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The availability of single-cell transcriptomics has allowed the construction
of reference cell atlases, but their usefulness depends on the quality

of dataset integration and the ability to map new samples. Previous
benchmarks have compared integration methods and suggest that feature
selectionimproves performance but have not explored how best to select
features. Here, we benchmark feature selection methods for single-cell
RNA sequencing integration using metrics beyond batch correction and
preservation of biological variation to assess query mapping, label transfer
and the detection of unseen populations. We reinforce common practice
by showing that highly variable feature selection is effective for producing
high-quality integrations and provide further guidance on the effect of the
number of features selected, batch-aware feature selection, lineage-specific
feature selection and integration and the interaction between feature
selection and integration models. These results are informative for analysts
working on large-scale tissue atlases, using atlases or integrating their own
datato tackle specific biological questions.

Single-cell transcriptomics technologies are now accessible to many
biological researchers. As the number of single-cell RNA sequenc-
ing (scRNA-seq) datasets has increased and analysis methods have
improved, we are seeing a shift from exploratory experiments toward
multi-sample datasets. This trend includes more designed experiments
investigating specific phenomena or testing differences between con-
ditions and larger efforts to catalog the cellular heterogeneity within
tissues. More samples allow a deeper study of biology but present
additional challenges including successful integration of samples to

remove technical differences while conserving interesting biological
variation. Good quality integration is especially critical for large-scale
human atlas-building enterprises, where fully capturing tissue hetero-
geneity requires samples froma variety ofindividuals across locations,
collectedin different ways from different organ areas and profiled using
arange of protocols or technologies'.

Many computational scientists have tackled the integration prob-
lemand atleast 250 tools for single-cell integration are now available’.
Studies have evaluated the performance of some methods®, leading
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toasetof established metrics for assessing integration performance.
While the methods have been compared, preprocessing steps that
may affect integration have largely been overlooked. One step that
has received some attention is feature selection, where benchmarks
have shown that using highly variable genes generally leads to better
integrations®; however, this study only considered one commonly
used feature selection method. Unlike other analysis steps, such as
clustering”, the best feature selection approach for integration has
not been assessed. Additional questions arise when considering how
the integrated space is used as a reference to analyze further query
samples. It is possible that selecting features could result in better
integration of reference samples while at the same time leading to an
integration model that isignorant of alternative sources of biological
variation relevant to understanding other samples.

This study assesses theimpact of feature selection onintegrating
scRNA-seqsamples and using the integrated reference to analyze query
samples. We evaluate the performance of variants of over 20 feature
selection methods using arange of metrics divided into five categories:
batch effect removal, conservation of biological variation, quality of
query toreference mapping, label transfer quality and ability to detect
unseen populations (Extended Data Fig.1). The results from our robust
benchmarking pipeline (Extended Data Fig. 2) are informative for
researchersintegrating their own datasets or creating reference atlases,
leading to better community resources and further biological insights.

Thestudy was conducted inaccordance with the registered, peer-
reviewed protocol at https://doi.org/10.6084/m9.figshare.24995690.v1
(ref. 9). Except for pre-registered and approved pilot data, all analysis
resultsreportedinthe paper were collected after the date of the regis-
tered protocol publication.

Results

Metric selection is critical for reliable benchmarking

For this study, we collected awide variety of metrics covering different
aspects of integration and query mapping. While measuring a broad
range of factorsisimportant, the behavior of many of these metrics has
notbeenthoroughly characterized. This characterizationis particularly
importantinour context as we use metrics developed to compare dif-
ferent integration approaches to instead assess the effect of feature
selection methods. For this reason, weinclude ametric selection step
to profile metrics and decide which to use for benchmarking. This
step aimsto select metrics that effectively measure performance, are
not overly associated with technical factors and are nonredundant.

We performed the metric selection using random and highly vari-
able (scanpy” implementation of a Seurat algorithm") feature sets of
differentsizes for each dataset, performingintegration and mapping,
calculating metric scores and comparing the results (Fig. 1a). The
observed range of scores was calculated using the random gene sets
for each dataset-integration combination. We also used random sets
to calculate the correlation between metrics and technical aspects of
datasets (number of features, number of reference cells, number of ref-
erence labels and batches, number of query cellsand number of query
batches and unseen labels). We calculated the correlation between
metric scores and the number of selected features using the highly
variable feature sets as random feature sets do not have any inherent
ordering (the first 100 features are no more informative than the next
100). Anideal metric would accurately measure what itis designed for,
returning scores across its whole output range that areindependent of
technical features of the dataand are orthogonal to other metricsinthe
study. Figure 1b shows a summary of the metric evaluation.

Using these results, we selected metrics to evaluate feature
selection methods. We found that some metrics, such as batch aver-
age silhouette width (Batch ASW)? and k-nearest neighbors (kNN)
correlation', showed little variation, even across a wide range of
selected feature sets; however, thisis not always easy to interpret. For
example, the cell-type local inverse Simpson’sindex (cLISI)" metric has

anatural range of zero to the number of labels in the dataset, which are
rescaled tobe between zero and one, compressing the observed range
sothat evensmall differences can be informative. When considering the
correlation of metrics with the number of selected features, we found
that most metrics are positively correlated with the number of selected
features, with a mean correlation of around 0.5. A few metrics (local
structure™ and kNN correlation) showed stronger and more consist-
entassociations with the number of features. In contrast, the mapping
metrics are generally negatively correlated. This relationship could
be because smaller feature sets produce noisier integrations where
cell populations are mixed. This scenario requires less-precise query
mapping where mapping somewhere within the mixed population is
sufficient to receive a high mapping score.

The effect of technical factors of datasets on metric scores is more
difficult to interpret as we consider relatively few datasets here, and
the factors are associated across datasets (a dataset with more cells
typically has more batches and labels). We see that more complex
datasets generally resultin lower scores for allmetrics (Extended Data
Fig. 3). The exceptions to this are the Milo™ and Uncertainty metrics.
For Milo, itis difficult tosayif the positive association between scores
andtechnicalfactorsisageneral effect of having more dataor an effect
of individual features. In the case of the Uncertainty metric, it is likely
that the classifier model used is not well calibrated and is less certain
(giving higher scores) for more complex datasets regardless of any
specific technical factor. Proper assessment of the effect of technical
dataset features would require more datasets where each factor is
varied independently, potentially through a simulation study.

Perhaps the most important consideration for metric selection
is the correlation between metrics (Fig. 1b and Extended Data Fig. 3).
We want metrics that measure different aspects of integration and
query mapping and selecting several highly correlated metrics would
bias our results in that direction. This effect is evident in the Integra-
tion (Bio) category where several metrics (adjusted Rand index (ARI),
batch-balanced ARI (bARI)*, normalized mutual information (NMI),
batch-balanced NMI (bNMI)', cLISI, label average silhouette width
(Label ASW)? and Local structure) are highly correlated with each
other, prompting usto select only asubset of these. The classification
metrics show evenstronger correlations, with all metrics having similar
scores. Here, we also selected arepresentative sample of metrics, but
using only one or allmetrics would have little effect onthe results. The
other consideration for metric correlationsis the correlation between
metric types. To aid interpretation, we want to be able to summarize
these aspectsindividually, and correlations between opposing metric
types make this difficult. This categorizationis difficult for the case of
the KBET metric”, which is placed in the Integration (Batch) category
but is also correlated with metrics that measure the conservation of
biological variation. While this may be desirable for a single metric,
including kBET in our study would confuse the signal between those
categories. Another metric that stands outis graph connectivity®, which
was considered abatch correction metric by the original authors but is
negatively correlated with other metrics inthis category and positively
correlated with Integration (Bio) metrics. We have kept this metric
for the evaluation butincludeitin the Integration (Bio) categoryinall
further analyses.

Based on this analysis we selected three Integration (Batch) met-
rics (batch principal-component regression (Batch PCR)?, cell-specific
mixing score (CMS) and integration local inverse Simpson’s index
(iLISI)®), six Integration (Bio) metrics (isolated label ASW?, isolated
label F1 (ref. 3), bNMI, cLISI, local density factor difference (IdfDiff)'®
and graph connectivity), four mapping metrics (Cell distance’?, Label
distance'?, mappinglocalinverse Simpson’sindex (mLISI)? and query
local inverse Simpson’sindex (qLISI)™?), three classification metrics (F1
(Macro), F1(Micro) and F1 (Rarity)") and three unseen population met-
rics (Milo, Unseen cell distance and Unseen label distance). Extended
Data Table1gives our reasoning for excluding metrics.
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Fig.1| Overview and results of the metric selection step. a, Diagram of the indicates the mean correlation, and the size of squares is the s.d. (larger points
metric selection workflow. b, Results of the metric selection step. Densities are less variable). The heatmap on the right shows the mean correlation between
for the observed range and correlation with the number of features across metrics grouped by metric type (Extended Data Fig. 3b). The color bar on the left
datasets and integrations are shown for each metric. Colors indicate the mean indicates which metrics were selected for the final benchmark. This indication is
value and vertical lines represent the median. The middle heatmap shows the continued as shaded areas in the other plots.
mean correlation with technical dataset features (Extended Data Fig. 3a). Color
Using baselines to effectively scale and summarize metrics sets) and 200 stably expressed features selected using the scSEGIndex

Individual metrics have different effective ranges and interact differ- method® (as negative controls that should not capture signal) and
ently with datasets. To summarize and compare metric scores, they  use single-cell variational inference (scVI)* to integrate each dataset
need to be adjusted to have the same range for each dataset. Weusea usingthe selected features. These methods are sufficiently diverse to
scalingapproachbased onbaseline methods, similar tothatusedbythe  demonstrate the effective range of each metric and allow us to establish
Open Problems in Single-cell Analysis project®. We use four baseline  baseline ranges for each dataset (Fig. 2a).

methods: all features, 2,000 highly variable features selected using We scaled the metric scores using the baseline ranges and aggre-
the batch-aware variant of the scanpy-Cell Ranger” method (asarep-  gated them as shown in Fig. 2, using the scIB pancreas dataset’ as an
resentative commonly used approach suggested as good practice*??), example. This dataset was also used in stage 1 of the registered report.
500 randomly selected features (scores averaged over five feature  Alongwith the realbaseline methods, weinclude theoretical ‘Good’ and
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Fig. 2| Establishing baseline ranges and scaling and aggregating metrics. ‘Bad’ methods are shown. First, the metrics are measured, and then the values are
a, Baseline ranges for selected metrics. Each panel shows baseline scores for scaled using the baseline ranges. Scaled values greater than one or less than zero
all datasets for a single metric. Shaded areas colored by metric type show the are possible if amethod performs better or worse than the baselines. Average
baseline ranges, and points show the values for individual baseline methods. scores for each metric type are computed, and the overall score is calculated as a
b, The process for scaling and aggregating metrics using the scIB pancreas weighted average of the category scores using the equation below.

dataset as an example. The real baseline methods and theoretical ‘Good’ and

‘Bad’ methods that illustrate the behavior of methods that generally  equal consideration to the different metric types. While the overall

performwell or poorly across metric types (in contrast tothebaselines,  scores are useful, we also present scores for each metric type in the

which eachscore highly onsome metrictypesandlowly onothers). The  following sections.

raw metric scores are scaled relative to the minimum and maximum

baseline scores. After scaling, scores greater than one are possibleifa  The number of selected features affects performance

method outperformsallthe baselines (the ‘Good’ theoreticalexample)  In addition to the method used to select features, the number of

or negative scores are possible if a method performs worse than all  selected features affects the success of integration and query map-

baselines (the ‘Bad’ theoretical example). Theinterpretability of scores  ping. Evaluating different feature set sizes for every selection method

outside the reference range is an advantage of this scaling approach, would be ideal but computationally prohibitive. Instead, we tested

providing additional context to the scaled values. We calculatedsum-  different numbers of features for a set of commonly used methods

mary scores foreach metric type by takingthe meanofthescaledvalues  from the Seurat and scanpy packages, as well as simple methods that

for that category. A final overall scoreis calculated asaweightedmean  select the most expressed or variable features.

of category scores (Fig. 2b). Figure 3ashows standardized summary scores (z-scores for each
We chose this weighting scheme to give equalimportancetointe- dataset and method combination), highlighting the trend with the

grating the reference and mapping of the query and, within those, number of features. We see different trends for categories that focus
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each dataset (Extended Data Fig. 4a). Colors indicate mean standardized values
and sizes of squares show the s.d. (smaller squares are more variable). Methods
are ordered using hierarchical clustering. ¢, Similar heatmap to b but rows are
methods rather than datasets (Extended Data Fig. 4b).

onbatch correctionthanthose that measure biological variation. The
Integration (Batch) score shows the highest values for small feature
sets and decreases as the number of features increases. The mapping
category shows a similar but less extreme trend, converging to the
mean value after around 500 features. The other categories show dif-
ferent patterns, increasing with the number of features before leveling
off (classification and unseen populations) or declining (Integration
(Bio)). These patterns reflect that achieving high scores for batch
correction is possible by creating a noisy integrated embedding (a
single noisy mass of cells). Inthis case, batches will be well mixed in the
reference and the query, but thereis no separation between cell types,
resulting in low scores for the other categories. Due to this effect, we
gave a lower consideration to the Integration (Batch) category when
choosing the number of features. The overall score shows a similar
trend to the biological categories, with peak values between 500 and
5,000 selected features.

While there are clear trends for each metric category, there is
also significant variation. The following panels in Fig. 3 show mean
standardized values for datasets band methods. We see that meth-
ods are largely consistent across datasets Fig. 3c. The Seurat-VST*,
scanpy-SeuratV3 and scanpy-Seurat methods peak at slightly higher
numbers of features, whereas the statistic-Variance and statistic-Mean
methods peak at lower numbers of features for Integration (Batch) and
Integration (Bio) but higher numbers of features for classificationand

unseen populations (Extended Data Fig. 4). This pattern suggests that
selecting features in these simple ways can return sets that capture
informationwellinthe reference but notas wellin the query compared
to more sophisticated methods.

We see more variation in the highest-scoring number of features
when methods are averaged for each dataset (Fig. 3b and Extended
DataFig.4). The two datasets with the fewest cells (splat and scIB pan-
creas) show different patterns. For the simulated splat dataset®, few
features are required to capture the variation present. In contrast, the
highest scores are associated with higher numbers of features for the
scIB pancreas dataset. These differences reflect the properties of the
two datasets, with the splat simulation producing data with less com-
plexity thanareal dataset, whereas the scIB pancreas dataset contains
data from several technologies that present a difficult integration
challenge. The larger fetal liver dataset also requires more features to
achieve highscoresinthe query categories, with the highest averages
for the mapping and unseen population categories when all features
areused. This trend suggests that feature sets selected from the refer-
ence do not capture information in the query for this dataset. While
less pronounced, this trend holds across all datasets, with more fea-
tures required to achieve high scores on the classification and unseen
population categories compared to the Integration (Bio) category;
however, the performance of selecting all features shows a limit to
how much additional signal can be obtained. The number of features
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Fig. 4| Results of the benchmark of feature selection methods. a, Summary of
method performance by metric type. Points show scores for individual datasets
and diamonds show the mean values (Extended Data Fig. 5a). Methods are sorted
by mean overall score, and baseline methods are indicated by gray shading.
Shaded areas show scores less than (red) or greater than (blue) the baseline range
(0-1). Average rankings for each metric type are shown on the right, with color
indicating mean rank and size s.d. (smaller is more variable) (Extended Data
Fig.5b).b, Overlap of features selected by different methods. The heatmap shows
the mean Jaccard index (JI) between feature sets selected by different methods
(excluding random gene sets) (Extended Data Fig. 6). Sizes of squares indicate
thes.d. (smaller is more variable). Mean]1 values greater than 0.5 are highlighted

with white borders. ¢, The number of features (on alog,, scale) selected by at least
nmethods (n=25,20,15,10 and 5) for each dataset. Colors indicate the number
of methods. d, The number of features selected by different methods. Points are
colored by dataset, and blue bars show the mean for each method. Only methods
which automatically determine the number of features are shown. Most other
methods were set to select 2,000 features, asindicated by the red line, except
scPNMF, which uses 200 features. e, Heatmap of the relative performance of
batch-aware variants of scanpy methods. Colors show the difference in score

for each metric type on each dataset, with negative values (purple) indicating
that the batch-aware variant performed worse than the standard approach and
positive values (green) that it performed better.
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at which the additional signal saturates is unclear and is likely to be
different for each dataset as afunction of the biological and technical
diversity that is present.

Based on this analysis, we used 2,000 features for most methods
in the following evaluation, as this number consistently produced
high scores across datasets, methods and metric categories. Excep-
tions to this are methods that dynamically select the number of fea-
tures (Anticor?”, DUBStepR*, NBumi®’, Seurat-MVP" and triku*°) and
single-cell projective non-negative matrix factorization (scPNMF)?,
where the documentation recommends using fewer features than
other methods for which we use 200 features.

Highly variable features and supervised methods perform well
After determining the number of features to use, we compared feature
selection methods. We were able to successfully run the majority of
methods on all datasets; however, NBumi failed to complete on the
Reed breast dataset®* within 24 h, scPNMF, exceeded 400 GB of memory
or failed to complete in 24 h on the Human Lung Cell Atlas (HLCA)*,
HLCA immune, HLCA epithelial, Human endoderm® and Reed breast
datasets, and Anticor produced an unexpected error for the Human
endoderm dataset.

Figure 4ashows the overall results for each metric category, sorted
by the mean overall score across datasets for scVlintegration (Extended
Data Fig. 5a). Several methods obtain similar average overall scores.
The Wilcoxon method, the only method to select features using cell
labels, has the highest average overall score but is more variable across
datasets than other top-performing methods. This higher variability
suggests that supervised selection of features may not be effective for
all datasets, even when the same labels are used for evaluation, and that
tuning the number of features selected using this approach could be
required. The Seurat-VST method obtains the highest overall ranking
and several other highly variable feature selection methods also per-
formwell with similar mean scores and more consistent performance
than Wilcoxon. The other top-performing alternative method s triku,
which has similar overall scores to the highly variable selection meth-
ods but shows some bias toward batch correction over conserving
biological variation.

The lower-ranked methods show more variation in scores for
individual categories (Extended DataFig. 5). In particular, the baseline
random and scSEGIndex methods score very highly on the Integration
(Batch) and mapping categories but poorly onthe categories measur-
ing biological information. This effect demonstrates that it is easy to
obtain good mixing between batches by selecting features that only
contain noise and the importance of including metrics that measure
the conservation of biological variation. Using a predefined list of
transcription factors also produces a bias toward batch correction,
demonstrating that it is not sufficient for features to be biologically
important but that they must also be relevant to particular datasets.
Transcription factors are typically lowly expressed and therefore noisy.
Although the effect s less pronounced, some methods, such as OSCA*
and singleCellHaystack®, rank highly on Integration (Bio) but not on
batch correction, with singleCellHaystack also scoring similarly to
the top methods on unseen population detection. The singleCell-
Haystack method uses Seurat-VST as a preprocessing step to create a
principal-component analysis (PCA) space where the final features are
selected but these additional steps do not lead to better performance
than Seurat-VST alone.

We see some overlap in selected features for most methods, but
there are very few combinations where the mean Jaccard index is
above 0.5 (Fig. 4b and Extended Data Fig. 6). One pair that stands out
isSeurat-VST and scanpy-SeuratV3, which produce identical sets. This
overlapisunsurprising, given that they are differentimplementations
of the same method, but it is reassuring to see consistency between
packages using different programming languages. As the selected
features areidentical, any differences in performance we see between

these methodsresults fromrandomness inintegration or metrics. The
scanpy-Seurat and Seurat-MVP methods also implement the same
approach but the scanpy implementation allows specifying the num-
ber of features, while the Seurat implementation selects the number
of features dynamically using a threshold. There are also some differ-
encesinpreprocessing steps, contributing to their lack of consistency.

Despite the lack of high overlap between selected feature sets,
we still see a core set of features selected by most methods, with
between 500 and 1,000 features being selected by at least 20 methods
for most datasets (Fig. 4c). This consistency suggests that a subset
of features clearly contains information for a dataset and should be
crucial for effective integration and query mapping. That the remain-
ing selected features are less likely to be shared between methods
that have similar performance may result from redundancy in gene
expression, with several genes carrying information about the same
biological processes.

The number of features selected by dynamic methods (Fig. 4d)
can also be related to performance. The Anticor method selects the
majority of featuresin each dataset and, therefore, performs similarly
to using all features. DUBStepR uses the most complex procedure of
the methods compared here, resulting in very few selected features
and low overall performance. However, DUBStepR scores relatively
highly on biological metrics, suggesting that the features it selects
areinformative butinsufficient to correct batch effects. The dynamic
methods that perform well (Wilcoxon, triku and Seurat-MVP) select
anumber of features closer to the 2,000 features we chose to use for
most methods. Seurat-MVP selects fewer than 2,000 features for all
datasets and in comparisonto scanpy-Seurat, which uses the same algo-
rithm butis set to 2,000 features, Seurat-MVP has higher Integration
(Batch) scores but similar Integration (Bio) performance. While fewer
features are adequate for integrating the reference, the additional
features included by scanpy-Seurat improve query classification and
unseen population detection.

Feature selection can also be employed in a batch-aware fashion
by selecting features for individual batches and combining the results,
typically by choosing the features selected for the most batches. The
intuition behind this approachis that it avoids selecting features that
vary betweenbatches but not between biological states withinabatch.
To assess the effectiveness of this approach, we included batch-aware
variants of the scanpy methods. Figure 4e shows the difference in
performance for each dataset and metric type compared to standard
selection. We see significant differences in the summary scores for
some scenarios, but this effectisinconsistent across either datasets or
metrictypes, and the differencesinthe overall score arerelatively small.
For example, batch-aware selection improves the unseen population
score for the HLCA (Immune) dataset but is significantly worse for the
HLCA (Epithelial), Human endoderm and scIB pancreas datasets. The
OSCA method also selects features in a batch-aware way but does not
rank among the top-performing methods. While we do not rule out
batch-aware feature selection as a useful approach, we cannotidentifya
scenario whereitis consistently more effective than selecting features
across batches.

Lineage-specific feature selection and integration

Anopen questioninlarge-scaleintegration projectsis whether tointe-
grate across the full diversity of cell states or to limit the complexity
by subsetting to specificlineages or conditions. While we cannot fully
address this question here, we caninvestigate some aspects by consid-
ering the three versions of the HLCA dataset.

Figure 5a shows the rankings for all methods for each HLCA subset,
including the overall ranking and the ranking for each metric type. In
general, these follow the trends we observed when considering all
datasets, and we do not see any methods that consistently rank higher
on the lineage subsets compared to the full dataset. To see whether
the similar rankings across subsets resulted from selecting similar
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Fig. 5| Analysis of lineage subsets of the HLCA dataset. a, Method rankings
for the full HLCA dataset, the immune subset and the epithelial subset. Overall
rankings are shown, along with rankings for each metric category. Methods are
ordered by their overall performance across all datasets. b, Overlap of selected
feature sets. The Jaccard index values between feature sets from each subset
areshownas a heatmap. ¢, Overlap with marker genes. A heatmap of the mean
proportion of marker genes selected by each method on each dataset subset.
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The meanis calculated for each lineage in the full dataset (endothelial, epithelial,
immune and stroma). The size of squares shows the s.d. of proportion across
celltypes in each lineage (smaller is more variable) (Extended Data Fig. 7).
Overlaps are not shown for random gene sets. d, Analysis of cell label Milo scores.
Aheatmap shows the Milo score for each unseen cell type on the full,immune and
epithelial subsets. On the right is shown the difference in scores for each lineage
subset compared to the full dataset.

feature sets, we computed the Jaccard index between selected features
(Fig. 5b). While there is some similarity in feature sets, the overlap is
not higher than we saw between all datasets. The Jaccard index tends to
be lower for higher-ranking methods, suggesting that these methods
cansuccessfully adapt to each dataset. We also see that the overlapin
selected features between the immune and epithelial subsets is less
than with the full dataset.

One motivation for lineage-specific feature selection is that it
results in selecting more specific features for the cell types in that
subset. To test this, we considered the published marker gene sets for
the HLCA and calculated the proportion of these markers selected
by each method on each dataset subset. Figure 5c and Extended Data
Fig.7 show the mean proportion of selected markers across cell types
for each lineage in the full HLCA (endothelial, epithelial, immune and
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stroma). In most cases, relatively few calculated markers are selected
(proportion of markers mean, 0.38; median, 0.39; and first quartile,
0.04) (Extended Data Fig. 7). The lack of markers chosen may be due
toredundancy in the information contained by related genes and dif-
ferences in which features are prioritized for selection compared to
marker detection. Selectivity of the markers chosen was not related
to performance, with some of the worst-performing methods most
effectively selecting markers only for the cell types in aspecificlineage
(Extended DataFig. 7).

So far, we only considered the ranks of methods because indi-
vidual scores are not directly comparable between subsets as they
contain different cells and labels. To consider one area in more detail,
we calculated Milo scores for individual unseen labels, allowing us to
see if an unseen cell type is easier to distinguish in a whole-tissue or
lineage-specific atlas (Fig. 5d). We see a clear trend of lower scores
on the lineage subsets. This pattern supports the argument that by
providing more diverse input data to the integration model it learns
more of the possible cell space and can, therefore, better distinguish
new cell populations.

Interaction between selected features and integration method
The focus of this study is the effect of feature selection rather than
integration method, but we also measured the performance of the
semi-supervised single-cell annotation using variational inference
(scANVI) model®”” and Harmony" followed by query mapping using
Symphony” (referred to as‘Symphony’) inaddition to scVI. This analysis
allows usto assess theinteraction between feature selectionand inte-
gration models and the effect of biological supervision. Figure 6 shows
the average scores and ranks for each integration method and the dif-
ferencesin performance for scANVIand Symphony compared to scVI.

Overall, there areno clear differences in metric rankings (Fig. 6d).
We see a slight trend toward decreases in rankings for methods that
rank highly for scVI and increases in rankings for methods that rank
lowly for scVI (Extended Data Fig. 8). This effect could be explained
byinteractions between feature selection and integration methods or
alternatively by scANVIand Symphony being less sensitive to feature
selection or regression to the mean due to randomness in integra-
tion and some metrics. Looking more closely at the differences in
scores (Fig. 6b), we see some methods that stand out. For scCANVI,
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there are significant improvements in the Integration (Bio) score for
scanpy-Seurat (batch =false), Seurat-MVP, Brennecke®®, DUBStepR and
allfeatures. Thisimprovementin performance showed thatincluding
biological information in the integration process can overcome the
limitations of selected features in some cases.

In fact, scANVI leads to minor but consistent improvements for
most metric types compared to scVI, except for Integration (Batch).
This trade-off would be acceptable for many applications, particularly
as the mapping score also increases, showing that preserving more
biological information does not limit the ability to map query datasets
tothereference. Symphony shows decreased performance compared
to scVlacross metric categories, except for the mapping score. While
this decreased performance is relatively consistent across methods,
the most significant decreases in the unseen population scores are for
the highest-ranking methods. These results show that Symphony is
unable to detect new cell populations that could be separated by scVI
and scANVIusing the same features.

Discussion

Inthis comprehensive benchmark, we evaluated variants of 24 feature
selection methods on ten datasets using 1,700 selected feature sets,
over 6,000 integration runs producing over 140,000 metric scores.
We performed a rigorous metric selection process and determined a
number of features (2,000) that performed well across datasets. Our
evaluation found highly variable feature selection methods to perform
well, with the approach based on a variance-stabilizing transforma-
tion (Seurat-VST/scanpy-SeuratV3) being the top-ranked method.
This result reinforces common practice and recommendations from
previous benchmarks. Label-guided marker genes (Wilcoxon) also
performed well but were more variable across datasets. We focused on
unsupervised methods and other supervised techniques may produce
more stable results; however, supervised feature selection only applies
whencelllabels are available, typically not the case before integration.
The triku method was also highly ranked but showed some bias toward
batch correction.

We did not find a consistent advantage for batch-aware variants of
methodsimplementedinscanpy. Batch-aware selection could improve
performance in some scenarios, butamore specific evaluationinclud-
ing additional methods is required to determine its applicability. For
large datasets, batch-aware feature selection has a computational
advantage, asloading the whole datasetinto memory can be avoided.
However, we could run many top-performing methods on the full
datasets with relatively modest memory requirements.

We used scVI for our primary benchmark but compared the per-
formance to scANVI, to inspect the effect of adding prior knowledge,
and Symphony to see the interaction with an alternative integration
approach. We saw that methods performed differently across integra-
tion approaches but did not identify clear relationships, suggesting
that differences are the result of randomness in integration runs and
shuffling between equally performing methods; however, there were
clear differences between integration methods, withscANVIimproving
inallmetric categories for the same feature sets. In contrast, Symphony
showed decreased performance compared to scVI, particularly at
unseen population detection.

Using subsets of the HLCA dataset, we considered lineage-specific
feature selection. We did not see any clear preference for methods
and particular lineages, and the top-performing methods effectively
adapted to different subsets. Milo scores for individual unseen labels
showed that it is easier to distinguish new cell populations using a
more diverse reference atlas; however, this comparison was not our
primary focus, and further work is required to determine if or when
lineage-specific features selection and integration can be effective.
For example, we did not consider whether lineage-specific features
couldimproveintegration of the full dataset or attempt to disentangle
effects of feature selection from integration.

We only compared different numbers of features for some com-
monmethodstoselectanumber of features for the final evaluation as
the computation required was infeasible for allmethods. For the meth-
ods where we examined different numbers of features, we observed a
relationship between datasets and the optimal number of features for
different metric types; however, the limited number of datasets did not
allow us to connect this relationship to specific technical features, such
asthe number of batches or cell labels, and methods may perform dif-
ferently with adifferent number of features. We encourage analysts to
tune the number of selected features for their dataset and use case and
we believe this will affect performance more than switching between
top-performing methods; however, adjusting the number of features
iscomputationally intensive and difficult to assess with new datasets as
labels aretypically not available for evaluation. Developing methods for
automatically tuning the number of selected features based on techni-
cal aspects of datasetsis a potential avenue for future research. We also
emphasize that better performance on query tasks, especially unseen
population detection, needs more features than producing a good
integrated reference and should be consideredifthisisanintended use.

During the planning and implementation of this study, several
feature selection methods***, alternative metrics*** and other
comparisons**’ were published. While we consider it is unlikely that
other methods would significantlyimprove performance, establishing
this requires further benchmarking. More likely to affect the results
is the inclusion of additional metrics, such as the recently proposed
scGraph metric*® which aims to address limitations of some metrics
by considering distances between cell labels and has shown significant
differences in performance between integration methods.

Our benchmarkreinforces established practices as highly effective
and provides guidance on generally effective parameters that can be
optimized for individual datasets.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41592-025-02624-3.
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Methods

Our study follows a standard benchmark design, consisting of test data-
sets, feature selection methods to be evaluated and metrics for measur-
ing performance (Extended DataFig.1). The complete benchmarking
pipelineisimplemented as aNextflow*® workflow (Extended DataFig. 2)
available from GitHub®' and archived on Zenodo®. Summaries of the
specific methods, metrics, datasets and processing steps are provided
inthe following sections. Please refer to the supplementary methods,
pipeline code, original publications and package documentation for
further information.

Evaluated methods

We sselected arange of feature selection methods covering approaches
from standard analysis workflows and alternative methods proposed
for scRNA-seqdata. Tobe considered, amethod must beimplemented
in a publicly available package that we could reliably install and run.
Some methods can automatically determine the number of features
to select, but for most others this must be specified. A few methods
can consider batchlabels during selection, but for most, this requires
manually splitting the data, computing feature sets on each batch and
combining theresults. We have used the default settings or whatis rec-
ommended in any accompanying documentation for most methods,
but for a subset of highly used methods, we evaluated variants. Any
preprocessing steps required before feature selection are considered
partofthe method. We used the steps suggested in the documentation
for each method as they are recommended by the authors and repre-
sent the most likely real-world usage.

Simple control methods. We include all features and random feature
setsinthe evaluation as control methods. We expect that using feature
sets selected by real methods improves performance over using all
features and any randomly selected sets. To control for variability
in selecting random features, we always include five random feature
sets selected with different seeds and average metric scores over the
five sets.

Excess variability methods. The most common approach to feature
selection in RNA-seq analysis tool boxes such as scanpy'® and Seurat™
istoselect highly variable features, those that show excess variability
beyond whatis expected. This approach assumes that extra variability
results from differences in gene expression between cell populations
orstatesand that selecting these features willidentify those important
tothecellsinthe sample.

We benchmark the following excess variability methods:
features with the highest variance, the fitting method from
Brennecke et al.*® (implemented in scran® v.1.26.0), variants from
Seurat" (v.4.3.0) (Seurat-dispersion, Seurat-MVP" and Seurat-VST>),
variants from scanpy' (v.1.9.1) (scanpy-Seurat, scanpy-SeuratV3
and scanpy-Cell Ranger) and the approach from ‘Orchestrating
Single-Cell Analysis with Bioconductor® using batchelor** (v.1.14.0)
and scran. For scanpy methods we used both standard and batch-
aware variants.

Methods based on other statistical features

Other feature statistics can also be used for feature selectionincluding
selecting features with the highest mean expression, Anticor? (v.0.1.8),
which selects features with excess negative correlations, NBumiwhich
selects features with excess zeros (M3Drop v.1.24.0)* and DUBStepR
(commit 76aa3948), which uses stepwise regression of a binned cor-
relation matrix?.

For Anticor, we disabled thefiltering of predefined gene pathways
asitrequires gene identifiers, which are not available for all datasets.
For NBumi, we select features with anadjusted Pvalue <0.01 unless this
resultsin fewer than 500 features, in which case the 500 features with
the lowest Pvalues were used.

Model-based methods

Model-based methods fit an appropriate distributional model to the
dataset. Features are then selected by looking for those significantly
different from the fitted model. These include scTransform* (v.0.3.5,
accessed via Seurat), analytic Pearson residuals® (implemented in
scanpy) and scry (v.1.10.0)"".

Embedding-based methods

Dimensionality reduction is a commonly used preprocessing step in
scRNA-seqanalysis. Some feature selection methods either use sophis-
ticated embedding methods or look for features that vary across an
embedding. sScPNMF (commit 47d5b10c) performs a modified PNMF,
where an alternative initialization is used and selects features associ-
ated with informative bases®, and singleCellHaystack (v.0.3.4) uses
Kullback-Leibler divergence tofind features that are expressed in subsets
of nonrandomly positioned cells*. For singleCellHaystack, we first select
features using Seurat-VST and perform a 50-dimensional PCA asinput.

Graph-based methods

Another common step in scRNA-seq analysis is to build a
nearest-neighbor graph of cells, typically using positionsinanembed-
ded space. Some methods operate on these graphs. Hotspot (v.1.0.0)
looks for features with a high local auto-correlation withinagraph*® and
triku (v.2.1.4) uses a neighborhood graph to distinguish features that
are expressed in afew cells randomly across a dataset from those that
areexpressed inafewrelated cells®. For both, we use agraph based on
aPCA of allfeatures asinput.

Supervised methods
We focus on evaluating unsupervised feature selection methods, as
cell labels are typically not available before the integration process;
however, atleast some level of cell labels may be available, particularly
for atlas-building projects that combine previously annotated public
datasets. As an example supervised method, we include marker genes
selected using the Wilcoxon rank-sum test (asimplemented in scanpy)
followed by afiltering procedure to remove features expressed in less
than10% of cells withinalabel, expressed in more than 80% of cells out-
side thelabel or with a Pvalue >0.1. The remaining features are sorted
by estimated log fold change and the top 200 features are selected per
label. The final feature set is the intersection of the features selected
for eachlabel.

We also included known transcription factors downloaded from
The Human Transcription Factors®® website (https://humantfs.ccbr.
utoronto.ca/index.php) selecting 1,639 genes where the ‘Is TF?’ field
was equal to ‘Yes’. The intersection of this list with the genes in each
dataset was used. This method cannot be applied to the splat dataset
asit does not containreal gene names.

Stable expression methods

The opposite of highly variable features are those stably expressed or
varying less than expected. The scSEGIndex method in the scMerge
package (v.1.1.4.0) fits agamma-Gaussian mixture model to each fea-
ture®. The parameters of this model and other features, such as the
proportion of zero counts, are used to rank features and calculate a
stability index. We used these stable features as a negative control and
they should perform poorly forintegration as they should not capture
either technical noise or biological signal.

Evaluation metrics

Weimplemented awide array of metrics designed to evaluate different
aspectsof creating and using anintegrated scRNA-seq reference. Some
metrics requireaground truth cell label, while others are unsupervised
and measure whether the structureinasingle sample is maintained. All
metrics are designed so thataraw score of O represents the worst pos-
sible performance and araw score of 1the best possible performance.
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Integration (Batch). Integration (Batch) metrics measure the mixing
between batches in the reference. Cells of the same cell type should
be thoroughly mixed and neighborhoods should be equally likely to
contain cells from any batch. The batch ASW?, Batch PCR?, graph con-
nectivity’ and graph-based iLISI*" are implemented in scIB? (v.1.1.4)
usingscikit-learn®® (v.1.1.2). The KBET metric" isaccessed from the KBET
R package (commit alOffeaa) via scIB. To calculate an overall score for
the Seurat mixing metric* we divided the cell scores by the maximum
neighborhood size, took the mean across cells and subtracted from 1
so higher scores are better. For the CMS metric'® in the CellMixS pack-
age (v.1.14.0) we use 1 minus the proportion of cells with a Pvalue <0.1.

Integration (Bio). Integration (Bio) metrics measure whether biological
signals (primarily cell labels) are conserved after integration. Unlike
batch correction metrics, where perfect scores can be obtained by map-
ping cellstoasingle point, biological conservation metrics require that
celllabels are separated after integration. The label ASW?, graph-based
cLISI>®, cell cycle conservation®, ARI’, NMP, Isolated labels ASW? and
Isolated labels FI> metrics are implemented in scIB using scikit-learn.
bARI** and bNMI metrics are available from balanced_clustering (com-
mita2ae3a4d). For the Seuratlocal structure metric'* we used the aver-
age over all cells as the final score and for IdfDiff'® we took the absolute
distance and set an upper bound to get a cell score and used 1 minus
the mean cell score as the overall score. The cell cycle metric’ scores
cells" using genes from Tirosh et al.”’ with ENSEMBL IDs obtained from
Biomart® using the biomaRt package®. It cannot be calculated for
the splat dataset as it does not contain cell cycle effects. For metrics
thatrequire clusters (ARI, NMI, bARIand bNMI), we performed Leiden
clustering with the resolution parameter set to values between 0.1and
2insteps of 0.1using scanpy via scIB and selected the resolution with
the best metric score.

Mapping quality. Mapping quality metrics assesses how well the refer-
ence represents the query and is able to merge itinto the same space.
For perfect mapping, cell types presentinboth the reference and query
should be mixed, as should batches withinthe query. At the same time,
biology withinthe query should be preserved. The cell distance metric
calculates the Mahalonobis distance between each mapped query cell
and the distribution of the corresponding label in the referencel2. To
createabound for the distance we calculate the distance for every cell
inthe reference for a label and take the 90th quantile. The final score
is 1 minus the proportion of mapped cells outside the boundary. The
label distance considers labels as awhole rather thanindividual cells™.
The Mahalonobis distance is calculated between the centroid of the
label in the query and the matching label in the reference. Labels are
skipped if they have fewer than 20 cells in the query or are not in the
reference. We used the maximum distance of query cells to their label
centroid as aboundary. Distances to the matching reference label are
then scaled using this value and set to 1 if they exceed the maximum
distance. The final score is the mean across cell types.

mLISlisthe same asiLISIbut measures mixing between the query
and reference (also known as ref_query LISI'?) and qLISI measures
mixing between query batches after mapping (also known as query_
donors LISI?).

kNN correlation measures how well cell neighborhoods are main-
tained™. For each query batch, a PCA is performed and the Euclidean
distances to the 100 nearest neighbors of each cell are calculated.
The distances to the same neighbors in the joint integrated embed-
ding are also calculated and the Spearman correlation is computed.
After adjusting the correlations to the range 0 to 1, the mean of cells
in each batch is calculated and the final score is the mean across
batches. For particularly bad integrations (that is small random
feature sets), a cell may be equally distant from all neighbors, in
which case the correlation cannot be calculated and it is assigned a
score of 0.

Thereconstruction metric assesses a generative model’s ability to
represent query cells by sampling from the posterior distributionand
measuring the cosine distance between the mean posterior expression
profile and the true cell expression profile®*. We adjusted the distances
tobeintherange O tolandtook1minusthe meandistance asthe final
score. This metric cannot be calculated for Symphony integrations as
itisnota generative method.

Classification. The classification (or label transfer) metrics measure
how well a classifier trained on the reference can correctly predict
labels for query cells. We use standard classification metrics: accuracy,
Flscore,Jaccard index, Matthews correlation coefficient (adjusted to
[0, 1]) and macro-averaged area under the precision-recall curve as
implemented by scikit-learn. For F1and the Jaccard index we use micro,
macro and rarity-weighted' averages over labels.

Unseen population prediction. Unseen population metrics focus on
novelbiology inthe query by measuring how mapping has affected cell
labels present in the query but deliberately left out of the reference.
These should be maintained as separate populations but an integra-
tion that does not properly capture variation may merge them with
other labels.

Theunseen uncertainty metric uses the output of the label transfer
classifier and measures poor classification of unseen cell by calculat-
ing 1 minus the mean probability of the assigned class for query cells
from unseen populations. Unseen cell distance is based on the cell
distance metric but calculated only for unseen query populations. As
thelabel does notexistin the reference, we calculate distances to each
cell'snearest reference population and subtract the final score from 1
so that higher distances (greater separation from the reference) give
higher scores. Unseen label distance applies similar changes to the
label distance metric by calculating distances to the nearest reference
label centroid.

We use the milopy®® (commit bela6cc8) implementation of the
Milo differential abundance method" as a metric to detect unseen
populations by taking query or reference as the covariate of interest®*.
Aneighborhood graphis calculatedin the integrated embedding using
anumber of neighbors equal to five times the number of batches (up
to a maximum of 200). Milo is then applied to a subset of cells (up to
20,000 cells or10% of the datasets, whichever is higher). The score for
eachlabelisthe proportion of cell neighborhoods significantly associ-
ated with the query (false discovery rate-adjusted P value <0.1). The
overallscoreis the average of the proportions across allunseenlabels.
Inrare cases for poorintegrations where Milo cannot select cells from
anunseen label, that label is assigned ascore of 0.

Benchmarking datasets

We selected datasets representing different scenarios (tissues, tech-
nologies and developmental stages) where integration is a critical
analysis step, including smaller-scale datasets and larger atlases. We
chose query batches by selecting batches with shared characteristics
different from the remaining samples, such astechnology, time point
orlocation. The unseen populations removed from the reference were
chosen by looking for labels enriched in the query batches and select-
ing labels presenting different challenges, such as rare or perturbed
cells. For each dataset, we use the cell labels assigned by the original
authors.

sclB Pancreas. We downloaded the scIB pancreas dataset’ from fig-
share®. Celllabels were taken from the ‘celltype’ cell annotation column
(12 reference labels) and batches fromthe ‘tech’ column. For the query,
we used batchesrepresenting the CEL-seq and CEL-seq2 technologies
with the ‘activated_stellate’ label treated as an unseen population.
The prepared dataset contained 18,319 features, 12,731 reference cells
(seven batches) and 3,243 query cells (two batches).
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NeurlPS 2021. We downloaded the NeurIPS 2021 CITE-seq dataset®*®
fromthe Gene Expression Omnibus (GEO)®’ (GSE194122) and used only
the gene expression features. Cell labels were taken from the ‘cell_type’
annotationand batch labels from the ‘batch’ annotation. We considered
samples from Site 4 as the query with the ‘CD8" T naive”and ‘Proeryth-
roblast’labels treated as unseen query populations. After preparation,
the dataset contained 13,953 features, 70,061 reference cells (nine
batches) with42reference labels and 16,715 query cells (three batches).

Fetal liver hematopoiesis. We downloaded the fetal liver hematopoie-
sis’® dataset from CellAtlas.io” using batch labels from the ‘fetal.ids’
annotationand cell labels from the ‘cell.ids’ annotation. Three samples
from different developmental stages were treated as the query with
‘Kupffer Cell’,'NK’, ‘ILC precursor’ and ‘Early lymphoid_T lymphocyte’
asunseen populations. The prepared dataset contains 26,686 features,
62,384 reference cells (11 batches and 23 reference labels) and 26,449
query cells (three batches).

Reed breast. We downloaded the version of the Reed breast dataset™
released with the preprint” from the Chan Zuckerberg CELLXGENE:
Discover Census (https://cellxgene.cziscience.com/)” (dataset ID
0Oba636al-4754-4786-a8be-7ab3cf760fd6, Census version 2023-07-05)
using the cellxgene-census package (v.1.0.1) and subsetted to cells with
a BRCA status of either wild-type (‘WT’ or ‘assumed_WT’) or ‘BRCAT".
Donor ID was used as the batch label, with cell labels taken from the
‘level2” annotation. We excluded a subset of cells labeled as doublets,
as it is not clear how they should be treated by metrics. Wild-type
cells were used to create the reference and BRCAI cells were used
as the query. The ‘BSL2’, ‘CDS8T I, ‘CDS8T 2’, ‘CD8T 3’, ‘FBS’, ‘LEC1’ and
‘LEC2’labels were used as unseen labels. After preparation, the dataset
contained 33,691 features, 337,339 reference cells (24 batches and 32
reference labels) and 197,649 query cells (17 batches).

Single-cell Eye in a Disk. We downloaded the single-cell Eye in a Disk
(scEiaD) dataset™ from the plae: PLatform for Analysis of scEiad website
(https://plae.nei.nih.gov/) and selected the human cells derived from
tissue samples where the organ was specified as ‘Eye’. We removed cells
that did not have a cell label or were labeled as doublets and batches
with fewer than 500 cells remaining, as these caused some metrics
to produce unreliable results. Cell labels were taken from the ‘Cell-
Type_predict’ annotation (harmonized labels from a classifier) and
the ‘batch’ annotation was used for batches. We split batches using
cell capture technology, with 10x v.2 taken as the reference and 10x
v.3 and Drop-seq batches as the query. The ‘B-Cell’, ‘Blood Vessel’,
‘Macrophage’, ‘Pericyte’,'Smooth Muscle Cell’and ‘T/NK-Cell’ labels are
unseen populations. After preparation, the dataset contained 19,560
features, 360,270 reference cells (69 batches and 41 reference labels)
and 48,496 query cells (18 batches).

Human endoderm. We downloaded the Human endoderm dataset**
from Mendeley Data”. Individuals were treated as batches with labels
obtained fromthe ‘Cell_type’ annotation. A small number of cells labeled
as ‘Undefined’ were removed. Samples from weeks 12-15were selected
asthe query with ‘Basal like’, ‘Ciliated’, ‘Hepatocyte’, ‘Mesenchyme sub-
type4’and ‘T cell/NK cell1'labels treated as query-specific. The prepared
dataset consisted of 27,855 features, 100,580 reference cells (ten batches
and 21 reference labels) and 44,784 query cells (four batches).

Human Lung Cell Atlas. We downloaded the core Human Lung Cell
Atlas dataset® from the Chan Zuckerberg CELLXGENE: Discover Cen-
sus (dataset ID 066943a2-fdac-4b29-b348-40cede398e4e, Census
version 2023-07-25) and used the ‘dataset’ annotation as defined by
the authors as batch labels with the ‘ann_finest_level’ annotation as
labels. Datasets from organ donors were treated as the reference and
healthy and diseased samples from living donors made up the query.

‘Multiciliated (nasal)’, ‘Club (nasal)’, ‘Goblet (subsegmental)’, 'SMG
serous (nasal)’, ‘SMG serous (bronchial)’, ‘'SMG mucous’, ‘EC aerocyte
capillary’, ‘Peribronchial fibroblasts’,'Smooth muscle’,'Smooth muscle
FAMS3D",‘Bcells’,‘DC2’,‘Alveolar Mph CCL3" and ‘Mast cells’ labels are
unseen populations. After preparation, the dataset included 27,987
features, 314,573 reference cells (nine batches and 47 reference labels)
and 251,400 query cells (five batches).

HLCA (immune). The HLCA (immune) dataset takes the full HLCA
dataset and uses the coarsest level of annotation to select cells in the
immune compartment. The batches and labels are the same as the
full HLCA dataset, but after subsetting, only ‘B cells’, ‘DC2’, ‘Alveolar
Mph CCL3” and ‘Mast cells’ remain as unseen labels. We also removed
some batches withinsufficient cells. The prepared dataset has 26,618
features, 155,385 reference cells (seven batches and 16 reference labels)
and 52,795 query cells (two batches).

HLCA (epithelial). The HLCA (epithelial) dataset is asecond subset of
the HLCA dataset focusing on the epithelial compartment. This sub-
set consists of 27,673 features, 118,374 reference cells (eight batches
and 17 reference labels) and 162,875 query cells (five batches) with
‘Multiciliated (nasal)’, ‘Club (nasal)’, ‘Goblet (subsegmental)’, 'SMG
serous (nasal)’,'SMG serous (bronchial)’ and ‘SMG mucous’ remaining
asunseen labels.

splat. Simulations address some limitations of real data by providing a
definite ground truth. We generated a dataset using amodified version
of the splatsimulation in the Splatter package® designed torepresenta
scenario where atissue is measured using three different technologies
(two batches each) in two conditions. These ‘technologies’ measure a
medium number of cells at medium depth (Batchl and Batch2), alow
number of cells at high depth (Batch3 and Batch4) and a high number
of cells at low depth (Batch5 and Batché), with the low-depth sam-
plesused as the query. The simulation contains ten cell labels, includ-
ing a progenitor differentiating along two trajectories (one with an
‘Intermediate’ cell type only presentinthe query) and six discrete cell
types that differin number of cells, number of differentially expressed
genesand number of detected features. The discrete groupsinclude a
‘Rare’ populationand a‘Perturbed’ state, whichare only presentin the
query. Toincrease the variability in the simulation, we added additional
label-specific noise factors to the model, which were applied before
generating counts. The splat dataset contains 9,984 features, 30,041
reference cells (four batches and seven reference labels) and 69,936
query cells (two batches).

Benchmarking pipeline

Toimprove reproducibility, make sure that results are up-to-date ascode
isupdated and easily take advantage of computing resources, we built
a pipeline using Nextflow*® (Extended Data Fig. 2). The pipeline takes
adataset, applies standard preprocessing and splits it into reference
and query samples. The feature selection methods are applied to the
reference, and selected features used for integration. After integra-
tion, the query is mapped to the reference, and a cell label classifier is
trained. The reference and query, ground truth cell labels and trans-
ferredlabels are provided to metrics. The metric scores are thenscaled,
aggregated and ranked. Pipeline stages use both Python (v.3.9.13) and R”
(v.4.2.2),including packages from Bioconductor”. The Python anndata
package’® (v.0.8.0) was used to store data and save it as HSAD files
between pipeline stages. The zellkonverter package (v.1.8.0) was used
toload dataintoRviathereticulate (v.1.26) interface where it was stored
as SingleCellExperiment® (v.1.20.0) or SeuratObject (v.4.1.3) objects.

Dataset preprocessing
The preprocessing step includes basic quality control filtering of cells
using scanpy and storing information (such as batch and label) in
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standard locations. We removed cells with fewer than100 total counts
or expressing fewer than 100 features. The dataset is split into a refer-
ence and query based on the batch labels. Labels with fewer than 20
cellsareremoved fromboth the reference and query, as some metrics
can behave unpredictably with small cell numbers. Labels defined as
unseen populations are also removed from the reference. The final pre-
processing step removes any features not expressed in the reference.

Integration and query mapping

The base model we use for integration is scVI** available in scvi-tools™
(v.0.17.1). This model uses a conditional variational autoencoder and
allows the mapping of query samples using architecture surgery®’. We
also trainascANVImodel® asemi-supervised extension of scVlwhere
cell labels are used to finetune the network. These models take raw
count data as input, so we did not consider the interaction between
feature selection and normalization methods.

As an alternative approach based on correcting a PCA space, we
includedintegration with Harmony" followed by query mapping using
Symphony™. We provide Harmony with normalized expression values
rather thanraw counts as suggested by the documentation. Counts are
firstnormalized to counts per 10,000, thenlog-transformed. The dataset
issubset tothe selected features and scaled with amaximum value of 10
(per feature) and 30 principal components are provided to Harmony.
For Symphony, log-transformed normalized query data are provided
(scaling is performed during mapping). Data preprocessing steps are
performed using functions in scanpy and integration and query mapping
are performed using harmonypy® (v.0.0.9) and symphonypy® (v.0.2.1).
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Label transfer

We trained amultinomial logistic regression classifier onthe integrated
reference using scikit-learn, taking the position of each cell in the
integrated embedding space as input and the ground truth cell labels
as the output. Labels are transferred to the query by providing the
mapped embedding coordinates to the trained classifier, predicting
the probability for each reference label and recording the label with
the highest probability.

Metric selection

For metric selection we used different numbers of randomly selected
features across all test datasets. We also included feature sets of differ-
ent sizes from the scanpy-Seurat method to evaluate the relationship
with the number of features as random gene sets have no inherent
ordering (the first features selected are no more informative than the
last features selected). We evaluated the behavior of individual metric
scores and the relationships between them. Metrics were removed if
they could not distinguish between feature sets (have an insufficient
dynamicrange), were overly correlated (Pearson correlation) with the
number of features, were associated with technical dataset features or
showed undesirable correlation patterns.

Selecting a number of features

We evaluated different numbers of features for methodsin Seuratand
scanpy as well as high variance or high mean expression. We calculated
z-scores across methods and datasets to see how performance changed
with the number of features. To reduce the computational cost, we
limited this part of the analysis by methods rather than datasets as it
allowed us to see the effect of the number of features across datasets.
The number of features used for the benchmark (2,000) was chosen by
considering trends over methods, datasets and metric types.

Analysis of results

The relative rather than absolute performance of methods and the
aggregationacross metrics are mostinformative. All metrics produced
scores in the range of 0 to 1 (with higher being better), but they have
different real dynamic ranges. To scale each metric for each dataset

we used a set of reference methods to establish the effective range of
each metric. These are all features, randomly selected features, stably
expressed features from scSEGIndex and batch-aware features from
scanpy-Cell Ranger as an example of current standard practice**.
Depending on the metric, using all features performs either well or
poorly, while random and stably expressed features result in high
batch-correctionscores but poor biological conservation. The baseline
methods were used to establisharange for each metric (for adataset),
and then all scores were scaled relative to that range. Scaling using
baseline methods provides ranges that are more interpretable and are
not affected by adding or removing methods.

Thescaled metric scores were aggregated by taking the mean for
each category. This level of aggregation gives a summarized perfor-
mance for each of the methods for each task. An overall score for each
dataset is obtained using a weighted mean of the task scores.

Int.Batch Int.Bio 1
Overall = - x (T + T’) +3

1
2
Mappin Class. Unseen
X ( pping + + )
3 3 3

Methods were ranked at the level of metric categories, datasets
and over the whole benchmark. These rankings let us evaluate which
methods performbetter at different tasks or scenarios. We also checked
for consistency betweenintegration approaches and variants of feature
selection methods.

Further analysis examined the similarity between methods by
considering the overlap in selected sets calculated using the Jaccard
index. We also compared between the full HLCA dataset and subsets
representing theimmune and epithelial compartments.

Final figures were produced using the ggplot2 package® (v.3.5.0)
and assembled using patchwork (v.1.2.0). Data processing was per-
formed using tidyverse®* (v.2.0.0) packages.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Allreal scRNA-seq datasets were downloaded from public repositories
provided by the original authors as described in the methods (scIB Pan-
creas, figshare®®; NeurIPS, GEO (GSE194122); Fetal liver, CellAtlas.io”;
Reed Breast, Chan Zuckerberg CELLXGENE: Discover Census (dataset
ID Oba636al1-4754-4786-a8be-7ab3cf760fd6, Census version 2023-07-
25); scEiaD, plae: PLatform for Analysis of scEiad website (https://plae.
nei.nih.gov/); Human endoderm, Mendelay Data”’; and HLCA, Chan
Zuckerberg CELLXGENE: Discover Census (dataset ID 066943a2-fdac-
4b29-b348-40cede398e4e, Census version 2023-07-25)). Raw and pre-
pared dataset files, selected feature sets, metric scores and rendered
analysis reports from this benchmark are available from figshare®.

Code availability

Allcode associated with this study is available on GitHub* and archived
on Zenodo*, including scripts for downloading datasets from public
repositories provided by the original authors, running methods and cal-
culating metrics, the Nextflow pipeline and associated environment and
configurationfiles. The code for analyzing the benchmark results, includ-
ing the production of final figures, is also available in this repository.
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Extended Data Table 1| Summary of reasoning for excluded or modified metrics

Metric(s) Type Reasoning

Graph connectivity Integration (Batch) The correlation pattern shows greater similarity to Integration (Bio) metrics than the other Integration
(Batch) metrics, so graph connectivity was included as an Integration (Bio) metric

Batch ASW Integration (Batch) Limited observed effective range

Mixing Integration (Batch) Limited effective range. Correlated with both batch and biological metrics, which confuses the signals
between categories.

kBET Integration (Batch) Correlated with both batch and biological metrics, which confuses the signal between the two
categories
ARI, NMI, bARI Integration (Bio) All ARI and NMI metrics showed a high correlation with each other. We selected bNMI as a

representative metric.

Cell cycle Integration (Bio) Relies on the presence of cycling cells, so it is inconsistent between datasets and cannot be
calculated for simulated data

Label ASW Integration (Bio) Limited observed effective range
Local structure Integration (Bio) Strong positive correlation with the number of features
Reconstruction Mapping Limited effective range, negative correlation with the number of features, inconsistent with other

mapping metrics

kNN correlation Mapping Strong positive correlation with the number of features. Strong correlation with metrics from other
categories.

AUPRC, Accuracy, Classification All classification metrics showed very high correlations with each other. We selected variants of F1

JaccardIndex (Macro), scores as representatives of cell-level, label-level and rarity-weighted classification metrics.

JaccardIndex (Micro),
Jaccardindex (Rarity),
MCC

Uncertainty Unseen populations  Inconsistent with other unseen metrics. Relies on the calibration of classifiers which has not been
tested.

Summary of reasoning for excluded or modified metrics
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ZENODO.13995812). Rendered analysis reports including the package versions used are available from figshare (https://doi.org/10.6084/
M9.FIGSHARE.C.7521966).

Key package versions:

anndata (v0.8.0)

anticor (v0.1.8)

balanced_clustering (commit: a2ae3a4d)
batchelor (v1.14.0)

biomaRt (v2.54.0)

CellMixS (v1.14.0)

cellxgene-census (v1.0.1)

DUBStepR (commit 76aa3948)

ggplot2 (v3.5.0)




harmonypy (v0.0.9)
hotspot (v1.0.0)

kBET (commit al0ffeaa)
m3drop (v1.24.0)

milopy (commit bela6cc8)
numpy (v1.22.4)

pandas (v1.4.3)
patchwork (v1.2.0)

Python (v3.9.13)

R (v4.2.2)

reticulate (v1.26)

scanpy (v1.9.1)

scIB (v1.1.4)

scikit-learn (v1.1.2)

scipy (v1.9.0)

scMerge (v1.1.4.0)
scPNMF (commit 47d5b10c)
scran (v1.26.0)

scry (v1.10.0)

scTransform (v0.3.5)
scuttle (v1.8.0)

scvi-tools (v0.17.1)

Seurat (v4.3.0)
SeuratObject (v4.1.3)
SingleCellExperiment (v1.20.0)
singleCellHaystack (v0.3.4)
splatter (v1.25.1)
symphonypy (0.2.1)
tidyverse (v2.0.0)

triku (v2.1.4)
zellkonverter (v1.8.0)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All real scRNA-seq datasets were downloaded from public repositories provided by the original authors as described in the methods (scIB Pancreas: figshare(https://
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Data exclusions  For some datasets, a subset of the data was used. Either to select a relevant part of the data (such as a single tissue/species) or to for
technical reasons (i.e. labels with too few cells). Any subsetting of datasets is described in that dataset's section in the manuscript.

Replication Due to computational limitations the main benchmark run was performed a single time. We did not attempt to replicate the results through
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Blinding All running and scoring of methods was performed by an automated workflow.
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number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
was applied.

Authentication Describe-any-atithentication-procedtures foreach seed stock-tised-ornovel- genotype generated—Describe-anyexperiments-used-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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