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Feature selection methods affect the 
performance of scRNA-seq data integration 
and querying
 

Luke Zappia    1,2, Sabrina Richter1, Ciro Ramírez-Suástegui1,3, 
Raphael Kfuri-Rubens    1,4,5, Larsen Vornholz    1, Weixu Wang1, 
Oliver Dietrich    1,6, Amit Frishberg1, Malte D. Luecken    1,7 & 
Fabian J. Theis    1,2,8 

The availability of single-cell transcriptomics has allowed the construction 
of reference cell atlases, but their usefulness depends on the quality 
of dataset integration and the ability to map new samples. Previous 
benchmarks have compared integration methods and suggest that feature 
selection improves performance but have not explored how best to select 
features. Here, we benchmark feature selection methods for single-cell 
RNA sequencing integration using metrics beyond batch correction and 
preservation of biological variation to assess query mapping, label transfer 
and the detection of unseen populations. We reinforce common practice 
by showing that highly variable feature selection is effective for producing 
high-quality integrations and provide further guidance on the effect of the 
number of features selected, batch-aware feature selection, lineage-specific 
feature selection and integration and the interaction between feature 
selection and integration models. These results are informative for analysts 
working on large-scale tissue atlases, using atlases or integrating their own 
data to tackle specific biological questions.

Single-cell transcriptomics technologies are now accessible to many 
biological researchers. As the number of single-cell RNA sequenc-
ing (scRNA-seq) datasets has increased and analysis methods have 
improved, we are seeing a shift from exploratory experiments toward 
multi-sample datasets. This trend includes more designed experiments 
investigating specific phenomena or testing differences between con-
ditions and larger efforts to catalog the cellular heterogeneity within 
tissues. More samples allow a deeper study of biology but present 
additional challenges including successful integration of samples to 

remove technical differences while conserving interesting biological 
variation. Good quality integration is especially critical for large-scale 
human atlas-building enterprises, where fully capturing tissue hetero-
geneity requires samples from a variety of individuals across locations, 
collected in different ways from different organ areas and profiled using 
a range of protocols or technologies1.

Many computational scientists have tackled the integration prob-
lem and at least 250 tools for single-cell integration are now available2. 
Studies have evaluated the performance of some methods3–6, leading 
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a natural range of zero to the number of labels in the dataset, which are 
rescaled to be between zero and one, compressing the observed range 
so that even small differences can be informative. When considering the 
correlation of metrics with the number of selected features, we found 
that most metrics are positively correlated with the number of selected 
features, with a mean correlation of around 0.5. A few metrics (local 
structure14 and kNN correlation) showed stronger and more consist-
ent associations with the number of features. In contrast, the mapping 
metrics are generally negatively correlated. This relationship could 
be because smaller feature sets produce noisier integrations where 
cell populations are mixed. This scenario requires less-precise query 
mapping where mapping somewhere within the mixed population is 
sufficient to receive a high mapping score.

The effect of technical factors of datasets on metric scores is more 
difficult to interpret as we consider relatively few datasets here, and 
the factors are associated across datasets (a dataset with more cells 
typically has more batches and labels). We see that more complex 
datasets generally result in lower scores for all metrics (Extended Data 
Fig. 3). The exceptions to this are the Milo15 and Uncertainty metrics. 
For Milo, it is difficult to say if the positive association between scores 
and technical factors is a general effect of having more data or an effect 
of individual features. In the case of the Uncertainty metric, it is likely 
that the classifier model used is not well calibrated and is less certain 
(giving higher scores) for more complex datasets regardless of any 
specific technical factor. Proper assessment of the effect of technical 
dataset features would require more datasets where each factor is 
varied independently, potentially through a simulation study.

Perhaps the most important consideration for metric selection 
is the correlation between metrics (Fig. 1b and Extended Data Fig. 3). 
We want metrics that measure different aspects of integration and 
query mapping and selecting several highly correlated metrics would 
bias our results in that direction. This effect is evident in the Integra-
tion (Bio) category where several metrics (adjusted Rand index (ARI), 
batch-balanced ARI (bARI)16, normalized mutual information (NMI), 
batch-balanced NMI (bNMI)16, cLISI, label average silhouette width 
(Label ASW)3 and Local structure) are highly correlated with each 
other, prompting us to select only a subset of these. The classification 
metrics show even stronger correlations, with all metrics having similar 
scores. Here, we also selected a representative sample of metrics, but 
using only one or all metrics would have little effect on the results. The 
other consideration for metric correlations is the correlation between 
metric types. To aid interpretation, we want to be able to summarize 
these aspects individually, and correlations between opposing metric 
types make this difficult. This categorization is difficult for the case of 
the kBET metric17, which is placed in the Integration (Batch) category 
but is also correlated with metrics that measure the conservation of 
biological variation. While this may be desirable for a single metric, 
including kBET in our study would confuse the signal between those 
categories. Another metric that stands out is graph connectivity3, which 
was considered a batch correction metric by the original authors but is 
negatively correlated with other metrics in this category and positively 
correlated with Integration (Bio) metrics. We have kept this metric 
for the evaluation but include it in the Integration (Bio) category in all 
further analyses.

Based on this analysis we selected three Integration (Batch) met-
rics (batch principal-component regression (Batch PCR)3, cell-specific 
mixing score (CMS) and integration local inverse Simpson’s index 
(iLISI)13), six Integration (Bio) metrics (isolated label ASW3, isolated 
label F1 (ref. 3), bNMI, cLISI, local density factor difference (ldfDiff)18 
and graph connectivity), four mapping metrics (Cell distance12, Label 
distance12, mapping local inverse Simpson’s index (mLISI)12 and query 
local inverse Simpson’s index (qLISI)12), three classification metrics (F1 
(Macro), F1 (Micro) and F1 (Rarity)19) and three unseen population met-
rics (Milo, Unseen cell distance and Unseen label distance). Extended 
Data Table 1 gives our reasoning for excluding metrics.

to a set of established metrics for assessing integration performance. 
While the methods have been compared, preprocessing steps that 
may affect integration have largely been overlooked. One step that 
has received some attention is feature selection, where benchmarks 
have shown that using highly variable genes generally leads to better 
integrations3; however, this study only considered one commonly 
used feature selection method. Unlike other analysis steps, such as 
clustering7,8, the best feature selection approach for integration has 
not been assessed. Additional questions arise when considering how 
the integrated space is used as a reference to analyze further query 
samples. It is possible that selecting features could result in better 
integration of reference samples while at the same time leading to an 
integration model that is ignorant of alternative sources of biological 
variation relevant to understanding other samples.

This study assesses the impact of feature selection on integrating 
scRNA-seq samples and using the integrated reference to analyze query 
samples. We evaluate the performance of variants of over 20 feature 
selection methods using a range of metrics divided into five categories: 
batch effect removal, conservation of biological variation, quality of 
query to reference mapping, label transfer quality and ability to detect 
unseen populations (Extended Data Fig. 1). The results from our robust 
benchmarking pipeline (Extended Data Fig. 2) are informative for 
researchers integrating their own datasets or creating reference atlases, 
leading to better community resources and further biological insights.

The study was conducted in accordance with the registered, peer- 
reviewed protocol at https://doi.org/10.6084/m9.figshare.24995690.v1 
(ref. 9). Except for pre-registered and approved pilot data, all ana lysis 
results reported in the paper were collected after the date of the regis-
tered protocol publication.

Results
Metric selection is critical for reliable benchmarking
For this study, we collected a wide variety of metrics covering different 
aspects of integration and query mapping. While measuring a broad 
range of factors is important, the behavior of many of these metrics has 
not been thoroughly characterized. This characterization is particularly 
important in our context as we use metrics developed to compare dif-
ferent integration approaches to instead assess the effect of feature 
selection methods. For this reason, we include a metric selection step 
to profile metrics and decide which to use for benchmarking. This 
step aims to select metrics that effectively measure performance, are 
not overly associated with technical factors and are nonredundant.

We performed the metric selection using random and highly vari-
able (scanpy10 implementation of a Seurat algorithm11) feature sets of 
different sizes for each dataset, performing integration and mapping, 
calculating metric scores and comparing the results (Fig. 1a). The 
observed range of scores was calculated using the random gene sets 
for each dataset–integration combination. We also used random sets 
to calculate the correlation between metrics and technical aspects of 
datasets (number of features, number of reference cells, number of ref-
erence labels and batches, number of query cells and number of query 
batches and unseen labels). We calculated the correlation between 
metric scores and the number of selected features using the highly 
variable feature sets as random feature sets do not have any inherent 
ordering (the first 100 features are no more informative than the next 
100). An ideal metric would accurately measure what it is designed for, 
returning scores across its whole output range that are independent of 
technical features of the data and are orthogonal to other metrics in the 
study. Figure 1b shows a summary of the metric evaluation.

Using these results, we selected metrics to evaluate feature 
selection methods. We found that some metrics, such as batch aver-
age silhouette width (Batch ASW)3 and k-nearest neighbors (kNN) 
correlation12, showed little variation, even across a wide range of 
selected feature sets; however, this is not always easy to interpret. For 
example, the cell-type local inverse Simpson’s index (cLISI)13 metric has 
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Using baselines to effectively scale and summarize metrics
Individual metrics have different effective ranges and interact differ-
ently with datasets. To summarize and compare metric scores, they 
need to be adjusted to have the same range for each dataset. We use a 
scaling approach based on baseline methods, similar to that used by the 
Open Problems in Single-cell Analysis project20. We use four baseline 
methods: all features, 2,000 highly variable features selected using 
the batch-aware variant of the scanpy-Cell Ranger21 method (as a rep-
resentative commonly used approach suggested as good practice3,22), 
500 randomly selected features (scores averaged over five feature 

sets) and 200 stably expressed features selected using the scSEGIndex 
method23 (as negative controls that should not capture signal) and 
use single-cell variational inference (scVI)24 to integrate each dataset 
using the selected features. These methods are sufficiently diverse to 
demonstrate the effective range of each metric and allow us to establish 
baseline ranges for each dataset (Fig. 2a).

We scaled the metric scores using the baseline ranges and aggre-
gated them as shown in Fig. 2, using the scIB pancreas dataset3 as an 
example. This dataset was also used in stage 1 of the registered report. 
Along with the real baseline methods, we include theoretical ‘Good’ and 
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Fig. 1 | Overview and results of the metric selection step. a, Diagram of the 
metric selection workflow. b, Results of the metric selection step. Densities 
for the observed range and correlation with the number of features across 
datasets and integrations are shown for each metric. Colors indicate the mean 
value and vertical lines represent the median. The middle heatmap shows the 
mean correlation with technical dataset features (Extended Data Fig. 3a). Color 

indicates the mean correlation, and the size of squares is the s.d. (larger points 
are less variable). The heatmap on the right shows the mean correlation between 
metrics grouped by metric type (Extended Data Fig. 3b). The color bar on the left 
indicates which metrics were selected for the final benchmark. This indication is 
continued as shaded areas in the other plots.
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‘Bad’ methods that illustrate the behavior of methods that generally 
perform well or poorly across metric types (in contrast to the baselines, 
which each score highly on some metric types and lowly on others). The 
raw metric scores are scaled relative to the minimum and maximum 
baseline scores. After scaling, scores greater than one are possible if a 
method outperforms all the baselines (the ‘Good’ theoretical example) 
or negative scores are possible if a method performs worse than all 
baselines (the ‘Bad’ theoretical example). The interpretability of scores 
outside the reference range is an advantage of this scaling approach, 
providing additional context to the scaled values. We calculated sum-
mary scores for each metric type by taking the mean of the scaled values 
for that category. A final overall score is calculated as a weighted mean 
of category scores (Fig. 2b).

We chose this weighting scheme to give equal importance to inte-
grating the reference and mapping of the query and, within those, 

equal consideration to the different metric types. While the overall 
scores are useful, we also present scores for each metric type in the 
following sections.

The number of selected features affects performance
In addition to the method used to select features, the number of 
selected features affects the success of integration and query map-
ping. Evaluating different feature set sizes for every selection method 
would be ideal but computationally prohibitive. Instead, we tested 
different numbers of features for a set of commonly used methods 
from the Seurat and scanpy packages, as well as simple methods that 
select the most expressed or variable features.

Figure 3a shows standardized summary scores (z-scores for each 
dataset and method combination), highlighting the trend with the 
number of features. We see different trends for categories that focus 
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on batch correction than those that measure biological variation. The 
Integration (Batch) score shows the highest values for small feature 
sets and decreases as the number of features increases. The mapping 
category shows a similar but less extreme trend, converging to the 
mean value after around 500 features. The other categories show dif-
ferent patterns, increasing with the number of features before leveling 
off (classification and unseen populations) or declining (Integration 
(Bio)). These patterns reflect that achieving high scores for batch 
correction is possible by creating a noisy integrated embedding (a 
single noisy mass of cells). In this case, batches will be well mixed in the 
reference and the query, but there is no separation between cell types, 
resulting in low scores for the other categories. Due to this effect, we 
gave a lower consideration to the Integration (Batch) category when 
choosing the number of features. The overall score shows a similar 
trend to the biological categories, with peak values between 500 and 
5,000 selected features.

While there are clear trends for each metric category, there is 
also significant variation. The following panels in Fig. 3 show mean 
standardized values for datasets band methods. We see that meth-
ods are largely consistent across datasets Fig. 3c. The Seurat-VST25, 
scanpy-SeuratV3 and scanpy-Seurat methods peak at slightly higher 
numbers of features, whereas the statistic-Variance and statistic-Mean 
methods peak at lower numbers of features for Integration (Batch) and 
Integration (Bio) but higher numbers of features for classification and 

unseen populations (Extended Data Fig. 4). This pattern suggests that 
selecting features in these simple ways can return sets that capture 
information well in the reference but not as well in the query compared 
to more sophisticated methods.

We see more variation in the highest-scoring number of features 
when methods are averaged for each dataset (Fig. 3b and Extended 
Data Fig. 4). The two datasets with the fewest cells (splat and scIB pan-
creas) show different patterns. For the simulated splat dataset26, few 
features are required to capture the variation present. In contrast, the 
highest scores are associated with higher numbers of features for the 
scIB pancreas dataset. These differences reflect the properties of the 
two datasets, with the splat simulation producing data with less com-
plexity than a real dataset, whereas the scIB pancreas dataset contains 
data from several technologies that present a difficult integration 
challenge. The larger fetal liver dataset also requires more features to 
achieve high scores in the query categories, with the highest averages 
for the mapping and unseen population categories when all features 
are used. This trend suggests that feature sets selected from the refer-
ence do not capture information in the query for this dataset. While 
less pronounced, this trend holds across all datasets, with more fea-
tures required to achieve high scores on the classification and unseen 
population categories compared to the Integration (Bio) category; 
however, the performance of selecting all features shows a limit to 
how much additional signal can be obtained. The number of features 
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methods rather than datasets (Extended Data Fig. 4b).
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Fig. 4 | Results of the benchmark of feature selection methods. a, Summary of 
method performance by metric type. Points show scores for individual datasets 
and diamonds show the mean values (Extended Data Fig. 5a). Methods are sorted 
by mean overall score, and baseline methods are indicated by gray shading. 
Shaded areas show scores less than (red) or greater than (blue) the baseline range 
(0–1). Average rankings for each metric type are shown on the right, with color 
indicating mean rank and size s.d. (smaller is more variable) (Extended Data  
Fig. 5b). b, Overlap of features selected by different methods. The heatmap shows 
the mean Jaccard index ( JI) between feature sets selected by different methods 
(excluding random gene sets) (Extended Data Fig. 6). Sizes of squares indicate 
the s.d. (smaller is more variable). Mean JI values greater than 0.5 are highlighted 
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n methods (n = 25, 20, 15, 10 and 5) for each dataset. Colors indicate the number 
of methods. d, The number of features selected by different methods. Points are 
colored by dataset, and blue bars show the mean for each method. Only methods 
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methods were set to select 2,000 features, as indicated by the red line, except 
scPNMF, which uses 200 features. e, Heatmap of the relative performance of 
batch-aware variants of scanpy methods. Colors show the difference in score 
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positive values (green) that it performed better.
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at which the additional signal saturates is unclear and is likely to be 
different for each dataset as a function of the biological and technical 
diversity that is present.

Based on this analysis, we used 2,000 features for most methods 
in the following evaluation, as this number consistently produced 
high scores across datasets, methods and metric categories. Excep-
tions to this are methods that dynamically select the number of fea-
tures (Anticor27, DUBStepR28, NBumi29, Seurat-MVP11 and triku30) and 
single-cell projective non-negative matrix factorization (scPNMF)31, 
where the documentation recommends using fewer features than 
other methods for which we use 200 features.

Highly variable features and supervised methods perform well
After determining the number of features to use, we compared feature 
selection methods. We were able to successfully run the majority of 
methods on all datasets; however, NBumi failed to complete on the 
Reed breast dataset32 within 24 h, scPNMF, exceeded 400 GB of memory 
or failed to complete in 24 h on the Human Lung Cell Atlas (HLCA)33, 
HLCA immune, HLCA epithelial, Human endoderm34 and Reed breast 
datasets, and Anticor produced an unexpected error for the Human 
endoderm dataset.

Figure 4a shows the overall results for each metric category, sorted 
by the mean overall score across datasets for scVI integration (Extended 
Data Fig. 5a). Several methods obtain similar average overall scores. 
The Wilcoxon method, the only method to select features using cell 
labels, has the highest average overall score but is more variable across 
datasets than other top-performing methods. This higher variability 
suggests that supervised selection of features may not be effective for 
all datasets, even when the same labels are used for evaluation, and that 
tuning the number of features selected using this approach could be 
required. The Seurat-VST method obtains the highest overall ranking 
and several other highly variable feature selection methods also per-
form well with similar mean scores and more consistent performance 
than Wilcoxon. The other top-performing alternative method is triku, 
which has similar overall scores to the highly variable selection meth-
ods but shows some bias toward batch correction over conserving 
biological variation.

The lower-ranked methods show more variation in scores for 
individual categories (Extended Data Fig. 5). In particular, the baseline 
random and scSEGIndex methods score very highly on the Integration 
(Batch) and mapping categories but poorly on the categories measur-
ing biological information. This effect demonstrates that it is easy to 
obtain good mixing between batches by selecting features that only 
contain noise and the importance of including metrics that measure 
the conservation of biological variation. Using a predefined list of 
transcription factors also produces a bias toward batch correction, 
demonstrating that it is not sufficient for features to be biologically 
important but that they must also be relevant to particular datasets. 
Transcription factors are typically lowly expressed and therefore noisy. 
Although the effect is less pronounced, some methods, such as OSCA35 
and singleCellHaystack36, rank highly on Integration (Bio) but not on 
batch correction, with singleCellHaystack also scoring similarly to 
the top methods on unseen population detection. The singleCell-
Haystack method uses Seurat-VST as a preprocessing step to create a 
principal-component analysis (PCA) space where the final features are 
selected but these additional steps do not lead to better performance 
than Seurat-VST alone.

We see some overlap in selected features for most methods, but 
there are very few combinations where the mean Jaccard index is 
above 0.5 (Fig. 4b and Extended Data Fig. 6). One pair that stands out 
is Seurat-VST and scanpy-SeuratV3, which produce identical sets. This 
overlap is unsurprising, given that they are different implementations 
of the same method, but it is reassuring to see consistency between 
packages using different programming languages. As the selected 
features are identical, any differences in performance we see between 

these methods results from randomness in integration or metrics. The 
scanpy-Seurat and Seurat-MVP methods also implement the same 
approach but the scanpy implementation allows specifying the num-
ber of features, while the Seurat implementation selects the number 
of features dynamically using a threshold. There are also some differ-
ences in preprocessing steps, contributing to their lack of consistency.

Despite the lack of high overlap between selected feature sets, 
we still see a core set of features selected by most methods, with 
between 500 and 1,000 features being selected by at least 20 methods 
for most datasets (Fig. 4c). This consistency suggests that a subset 
of features clearly contains information for a dataset and should be 
crucial for effective integration and query mapping. That the remain-
ing selected features are less likely to be shared between methods 
that have similar performance may result from redundancy in gene 
expression, with several genes carrying information about the same 
biological processes.

The number of features selected by dynamic methods (Fig. 4d) 
can also be related to performance. The Anticor method selects the 
majority of features in each dataset and, therefore, performs similarly 
to using all features. DUBStepR uses the most complex procedure of 
the methods compared here, resulting in very few selected features 
and low overall performance. However, DUBStepR scores relatively 
highly on biological metrics, suggesting that the features it selects 
are informative but insufficient to correct batch effects. The dynamic 
methods that perform well (Wilcoxon, triku and Seurat-MVP) select 
a number of features closer to the 2,000 features we chose to use for 
most methods. Seurat-MVP selects fewer than 2,000 features for all 
datasets and in comparison to scanpy-Seurat, which uses the same algo-
rithm but is set to 2,000 features, Seurat-MVP has higher Integration 
(Batch) scores but similar Integration (Bio) performance. While fewer 
features are adequate for integrating the reference, the additional 
features included by scanpy-Seurat improve query classification and 
unseen population detection.

Feature selection can also be employed in a batch-aware fashion 
by selecting features for individual batches and combining the results, 
typically by choosing the features selected for the most batches. The 
intuition behind this approach is that it avoids selecting features that 
vary between batches but not between biological states within a batch. 
To assess the effectiveness of this approach, we included batch-aware 
variants of the scanpy methods. Figure 4e shows the difference in 
performance for each dataset and metric type compared to standard 
selection. We see significant differences in the summary scores for 
some scenarios, but this effect is inconsistent across either datasets or 
metric types, and the differences in the overall score are relatively small. 
For example, batch-aware selection improves the unseen population 
score for the HLCA (Immune) dataset but is significantly worse for the 
HLCA (Epithelial), Human endoderm and scIB pancreas datasets. The 
OSCA method also selects features in a batch-aware way but does not 
rank among the top-performing methods. While we do not rule out 
batch-aware feature selection as a useful approach, we cannot identify a 
scenario where it is consistently more effective than selecting features 
across batches.

Lineage-specific feature selection and integration
An open question in large-scale integration projects is whether to inte-
grate across the full diversity of cell states or to limit the complexity 
by subsetting to specific lineages or conditions. While we cannot fully 
address this question here, we can investigate some aspects by consid-
ering the three versions of the HLCA dataset.

Figure 5a shows the rankings for all methods for each HLCA subset, 
including the overall ranking and the ranking for each metric type. In 
general, these follow the trends we observed when considering all 
datasets, and we do not see any methods that consistently rank higher 
on the lineage subsets compared to the full dataset. To see whether 
the similar rankings across subsets resulted from selecting similar 
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feature sets, we computed the Jaccard index between selected features 
(Fig. 5b). While there is some similarity in feature sets, the overlap is 
not higher than we saw between all datasets. The Jaccard index tends to 
be lower for higher-ranking methods, suggesting that these methods 
can successfully adapt to each dataset. We also see that the overlap in 
selected features between the immune and epithelial subsets is less 
than with the full dataset.

One motivation for lineage-specific feature selection is that it 
results in selecting more specific features for the cell types in that 
subset. To test this, we considered the published marker gene sets for 
the HLCA and calculated the proportion of these markers selected 
by each method on each dataset subset. Figure 5c and Extended Data 
Fig. 7 show the mean proportion of selected markers across cell types 
for each lineage in the full HLCA (endothelial, epithelial, immune and 
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Fig. 5 | Analysis of lineage subsets of the HLCA dataset. a, Method rankings 
for the full HLCA dataset, the immune subset and the epithelial subset. Overall 
rankings are shown, along with rankings for each metric category. Methods are 
ordered by their overall performance across all datasets. b, Overlap of selected 
feature sets. The Jaccard index values between feature sets from each subset 
are shown as a heatmap. c, Overlap with marker genes. A heatmap of the mean 
proportion of marker genes selected by each method on each dataset subset. 

The mean is calculated for each lineage in the full dataset (endothelial, epithelial, 
immune and stroma). The size of squares shows the s.d. of proportion across  
cell types in each lineage (smaller is more variable) (Extended Data Fig. 7). 
Overlaps are not shown for random gene sets. d, Analysis of cell label Milo scores. 
A heatmap shows the Milo score for each unseen cell type on the full, immune and 
epithelial subsets. On the right is shown the difference in scores for each lineage 
subset compared to the full dataset.
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stroma). In most cases, relatively few calculated markers are selected 
(proportion of markers mean, 0.38; median, 0.39; and first quartile, 
0.04) (Extended Data Fig. 7). The lack of markers chosen may be due 
to redundancy in the information contained by related genes and dif-
ferences in which features are prioritized for selection compared to 
marker detection. Selectivity of the markers chosen was not related 
to performance, with some of the worst-performing methods most 
effectively selecting markers only for the cell types in a specific lineage 
(Extended Data Fig. 7).

So far, we only considered the ranks of methods because indi-
vidual scores are not directly comparable between subsets as they 
contain different cells and labels. To consider one area in more detail, 
we calculated Milo scores for individual unseen labels, allowing us to 
see if an unseen cell type is easier to distinguish in a whole-tissue or 
lineage-specific atlas (Fig. 5d). We see a clear trend of lower scores 
on the lineage subsets. This pattern supports the argument that by 
providing more diverse input data to the integration model it learns 
more of the possible cell space and can, therefore, better distinguish 
new cell populations.

Interaction between selected features and integration method
The focus of this study is the effect of feature selection rather than 
integration method, but we also measured the performance of the 
semi-supervised single-cell annotation using variational inference 
(scANVI) model37 and Harmony13 followed by query mapping using 
Symphony12 (referred to as ‘Symphony’) in addition to scVI. This analysis 
allows us to assess the interaction between feature selection and inte-
gration models and the effect of biological supervision. Figure 6 shows 
the average scores and ranks for each integration method and the dif-
ferences in performance for scANVI and Symphony compared to scVI.

Overall, there are no clear differences in metric rankings (Fig. 6d). 
We see a slight trend toward decreases in rankings for methods that 
rank highly for scVI and increases in rankings for methods that rank 
lowly for scVI (Extended Data Fig. 8). This effect could be explained 
by interactions between feature selection and integration methods or 
alternatively by scANVI and Symphony being less sensitive to feature 
selection or regression to the mean due to randomness in integra-
tion and some metrics. Looking more closely at the differences in 
scores (Fig. 6b), we see some methods that stand out. For scANVI, 

scVI scANVI Symphony

O
ve

ra
ll

In
te

gr
at

io
n 

(B
at

ch
)

In
te

gr
at

io
n 

(B
io

)
M

ap
pi

ng
C

la
ss

ifi
ca

tio
n

U
ns

ee
n 

po
pu

la
tio

ns
O

ve
ra

ll
In

te
gr

at
io

n 
(B

at
ch

)
In

te
gr

at
io

n 
(B

io
)

M
ap

pi
ng

C
la

ss
ifi

ca
tio

n
U

ns
ee

n 
po

pu
la

tio
ns

O
ve

ra
ll

In
te

gr
at

io
n 

(B
at

ch
)

In
te

gr
at

io
n 

(B
io

)
M

ap
pi

ng
C

la
ss

ifi
ca

tio
n

U
ns

ee
n 

po
pu

la
tio

ns

scSEGIndex
Statistic−mean (n = 2,000)

DUBSstepR
Scry

Statistic−variance (n = 2,000)
Anticor

All
NBumi

Random (n = 500)
scPNMF
Hotspot

Transcription factors
Scanpy−Pearson (n = 2,000, batch = true)

OSCA
SingleCellHaystack

Seurat−dispersion (n = 2,000)
Scanpy−Pearson (n = 2,000, batch = false)

Random (n = 2,000)
Seurat−scTransform (n = 2,000)

Brennecke
Seurat−MVP

Scanpy−Cell Ranger (n = 2,000, batch = false)
Scanpy−Cell Ranger (n = 2,000, batch = true)

Scanpy−SeuratV3 (n = 2,000, batch = true)
triku

Scanpy−Seurat (n = 2,000, batch = false)
Scanpy−Seurat (n = 2,000, batch = true)

Scanpy−SeuratV3 (n = 2,000, batch = false)
Seurat−VST (n = 2,000)

Wilcoxon

Mean score

0 0.4 0.8 1.2 1.6

s.d.

scANVI Symphony

O
ve

ra
ll

In
te

gr
at

io
n 

(B
at

ch
)

In
te

gr
at

io
n 

(B
io

)
M

ap
pi

ng
C

la
ss

ifi
ca

tio
n

U
ns

ee
n 

po
pu

la
tio

ns
O

ve
ra

ll
In

te
gr

at
io

n 
(B

at
ch

)
In

te
gr

at
io

n 
(B

io
)

M
ap

pi
ng

C
la

ss
ifi

ca
tio

n
U

ns
ee

n 
po

pu
la

tio
ns

Di�erence to scVI

−0.5 0 0.5

s.d.

scVI scANVI Symphony

O
ve

ra
ll

In
te

gr
at

io
n 

(B
at

ch
)

In
te

gr
at

io
n 

(B
io

)
M

ap
pi

ng
C

la
ss

ifi
ca

tio
n

U
ns

ee
n 

po
pu

la
tio

ns
O

ve
ra

ll
In

te
gr

at
io

n 
(B

at
ch

)
In

te
gr

at
io

n 
(B

io
)

M
ap

pi
ng

C
la

ss
ifi

ca
tio

n
U

ns
ee

n 
po

pu
la

tio
ns

O
ve

ra
ll

In
te

gr
at

io
n 

(B
at

ch
)

In
te

gr
at

io
n 

(B
io

)
M

ap
pi

ng
C

la
ss

ifi
ca

tio
n

U
ns

ee
n 

po
pu

la
tio

ns

Mean rank

5 10 15 20 25 30

s.d.

scANVI Symphony

O
ve

ra
ll

In
te

gr
at

io
n 

(B
at

ch
)

In
te

gr
at

io
n 

(B
io

)
M

ap
pi

ng
C

la
ss

ifi
ca

tio
n

U
ns

ee
n 

po
pu

la
tio

ns
O

ve
ra

ll
In

te
gr

at
io

n 
(B

at
ch

)
In

te
gr

at
io

n 
(B

io
)

M
ap

pi
ng

C
la

ss
ifi

ca
tio

n
U

ns
ee

n 
po

pu
la

tio
ns

Di�erence to scVI

−10 −5 0 5 10

s.d.

0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0 3 6 9 12 5 10 15

a b c d

Fig. 6 | Comparison of feature selection method performance for different 
integration and query mapping methods. a, A heatmap of mean scores for each 
metric category for the evaluated methods for integration and query mapping 
with scVI, scANVI and Symphony (negative scores in gray). b, A heatmap of 
difference in mean scores for scANVI and Symphony compared to scVI.  

c, A heatmap of mean ranks for methods for each metric category. d, A heatmap 
of differences in mean ranks compared to scVI. In all heatmaps, colors represent 
values, and sizes of squares show s.d. across datasets (smaller is more variable). 
Methods are ordered by overall ranking for scVI.
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there are significant improvements in the Integration (Bio) score for 
scanpy-Seurat (batch = false), Seurat-MVP, Brennecke38, DUBStepR and 
all features. This improvement in performance showed that including 
biological information in the integration process can overcome the 
limitations of selected features in some cases.

In fact, scANVI leads to minor but consistent improvements for 
most metric types compared to scVI, except for Integration (Batch). 
This trade-off would be acceptable for many applications, particularly 
as the mapping score also increases, showing that preserving more 
biological information does not limit the ability to map query datasets 
to the reference. Symphony shows decreased performance compared 
to scVI across metric categories, except for the mapping score. While 
this decreased performance is relatively consistent across methods, 
the most significant decreases in the unseen population scores are for 
the highest-ranking methods. These results show that Symphony is 
unable to detect new cell populations that could be separated by scVI 
and scANVI using the same features.

Discussion
In this comprehensive benchmark, we evaluated variants of 24 feature 
selection methods on ten datasets using 1,700 selected feature sets, 
over 6,000 integration runs producing over 140,000 metric scores. 
We performed a rigorous metric selection process and determined a 
number of features (2,000) that performed well across datasets. Our 
evaluation found highly variable feature selection methods to perform 
well, with the approach based on a variance-stabilizing transforma-
tion (Seurat-VST/scanpy-SeuratV3) being the top-ranked method. 
This result reinforces common practice and recommendations from 
previous benchmarks. Label-guided marker genes (Wilcoxon) also 
performed well but were more variable across datasets. We focused on 
unsupervised methods and other supervised techniques may produce 
more stable results; however, supervised feature selection only applies 
when cell labels are available, typically not the case before integration. 
The triku method was also highly ranked but showed some bias toward 
batch correction.

We did not find a consistent advantage for batch-aware variants of 
methods implemented in scanpy. Batch-aware selection could improve 
performance in some scenarios, but a more specific evaluation includ-
ing additional methods is required to determine its applicability. For 
large datasets, batch-aware feature selection has a computational 
advantage, as loading the whole dataset into memory can be avoided. 
However, we could run many top-performing methods on the full 
datasets with relatively modest memory requirements.

We used scVI for our primary benchmark but compared the per-
formance to scANVI, to inspect the effect of adding prior knowledge, 
and Symphony to see the interaction with an alternative integration 
approach. We saw that methods performed differently across integra-
tion approaches but did not identify clear relationships, suggesting 
that differences are the result of randomness in integration runs and 
shuffling between equally performing methods; however, there were 
clear differences between integration methods, with scANVI improving 
in all metric categories for the same feature sets. In contrast, Symphony 
showed decreased performance compared to scVI, particularly at 
unseen population detection.

Using subsets of the HLCA dataset, we considered lineage-specific 
feature selection. We did not see any clear preference for methods 
and particular lineages, and the top-performing methods effectively 
adapted to different subsets. Milo scores for individual unseen labels 
showed that it is easier to distinguish new cell populations using a 
more diverse reference atlas; however, this comparison was not our 
primary focus, and further work is required to determine if or when 
lineage-specific features selection and integration can be effective. 
For example, we did not consider whether lineage-specific features 
could improve integration of the full dataset or attempt to disentangle 
effects of feature selection from integration.

We only compared different numbers of features for some com-
mon methods to select a number of features for the final evaluation as 
the computation required was infeasible for all methods. For the meth-
ods where we examined different numbers of features, we observed a 
relationship between datasets and the optimal number of features for 
different metric types; however, the limited number of datasets did not 
allow us to connect this relationship to specific technical features, such 
as the number of batches or cell labels, and methods may perform dif-
ferently with a different number of features. We encourage analysts to 
tune the number of selected features for their dataset and use case and 
we believe this will affect performance more than switching between 
top-performing methods; however, adjusting the number of features 
is computationally intensive and difficult to assess with new datasets as 
labels are typically not available for evaluation. Developing methods for 
automatically tuning the number of selected features based on techni-
cal aspects of datasets is a potential avenue for future research. We also 
emphasize that better performance on query tasks, especially unseen 
population detection, needs more features than producing a good 
integrated reference and should be considered if this is an intended use.

During the planning and implementation of this study, several 
feature selection methods39–44, alternative metrics45,46 and other 
comparisons47–49 were published. While we consider it is unlikely that 
other methods would significantly improve performance, establishing 
this requires further benchmarking. More likely to affect the results 
is the inclusion of additional metrics, such as the recently proposed 
scGraph metric46 which aims to address limitations of some metrics 
by considering distances between cell labels and has shown significant 
differences in performance between integration methods.

Our benchmark reinforces established practices as highly effective 
and provides guidance on generally effective parameters that can be 
optimized for individual datasets.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-025-02624-3.
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Methods
Our study follows a standard benchmark design, consisting of test data-
sets, feature selection methods to be evaluated and metrics for measur-
ing performance (Extended Data Fig. 1). The complete benchmarking 
pipeline is implemented as a Nextflow50 workflow (Extended Data Fig. 2) 
available from GitHub51 and archived on Zenodo52. Summaries of the 
specific methods, metrics, datasets and processing steps are provided 
in the following sections. Please refer to the supplementary methods, 
pipeline code, original publications and package documentation for 
further information.

Evaluated methods
We selected a range of feature selection methods covering approaches 
from standard analysis workflows and alternative methods proposed 
for scRNA-seq data. To be considered, a method must be implemented 
in a publicly available package that we could reliably install and run. 
Some methods can automatically determine the number of features 
to select, but for most others this must be specified. A few methods 
can consider batch labels during selection, but for most, this requires 
manually splitting the data, computing feature sets on each batch and 
combining the results. We have used the default settings or what is rec-
ommended in any accompanying documentation for most methods, 
but for a subset of highly used methods, we evaluated variants. Any 
preprocessing steps required before feature selection are considered 
part of the method. We used the steps suggested in the documentation 
for each method as they are recommended by the authors and repre-
sent the most likely real-world usage.

Simple control methods. We include all features and random feature 
sets in the evaluation as control methods. We expect that using feature 
sets selected by real methods improves performance over using all 
features and any randomly selected sets. To control for variability 
in selecting random features, we always include five random feature 
sets selected with different seeds and average metric scores over the 
five sets.

Excess variability methods. The most common approach to feature 
selection in RNA-seq analysis tool boxes such as scanpy10 and Seurat11 
is to select highly variable features, those that show excess variability 
beyond what is expected. This approach assumes that extra variability 
results from differences in gene expression between cell populations 
or states and that selecting these features will identify those important 
to the cells in the sample.

We benchmark the following excess variability methods:  
features with the highest variance, the fitting method from  
Brennecke et al.38 (implemented in scran53 v.1.26.0), variants from 
Seurat11 (v.4.3.0) (Seurat-dispersion, Seurat-MVP11 and Seurat-VST25), 
variants from scanpy10 (v.1.9.1) (scanpy-Seurat, scanpy-SeuratV3 
and scanpy-Cell Ranger) and the approach from ‘Orchestrating 
Single-Cell Analysis with Bioconductor’35 using batchelor54 (v.1.14.0) 
and scran. For scanpy methods we used both standard and batch- 
aware variants.

Methods based on other statistical features
Other feature statistics can also be used for feature selection including 
selecting features with the highest mean expression, Anticor27 (v.0.1.8), 
which selects features with excess negative correlations, NBumi which 
selects features with excess zeros (M3Drop v.1.24.0)29 and DUBStepR 
(commit 76aa3948), which uses stepwise regression of a binned cor-
relation matrix28.

For Anticor, we disabled the filtering of predefined gene pathways 
as it requires gene identifiers, which are not available for all datasets. 
For NBumi, we select features with an adjusted P value <0.01 unless this 
results in fewer than 500 features, in which case the 500 features with 
the lowest P values were used.

Model-based methods
Model-based methods fit an appropriate distributional model to the 
dataset. Features are then selected by looking for those significantly 
different from the fitted model. These include scTransform55 (v.0.3.5, 
accessed via Seurat), analytic Pearson residuals56 (implemented in 
scanpy) and scry (v.1.10.0)57.

Embedding-based methods
Dimensionality reduction is a commonly used preprocessing step in 
scRNA-seq analysis. Some feature selection methods either use sophis-
ticated embedding methods or look for features that vary across an 
embedding. scPNMF (commit 47d5b10c) performs a modified PNMF, 
where an alternative initialization is used and selects features associ-
ated with informative bases31, and singleCellHaystack (v.0.3.4) uses 
Kullback-Leibler divergence to find features that are expressed in subsets 
of nonrandomly positioned cells36. For singleCellHaystack, we first select 
features using Seurat-VST and perform a 50-dimensional PCA as input.

Graph-based methods
Another common step in scRNA-seq analysis is to build a 
nearest-neighbor graph of cells, typically using positions in an embed-
ded space. Some methods operate on these graphs. Hotspot (v.1.0.0) 
looks for features with a high local auto-correlation within a graph58 and 
triku (v.2.1.4) uses a neighborhood graph to distinguish features that 
are expressed in a few cells randomly across a dataset from those that 
are expressed in a few related cells30. For both, we use a graph based on 
a PCA of all features as input.

Supervised methods
We focus on evaluating unsupervised feature selection methods, as 
cell labels are typically not available before the integration process; 
however, at least some level of cell labels may be available, particularly 
for atlas-building projects that combine previously annotated public 
datasets. As an example supervised method, we include marker genes 
selected using the Wilcoxon rank-sum test (as implemented in scanpy) 
followed by a filtering procedure to remove features expressed in less 
than 10% of cells within a label, expressed in more than 80% of cells out-
side the label or with a P value >0.1. The remaining features are sorted 
by estimated log fold change and the top 200 features are selected per 
label. The final feature set is the intersection of the features selected 
for each label.

We also included known transcription factors downloaded from 
The Human Transcription Factors59 website (https://humantfs.ccbr.
utoronto.ca/index.php) selecting 1,639 genes where the ‘Is TF?’ field 
was equal to ‘Yes’. The intersection of this list with the genes in each 
dataset was used. This method cannot be applied to the splat dataset 
as it does not contain real gene names.

Stable expression methods
The opposite of highly variable features are those stably expressed or 
varying less than expected. The scSEGIndex method in the scMerge 
package (v.1.1.4.0) fits a gamma-Gaussian mixture model to each fea-
ture23. The parameters of this model and other features, such as the 
proportion of zero counts, are used to rank features and calculate a 
stability index. We used these stable features as a negative control and 
they should perform poorly for integration as they should not capture 
either technical noise or biological signal.

Evaluation metrics
We implemented a wide array of metrics designed to evaluate different 
aspects of creating and using an integrated scRNA-seq reference. Some 
metrics require a ground truth cell label, while others are unsupervised 
and measure whether the structure in a single sample is maintained. All 
metrics are designed so that a raw score of 0 represents the worst pos-
sible performance and a raw score of 1 the best possible performance.
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Integration (Batch). Integration (Batch) metrics measure the mixing 
between batches in the reference. Cells of the same cell type should 
be thoroughly mixed and neighborhoods should be equally likely to 
contain cells from any batch. The batch ASW3, Batch PCR3, graph con-
nectivity3 and graph-based iLISI3,13 are implemented in scIB3 (v.1.1.4) 
using scikit-learn60 (v.1.1.2). The kBET metric17 is accessed from the kBET 
R package (commit a10ffeaa) via scIB. To calculate an overall score for 
the Seurat mixing metric14 we divided the cell scores by the maximum 
neighborhood size, took the mean across cells and subtracted from 1 
so higher scores are better. For the CMS metric18 in the CellMixS pack-
age (v.1.14.0) we use 1 minus the proportion of cells with a P value <0.1.

Integration (Bio). Integration (Bio) metrics measure whether biological 
signals (primarily cell labels) are conserved after integration. Unlike 
batch correction metrics, where perfect scores can be obtained by map-
ping cells to a single point, biological conservation metrics require that 
cell labels are separated after integration. The label ASW3, graph-based 
cLISI3,13, cell cycle conservation3, ARI3, NMI3, Isolated labels ASW3 and 
Isolated labels FI3 metrics are implemented in scIB using scikit-learn. 
bARI16 and bNMI metrics are available from balanced_clustering (com-
mit a2ae3a4d). For the Seurat local structure metric14 we used the aver-
age over all cells as the final score and for ldfDiff18 we took the absolute 
distance and set an upper bound to get a cell score and used 1 minus 
the mean cell score as the overall score. The cell cycle metric3 scores 
cells11 using genes from Tirosh et al.61 with ENSEMBL IDs obtained from 
Biomart62 using the biomaRt package63. It cannot be calculated for 
the splat dataset as it does not contain cell cycle effects. For metrics 
that require clusters (ARI, NMI, bARI and bNMI), we performed Leiden 
clustering with the resolution parameter set to values between 0.1 and 
2 in steps of 0.1 using scanpy via scIB and selected the resolution with 
the best metric score.

Mapping quality. Mapping quality metrics assesses how well the refer-
ence represents the query and is able to merge it into the same space. 
For perfect mapping, cell types present in both the reference and query 
should be mixed, as should batches within the query. At the same time, 
biology within the query should be preserved. The cell distance metric 
calculates the Mahalonobis distance between each mapped query cell 
and the distribution of the corresponding label in the reference12. To 
create a bound for the distance we calculate the distance for every cell 
in the reference for a label and take the 90th quantile. The final score 
is 1 minus the proportion of mapped cells outside the boundary. The 
label distance considers labels as a whole rather than individual cells12. 
The Mahalonobis distance is calculated between the centroid of the 
label in the query and the matching label in the reference. Labels are 
skipped if they have fewer than 20 cells in the query or are not in the 
reference. We used the maximum distance of query cells to their label 
centroid as a boundary. Distances to the matching reference label are 
then scaled using this value and set to 1 if they exceed the maximum 
distance. The final score is the mean across cell types.

mLISI is the same as iLISI but measures mixing between the query 
and reference (also known as ref_query LISI12) and qLISI measures  
mixing between query batches after mapping (also known as query_
donors LISI12).

kNN correlation measures how well cell neighborhoods are main-
tained12. For each query batch, a PCA is performed and the Euclidean 
distances to the 100 nearest neighbors of each cell are calculated. 
The distances to the same neighbors in the joint integrated embed-
ding are also calculated and the Spearman correlation is computed. 
After adjusting the correlations to the range 0 to 1, the mean of cells 
in each batch is calculated and the final score is the mean across 
batches. For particularly bad integrations (that is small random 
feature sets), a cell may be equally distant from all neighbors, in 
which case the correlation cannot be calculated and it is assigned a  
score of 0.

The reconstruction metric assesses a generative model’s ability to 
represent query cells by sampling from the posterior distribution and 
measuring the cosine distance between the mean posterior expression 
profile and the true cell expression profile64. We adjusted the distances 
to be in the range 0 to 1 and took 1 minus the mean distance as the final 
score. This metric cannot be calculated for Symphony integrations as 
it is not a generative method.

Classification. The classification (or label transfer) metrics measure 
how well a classifier trained on the reference can correctly predict 
labels for query cells. We use standard classification metrics: accuracy, 
F1 score, Jaccard index, Matthews correlation coefficient (adjusted to 
[0, 1]) and macro-averaged area under the precision-recall curve as 
implemented by scikit-learn. For F1 and the Jaccard index we use micro, 
macro and rarity-weighted19 averages over labels.

Unseen population prediction. Unseen population metrics focus on 
novel biology in the query by measuring how mapping has affected cell 
labels present in the query but deliberately left out of the reference. 
These should be maintained as separate populations but an integra-
tion that does not properly capture variation may merge them with 
other labels.

The unseen uncertainty metric uses the output of the label transfer 
classifier and measures poor classification of unseen cell by calculat-
ing 1 minus the mean probability of the assigned class for query cells 
from unseen populations. Unseen cell distance is based on the cell 
distance metric but calculated only for unseen query populations. As 
the label does not exist in the reference, we calculate distances to each 
cell’s nearest reference population and subtract the final score from 1 
so that higher distances (greater separation from the reference) give 
higher scores. Unseen label distance applies similar changes to the 
label distance metric by calculating distances to the nearest reference 
label centroid.

We use the milopy65 (commit be1a6cc8) implementation of the 
Milo differential abundance method15 as a metric to detect unseen 
populations by taking query or reference as the covariate of interest64. 
A neighborhood graph is calculated in the integrated embedding using 
a number of neighbors equal to five times the number of batches (up 
to a maximum of 200). Milo is then applied to a subset of cells (up to 
20,000 cells or 10% of the datasets, whichever is higher). The score for 
each label is the proportion of cell neighborhoods significantly associ-
ated with the query (false discovery rate-adjusted P value <0.1). The 
overall score is the average of the proportions across all unseen labels. 
In rare cases for poor integrations where Milo cannot select cells from 
an unseen label, that label is assigned a score of 0.

Benchmarking datasets
We selected datasets representing different scenarios (tissues, tech-
nologies and developmental stages) where integration is a critical 
analysis step, including smaller-scale datasets and larger atlases. We 
chose query batches by selecting batches with shared characteristics 
different from the remaining samples, such as technology, time point 
or location. The unseen populations removed from the reference were 
chosen by looking for labels enriched in the query batches and select-
ing labels presenting different challenges, such as rare or perturbed 
cells. For each dataset, we use the cell labels assigned by the original 
authors.

scIB Pancreas. We downloaded the scIB pancreas dataset3 from fig-
share66. Cell labels were taken from the ‘celltype’ cell annotation column 
(12 reference labels) and batches from the ‘tech’ column. For the query, 
we used batches representing the CEL-seq and CEL-seq2 technologies 
with the ‘activated_stellate’ label treated as an unseen population. 
The prepared dataset contained 18,319 features, 12,731 reference cells 
(seven batches) and 3,243 query cells (two batches).

http://www.nature.com/naturemethods
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NeurIPS 2021. We downloaded the NeurIPS 2021 CITE-seq dataset67,68 
from the Gene Expression Omnibus (GEO)69 (GSE194122) and used only 
the gene expression features. Cell labels were taken from the ‘cell_type’ 
annotation and batch labels from the ‘batch’ annotation. We considered 
samples from Site 4 as the query with the ‘CD8+ T naive’ and ‘Proeryth-
roblast’ labels treated as unseen query populations. After preparation, 
the dataset contained 13,953 features, 70,061 reference cells (nine 
batches) with 42 reference labels and 16,715 query cells (three batches).

Fetal liver hematopoiesis. We downloaded the fetal liver hematopoie-
sis70 dataset from CellAtlas.io71 using batch labels from the ‘fetal.ids’ 
annotation and cell labels from the ‘cell.ids’ annotation. Three samples 
from different developmental stages were treated as the query with 
‘Kupffer Cell’, ‘NK’, ‘ILC precursor’ and ‘Early lymphoid_T lymphocyte’ 
as unseen populations. The prepared dataset contains 26,686 features, 
62,384 reference cells (11 batches and 23 reference labels) and 26,449 
query cells (three batches).

Reed breast. We downloaded the version of the Reed breast dataset32 
released with the preprint72 from the Chan Zuckerberg CELLxGENE: 
Discover Census (https://cellxgene.cziscience.com/)73 (dataset ID 
0ba636a1-4754-4786-a8be-7ab3cf760fd6, Census version 2023-07-05) 
using the cellxgene-census package (v.1.0.1) and subsetted to cells with 
a BRCA status of either wild-type (‘WT’ or ‘assumed_WT’) or ‘BRCA1’. 
Donor ID was used as the batch label, with cell labels taken from the 
‘level2’ annotation. We excluded a subset of cells labeled as doublets, 
as it is not clear how they should be treated by metrics. Wild-type 
cells were used to create the reference and BRCA1 cells were used 
as the query. The ‘BSL2’, ‘CD8T 1’, ‘CD8T 2’, ‘CD8T 3’, ‘FB5’, ‘LEC1’ and 
‘LEC2’ labels were used as unseen labels. After preparation, the dataset 
contained 33,691 features, 337,339 reference cells (24 batches and 32 
reference labels) and 197,649 query cells (17 batches).

Single-cell Eye in a Disk. We downloaded the single-cell Eye in a Disk 
(scEiaD) dataset74 from the plae: PLatform for Analysis of scEiad website 
(https://plae.nei.nih.gov/) and selected the human cells derived from 
tissue samples where the organ was specified as ‘Eye’. We removed cells 
that did not have a cell label or were labeled as doublets and batches 
with fewer than 500 cells remaining, as these caused some metrics 
to produce unreliable results. Cell labels were taken from the ‘Cell-
Type_predict’ annotation (harmonized labels from a classifier) and 
the ‘batch’ annotation was used for batches. We split batches using 
cell capture technology, with 10x v.2 taken as the reference and 10x 
v.3 and Drop-seq batches as the query. The ‘B-Cell’, ‘Blood Vessel’, 
‘Macrophage’, ‘Pericyte’, ‘Smooth Muscle Cell’ and ‘T/NK-Cell’ labels are 
unseen populations. After preparation, the dataset contained 19,560 
features, 360,270 reference cells (69 batches and 41 reference labels) 
and 48,496 query cells (18 batches).

Human endoderm. We downloaded the Human endoderm dataset34 
from Mendeley Data75. Individuals were treated as batches with labels 
obtained from the ‘Cell_type’ annotation. A small number of cells labeled 
as ‘Undefined’ were removed. Samples from weeks 12–15 were selected 
as the query with ‘Basal like’, ‘Ciliated’, ‘Hepatocyte’, ‘Mesenchyme sub-
type 4’ and ‘T cell/NK cell 1’ labels treated as query-specific. The prepared 
dataset consisted of 27,855 features, 100,580 reference cells (ten batches 
and 21 reference labels) and 44,784 query cells (four batches).

Human Lung Cell Atlas. We downloaded the core Human Lung Cell 
Atlas dataset33 from the Chan Zuckerberg CELLxGENE: Discover Cen-
sus (dataset ID 066943a2-fdac-4b29-b348-40cede398e4e, Census 
version 2023-07-25) and used the ‘dataset’ annotation as defined by 
the authors as batch labels with the ‘ann_finest_level’ annotation as 
labels. Datasets from organ donors were treated as the reference and 
healthy and diseased samples from living donors made up the query. 

‘Multiciliated (nasal)’, ‘Club (nasal)’, ‘Goblet (subsegmental)’, ‘SMG 
serous (nasal)’, ‘SMG serous (bronchial)’, ‘SMG mucous’, ‘EC aerocyte 
capillary’, ‘Peribronchial fibroblasts’, ‘Smooth muscle’, ‘Smooth muscle 
FAM83D+’, ‘B cells’, ‘DC2’, ‘Alveolar Mph CCL3+’ and ‘Mast cells’ labels are 
unseen populations. After preparation, the dataset included 27,987 
features, 314,573 reference cells (nine batches and 47 reference labels) 
and 251,400 query cells (five batches).

HLCA (immune). The HLCA (immune) dataset takes the full HLCA 
dataset and uses the coarsest level of annotation to select cells in the 
immune compartment. The batches and labels are the same as the 
full HLCA dataset, but after subsetting, only ‘B cells’, ‘DC2’, ‘Alveolar 
Mph CCL3+’ and ‘Mast cells’ remain as unseen labels. We also removed 
some batches with insufficient cells. The prepared dataset has 26,618 
features, 155,385 reference cells (seven batches and 16 reference labels) 
and 52,795 query cells (two batches).

HLCA (epithelial). The HLCA (epithelial) dataset is a second subset of 
the HLCA dataset focusing on the epithelial compartment. This sub-
set consists of 27,673 features, 118,374 reference cells (eight batches 
and 17 reference labels) and 162,875 query cells (five batches) with 
‘Multiciliated (nasal)’, ‘Club (nasal)’, ‘Goblet (subsegmental)’, ‘SMG 
serous (nasal)’, ‘SMG serous (bronchial)’ and ‘SMG mucous’ remaining 
as unseen labels.

splat. Simulations address some limitations of real data by providing a 
definite ground truth. We generated a dataset using a modified version 
of the splat simulation in the Splatter package26 designed to represent a 
scenario where a tissue is measured using three different technologies 
(two batches each) in two conditions. These ‘technologies’ measure a 
medium number of cells at medium depth (Batch1 and Batch2), a low 
number of cells at high depth (Batch3 and Batch4) and a high number 
of cells at low depth (Batch5 and Batch6), with the low-depth sam-
ples used as the query. The simulation contains ten cell labels, includ-
ing a progenitor differentiating along two trajectories (one with an 
‘Intermediate’ cell type only present in the query) and six discrete cell 
types that differ in number of cells, number of differentially expressed 
genes and number of detected features. The discrete groups include a 
‘Rare’ population and a ‘Perturbed’ state, which are only present in the 
query. To increase the variability in the simulation, we added additional 
label-specific noise factors to the model, which were applied before 
generating counts. The splat dataset contains 9,984 features, 30,041 
reference cells (four batches and seven reference labels) and 69,936 
query cells (two batches).

Benchmarking pipeline
To improve reproducibility, make sure that results are up-to-date as code 
is updated and easily take advantage of computing resources, we built 
a pipeline using Nextflow50 (Extended Data Fig. 2). The pipeline takes 
a dataset, applies standard preprocessing and splits it into reference 
and query samples. The feature selection methods are applied to the 
reference, and selected features used for integration. After integra-
tion, the query is mapped to the reference, and a cell label classifier is 
trained. The reference and query, ground truth cell labels and trans-
ferred labels are provided to metrics. The metric scores are then scaled, 
aggregated and ranked. Pipeline stages use both Python (v.3.9.13) and R76 
(v.4.2.2), including packages from Bioconductor77. The Python anndata  
package78 (v.0.8.0) was used to store data and save it as H5AD files 
between pipeline stages. The zellkonverter package (v.1.8.0) was used 
to load data into R via the reticulate (v.1.26) interface where it was stored 
as SingleCellExperiment35 (v.1.20.0) or SeuratObject (v.4.1.3) objects.

Dataset preprocessing
The preprocessing step includes basic quality control filtering of cells 
using scanpy and storing information (such as batch and label) in 
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standard locations. We removed cells with fewer than 100 total counts 
or expressing fewer than 100 features. The dataset is split into a refer-
ence and query based on the batch labels. Labels with fewer than 20 
cells are removed from both the reference and query, as some metrics 
can behave unpredictably with small cell numbers. Labels defined as 
unseen populations are also removed from the reference. The final pre-
processing step removes any features not expressed in the reference.

Integration and query mapping
The base model we use for integration is scVI24 available in scvi-tools79 
(v.0.17.1). This model uses a conditional variational autoencoder and 
allows the mapping of query samples using architecture surgery80. We 
also train a scANVI model37 a semi-supervised extension of scVI where 
cell labels are used to finetune the network. These models take raw 
count data as input, so we did not consider the interaction between 
feature selection and normalization methods.

As an alternative approach based on correcting a PCA space, we 
included integration with Harmony13 followed by query mapping using 
Symphony12. We provide Harmony with normalized expression values 
rather than raw counts as suggested by the documentation. Counts are 
first normalized to counts per 10,000, then log-transformed. The dataset 
is subset to the selected features and scaled with a maximum value of 10 
(per feature) and 30 principal components are provided to Harmony. 
For Symphony, log-transformed normalized query data are provided 
(scaling is performed during mapping). Data preprocessing steps are 
performed using functions in scanpy and integration and query mapping 
are performed using harmonypy81 (v.0.0.9) and symphonypy82 (v.0.2.1).

Label transfer
We trained a multinomial logistic regression classifier on the integrated 
reference using scikit-learn, taking the position of each cell in the 
integrated embedding space as input and the ground truth cell labels 
as the output. Labels are transferred to the query by providing the 
mapped embedding coordinates to the trained classifier, predicting 
the probability for each reference label and recording the label with 
the highest probability.

Metric selection
For metric selection we used different numbers of randomly selected 
features across all test datasets. We also included feature sets of differ-
ent sizes from the scanpy-Seurat method to evaluate the relationship 
with the number of features as random gene sets have no inherent 
ordering (the first features selected are no more informative than the 
last features selected). We evaluated the behavior of individual metric 
scores and the relationships between them. Metrics were removed if 
they could not distinguish between feature sets (have an insufficient 
dynamic range), were overly correlated (Pearson correlation) with the 
number of features, were associated with technical dataset features or 
showed undesirable correlation patterns.

Selecting a number of features
We evaluated different numbers of features for methods in Seurat and 
scanpy as well as high variance or high mean expression. We calculated 
z-scores across methods and datasets to see how performance changed 
with the number of features. To reduce the computational cost, we 
limited this part of the analysis by methods rather than datasets as it 
allowed us to see the effect of the number of features across datasets. 
The number of features used for the benchmark (2,000) was chosen by 
considering trends over methods, datasets and metric types.

Analysis of results
The relative rather than absolute performance of methods and the 
aggregation across metrics are most informative. All metrics produced 
scores in the range of 0 to 1 (with higher being better), but they have 
different real dynamic ranges. To scale each metric for each dataset 

we used a set of reference methods to establish the effective range of 
each metric. These are all features, randomly selected features, stably 
expressed features from scSEGIndex and batch-aware features from 
scanpy-Cell Ranger as an example of current standard practice3,22. 
Depending on the metric, using all features performs either well or 
poorly, while random and stably expressed features result in high 
batch-correction scores but poor biological conservation. The baseline 
methods were used to establish a range for each metric (for a dataset), 
and then all scores were scaled relative to that range. Scaling using 
baseline methods provides ranges that are more interpretable and are 
not affected by adding or removing methods.

The scaled metric scores were aggregated by taking the mean for 
each category. This level of aggregation gives a summarized perfor-
mance for each of the methods for each task. An overall score for each 
dataset is obtained using a weighted mean of the task scores.

Overall = 1
2
× ( Int.Batch

2
+ Int.Bio

2
) + 1

2

×(Mapping
3

+ Class.
3

+ Unseen
3

)

Methods were ranked at the level of metric categories, datasets 
and over the whole benchmark. These rankings let us evaluate which 
methods perform better at different tasks or scenarios. We also checked 
for consistency between integration approaches and variants of feature 
selection methods.

Further analysis examined the similarity between methods by 
considering the overlap in selected sets calculated using the Jaccard 
index. We also compared between the full HLCA dataset and subsets 
representing the immune and epithelial compartments.

Final figures were produced using the ggplot2 package83 (v.3.5.0) 
and assembled using patchwork (v.1.2.0). Data processing was per-
formed using tidyverse84 (v.2.0.0) packages.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All real scRNA-seq datasets were downloaded from public repositories 
provided by the original authors as described in the methods (scIB Pan-
creas, figshare66; NeurIPS, GEO (GSE194122); Fetal liver, CellAtlas.io71; 
Reed Breast, Chan Zuckerberg CELLxGENE: Discover Census (dataset 
ID 0ba636a1-4754-4786-a8be-7ab3cf760fd6, Census version 2023-07-
25); scEiaD, plae: PLatform for Analysis of scEiad website (https://plae.
nei.nih.gov/); Human endoderm, Mendelay Data75; and HLCA, Chan 
Zuckerberg CELLxGENE: Discover Census (dataset ID 066943a2-fdac-
4b29-b348-40cede398e4e, Census version 2023-07-25)). Raw and pre-
pared dataset files, selected feature sets, metric scores and rendered 
analysis reports from this benchmark are available from figshare85.

Code availability
All code associated with this study is available on GitHub51 and archived 
on Zenodo52, including scripts for downloading datasets from public 
repositories provided by the original authors, running methods and cal-
culating metrics, the Nextflow pipeline and associated environment and 
configuration files. The code for analyzing the benchmark results, includ-
ing the production of final figures, is also available in this repository.
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Extended Data Fig. 1 | Overview of the design for the feature selection benchmarking study. The methods to be evaluated are applied to each dataset and 
integration is performed. The query dataset is then mapped to the integrated reference. Different metrics are applied to assess batch correction, biological 
conservation, mapping quality, label transfer and unseen population detection.
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Extended Data Fig. 2 | Schematic of the processing pipeline for the benchmark. Light gray ovals show the processing steps and colored lines indicate the flow of 
information between them.
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Extended Data Fig. 3 | Metric selection correlations. Further detail on correlations calculated during metric selection. a) Heatmaps of means and standard deviations 
for correlations between metric scores and technical dataset features. b) Heatmaps of means and standard deviations for correlations between metrics.
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Extended Data Fig. 4 | Metric scores for different numbers of features. Further 
detail on standardized metric scores for different numbers of features.a) 
Heatmaps of means and standard deviations of standardized metric scores 

by metric type for different datasets and numbers of features. b) Heatmaps of 
means and standard deviations of standardized metric scores by method for 
different methods and numbers of features.
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Extended Data Fig. 5 | Benchmark metric category results. Further detail on 
metric category scores and ranks for each dataset.a) Heatmap showing metric 
category scores for each method on each dataset. Colors indicate category 

scores. b) Heatmap showing metric category ranks for each method on each 
dataset. Colors indicate metric categories and transparency indicates rank. 
Baseline methods are indicated by grey shading.
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Extended Data Fig. 6 | Selected features overlaps. Further detail on overlaps between feature sets from different methods.a) Heatmaps showing mean and standard 
deviation of the Jaccard Index between different feature selection methods over all datasets. b) Heatmaps of the Jaccard Index between methods for individual 
datasets.
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Extended Data Fig. 7 | Marker genes overlaps. Further detail on overlaps 
between selected feature sets and marker genes for HLCA datasets.a) Heatmaps 
of mean and standard deviation of the porportion of markers selection by each 
method on the full HLCA, HLCA (Immune) and HLCA (Epithelial) datasets for 

the cell types from endothelial, epithelial, immune and stroma compartments. 
b) Proportion of markers selected by methods for individual cell types on each 
HLCA dataset.
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Extended Data Fig. 8 | Integration comparison metric category results. 
Further detail on the comparison of metric category scores between integration 
methods (scVI, scANVI, Symphony).a) Heatmaps showing mean metric category 
scores, mean differences in scores compared to scVI, mean metric category ranks 

and difference in mean category ranks for each feature selection and integration 
method. b) Heatmaps showing the standard deviation in metric scores, score 
difference, rank and rank differences.
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Extended Data Table 1 | Summary of reasoning for excluded or modified metrics

Summary of reasoning for excluded or modified metrics
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