucleus, the interaction between NPW and the N-Myc 
protein may require specific signal transduction pathways 
or molecular mechanisms. FAM13A is a protein that may 
play a significant role in tumor initiation, progression, 
and metastasis, but its role in NB remains unclear [25]. 
Based on the above considerations, we ultimately decided 
to select FAM13A as the research object of this paper.

Positive association between FAM13A and MYCN
An in-depth investigation was conducted on the Target 
and GEO databases to explore the potential correlation 
between FAM13A and MYCN amplification. The find-
ings of our analysis demonstrate a statistically significant 
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Fig. 1  Identification of MYCN-related feature genes through screening with multiple machine learning algorithms. (A-B) Heat map and volcano plot 
respectively depict differential genes related to MYCN. (C-E) Screen MYCN-related feature genes using SVM-feature recursive elimination, random forest, 
and other machine learning methods. (F) The Venn graphic indicates that both machine learning methods can choose 5 MYCN-related feature genes. 
*p < 0.05; asterisks (*) represent levels of statistical significance. Two groups’ statistical differences were contrasted using the student´s t test
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Fig. 2 (See legend on next page.)
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positive association between the FAM13A gene and 
the MYCN gene (Fig.  2A-C). Patients who displayed 
MYCN amplification revealed a significantly elevated 
expression of FAM13A as compared to patients without 
MYCN amplification (Fig.  2D). Subsequently, we pro-
cured the expression matrix of the MYCN gene and the 
FAM13A gene from NB cell lines by utilizing the Can-
cer Cell Line Encyclopedia (CCLE) dataset. Our analysis 
revealed a noteworthy co-expression of the MYCN gene 
and FAM13A gene in cell lines with MYCN amplification 
(Fig. S2). Furthermore, the quantitative reverse transcrip-
tion polymerase chain reaction (qRT-PCR) study demon-
strated a considerable elevation in FAM13A levels inside 
the MYCN-amplified cell line (SK-N-BE(2)) compared to 
the MYCN-nonamplified cell line (SK-N-SH) (Fig.  2E). 
The protein expression levels of N-Myc and FAM13A 
were evaluated by Western Blot. The obtained results 
indicated a significant overexpression of both N-Myc and 
FAM13A in the NB cell line with MYCN amplification 
(Fig. 2F).

In order to establish the existence of a positive associa-
tion between FAM13A and MYCN expression, we per-
formed a thorough study using single cell transcriptomes 
derived from a dataset of 6,442 cells (10X) collected from 
untreated individuals with NB [16]. After applying clus-
ter analysis to the sc-RNA-seq data and utilizing UMAP 
dimension reduction (Fig. 2G), we proceeded to examine 
the expression levels of two prominent NB susceptibil-
ity genes, namely PHOX2A and PHOX2B, along with 
the oncogene MYCN, and other genes exhibiting dif-
ferential expression (Fig. S3), within these distinct cel-
lular subtypes. In addition, an annotation analysis was 
conducted on the discovered cell clusters, as described 
in the annotation analysis conducted by Sam Behjati et 
al. The sc-RNA-seq data analysis unveils that tumor-like 
cells prominently express the NB susceptibility genes 
PHOX2A and PHOX2B. Intriguingly, this expression pat-
tern demarcates distinct cell subtypes characterized by 
divergent MYCN expression levels. Hierarchical cluster-
ing analysis (Fig. 2H) discerns a segregation of tumor-like 
cells, with one branch exemplifying heightened MYCN 
expression (Cell Cluster 1, 5, 10, and 24), while the other 
represents cells exhibiting subdued MYCN expression 
(Cell Cluster 7 and 22). Notably, within the subset dis-
playing elevated MYCN expression, HLA-B experiences 

a notable decline in expression. Concurrently, the expres-
sion profiles of FAM13A correspond closely to those of 
MYCN, and within Cell Cluster 22, both FAM13A and 
MYCN manifest significantly diminished expression 
levels. Subsequently, we conducted further pseudo-time 
analysis (Fig. 2I), revealing a bifurcation trajectory within 
the tumor-like cells. In this trajectory, the initial cell clus-
ter of the MYCN-low expressing branch is characterized 
by the absence of both MYCN and FAM13A, denoted 
as cluster 22. This cluster then progresses to cluster 7, 
exhibiting worsening malignant features. While a sub-
set of cells in this branch does show lower expression of 
MYCN and FAM13A, an interesting observation is the 
elevated expression of HLA-B, indicative of a certain 
level of activated immune response. This phenomenon 
suggests a potentially more favorable prognosis for this 
branch. Conversely, the other branch, characterized by 
relatively lower proportions of HLA-B-expressing cells, 
demonstrates a gradual enhancement in the expression 
of MYCN and FAM13A with increasing malignancy. This 
comprehensive analysis underscores the potential pivotal 
roles of MYCN, FAM13A, and MHC molecules in dic-
tating the trajectory of malignant progression in tumor 
cells.

Correlation between the expression of FAM13A and the 
clinical features of NB patients
Furthermore, based on the analysis of the Target data-
base and R2 Platform, it was shown that the expression 
of FAM13A exhibited a significant correlation with the 
prognostic outcomes of patients with NB. Specifically, 
a greater level of FAM13A expression was found to be 
linked to a decrease in overall survival (OS) among NB 
patients (Fig.  3A-B, Fig. S1B). The expression level of 
FAM13A in patients with a high Children´s Oncology 
Group (COG) risk was significantly greater compared 
to patients with a low COG risk, as observed in both 
the Target and GEO databases (Fig.  3C). Furthermore, 
it was shown that patients with unfavorable NB exhib-
ited considerably elevated levels of FAM13A expres-
sion compared to those with favorable NB (Fig.  3D). 
Moreover, FAM13A was predominantly expressed in 
NB patients with a high mitosis-karyorrhexis index 
(MKI) (Fig. 3E). And patients with diploid chromosomes 
expressed higher levels of FAM13A than patients with 

(See figure on previous page.)
Fig. 2  Co-expression and integrated analysis of FAM13A and MYCN in neuroblastoma. (A-C) Expression of FAM13A and MYCN are correlated in NB pa-
tients (r = Pearson´s correlation coefficient). (D) FAM13A is overexpressed in NB with MYCN amplification compared to NB without MYCN amplification. 
Cases were divided based on the status of MYCN amplification, and FAM13A expression is measured. (E-F) qRT-PCR and Western blot revealing FAM13A 
and MYCN expression in MYCN amplified and nonamplified NB cell lines. (G) Dimensionality reduction (UMAP) of sc-RNA-seq data from untreated NB 
patients (6,442 cells). The five panels show the expression of NB associated gene. (H) Hierarchical clustering analysis was performed on the sc-RNA-seq 
data, focusing on the expression levels of FAM13A, MYCN, PHOX2A, PHOX2B, and HLA-B. The dengrogram illustrates the relationships between cells 
based on their gene expression profiles. (I) Pseudo-time analysis and visualization of the sc-RNA-seq unveil crucial branching points in cell deterioration 
of the NB tumor cells. **p < 0.01, ***p < 0.001, ****p < 0.0001; asterisks (*) represent levels of statistical significance. Two groups’ statistical differences were 
contrasted using the student´s t test
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hyper diploid chromosomes (Fig.  3F). Additionally, the 
expression of FAM13A was significantly elevated in those 
exhibiting progression of NB compared to those without 
progression (Fig. 3G). Further, it is worth noting that the 

expression of FAM13A is comparatively higher in stage 4 
NB tumors as compared to stage 1 tumors. However, it is 
important to mention that this difference does not reach 
statistical significance (p > 0.05) (Fig. 3H). The above data 

Fig. 3  FAM13A as a prognostic biomarker in neuroblastoma: correlation with clinical features, downstream pathways, and functional enrichment analysis. 
(A-B) Kaplan-Meier curves show the probability of overall survival based on FAM13A expression. (C-H) The correlation of FAM13A expression in patients 
with NB and various clinical stages. (I) Distinct colors indicate gene expression trends in distinct groups in the differential gene expression heatmap. This 
figure shows the top 25% up and down-regulated genes. (J) The enriched KEGG signaling pathways were chosen to demonstrate the primary biological 
actions of potential main mRNA. The abscissa represents gene ratio, while the ordinate displays enriched pathways. **p < 0.01, ***p < 0.001, ****p < 0.0001; 
asterisks (*) represent levels of statistical significance. Two groups’ statistical differences were contrasted using the student´s t test
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Fig. 4 (See legend on next page.)
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suggest that FAM13A has the potential to function as a 
novel prospective tumor marker for NB.

To examine the potential downstream genes of 
FAM13A and gain deeper insights into its mechanism in 
neuroblastoma (NB), we conducted an RNA-seq analy-
sis comparing two groups of patients: the top 25% with 
high FAM13A expression and the bottom 25% with low 
FAM13A expression. This analysis was performed on 
a cohort of 249 NB patients from the Target database. 
Our goal was to identify differentially expressed genes 
(DEGs) between these two groups, which could shed 
light on the molecular pathways regulated by FAM13A 
in NB progression (Fig.  3I). To investigate the potential 
involvement of aberrant FAM13A expression in various 
biological pathways or processes, we conducted Gene 
Ontology (GO) terms and KEGG pathway analyses. 
These analyses were performed to evaluate the correla-
tion of genes (log2 Fold Change > = 0.5, p < 0.05) based on 
Target database. The results of the enrichment analysis 
indicate that the most significantly enriched pathway and 
GO terms are the MAPK signaling pathway and cAMP-
mediated signaling (Fig.  3J). It was revealed that genes 
associated with FAM13A exhibited enrichment in path-
ways pertaining to several biosynthetic, metabolic, and 
proliferative components of cellular physiology. These 
pathways include ABC transport, ribosome biogenesis, 
and biosynthesis of amino acids (Fig. 3J, Fig. S4A-B).

FAM13A expression negatively correlates with the level of 
immune infiltration in NB patients
Increased immune cell infiltration into malignancies is 
correlated with increased patient survival and predicts 
the efficacy of immune therapies. To determine whether 
FAM13A expression is associated with the degree of 
immune infiltration in NB, we examined the correlation 
between FAM13A expression and the degree of immune 
infiltration in NB samples obtained from the Target data-
base. Figure  4A illustrates the estimated proportions 
of various immune cell types in NB samples, as deter-
mined by CIBERSORT using the LM22 algorithm. The 
presented bar graph depicted the relative proportions 
of immune cells for each patient, highlighting variations 
in the distribution of immune cells between individu-
als exhibiting high and low FAM13A expression levels 
(Fig.  4B, Fig. S5A). It is evident that the low FAM13A 
expression group exhibits greater proportions of CD8+ 

T cells, resting CD4+ memory T cells, activated NK 
cells, regulatory T cells, gamma delta T cells, M0 macro-
phages, M1 macrophages and M2 macrophages (Fig. 4C, 
Fig. S5B). Further research revealed that immune cell 
identity markers, effector molecules, chemokine and 
receptors, antigen presentation markers, and immune 
checkpoint markers were identified in immune infiltrated 
NB samples distinguished by FAM13A expression level 
(Fig. 4D). All immune cell markers (CD2, CD3D, CD3E, 
CD8A, TBX21, and NKG7) demonstrated a negative cor-
relation with FAM13A expression (Fig. S6A). In addition, 
we examined HLA molecules, also referred to as MHC 
molecules, which include HLA class I, HLA class II, and 
HLA class III. Since NB cells lack surface HLA class I 
and II molecules, the T cell compartment of the host is 
likely to ignore them. As shown in Fig.  4E, the expres-
sion of HLA class I (HLA-A, HLA-B, and HLA-C) was 
significantly higher in the FAM13A-low expression group 
compared to the FAM13A-high expression group. And 
FAM13A and HLA class II (HLA-DQ) expressions were 
negatively correlated (Fig. S6B-D). Subsequently, we 
employed the Tumor Immune Dysfunction and Exclu-
sion (TIDE) algorithm to forecast the potential immune 
checkpoint blockade (ICB) response. This was accom-
plished by acquiring RNA-sequencing expression profiles 
(level 3) and the accompanying clinical data for NB from 
the Target database [26]. The TIDE methodology utilizes 
a set of gene expression signatures to assess two specific 
processes involved in the evasion of the immune system 
by tumors. These mechanisms include the dysfunction of 
cytotoxic T lymphocytes (CTLs) that infiltrate the tumor 
and the resistance of CTLs against immunosuppres-
sive substances. A high TIDE score is indicative of sub-
optimal efficacy of immune checkpoint blockade (ICB) 
therapy and reduced overall survival following ICB treat-
ment. As shown in Fig. S6E, the high FAM13A expres-
sion group had a high TIDE score, which is consistent 
with the fact that NB samples with low FAM13A expres-
sion exhibited robust immune infiltration. The preceding 
information suggests that patients with limited FAM13A 
expression may be more likely to respond to immuno-
therapy. Although the low-FAM13A expression group 
exhibited higher levels of HLA class I and II expressions, 
there was no statistically significant disparity observed 
in the expression of immunological checkpoint-related 
genes, including LAG3, TIGIT, and SIGLEC15 (Fig. S6F). 

(See figure on previous page.)
Fig. 4  FAM13A Regulates Immune Infiltration and HLA Class I Expression in Neuroblastoma: Implications for Immunotherapy. (A) The proportions of 22 
immune cells in NB patients based on Target database. (B) Graph showing the difference in CIBERSORT TIICs scores between high FAM13A and low FA-
M13A samples. (C) Relationship between FAM13A expression and immune cells. (D) Biomarkers for immunotherapy response between high FAM13A and 
low FAM13A samples. (E) FAM13A is inversely proportional to HLA-A, HLA-B and HLA-C. (F) The expression of FAM13A according to the MYCN status in NB 
patients. (G) qRT-PCR revealing HLA-A, HLA-B and HLA-C mRNA expression in MYCN-amplified and MYCN-non amplified cell lines. (H) qRT-PCR revealing 
HLA-A, HLA-B and HLA-C mRNA expression in NB stably transfected with sh-NC or sh-FAM13A. ns, not significant; *p < 0.05, ***p < 0.001, ****p < 0.0001; 
asterisks (*) represent levels of statistical significance. Two groups’ statistical differences were contrasted using the student´s t test. Data were representa-
tive of at least three independent experiments
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Fig. 5 (See legend on next page.)
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Therefore, the high immune cell infiltration in the group 
with low FAM13A expression may be primarily attribut-
able to the high MHC expression on the surface of NB 
cells. The downregulation of HLA class I is a commonly 
seen immune evasion mechanism in cancer cells. Nota-
bly, NB has a high frequency and severity of HLA loss, 
making it a prominent illustration of this phenomena. 
Following an examination of the GEO database, it was 
observed that patients diagnosed with NB and exhib-
iting MYCN amplification displayed notably reduced 
levels of surface HLA class I expression (Fig. 4F). Check-
ing HLA-A, B, and C mRNA expression levels in both 
MYCN-amplified and MYCN-nonamplified cell lines, we 
discovered that HLA-B and HLA-C were extremely lowly 
expressed in the MYCN-amplified cell line (Fig.  4G). 
Knocking down FAM13A in the MYCN-amplified cell 
line could restore HLA class I (HLA-B) expression, which 
may be an especially promising strategy for enhancing 
T cell-mediated antitumor immunity in patients with 
MYCN-amplified NB (Fig.  4H). The results may have 
indicated an immune-inflamed microenvironment in the 
group with low FAM13A expression, suggesting immu-
notherapy susceptibility.

FAM13A sustains MYCN-amplified NB cells growth and 
survival
To investigate how FAM13A knockdown affects the pro-
liferation of NB cell lines with MYCN amplification. First, 
we transfected FAM13A shRNA into SK-N-BE(2) cells 
and showed efficient knockdown of FAM13A expression 
in both protein and mRNA level (Fig. 5A-B). Considering 
the positive correlation between FAM13A and MYCN 
expression, our study aimed to examine the phenotypic 
impact of FAM13A on MYCN expression in NB cells 
with MYCN amplification. Our findings revealed a simi-
lar reduction in both MYCN mRNA and protein expres-
sion in SK-N-BE(2) cells (Fig. 5A-B). The results obtained 
from the Target database are consistent with the experi-
mental results, and MYCN also has a higher expression 
level in the FAM13A high expression group (Fig.  5C). 
Analysis of the FAM13A gene promoter sequence and 
published chromatin immunoprecipitation (ChIP)-
sequencing data revealed MYCN binding sites near the 

FAM13A transcription start site (TSS) [27]. Using the 
motif database and investigating the FAM13A gene pro-
moter region with JASPAR ​(​​​h​t​t​p​:​/​/​j​a​s​p​a​r​d​e​v​.​g​e​n​e​r​e​g​.​
n​e​t​​​​​) predicted a potential binding site for MYCN. We 
performed CUT&RUN assays with an anti-N-Myc anti-
body or control IgG antibody followed by real-time PCR 
with primers targeting a negative control and the MYCN 
peak summit near the FAM13A TSS. CUT&RUN assays 
showed significant MYCN binding at its putative binding 
site. (Fig. S7). The knockdown of FAM13A resulted in a 
decrease in cell growth when compared to cells trans-
fected with scrambled shRNA (Fig.  5D). Upon micro-
scopic examination, it was seen that the suppression of 
FAM13A led to a notable suppression of cellular growth 
in the NB cell line (Fig. 5E). Moreover, when compared to 
the transfection of scrambled negative control (sh-NC), 
the suppression of FAM13A exhibited a significant reduc-
tion in NB proliferation as observed in the colony forma-
tion experiment (Fig. 5F). Collectively, these data suggest 
that NB cell proliferation is functionally dependent on 
FAM13A signaling. Flow cytometry for apoptosis studies 
demonstrated that FAM13A-knockdown could hamper 
tumor cell proliferation and induce apoptosis (Fig.  5G). 
The FAM13A-knockdown group consistently exhib-
ited heightened caspase-3 activation and PARP cleav-
age, both of which serve as indicators of cellular death. 
Furthermore, the expression levels of BCL2 and MCL1, 
which are well-known pro-survival proteins involved in 
inhibiting cell death (apoptosis) in cancer, were seen to 
be significantly low in cells where FAM13A had been 
knocked down (Fig. 5K). The results of cell cycle research 
demonstrated that the downregulation of FAM13A in 
SK-N-BE(2) cells resulted in a significant reduction in 
the number of cells in the G1 phase, while concurrently 
exhibiting an elevation in the number of cells in the G2 
phase (Fig.  5H). Consistently, using qRT-PCR to detect 
cell cycle-related genes in each group of cells, following 
the knockdown of FAM13A, there was a notable reduc-
tion in the mRNA levels of CDK1 and CDK2 (Fig.  5I). 
Additionally, the WB analysis revealed a decrease in the 
expression levels of CDK2, CDK4, and CDK6 cell cycle 
proteins in the FAM13A knockdown group (Fig. 5J). Col-
lectively, the findings of our investigation collectively 

(See figure on previous page.)
Fig. 5  FAM13A knockdown suppresses proliferation, induces apoptosis, and disrupts cell cycle in MYCN-amplified neuroblastoma cells. (A-B) FAM13A 
and N-Myc expression was detected by Western blot and qRT-PCR in NB stably transfected with sh-NC or sh-FAM13A. (C) Public datasets demonstrate 
the differential expression of MYCN in NB patients with differing FAM13A expression. (D) The CCK-8 assay reveals the difference in cell viability between 
NB cells transfected with sh-NC or sh-FAM13A. (E) Colony formation assay images and quantification depicting the growth of NB cells transfected with 
sh-NC or sh-FAM13A. (F) Representative images of NB cells infected with sh-NC or sh-FAM13A. (G) Flow cytometry analysis demonstrating the apoptosis 
of NB cells transfected with sh-NC or sh-FAM13A. Apoptotic index is defined as the ratio between Q2 and Q3 over total cells. (H) Flow cytometry depict-
ing cell cycle distribution of SK-N-BE(2) cells transfected with either sh-NC or sh-FAM13A. The experiment is carried out in three replicates. (I) RT-qPCR 
showed CDK1 and CDK2 mRNA expression in NB cells transfected with sh-NC or sh-FAM13A. (J) Western blot revealing cell cycle related markers in NB 
cells transfected with sh-NC or sh-FAM13A. (K) Western blot revealing apoptosis related markers in NB cells transfected with sh-NC or sh-FAM13A. ns, not 
significant; *p < 0.05, **p < 0.01, ****p < 0.0001; asterisks (*) represent levels of statistical significance. Two groups’ statistical differences were contrasted 
using the student´s t test. Data were representative of at least three independent experiments

http://jaspardev.genereg.net
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demonstrate that the suppression of FAM13A has a det-
rimental impact on the proliferation and viability of NB 
cells.

Protein structure optimization of N-Myc and FAM13A
MYC family proteins are intrinsically disordered pro-
teins, and the structure of N-Myc is unstable, thus its 

experimental structure is presently unknown. As shown 
in Fig.  6A, we obtained the amino acid sequence of 
N-Myc from NCBI and used DeepMind’s artificial intel-
ligence system Alphafold v2.3.2 to predict the protein 
structure of N-Myc (pTM = 0.27). The Ramachandran 
plots, a common instrument for analyzing protein sec-
ondary structure abnormalities, were then utilized to 

Fig. 6  Molecular dynamics simulation optimizes the predicted structure of N-Myc for accurate protein-protein docking studies. (A) Alphafold v2.3.2 to 
predict the protein structure of N-Myc. (B-E) The Ramachandran plots were then utilized to assess the accuracy of the N-Myc predicted structures. (F-G) 
The results of RMSD and RoG show that the protein structure of N-Myc tends to be stable. (H) Free energy topography of N-Myc after stabilization. (I-L) 
The Ramachandran plots were then utilized to assess the accuracy of the N-Myc optimized structures
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assess the accuracy of the N-Myc predicted structures. 
Each point in the Ramachandran plots represents the φ 
and ψ angles of an amino acid residue, and various amino 
acid residues occupy different locations on the graph. In 
most cases, reasonable amino acid dihedral angles are 
distributed in a particular region of the graph known as 
the tolerable region. Points that descend in the wild rep-
resent deviations in the dihedral angle of the amino acid 
residue. As shown in Fig. 6B-E, only 69.91% of all amino 
acid residues fell within the permitted region, and the 
dihedral angles of a significant number of amino acid 
residues were aberrant. The abnormal dihedral angle 
of amino acid residues will lead to the aberrant spatial 
conformation of the protein, indicating that the N-Myc 
protein structure predicted by Alphafold is insufficiently 
accurate and cannot be used directly in experiments. 
Therefore, in this study, the GROMACS molecular 
dynamics simulation method was utilized to place the 
Alphafold structure of the N-Myc protein into the water 
box of the simulated 1.2 nm3 CHARMM36 viewpoint. 
Adding 0.15  M Na+ and Cl- to the simulation space 
makes the entire simulation system electrically balanced, 
which is as similar as possible to the actual environment 
of N-Myc in the cell. Through the thermal movement of 
N-Myc in the simulated system, the predicted structure 
of N-Myc progressively folds into a more stable and real-
space conformation under the influence of water, ions, 
and the force field. As shown in Fig. 6F-G, after about 50 
ns of simulation, the protein structure of N-Myc tends 
to be stable. Based on the results of Root-mean-square 
deviation (RMSD) and Radius of Gyration (RoG), we 
plotted the free energy topography. As shown in Fig. 6H, 
the free energy topography of N-Myc after stabilization 
has a single energy well. In the free energy topography 
diagram, a single energy well means the lowest energy 
point and the most stable conformation of N-Myc dur-
ing the simulation. Because when a protein is in a single 
energy well, it has the lowest energy at that position and 
is therefore most likely to stay there. We intercept the 
N-Myc conformation at the lowest point of the energy 
well at the simulation time of 150 ns as our optimized 
N-Myc conformation. As depicted in Fig. 6I-L, the sim-
ulation-optimized N-Myc has 91.71% of the amino acid 
residues within the permissible region and the aberrant 
dihedral angles of the majority of the amino acid residues 
have been optimized. The optimized N-Myc is utilized 
for subsequent protein-protein docking experiments as it 
matches the experimental requirements.

The experimental structure of FAM13A is cur-
rently unknown. In this study, the amino acid sequence 
of FAM13A was obtained from NCBI and the artifi-
cial intelligence system Alphafold v2.3.2 developed by 
DeepMind was used to predict the protein structure 
of FAM13A (pTM = 0.33), as depicted in Fig.  7A. The 

precision of the FAM13A predicted structure was evalu-
ated using Ramachandran plots. As depicted in Fig. 7B-
E, only 70.52% of all amino acid residues fell within the 
permissible region, indicating that the FAM13A protein 
structure predicted by Alphafold was insufficiently accu-
rate and could not be utilized directly in experiments. 
In this investigation, the Alphafold-predicted FAM13A 
protein structure was optimized using the GROMACS 
molecular dynamics simulation technique. As depicted 
in Fig. 7F-G, the protein structure of FAM13A tends to 
be stable after approximately 20 ns of simulation. Based 
on the results of RMSD and RoG, we plotted the free 
energy topography. As shown in Fig. 7H, the free energy 
topography of FAM13A after stabilization has a single 
energy well. We intercept the FAM13A conformation at 
the lowest point of the energy well at the simulated time 
of 230 ns as our optimized FAM13A conformation. Con-
sequently, the spatial conformation of FAM13A at 230 
ns interception simulation is depicted in Fig.  7H, and 
the stability and authenticity of the FAM13A structure 
are once more confirmed using Ramachandran plots. As 
shown in Fig. 7I-L, after simulation optimization, 89.68% 
of FAM13A’s amino acid residues fell within the permis-
sible region, and the aberrant dihedral angles of most 
amino acid residues were optimized. The optimized and 
simulated FAM13A was used for subsequent protein-
protein interaction experiments as it essentially met the 
experimental requirements.

Simulation of N-Myc and FAM13A interaction by protein-
protein Docking and GROMACS
Schrödinger 2023-1 was used in this study to calculate 
the protein-protein docking of N-Myc and FAM13A, as 
shown in Fig.  8A N-Myc and FAM13A are stably com-
bined in the form of hydrogen bonds and salt bridges. 
The molecular dynamics simulation method was used 
to simulate the 100 ns motion trajectory of the bind-
ing conformation of N-Myc and FAM13A. As shown in 
Fig.  8B-C, the structures of RMSD and RoG show that 
N-Myc and FAM13A can form a stable complex. As 
shown in the free energy topography map drawn based 
on the RMSD and RoG results (Fig. 8D), the free energy 
topography map of the N-Myc and FAM13A complex 
has a single energy well. The conformation of the com-
plex intercepting the lowest point of the energy well is 
shown in Fig.  8D. The conformation and binding mode 
of the complex did not change significantly during the 
simulation process. This shows that the combination of 
N-Myc and FAM13A is stable. The results of Root Mean 
Square Fluctuation (RMSF) (Fig. 8E) and Solvent Acces-
sible Surface Area (SASA) (Fig.  8F) also support the 
above conclusion. As we have shown via protein docking 
that FAM13A and N-Myc can bind stably, we aimed to 
explore the possibility of a physical interaction between 
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Fig. 7  Molecular dynamics simulation optimizes the predicted structure of FAM13A for accurate protein-protein docking studies. (A) Alphafold v2.3.2 to 
predict the protein structure of FAM13A. (B-E) The Ramachandran plots were then utilized to assess the accuracy of the FAM13A predicted structures. (F-
G) The results of RMSD and RoG show that the protein structure of FAM13A tends to be stable. (H) Free energy topography of FAM13A after stabilization. 
(I-L) The Ramachandran plots were then utilized to assess the accuracy of the FAM13A optimized structures
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Fig. 8  Simulation of N-Myc and FAM13A interaction by protein-protein docking and GROMACS. (A) The binding model of the complex FAM13A with 
N-Myc. The detail binding model of FAM13A with N-Myc (right). (B-C) The RMSD and RoG values of 100 ns-long trajectories of molecular dynamics simu-
lations were calculated. (D) Free energy topography plot based on RMSD and RoG results. (E-F) RMSF and SASA results show that the combination of 
N-Myc and FAM13A is stable
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them. We transfected HEK293T human embryonic kid-
ney cells with a construct expressing Flag-tagged MYCN 
either alone, or one expressing HA-tagged FAM13A. A 
co-immunoprecipitation (Co-IP) of total cellular protein 
with an HA-tag antibody for FAM13A demonstrated that 
FAM13A-bound N-Myc (Fig. S8).

Discussion
MYCN amplification diminishes the efficacy of neuro-
blastoma (NB) and is the main cause of treatment fail-
ures. Silencing MYCN triggers NB differentiation and 
apoptosis [28, 29]. However, RNA interference therapies 
are limited by the lack of suitable drug delivery vehi-
cles [30]. Current research focuses on synthesizing and 
screening chemicals interacting with MYC protein [31, 
32]. Small-molecule antagonists can block MYC-induced 
transcription, but direct pharmacological suppression of 
MYCN is challenging due to lack of specificity and in vivo 
efficiency [33]. Only modest progress has been made in 
controlling MYCN-dependent expression and activities. 
Indirect targeting strategies for MYCN-interacting mol-
ecules have advanced and modifying indirectly targeted 
MYCN genes may block malignant traits [34, 35]. Explor-
ing regulatory elements and developing new techniques 
centered on MYCN amplification´s activation mecha-
nisms, especially “selective inhibition”, is highly relevant.

Researchers analyzed MYCN-amplified cells via co-
immunoprecipitation and identified MYC(N) interac-
tors. EZH2 is a direct and reliable binding partner of 
MYC(N). Depleting EZH2 induces MYC(N) degradation 
and suppresses tumor cell growth in MYC(N)-driven NB 
and small cell lung cancer. EZH2 may be a new target for 
NB treatment by indirectly regulating MYCN stability 
[36]. After analyzing NB patients´ whole transcriptome 
in Target database, ALYREF was differentially expressed 
in those with 17q21-ter gain or MYCN amplification. 
Down-regulating USP3 by inhibiting ALREF-MYCN 
complex disrupts N-Myc protein homeostasis, changes 
K48-linked polyubiquitin chain abundance on MYCN 
and causes proteasome degradation. The ALYREF-
USP3-MYCN complex is a potential therapeutic target 
for NB by exploiting obligatory ALYREF dependence 
in MYCN-amplified cells [37]. In addition, studies have 
identified ALDH18A1 as a potential risk factor with 
prognostic value for NB patients, especially those with 
MYCN amplification. ALDH18A1 is a regulator of NB 
cell proliferation, self-renewal, and tumorigenicity. It reg-
ulates MYCN expression and forms a positive feedback 
loop with MYCN [38].

In this study, we initially utilized machine learning 
algorithms to screen for MYCN signature genes to dis-
cover new targets that can indirectly target MYCN. In 
screening disease characteristic genes from differen-
tially expressed genes, machine learning methods exhibit 

notable advantages over traditional approaches. Random 
forest, integrating multiple decision trees, can utilize data 
well to capture complex gene-disease association patterns 
and has much higher accuracy than traditional simple 
statistical index-based screening methods. The bootstrap 
resampling technique reduces single model error and 
improves overall accuracy [39]. Support Vector Machine 
Recursive Feature Elimination (SVM-RFE) shows excel-
lence in handling high-dimensional gene data. It finds 
the optimal hyperplane and uses recursive elimination 
to screen key genes, solving the problems of dimension 
disaster and overfitting to noisy data that traditional 
methods encounter [40]. By combining random forest 
and SVM-RFE, this study achieves unique advantages. 
In terms of accuracy, random forest initially screens key 
genes, and SVM-RFE further removes redundant fea-
tures, enhancing accuracy and reducing misjudgment. 
In handing high-dimensional data, SVM-RFE selects fea-
tures to reduce dimensions, while random forest adapts 
to many gene features and mines complex relationships. 
Together, they form a multi-level processing system for 
representative and biologically significant characteris-
tic genes. In terms of adaptability, the combination can 
respond flexibly to different disease data and find the 
most representative disease characteristic genes. In our 
study, there are five MYCN feature genes that can be 
screened by both machine learning algorithms: PHGDH, 
FAM13A, KLRG2, RAB3B, and NPW. Through subse-
quent analysis, we targeted FAM13A for further experi-
mental verification. FAM13A has a RhoGAP domain that 
activates small GTPases [41]. Rho GTPase signaling is 
important for cell proliferation and survival [6]. FAM13A 
is involved in cancers and tumor cell proliferation [6, 25]. 
However, the function of FAM13A in MYCN-amplified 
NB remains unclear. Our study identified FAM13A as a 
risk factor and key regulator of NB cell growth in MYCN-
amplified NB. FAM13A can influence MYCN expression. 
Exploring FAM13A as a potential cell-based technique 
for restoring HLA expression on NB cells is a novel ther-
apeutic approach for patients with MYCN-amplified NB, 
aiming to enhance T cell-mediated anti-tumor immune 
responses. The innovation lies in using GROMACS 
molecular dynamic simulation technique to optimize 
the protein structures of MYCN and FAM13A, which 
were first predicted by the Alphafold algorithm. Then, 
Schrödinger software was used to implement protein-
protein docking to confirm the stability of the interac-
tion between MYCN and FAM13A. Experiments prove 
they can bind. The results show that FAM13A binding 
to MYCN enhances its stability and reduces proteasomal 
degradation. Targeting the FAM13A-MYCN complex is 
a potential therapeutic avenue for MYCN-amplified NB 
patients.
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Numerous studies have shown that destabilizing 
MYCN could be a promising therapeutic approach. 
However, challenges in specificity and clinical transla-
tion persist. We have uncovered that FAM13A, func-
tioning as a cofactor, can stabilize MYCN and promote 
the growth of NB cells, suggesting that it may potentially 
serve as a specific therapeutic target for MYCN. As of 
now, a definite FAM13A inhibitor has not been devel-
oped. We believe that the development of small molecule 
compounds aimed at disrupting the interaction between 
FAM13A and MYCN holds significant research value, 
and these compounds are expected to act as potential 
inhibitors. The potential of FAM13A as a therapeutic tar-
get for MYCN-amplified NB is exhilarating. Nonetheless, 
the absence of animal experiments constitutes a major 
limitation of this study. Animal models can offer crucial 
insights into the efficacy and safety of targeting FAM13A.

In summary, although our study indicates that 
FAM13A may be a MYCN-specific therapeutic target for 
MYCN-amplified NB, further research employing animal 
models is required to validate these findings and pave the 
way for clinical translation. This represents an important 
area for further research and also a shortcoming of the 
current study. In addition, due to its own characteris-
tics, MD simulation has many influencing factors, such 
as floating - point precision and calculation order. These 
factors can cause differences in results between differ-
ent runs, thus affecting the reproducibility of molecular 
dynamics simulations. Different from real-world experi-
ments, the simulation experiment process is not con-
tinuous. Instead, the simulation process is truncated into 
specific time points for analysis. Each truncation will 
introduce truncation errors and rounding errors. The 
current floating-point representation precision of com-
puters is limited, resulting in the non - commutativity of 
addition operations. In computers, is not always equal to. 
Therefore, when performing cumulative operations, if the 
cumulative order cannot be precisely specified, different 
results are likely to be obtained. Especially to improve 
computing power, molecular dynamics simulations are 
usually performed in parallel on a Graphics Processing 
Unit (GPU). Since GPUs have many cores that can run 
simultaneously, it is even more difficult to ensure the 
cumulative order. Limited by the above-mentioned pre-
cision and reproducibility issues of molecular dynamics 
simulations, the molecular dynamics simulation experi-
ments used in this study are only a preliminary verifi-
cation of the binding situation between FAM13A and 
N-Myc. Although it is only a preliminary verification, it is 
of certain significance for promoting the progress of the 
experiment. At the same time, this study also carried out 
a Co-IP experiment to supplement and orthogonally ver-
ify the results of virtual modeling verification. The results 

of the Co-IP experiment showed that there is a binding 
between FAM13A and N-Myc.
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