
nature methods

https://doi.org/10.1038/s41592-025-02624-3Registered Report

Feature selection methods affect the 
performance of scRNA-seq data integration 
and querying

In the format provided by the 
authors and unedited

Supplementary information

https://doi.org/10.1038/s41592-025-02624-3


Supplementary methods

Benchmark overview

The design of our study is similar to that of existing benchmarks, consisting of a set of test datasets, the

feature selection methods to be evaluated and various metrics for measuring performance. Each dataset

was processed to ensure a standard input format for the pipeline and split into reference and query batch

sets. The feature selection methods were then applied to the reference batches to generate a set of

selected features for each method that was used to integrate the reference batches. The query batches

were mapped to the integrated reference using the same selected features. A cell label classifier trained on

the integrated reference embedding was then used to transfer labels to the query cells. Metrics were

calculated at different stages depending on the required inputs. Once all metrics scores were available for

all datasets, they were scaled and aggregated before calculating final rankings. The complete benchmarking

pipeline is implemented as a Nextflow1 workflow available from GitHub2and archived on Zenodo3. Details of

the specific methods, metrics, datasets and processing steps are provided in the following sections.

Evaluated methods

We selected a range of feature selection methods that cover approaches from standard analysis workflows

(primarily highly variable gene selection) and alternative methods proposed for scRNA-seq data, in some

cases for particular analysis tasks such as clustering. These methods can be divided into categories

depending on their underlying methodological approach. Some methods focus on simple statistics of

individual features, while others use more complex dataset representations to identify important features.

To be considered, a method had to be implemented in a publicly available package that we could reliably

install and run based on the provided documentation. Some methods can automatically determine the

number of features to select, while this is a user-defined parameter for most others. A few methods can

consider batch labels during selection, but for most, this requires manually splitting the data, computing

feature sets on each batch and combining the results. For most methods, we have used the default settings

or what is recommended in any accompanying documentation, but for a subset of highly-used methods, we

evaluated different combinations of parameters to investigate their effect. Any preprocessing steps required

before feature selection are considered as part of the method. We used the steps suggested in the

documentation for each method as they are recommended by the authors and represent the most likely

real-world usage.

Simple control methods

As controls, we include all features and random feature sets in the evaluation. These act as points of

reference as we want to see when using selected feature sets improves performance over using all features.

At the same time, we expect any reasonable feature selection method to outperform randomly selected

sets. To control for variability in selecting random features, we always include five random feature sets

selected with different seeds and average metric scores over the five sets.

Excess variability methods

The most commonly used approach to feature selection in standard scRNA-seq analysis toolboxes such as

scanpy4 and Seurat5 is to select highly variable features or, more specifically, features that show excess
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variability beyond what is expected. The assumption for selecting features in this way is that this extra

variability results from differences in gene expression between cell populations or states (rather than

sample noise) and that selecting these features will identify those important to the cells in the sample.

We benchmarked the following excess variability methods:

● The naive approach to selecting features based on variability is to simply calculate the variance of

each feature and select those with the highest values. However, this neglects the known

relationship between the mean expression of each feature and the variance (mean-variance

relationship), where lowly-expressed features are generally more variable due to the greater effect

of sampling noise.

● Brennecke et al. proposed one of the first feature selection methods for scRNA-seq data that

considered the mean-variance relationship6. A curve is fitted to the relationship between the

normalised mean expression of each feature and the squared coefficient of variation, with the

selected features being those that sit significantly above this trend. We use the implementation of

this method in the scran package7 (v1.26.0).

● The Seurat package (v4.3.0) contains three excess variability feature selection methods:

○ The simplest is to select features with the highest calculated dispersion.

○ The MVP (mean.var.plot) method (default in older versions of Seurat) bins features based

on their mean expression and calculates z-scores for the dispersion of the features within

each bin5. Features are then selected based on a threshold of standard deviations from the

mean dispersion within a bin.

○ The VST (variance stabilising transformation) method (current default) fits a LOESS line to

the relationship between (log) mean and (log) variance for each gene8. This fit is then used

to standardise the feature values and the features with the highest standardised variances

are selected.

● The scanpy package4 (v1.9.1) provides Python implementations of three highly variable feature

selection methods originally developed in other tools. We include these for comparison as they are

commonly used and the scanpy workflow suggests different preprocessing and normalisation steps

that may affect the selected features. There may also be implementation differences. The scanpy

functions can select batch-aware features by performing feature selection per batch and keeping

those selected for the most batches (up to the chosen number of features), with ties being broken

by the test statistic used.

○ The Seurat method implements the Seurat MVP method

○ The SeuratV3 method implements the Seurat VST method

○ The CellRanger method is similar to the Seurat method (Seurat MVP), but features within

each bin are normalised using the median and median absolute deviation rather than mean

and standard deviation9

● The OSCA method follows the feature selection approach for batch integration suggested by the

“Orchestrating Single-Cell Analysis with Bioconductor” online book10. This process involves

performing a batch-aware scaling normalisation using the batchelor package11 (v1.14.0) and

modelling the mean-variance relationship with scran by including batch as a block variable. The

variance fitted by the trend is assumed to be technical, with residual variance considered the

biological component. Fitting is performed per batch and p-values are combined to select features

across batches.
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Methods based on other statistical features

Besides variability, other feature statistics can also be used for feature selection:

● A simple, naive method is to select the features with the highest mean expression values

● The Anticor method (v0.1.8) selects features with excess negative correlations with other features

using a permutation-based approach12. The intuition behind this method is that genes essential to a

cell type’s identity will be expressed in some cell types and not others and, therefore, be negatively

correlated with marker genes for other cell types. By default, the Anticor method excludes features

from a set of predefined gene pathways, but we have disabled that functionality here as it requires

that specific gene identifiers be used, which was not the case for all the datasets tested.

● The NBumi method from the M3Drop package (v1.24.0) also tries to detect marker genes, but

rather than using negative correlations, it looks for features that have an excess of zero counts for

the mean expression level13. The idea is similar in that features important for identifying a cell type

should be highly expressed in that type but not in others. We use the NBumi method instead of the

original M3Drop method as it is designed for data collected using unique molecular identifiers

(UMIs), while M3Drop instead assumes a distribution appropriate for protocols that cover the full

length of RNA transcripts. Here, we select features with an adjusted p-value below 0.01 unless this

results in fewer than 500 selected features, in which case the 500 lowest p-value features were

used.

● DUBStepR (Determining the Underlying Basis using Stepwise Regression) (commit 76aa3948) also
considers correlations but uses several steps to select features14. First, lowly expressed features,

mitochondrial genes, ribosomal genes, and pseudogenes are removed (based on matching gene

symbols). A correlation matrix between features is then calculated and features are binned based

on mean expression levels. Within each bin, correlations are scaled using an adjusted range and

those with low scaled-correlation values are removed. A stepwise regression is then performed

where, at each step, the feature explaining the most variance in the correlation matrix is removed.

After the regression, the elbow point on a scree plot is used to select an initial set of seed features.

The seed feature set is expanded by adding features with the highest Pearson correlation to any

seed feature. The final number of selected features is determined by a density index that considers

neighbourhoods in PCA (principal component analysis) space.

Model-based methods

Model-based methods fit an appropriate distributional model to the dataset, typically using the raw counts

rather than a normalised and transformed version of the data. Features are then selected by looking for

those significantly different from the fitted model.

● The scTransform method uses regularised negative binomial regression to normalise UMI count

data15. Features can be selected by ranking by residual variance from the fitted model. We access

scTransform (v0.3.5) via the function in the Seurat package.

● Analytic Pearson residuals have also been proposed as a method for normalising UMI data16. This

approach is similar to scTransform but simplifies the model to an offset model with a set

overdispersion. After fitting the model, features can again be selected based on residual variance.

We used the implementation of this method in the scanpy package.

● The scry method (v1.10.0) fits a multinomial count model to the data17. Selected features show high

residual deviance from the null model which assumes constant expression across all cells.
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Embedding-based methods

Embedding (or dimensionality reduction) is a commonly used preprocessing step in scRNA-seq analysis to

remove noise and reduce size and computational complexity. Some feature selection methods either use

sophisticated dimensionality reduction methods that include ranking or weighting of features, or look for

features that vary across an embedding rather than in the original feature space.

● scPNMF (single-cell Projective Non-negative Matrix Factorization) (commit 47d5b10c) performs a

modified PNMF where an alternative initialisation is used18. Informative bases are then selected by

choosing those not correlated with library size (total counts per cell) and that show a multimodal

distribution. Features are selected based on their maximum weighting for the selected bases.

● The singleCellHaystack (v0.3.4) method uses Kullback-Leibler divergence to find features expressed

in subsets of non-randomly positioned cells in a reduced dimensional space19. To generate the

embedding space, we first select features using the default Seurat highly variable feature method

and then perform a 50-dimensional PCA using these features. singleCellHaystack is then applied to

all features using the position of cells in the PCA space.

Graph-based methods

Another common step in scRNA-seq analysis is to build a nearest-neighbour graph of cells, typically using

positions in an embedded space. These graphs can also be used as a starting point for feature selection.

● Hotspot (v1.0.0) looks for features with high local auto-correlation within a neighbourhood graph20.

The graph can be constructed in various ways depending on the use case, but we use a PCA

embedding based on all features as input here. Features are first filtered to keep those with a false

discovery rate adjusted p-value below 0.05 and then those with the highest test statistic values are

selected.

● triku (v2.1.4) uses a neighbourhood graph to distinguish features expressed in a few cells randomly

across a dataset from those expressed in a few related cells21. Expression is aggregated across the

neighbourhood of each cell and the distribution is compared to a null distribution of randomly

selected cells using the Wasserstein distance. Features with the greatest distance from the null

distribution are selected. The neighbourhood graph is constructed in PCA space based on all

features, and the number of selected features is automatically decided by triku.

Supervised methods

In this benchmark, we focus on evaluating unsupervised feature selection methods, as cell labels are

typically not available before the integration process we are interested in assessing. However, at least some

level of cell labels may be available for some analyses, particularly atlas-building projects that combine

previously annotated public datasets. As a baseline supervised method, we include marker genes selected

using the Wilcoxon rank sum test (as implemented in the scanpy package) followed by a filtering procedure.

The test compares the cells for one label against all other cells. The results are then filtered to remove

features expressed in less than 10 per cent of cells within that label, expressed in more than 80 per cent of

cells outside the label or with a p-value above 0.1. Next, the remaining features are sorted by estimated

log-fold change and the top 200 features are selected. The final feature set is the intersection of the

features selected for each label.

In addition, we include a supervised method based on known transcription factors. We downloaded a

database of human transcription factors from The Human Transcription Factors22 website23 and selected
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1639 genes where the “Is TF?” field was equal to “Yes”. The intersection of this list with the genes in each

dataset is then used for evaluation. This method cannot be applied to the splat dataset due to a lack of

correspondence between simulated genes and real transcription factors.

Stable expression methods

The opposite of selecting highly variable features is selecting those stably expressed or varying less than

expected across the dataset. The scSEGIndex method implemented in the scMerge package (v1.1.4.0)

calculates a feature stability index by fitting a gamma-Gaussian mixture model to each feature24. The

parameters of this model and other features, such as the proportion of zero counts, are used to rank

features and calculate the final stability index. Features selected in this way can be used as alternatives to

housekeeping genes for identifying essential functions within a cell but also as negative controls for

normalisation or batch correction methods. We used them similarly here and expected that the features

selected by scSEGIndex should perform poorly for integration as they should not capture either technical

noise between samples or biological signals between cells.

Evaluation metrics

We implemented a wide array of metrics designed to evaluate different aspects of integrating scRNA-seq

samples to create a reference as well as using it by mapping query samples. Some metrics require a ground

truth cell label, while others are unsupervised and measure whether the structure in a single sample is

maintained after integration or mapping. All metrics are designed so that a raw score of 0 represents the

worst possible performance and a raw score of 1 the best possible performance.

Integration (Batch)

The Integration (Batch) metrics measure the mixing between batches in the reference. In a well-integrated

dataset, cells of the same cell type should be thoroughly mixed and neighbourhoods should be equally likely

to contain cells from any batch.

● Batch ASW (batch Average Silhouette Width) is an adjusted version of Label ASW (see below) that

uses batch labels rather than cell labels25. Because we want to measure mixing between batches

(rather than the usual use case for ASW of evaluating separation between clusters), the scores are

adjusted so that a raw silhouette score of 0 (which indicates mixing between labels) gives the

highest Batch ASW score. We used the Batch ASW function in the scIB package25 (v1.1.4), which

uses scikit-learn26 (v1.1.2) to calculate the silhouette scores.

● Batch PCR (batch Principal Component Regression) measures how much of the variance in a dataset

can be explained by batch labels25. This is done by performing a PCA followed by linear regression

against the batch labels with the estimated coefficients used to weight the variance explained by

each component. The final score is calculated by taking the difference in this value before and after

integration. We used the implementation in the scIB package.

● Graph connectivity measures the proportion of cells for each cell label that are connected after

subsetting a neighbourhood graph to only that label25. The score is then averaged across the

different labels. This metric is implemented in the scIB package.

● iLISI (integration Local Inverse Simpson’s Index) measures the effective number of batches in a

neighbourhood by counting how many cells can be drawn until a batch label is encountered twice27.

We used the graph-based implementation in the scIB package.
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● kBET (k-nearest neighbour Batch Effect Test) uses a statistical test to evaluate whether the batch

composition of the neighbourhood of a cell is similar to the expected global batch composition28. It

is applied to each label and the resulting scores are aggregated, with the score for each label being

the rejection rate of a set of randomly selected cells. We used the function in the scIB package,

which wraps the R kBET package (commit a10ffeaa).
● The mixing metric measures mixing between batches in the neighbourhood of each cell29. For each

batch, it identifies the kth nearest neighbour (we used the default value of k = 5) and its rank within

the total neighbourhood of the cell. The cell score is then the median across all batches. To

calculate a dataset-level score, we divided the cell scores by the maximum possible neighbourhood

size, took the mean across all cells and subtracted from 1 (so that higher scores are better). Cell

level scores are calculated using the Seurat package.

● CMS (Cell-specific Mixing Score) tests for batch effects within the neighbourhood of each cell30. It

uses the Anderson-Darling test to evaluate if the distributions of distances of cells within the

neighbourhood, but from different batches, come from the same distribution. This gives the

probability of the data coming from an equally mixed neighbourhood. As a final dataset-level score,

we used 1 minus the proportion of cells with a CMS p-value of less than 0.1. The CMS score is

implemented in the CellMixS package (v1.14.0).

Integration (Bio)

The Integration (Bio) metrics measure whether biological signals (primarily cell labels) from individual

batches are conserved after integration. Unlike the batch correction metrics, where perfect scores could be

obtained by mapping all cells to a single point, the biological conservation metrics require that cell labels

are separated in the integrated space.

● Label ASW (label Average Silhouette Width) measures the relationship between distances between

cells within a cluster and distances between cells in that cluster and other clusters, where clusters

correspond to cell labels25. The distances are calculated in the integrated embedding space, and the

average silhouette width across all labels is used as the final score, which is rescaled between 0 and

1 (from the native range of -1 to 1). This metric was calculated using the function in the scIB

package, which uses the scikit-learn implementation of ASW.

● The local structure metric calculates the overlap between cell neighbourhoods in a batch-specific

PCA space and the integrated embedding29. The final score is the average across all cells. This metric

was calculated using the Seurat package.

● cLISI (cell-type Local Inverse Simpson’s Index) is similar to iLISI but measures the number of cells in a

neighbourhood that can be drawn until the same cell label is observed twice27. We used the

graph-based implementation in the scIB package.

● The cell cycle conservation score uses principal component regression to assess how much of the

variance in the dataset can be attributed to the cell cycle and is preserved after integration25. Each

cell is scored for the S and G2M phases of the cell cycle using the gene sets from Tirosh et al.31 and

the scoring method suggested by Satija et al.5 as implemented in scanpy. The gene sets were

obtained from the scIB GitHub repository and ENSEMBL gene IDs were added from BioMart32 using

the biomaRt package33 (v2.54.0). When necessary, these were used instead of the gene symbols in

the original files. The difference in the variance associated with the cell cycle scores in each batch

compared to the integrated embedding is used to calculate the final score (normalised by the

unintegrated variance). We used the implementation in the scIB package. This metric cannot be

computed for simulated datasets as they do not include cell cycle effects.
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● ARI (Adjusted Rand Index) measures the overlap between two sets of clustering labels, in our case,

the ground truth cell labels and a set of cluster labels. To generate the clustering assignments, we

performed Leiden clustering with the resolution parameter set to values between 0.1 and 2 in steps

of 0.125. The selected clustering is that which produced the best ARI score. Both the clustering

optimisation and the ARI calculations were performed using functions in the scIB package, which

rely on the scikit-learn implementation of ARI.

● bARI (balanced Adjusted Rand Index) modifies the ARI metric to account for differences in batch

sizes and imbalances between cell labels in different batches34. This is done by weighting the ground

truth subsets so that they contribute equally to the final score. We used the implementation in the

balanced_clustering package34 (commit a2ae3a4d).
● NMI (Normalised Mutual Information) also measures the overlap between two clusterings (similar

to ARI) and is calculated between the ground truth cell labels and an optimised Leiden clustering25.

We used the function in the scIB package, which uses the scikit-learn implementation of NMI.

● bNMI (balanced NMI) applies the same adjustment as bARI to the NMI score34.

● The isolated labels metrics look specifically at the labels present in the fewest batches in each

dataset25. Two different scores are calculated using the scIB package:

○ Isolated labels ASW calculates the Average Silhouette Width between the isolated label and

non-isolated label cells. This is done for each isolated label and the average is taken as the

final score.

○ Isolated label F1 optimises Leiden clustering to find the clustering that gives the highest F1

score between the isolated label and other labels. This is repeated for each isolated label,

and the average is calculated.

● ldfDiff (local density factor difference) measures changes in the relative density of the

neighbourhood around each cell following integration30. The local density factor35 is calculated for

each cell in a batch-specific PCA space and in the integrated embedding, and the difference

between them is calculated. To get a cell-level score, we took the absolute value of the distance and

set an upper bound of 1 (any values above this are set to 1). The final score is 1 minus the mean cell

score. Cell-level ldfDiff scores were calculated using the CellMixS package.

Mapping quality

The mapping quality metrics assess how well the reference represents the query and is able to merge it into

the same space. For a perfect mapping, cell types present in both the reference and query should be mixed,

as should batches within the query, while at the same time, biology within the query should be preserved.

● The cell distance metric calculates the Mahalonobis distance between each mapped query cell and

the distribution of the corresponding label in the reference36. The intuition behind this metric is that

each cell should be mapped close to (or overlap) the matching cell population in the reference. The

Mahalonobis distance is naturally unbounded, so we use an internal boundary by calculating the

distance for every cell in the reference for a label and taking the 90th quantile. Query cells that are

further than this distance for the corresponding label are considered to be poorly mapped. The final

score is 1 minus the proportion of cells outside the boundary.

● The label distance is similar to the cell distance but considers labels as a whole rather than

individual cells36. The Mahalonobis distance is calculated between the centroid of the label in the

query and that label in the reference. Labels are skipped if they have fewer than 20 cells in the

query or are not in the reference. As with the cell distance, the range is naturally unbounded, so to

create a boundary, we used a limit of the maximum distance of query cells to their label centroid.

7

https://paperpile.com/c/WjPhqv/K1tr
https://paperpile.com/c/WjPhqv/kUlaW
https://paperpile.com/c/WjPhqv/kUlaW
https://paperpile.com/c/WjPhqv/K1tr
https://paperpile.com/c/WjPhqv/kUlaW
https://paperpile.com/c/WjPhqv/K1tr
https://paperpile.com/c/WjPhqv/7YawE
https://paperpile.com/c/WjPhqv/T6JFM
https://paperpile.com/c/WjPhqv/pQ9ZB
https://paperpile.com/c/WjPhqv/pQ9ZB


Distances to the matching reference label are then scaled using this value and set to 1 if they exceed

the maximum distance. The final score is the mean across cell types.

● mLISI (mapping Local Inverse Simpson’s Index) is the same as iLISI but measures mixing between

the query and reference rather than batches (also known as ref_query LISI36).

● qLISI (query Local Inverse Simpson’s Index) is the same as iLISI but measures mixing between query

batches after mapping to the reference (also known as query_donors LISI36).

● kNN-corr (k-Nearest Neighbour Correlation) measures how well the neighbourhood of cells in the

query is maintained36. For each query batch, a PCA is performed and the Euclidean distances to the

100 nearest neighbours of each cell are calculated. The distances to the same neighbours in the

joint integrated embedding are also calculated and the Spearman correlation between the two sets

of distances is computed. After adjusting the correlations to the range 0 to 1, the mean of cells in

each batch is calculated and the final score is the mean across batches. For particularly bad

integrations (i.e. small random feature sets), a cell may be equally distant from all neighbours, in

which case the correlation can not be calculated and it is assigned a score of 0.

● The reconstruction metric was recently proposed for assessing mapping performance using

generative deep learning integration methods (such as scVI and scANVI)37. It assesses the model's

ability to represent query cells by sampling from the posterior distribution for each query cell and

measuring the cosine distance between the mean posterior expression profile and the true cell

expression profile. We adjusted the distances to be in the range 0 to 1 and took 1 minus the mean

distance as the final score. This metric cannot be calculated for Symphony integrations as it is not a

generative method.

Label transfer

The label transfer (or classification) metrics measure how well a classifier trained on the reference can

correctly predict labels for query cells. This is a classic classification problem, and as such, we use standard

classification metrics.

● Accuracy measures the proportion of observations in the query dataset that were assigned the

correct label. We use the scikit-learn implementation.

● F1 score is the harmonic mean of precision (or true positive rate, the proportion of identified labels

that were truly positive) and recall (the proportion of true labels that were identified). As it assumes

binary classification, it is calculated separately for each label and then averaged across labels in

different ways to give a final score.

○ Macro averaging is the simple mean of the per-label scores without any weighting. This is

implemented directly in the scikit-learn package.

○ Micro averaging is the mean across cells. It is implemented in the scikit-learn package and is

equivalent to accuracy.

○ To place more emphasis on rarer cell labels, we also use a rarity-weighted averaging. Here,

the weight for each label is the inverse of the frequency of that label times the sum of the

inverse frequencies of all labels38.

● The Jaccard Index compares two sets by dividing the size of the intersection by the size of the

union. It can be used to evaluate classification by considering the set of observations predicted to

have a label with the set of observations with that ground truth label. As with the F1 score, it is

calculated for each label and then averaged (using functions in the scikit-learn package).

● MCC (Matthews Correlation Coefficient) is a balanced classification metric that considers all

combinations of true and false, positive and negative outcomes39 (also known as the Yule Phi
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coefficient40). As it is a correlation, the native range is -1 to 1, which we convert to 0 to 1 to get the

final score. MCC was calculated using the scikit-learn package.

● AUPRC (Area Under the Precision-Recall Curve) considers class probabilities rather than just the

assigned labels and is conceptually equivalent to calculating the average precision over many

different probability cutoffs. We used the scikit-learn average precision score function which uses

the increase in recall from the previous threshold to weight the precision. The AUPRC score is

calculated per label and macro-averaged.

Unseen population prediction

The final category of metrics focuses on novel biology in the query. It aims to measure how mapping has

affected cell labels present in the query but deliberately left out of the reference. In an ideal mapping, these

should be maintained as separate populations. However, an integration that does not properly understand

the variation in the unseen population may merge it with another label.

● The unseen uncertainty metric uses the output of the label transfer classifier. If unseen populations

in the query are separated from the reference, we expect the classifier to be less confident in

assigning them a label. Based on this assumption, the uncertainty metric is calculated as 1 minus

the mean probability of the assigned class for query cells from unseen populations.

● The unseen cell distance is based on the cell distance mapping metric but calculated only for

unseen query populations. As the label does not exist in the reference, we calculate distances to

each cell's nearest reference population. We also subtract the final score from 1 so that higher

distances (greater separation from the reference) give higher scores.

● The unseen label distance is based on the label distance mapping metric with similar changes to

the unseen cell distance metric. Distances are calculated to the nearest reference label, and scores

are adjusted so that higher scores represent greater separation from the reference.

● Milo is a method for identifying cell neighbourhoods that show differential abundance associated

with a covariate41. It was recently used as a metric for identifying previously unseen populations in a

benchmark of different experimental designs for integration37. Following the example from this

benchmark, a neighbourhood graph is calculated in the combined query and reference integrated

embedding using a number of neighbours equal to five times the number of batches (up to a

maximum of 200). Milo is then applied to a subset of cells (up to 20,000 cells or 10 per cent of the

datasets, whichever is higher), with a label specifying whether each cell is a member of the query or

reference as the covariate of interest. The results of the Milo test indicate whether query cells are

enriched in a cell neighbourhood. We consider this a positive result for unseen cells as variation

present in only the query has been conserved. The individual test results are summarised for each

unseen label by taking the proportion of cell neighbourhoods significantly associated with the query

(FDR adjusted p-value less than 0.1). The final overall score is the average of the proportions across

all unseen labels. In rare cases for poor integrations where Milo cannot select cells from an unseen

label, that label is assigned a score of 0. We used the implementation in the milopy package

(commit be1a6cc8).

Benchmarking datasets

We selected the datasets in this evaluation to represent a range of scenarios in which integration is a critical

analysis step, including smaller-scale datasets and larger atlas-building efforts. They cover a range of tissues,

technologies and developmental stages. We chose query batches by selecting a set of batches with shared

characteristics different from the remaining reference samples, such as technology, timepoint or location.
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The unseen populations only present in the query were chosen by first looking for labels enriched in the

query batches and then selecting labels presenting different challenges, such as rare or perturbed cells. For

each dataset, we use the cell labels assigned by the original authors with only minimal further quality

control applied, as described in the pipeline section below. Any further dataset-specific processing and

details, such as the batch and label variables used, are described in the following sections.

scIB Pancreas

Datasets containing single cells from pancreas samples captured using different technologies are the most

commonly used example for evaluating scRNA-seq integration methods. We used the version prepared for

the scIB project25 and downloaded it from figshare42. Cell labels were taken from the “celltype” cell

annotation column (12 reference labels) and batches from the “tech” column. For the query, we used the

batches representing the CEL-seq and CEL-seq2 technologies with the “activated_stellate” label treated as

an unseen population only present in the query. After preparation, the dataset contained 18319 features,

12731 reference cells (7 batches) and 3243 query cells (2 batches).

NeurIPS 2021

The NeurIPS dataset was created for the 2021 NeurIPS Multimodal Single-Cell Data Integration

competition43. The dataset consists of bone marrow mononuclear cells collected from several donors and

sequenced across multiple sites, with some donors being sequenced multiple times44. Different

technologies were used to measure RNA and protein (CITE-seq) or RNA and chromatin accessibility (10x

Multiome). We downloaded the CITE-seq dataset from the Gene Expression Omnibus (GEO) database45

(GSE194122) and used only the gene expression features. Cell labels were taken from the “cell_type”

annotation and batch labels from the “batch” annotation. We considered samples from Site 4 as the query

with the “CD8+ T naive” and “Proerythroblast” treated as unseen query populations. After preparation, the

dataset contained 13953 features, 70061 reference cells (9 batches) with 42 reference labels and 16715

query cells (3 batches).

Fetal liver hematopoiesis

The fetal liver hematopoiesis dataset from Popescu et al.46 was used to evaluate the Symphony query

mapping method36. This dataset catalogues the cells in the hematopoietic liver during human development.

We downloaded the data provided by the original authors from CellAtlas.io47and used batch labels from the

“fetal.ids” annotation and cell labels from the “cell.ids” annotation. Three samples from different

developmental stages were treated as the query with "Kupffer Cell”, “NK”, “ILC precursor” and “Early

lymphoid_T lymphocyte" labels present in the query but excluded from the reference. The prepared dataset

contains 26686 features, 62384 reference cells (11 batches, 23 reference labels) and 26449 query cells (3

batches).

Reed Breast

The Reed breast dataset is a recently released atlas that profiles cells from the breast tissue of 55 healthy

women with different characteristics, including age, ethnicity, sampling location and known genetic risk

factors48. We downloaded the dataset released with the preprint49 from the CELLxGENE Data Portal50

(Dataset ID: 0ba636a1-4754-4786-a8be-7ab3cf760fd6, Census version: 2023-07-05) using the

cellxgene-census package (v1.0.1) and subsetted to cells with a BRCA status of either wildtype (“WT” or

“assumed_WT”) or “BRCA1”. Donor ID was used as the batch label, with cell labels taken from the “level2”
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annotation. We also excluded a subset of cells labelled as doublets, as it is not clear how the different

metrics should consider them. Wildtype cells were used to create the reference, and BRCA1 cells were used

as the query. The “BSL2”, “CD8T 1”, “CD8T 2”, “CD8T 3”, “FB5”, “LEC1” and “LEC2” labels were used as

unseen labels present only in the query. After preparation, the dataset contained 33691 features, 337339

reference cells (24 batches, 32 reference labels) and 197649 query cells (17 batches).

single cell Eye in a Disk (scEiaD)

The single cell Eye in a Disk (scEiaD) dataset was constructed by integrating publicly available ocular

datasets from three species (human, mouse and macaque)51. We downloaded the dataset from the

PLatform for Analysis of scEiad website52 and selected only the human cells derived from tissue samples

where the organ was specified as “Eye”. We also removed cells that did not have a cell label or were labelled

as doublets and batches with fewer than 500 cells remaining, as we found these caused some metrics to

produce unreliable results. Cell labels were taken from the “CellType_predict” annotation (the result of a

classifier trained by the authors to predict and harmonise labels following integration), and the defined

“batch” annotation was used for batches. We split batches using the cell capture technology, with 10x

version 2 taken as the reference and 10x version 3 and Drop-seq batches making up the query. The “B-Cell”,

“Blood Vessel”, “Macrophage”, “Pericyte”, “Smooth Muscle Cell” and “T/NK-Cell” labels are only present in

the query. After preparation, the dataset contained 19560 features, 360270 reference cells (69 batches, 41

reference labels) and 48496 query cells (18 batches).

Human endoderm

The human endoderm dataset combines human foetal samples to profile the development of multiple

endoderm-derived organs53. We downloaded the dataset from the Mendeley Data repository provided by

the authors54. Individuals were treated as batches with labels obtained from the “Cell_type” annotation,

and a small number of cells labelled as “Undefined” were removed. Samples from weeks 12-15 of the

developmental trajectory were selected as the query with "Basal like”, “Ciliated”, “Hepatocyte”,

“Mesenchyme subtype 4” and “T cell/NK cell 1" labels treated as query-specific. The prepared dataset

consisted of 27855 features, 100580 reference cells (10 batches, 21 reference labels) and 44784 query cells

(4 batches).

Human Lung Cell Atlas (HLCA)

The Human Lung Cell Atlas (HLCA) represents a comprehensive effort to catalogue the diversity of cell types

in the healthy and diseased lung by combining publicly available and newly produced datasets55. The core

atlas combines samples from several datasets, including different sampling locations and techniques,

various sample preparation technologies and protocols, and individuals diverse in factors such as age, sex,

location, ethnicity and smoking status. Following integration, the authors produced a detailed consensus

annotation at several resolution levels. The samples' diversity and the labels' specificity mean this dataset

represents perhaps the most significant integration challenge of those selected for this study. We

downloaded the core HLCA dataset from the CELLxGENE Data Portal (Dataset ID:

066943a2-fdac-4b29-b348-40cede398e4e, Census version: 2023-07-25) and used the “dataset” annotation

as defined by the authors as batch labels with “ann_finest_level” annotation as labels. The subject type was

used to construct the query and reference, with datasets from organ donors treated as the reference and

healthy and diseased samples from living donors making up the query. This division is also related to

technical covariates such as the tissue sampling method. Several labels are treated as only present in the

query, specifically "Multiciliated (nasal)”, “Club (nasal)”, “Goblet (subsegmental)”, “SMG serous (nasal)”,
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“SMG serous (bronchial)”, “SMG mucous”, “EC aerocyte capillary”, “Peribronchial fibroblasts”, “Smooth

muscle”, “Smooth muscle FAM83D+”, “B cells”, “DC2”, “Alveolar Mph CCL3+” and “Mast cells". After

preparation, the final benchmarking dataset includes 27987 features, 314573 reference cells (9 batches, 47

reference labels) and 251400 query cells (5 batches).

HLCA (immune)

The HLCA (immune) dataset takes the full HLCA dataset and uses the coarsest level of annotation to select

cells in the immune compartment. The motivation for including this subset as a separate dataset is to allow

some insight into how feature selection and integration perform on a single lineage, as this has been

suggested as an alternative approach for analysing large studies of diverse tissues. The batches and labels

are the same as the full HLCA dataset, but after subsetting, only "B cells”, “DC2”, “Alveolar Mph CCL3+” and

“Mast cells" remain as unseen labels in the query. There are also fewer batches as some did not contain

sufficient numbers of immune cells. The HLCA (immune) dataset consists of 26618 features, 155385

reference cells (7 batches, 16 reference labels) and 52795 query cells (2 batches).

HLCA (epithelial)

The HLCA (epithelial) dataset is a second subset of the HLCA dataset, constructed similarly but focusing on

the epithelial compartment. This subset consists of 27673 features, 118374 reference cells (8 batches, 17

reference labels) and 162875 query cells (5 batches) with “Multiciliated (nasal)”, “Club (nasal)”, “Goblet

(subsegmental)”, “SMG serous (nasal)”, “SMG serous (bronchial)”, and “SMG mucous” remaining as unseen

labels in the query.

splat

Evaluations using real datasets provide the most accurate assessments of performance, but they also

present challenges as they rely on ground truth from previous analyses, which may be incomplete or biased

towards the methods that were originally used. Some of these concerns can be addressed by simulations

where a definite ground truth is known. We have created a simulated dataset using a modified version of

the splat simulation in the Splatter package56 (v1.25.1). This simulation has been designed to represent a

scenario where a tissue is measured using three different technologies (two batches each) in two

conditions. These “technologies” measure a medium number of cells at medium depth (Batch1, Batch2), a

low number of cells at high depth (Batch3, Batch4) and a high number of cells at low depth (Batch5,

Batch6), with the first two comprising the reference and the last one the query. The simulation contains 10

cell labels, including a progenitor differentiating along two trajectories (one with an intermediate cell type

only present in the query) and six discrete cell types that differ in number of cells, number of differentially

expressed genes and number of detected features. The discrete groups include a rare population and a

perturbed state, which are only present in the query. To increase the variability in the simulation, we added

additional label-specific noise factors to the model, which were applied just before generating counts. After

preparation, the splat dataset contains 9984 features, 30041 reference cells (4 batches, 7 reference labels)

and 69936 query cells (2 batches). The “Intermediate”, “Rare” and “Perturbed” labels are only present in

the query.

Benchmarking pipeline

To implement and apply the methods and metrics, we built a pipeline using Nextflow1. By using a workflow

manager to construct the benchmark, we improve reproducibility, make sure that results are up-to-date as
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code is updated and easily take advantage of computing resources. The Nextflow pipeline takes a dataset as

input, applies some standard preprocessing and splits it into reference and query samples with annotations

stored in standard locations. The feature selection methods are applied to the reference, and each feature

set is provided to the integration stage. After integration, the query is mapped to the reference, and a cell

label classifier is trained. The reference and query (before and after integration or mapping), ground truth

cell labels and transferred labels are provided to metrics as required. The metric scores are then scaled and

aggregated. Final method rankings are calculated after considering results from all datasets. Pipeline stages

used both Python (v3.9.13) and R57 (v4.2.2), including packages from Bioconductor58 The Python anndata

package59 (v0.8.0) was used to store data and save it as H5AD files between pipeline stages. The

zellkonverter package (v1.8.0) was used to load data into R via the reticulate (v1.26) interface where it was

stored as SingleCellExperiment10 (v1.20.0) or SeuratObject (v4.1.3) objects.

Dataset preprocessing

The first stage of the pipeline is to apply standard preprocessing to each dataset. This step includes basic

quality control filtering of cells and storing information in locations expected by the pipeline. Cells are

labelled with batch and annotation labels, and species information is recorded. We remove cells with fewer

than 100 total counts or express fewer than 100 features. The dataset is then split into a reference and

query based on the predefined batch labels. Annotation labels with fewer than 20 cells are removed from

both the reference and query, as some metrics can behave unpredictably when there are very small cell

numbers. Annotations defined as unseen query populations are also removed from the reference. The final

preprocessing step removes any features not expressed in any selected cells in the reference. Any further

feature selection is performed using the methods to be evaluated.

Integration and query mapping

The deep learning base model we use for integration is scVI (single-cell Variational Inference)60, available in

the scvi-tools package61 (v0.17.1). This model is based on a conditional variational autoencoder, which has

been shown to perform well in previous benchmarks of integration methods25. Importantly for our use, it

allows the mapping of query samples using the architecture surgery approach from the scArches package62.

In this approach, the network weights trained on the reference are frozen, and a small adaptor network is

trained for each query batch. We also train a scANVI (single-cell ANnotation using Variational Inference)

model63, a semi-supervised extension of scVI where known cell labels are used to finetune the network. We

included scANVI to test whether an integration model with more prior knowledge of the biological signal in

a dataset could overcome limitations in a selected feature set. Another advantage of using the scvi-tools

models is that they take raw count data as input, which means that we do not have to consider the

interaction between feature selection and normalisation methods at the integration stage (a specific

normalisation is still used by many of the feature selection methods).

As an example of alternative approaches based on correcting a PCA space, we include integration with the

Harmony method27 followed by query mapping using the associated Symphony approach36. This approach

represents an alternative class of integration methods and was used to see if the performance of feature

selection methods is consistent when compared to deep learning-based integration. As suggested by the

documentation, we provide Harmony with normalised expression values rather than raw counts. Counts are

first normalised to counts per 10,000, then log-transformed. The dataset is then subset to the provided

features and scaled with a maximum value of 10 (per feature) before calculating 30 principal components

that are provided as input to Harmony. For query mapping using Symphony, log-transformed normalised

query data is provided (scaling is performed as part of the mapping function). Data preprocessing steps are
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performed using functions in the scanpy package, and integration and query mapping are performed using

the harmonypy64 (v0.0.9) and symphonypy65 (v0.2.1) packages.

Label transfer

To transfer labels from the reference to the query, we trained a multinomial logistic regression classifier on

the integrated reference using the scikit-learn package, taking the position of each cell in the integrated

embedding space as input and the ground truth cell labels as the output. Labels are transferred to the query

by providing the mapped embedding coordinates to the trained classifier, predicting the probability for each

reference label and recording the label with the highest prediction probability.

Metric selection

We used a wide range of metrics for this study, many of which had not previously been rigorously

evaluated, particularly for this feature selection task. There are various reasons that a metric may be

unsuitable. For example, it may have a small dynamic range, be highly correlated with another metric,

perform differently for different integration methods, or be affected by a variable of interest (such as the

number of selected features). For that reason, we included a metric selection step. This process consisted of

a sweep over different numbers of randomly selected features across all the test datasets. By using random

features, we could explore a wide range of possible feature sets while at the same time avoiding biasing

metric selection towards any of the real methods. We also included feature sets of different sizes from the

scanpy-Seurat method to evaluate the relationship with the number of features as random gene sets have

no inherent ordering (i.e. the first features selected are not necessarily more informative than the last

features selected). Once we had metric scores for each feature set, we evaluated the behaviour of individual

metrics and the relationships between them. Metrics were removed if they could not distinguish between

feature sets (have an insufficient dynamic range), were overly correlated (Pearson correlation) with the

number of features, were associated with technical dataset features, or showed undesirable correlation

patterns. The outcome of the metrics selection process was a non-redundant set of features with fewer

biases covering the categories of interest for the final benchmark.

Selecting a number of features

Most feature selection methods evaluated here require the user to specify the number of features to select.

But, while this can affect downstream analyses, there is no clear guidance on how many features should be

selected and how that is related to biological factors such as the diversity of cell types in the dataset. To

address this question, we evaluated different numbers of features for methods in scanpy and Seurat, as well

as features with high variance or high mean expression. Using the scaled values standardised per dataset

and method allowed us to see how performance changes with the number of features. While it would be

interesting to have this data for all methods, each additional number of features is a significant

computational cost. We limited this part of the analysis by methods rather than datasets as it allowed us to

see the effect of the number of features across datasets. The results of this analysis informed the number of

features we used for most methods in the full evaluation (2000).

Analysis of results

The absolute values of individual metrics are often of little interest. Instead, the relative performance of

methods and the aggregation across metrics are more informative. Despite the raw scores of all of our

metrics being adjusted to fall in the range of 0 to 1 (with higher scores indicating better performance), they
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continue to have different real dynamic ranges, which can vary across datasets. The first step in aggregating

metrics is to scale each metric for each dataset. This scaling can be accomplished in different ways, for

example, by scaling between the minimum and maximum values or using the mean and standard deviation.

For this study, we used a set of baseline reference methods to establish the range of each metric. These are

all features, randomly selected features, stably expressed features selected using the scSEGIndex method

and batch-aware features using the Cell Ranger method implemented in the scanpy package. Depending on

the metric, using all features performs either well or poorly, while random and stably expressed features

result in high batch correction scores but poor conservation of biological information. The

scanpy-CellRanger method is included as an example of current standard practice25,66 and performs well

across metrics. The baseline methods were used to establish a reasonable range for each metric (for a

dataset), and then all scores were scaled relative to that range. The advantage of using baseline methods

rather than scaling across all methods is that the ranges are more interpretable as we know what they

correspond to. Adding or removing methods (outside of the baselines) also doesn’t affect the reference

ranges and scaling.

The scaled metric scores were then aggregated by taking the mean to get an overall score for each category.

This aggregation gives a summarised performance for each of the methods for each task. A final overall

score for each method is obtained using a weighted mean of the task scores.

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 = 1
2 ∗ ( 𝐼𝑛𝑡. 𝐵𝑎𝑡𝑐ℎ

2  + 𝐼𝑛𝑡. 𝐵𝑖𝑜
2 ) +   1

2 ∗ ( 𝑀𝑎𝑝𝑝𝑖𝑛𝑔
3  + 𝐶𝑙𝑎𝑠𝑠.

3  +  𝑈𝑛𝑠𝑒𝑒𝑛
3 ) 

This weighting equally balances the reference and query and each metric category. The performance of

methods was aggregated and ranked at the level of metric categories, datasets and over the whole

benchmark. These rankings let us evaluate which methods perform better at different tasks or scenarios.

We also checked for consistency between integration approaches and variants of feature selection

methods.

Further analysis examined the similarity between methods by considering the overlap in selected sets using

the Jaccard Index. This helped to explain method performance by relating differences in selected features to

differences in performance.

Another focus of the analysis was to compare the full HLCA dataset and subsets representing the immune

and epithelial compartments. This comparison allowed us to see how feature selection methods perform

differently when a dataset is limited to more similar cell types.

Final figures were produced using the ggplot2 package67 (v3.5.0) and assembled using patchwork (v.1.2.0).

Data processing was performed using tidyverse68 (v2.0.0) packages.

References

1. Di Tommaso, P., Chatzou, M., Floden, E. W., Barja, P. P., Palumbo, E. & Notredame, C. Nextflow enables

reproducible computational workflows. Nat. Biotechnol. 35, 316–319 (2017).

2. Theis lab, @lazappi, @cramsuig, @WWXkenmo, @SabrinaRichter, @amitfrish & @rkrubens.

atlas-feature-selection-benchmark: Code for ‘Feature selection methods affect the performance of

scRNA-seq data integration and querying’. (GitHub). at

15

https://paperpile.com/c/WjPhqv/K1tr+MczB
https://paperpile.com/c/WjPhqv/hJSpT
https://paperpile.com/c/WjPhqv/dKmWK
http://paperpile.com/b/WjPhqv/IEikK
http://paperpile.com/b/WjPhqv/IEikK
http://paperpile.com/b/WjPhqv/dRD3e
http://paperpile.com/b/WjPhqv/dRD3e
http://paperpile.com/b/WjPhqv/dRD3e


<https://github.com/theislab/atlas-feature-selection-benchmark>

3. Zappia, L., Richter, S., Ramírez-Suástegui, C., Kfuri-Rubens, R., Weixu, W., Dietrich, O., Frishberg, A.,

Luecken, M. D. & Theis, F. J. Code for ‘Feature selection methods affect the performance of scRNA-seq

data integration and querying’. (Zenodo, 2024).

4. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis.

Genome Biol. 19, 15 (2018).

5. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene

expression data. Nat. Biotechnol. 33, 495–502 (2015).

6. Brennecke, P., Anders, S., Kim, J. K., Kołodziejczyk, A. A., Zhang, X., Proserpio, V., Baying, B., Benes, V.,

Teichmann, S. A., Marioni, J. C. & Heisler, M. G. Accounting for technical noise in single-cell RNA-seq

experiments. Nat. Methods 10, 1093–1095 (2013).

7. Lun, A. T. L., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level analysis of single-cell

RNA-seq data. F1000Res. 5, (2016).

8. Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W. M., 3rd, Hao, Y., Stoeckius, M.,

Smibert, P. & Satija, R. Comprehensive Integration of Single-Cell Data. Cell 177, 1888–1902.e21 (2019).

9. Zheng, G. X. Y., Terry, J. M., Belgrader, P., Ryvkin, P., Bent, Z. W., Wilson, R., Ziraldo, S. B., Wheeler, T. D.,

McDermott, G. P., Zhu, J., Gregory, M. T., Shuga, J., Montesclaros, L., Underwood, J. G., Masquelier, D.

A., Nishimura, S. Y., Schnall-Levin, M., Wyatt, P. W., Hindson, C. M., Bharadwaj, R., Wong, A., Ness, K. D.,

Beppu, L. W., Deeg, H. J., McFarland, C., Loeb, K. R., Valente, W. J., Ericson, N. G., Stevens, E. A., Radich,

J. P., Mikkelsen, T. S., Hindson, B. J. & Bielas, J. H. Massively parallel digital transcriptional profiling of

single cells. Nat. Commun. 8, 14049 (2017).

10. Amezquita, R. A., Lun, A. T. L., Becht, E., Carey, V. J., Carpp, L. N., Geistlinger, L., Martini, F.,

Rue-Albrecht, K., Risso, D., Soneson, C., Waldron, L., Pagès, H., Smith, M. L., Huber, W., Morgan, M.,

Gottardo, R. & Hicks, S. C. Orchestrating single-cell analysis with Bioconductor. Nat. Methods 1–9

(2019). doi:10.1038/s41592-019-0654-x

11. Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing

data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. (2018).

16

http://paperpile.com/b/WjPhqv/dRD3e
https://github.com/theislab/atlas-feature-selection-benchmark
http://paperpile.com/b/WjPhqv/dRD3e
http://paperpile.com/b/WjPhqv/lBktK
http://paperpile.com/b/WjPhqv/lBktK
http://paperpile.com/b/WjPhqv/lBktK
http://paperpile.com/b/WjPhqv/UJ2U5
http://paperpile.com/b/WjPhqv/UJ2U5
http://paperpile.com/b/WjPhqv/saAPy
http://paperpile.com/b/WjPhqv/saAPy
http://paperpile.com/b/WjPhqv/47UFs
http://paperpile.com/b/WjPhqv/47UFs
http://paperpile.com/b/WjPhqv/47UFs
http://paperpile.com/b/WjPhqv/1YDd1
http://paperpile.com/b/WjPhqv/1YDd1
http://paperpile.com/b/WjPhqv/Fh8dA
http://paperpile.com/b/WjPhqv/Fh8dA
http://paperpile.com/b/WjPhqv/olT8J
http://paperpile.com/b/WjPhqv/olT8J
http://paperpile.com/b/WjPhqv/olT8J
http://paperpile.com/b/WjPhqv/olT8J
http://paperpile.com/b/WjPhqv/olT8J
http://paperpile.com/b/WjPhqv/olT8J
http://paperpile.com/b/WjPhqv/qw1IV
http://paperpile.com/b/WjPhqv/qw1IV
http://paperpile.com/b/WjPhqv/qw1IV
http://paperpile.com/b/WjPhqv/qw1IV
http://dx.doi.org/10.1038/s41592-019-0654-x
http://paperpile.com/b/WjPhqv/Y1EDO
http://paperpile.com/b/WjPhqv/Y1EDO


doi:10.1038/nbt.4091

12. Tyler, S. R., Lozano-Ojalvo, D., Guccione, E. & Schadt, E. E. Anti-correlated feature selection prevents

false discovery of subpopulations in scRNAseq. Nat. Commun. 15, 699 (2024).

13. Andrews, T. S. & Hemberg, M. M3Drop: Dropout-based feature selection for scRNASeq. Bioinformatics

(2018). doi:10.1093/bioinformatics/bty1044

14. Ranjan, B., Sun, W., Park, J., Mishra, K., Schmidt, F., Xie, R., Alipour, F., Singhal, V., Joanito, I.,

Honardoost, M. A., Yong, J. M. Y., Koh, E. T., Leong, K. P., Rayan, N. A., Lim, M. G. L. & Prabhakar, S.

DUBStepR is a scalable correlation-based feature selection method for accurately clustering single-cell

data. Nat. Commun. 12, 5849 (2021).

15. Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using

regularized negative binomial regression. Genome Biol. 20, 296 (2019).

16. Lause, J., Berens, P. & Kobak, D. Analytic Pearson residuals for normalization of single-cell RNA-seq UMI

data. Genome Biol. 22, 258 (2021).

17. Townes, F. W., Hicks, S. C., Aryee, M. J. & Irizarry, R. A. Feature selection and dimension reduction for

single-cell RNA-Seq based on a multinomial model. Genome Biol. 20, 295 (2019).

18. Song, D., Li, K., Hemminger, Z., Wollman, R. & Li, J. J. scPNMF: sparse gene encoding of single cells to

facilitate gene selection for targeted gene profiling. Bioinformatics 37, i358–i366 (2021).

19. Vandenbon, A. & Diez, D. A clustering-independent method for finding differentially expressed genes in

single-cell transcriptome data. Nat. Commun. 11, 4318 (2020).

20. DeTomaso, D. & Yosef, N. Hotspot identifies informative gene modules across modalities of single-cell

genomics. Cell Syst (2021). doi:10.1016/j.cels.2021.04.005

21. M Ascensión, A., Ibáñez-Solé, O., Inza, I., Izeta, A. & Araúzo-Bravo, M. J. Triku: a feature selection

method based on nearest neighbors for single-cell data. Gigascience 11, (2022).

22. Lambert, S. A., Jolma, A., Campitelli, L. F., Das, P. K., Yin, Y., Albu, M., Chen, X., Taipale, J., Hughes, T. R.

& Weirauch, M. T. The Human Transcription Factors. Cell 172, 650–665 (2018).

23. The Human Transcription Factors. at <https://humantfs.ccbr.utoronto.ca/index.php>

24. Lin, Y., Ghazanfar, S., Strbenac, D., Wang, A., Patrick, E., Lin, D. M., Speed, T., Yang, J. Y. H. & Yang, P.

17

http://paperpile.com/b/WjPhqv/Y1EDO
http://dx.doi.org/10.1038/nbt.4091
http://paperpile.com/b/WjPhqv/2sNrg
http://paperpile.com/b/WjPhqv/2sNrg
http://paperpile.com/b/WjPhqv/jOXxO
http://paperpile.com/b/WjPhqv/jOXxO
http://dx.doi.org/10.1093/bioinformatics/bty1044
http://paperpile.com/b/WjPhqv/SpO14
http://paperpile.com/b/WjPhqv/SpO14
http://paperpile.com/b/WjPhqv/SpO14
http://paperpile.com/b/WjPhqv/SpO14
http://paperpile.com/b/WjPhqv/L5YYk
http://paperpile.com/b/WjPhqv/L5YYk
http://paperpile.com/b/WjPhqv/bVy5r
http://paperpile.com/b/WjPhqv/bVy5r
http://paperpile.com/b/WjPhqv/L5fG0
http://paperpile.com/b/WjPhqv/L5fG0
http://paperpile.com/b/WjPhqv/WT3fl
http://paperpile.com/b/WjPhqv/WT3fl
http://paperpile.com/b/WjPhqv/mCnzA
http://paperpile.com/b/WjPhqv/mCnzA
http://paperpile.com/b/WjPhqv/oce0q
http://paperpile.com/b/WjPhqv/oce0q
http://dx.doi.org/10.1016/j.cels.2021.04.005
http://paperpile.com/b/WjPhqv/gdWYO
http://paperpile.com/b/WjPhqv/gdWYO
http://paperpile.com/b/WjPhqv/pDLdi
http://paperpile.com/b/WjPhqv/pDLdi
http://paperpile.com/b/WjPhqv/GR3Oy
https://humantfs.ccbr.utoronto.ca/index.php
http://paperpile.com/b/WjPhqv/GR3Oy
http://paperpile.com/b/WjPhqv/iFGDH


Evaluating stably expressed genes in single cells. Gigascience 8, (2019).

25. Luecken, M. D., Büttner, M., Chaichoompu, K., Danese, A., Interlandi, M., Mueller, M. F., Strobl, D. C.,

Zappia, L., Dugas, M., Colomé-Tatché, M. & Theis, F. J. Benchmarking atlas-level data integration in

single-cell genomics. Nat. Methods (2021). doi:10.1038/s41592-021-01336-8

26. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,

P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. &

Duchesnay, É. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

27. Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Baglaenko, Y., Brenner, M., Loh, P.-R.

& Raychaudhuri, S. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat.

Methods (2019). doi:10.1038/s41592-019-0619-0

28. Büttner, M., Miao, Z., Wolf, F. A., Teichmann, S. A. & Theis, F. J. A test metric for assessing single-cell

RNA-seq batch correction. Nat. Methods 16, 43–49 (2019).

29. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data

across different conditions, technologies, and species. Nat. Biotechnol. (2018). doi:10.1038/nbt.4096

30. Lütge, A., Zyprych-Walczak, J., Brykczynska Kunzmann, U., Crowell, H. L., Calini, D., Malhotra, D.,

Soneson, C. & Robinson, M. D. CellMixS: quantifying and visualizing batch effects in single-cell RNA-seq

data. Life Sci Alliance 4, (2021).

31. Tirosh, I., Izar, B., Prakadan, S. M., Wadsworth, M. H., 2nd, Treacy, D., Trombetta, J. J., Rotem, A.,

Rodman, C., Lian, C., Murphy, G., Fallahi-Sichani, M., Dutton-Regester, K., Lin, J.-R., Cohen, O., Shah, P.,

Lu, D., Genshaft, A. S., Hughes, T. K., Ziegler, C. G. K., Kazer, S. W., Gaillard, A., Kolb, K. E., Villani, A.-C.,

Johannessen, C. M., Andreev, A. Y., Van Allen, E. M., Bertagnolli, M., Sorger, P. K., Sullivan, R. J., Flaherty,

K. T., Frederick, D. T., Jané-Valbuena, J., Yoon, C. H., Rozenblatt-Rosen, O., Shalek, A. K., Regev, A. &

Garraway, L. A. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq.

Science 352, 189–196 (2016).

32. Smedley, D., Haider, S., Durinck, S., Pandini, L., Provero, P., Allen, J., Arnaiz, O., Awedh, M. H., Baldock,

R., Barbiera, G., Bardou, P., Beck, T., Blake, A., Bonierbale, M., Brookes, A. J., Bucci, G., Buetti, I., Burge,

S., Cabau, C., Carlson, J. W., Chelala, C., Chrysostomou, C., Cittaro, D., Collin, O., Cordova, R., Cutts, R. J.,

18

http://paperpile.com/b/WjPhqv/iFGDH
http://paperpile.com/b/WjPhqv/K1tr
http://paperpile.com/b/WjPhqv/K1tr
http://paperpile.com/b/WjPhqv/K1tr
http://dx.doi.org/10.1038/s41592-021-01336-8
http://paperpile.com/b/WjPhqv/lhs54
http://paperpile.com/b/WjPhqv/lhs54
http://paperpile.com/b/WjPhqv/lhs54
http://paperpile.com/b/WjPhqv/uTlKp
http://paperpile.com/b/WjPhqv/uTlKp
http://paperpile.com/b/WjPhqv/uTlKp
http://dx.doi.org/10.1038/s41592-019-0619-0
http://paperpile.com/b/WjPhqv/l3sxV
http://paperpile.com/b/WjPhqv/l3sxV
http://paperpile.com/b/WjPhqv/fyVx3
http://paperpile.com/b/WjPhqv/fyVx3
http://dx.doi.org/10.1038/nbt.4096
http://paperpile.com/b/WjPhqv/7YawE
http://paperpile.com/b/WjPhqv/7YawE
http://paperpile.com/b/WjPhqv/7YawE
http://paperpile.com/b/WjPhqv/FYqT8
http://paperpile.com/b/WjPhqv/FYqT8
http://paperpile.com/b/WjPhqv/FYqT8
http://paperpile.com/b/WjPhqv/FYqT8
http://paperpile.com/b/WjPhqv/FYqT8
http://paperpile.com/b/WjPhqv/FYqT8
http://paperpile.com/b/WjPhqv/FYqT8
http://paperpile.com/b/WjPhqv/nC8tQ
http://paperpile.com/b/WjPhqv/nC8tQ
http://paperpile.com/b/WjPhqv/nC8tQ


Dassi, E., Di Genova, A., Djari, A., Esposito, A., Estrella, H., Eyras, E., Fernandez-Banet, J., Forbes, S.,

Free, R. C., Fujisawa, T., Gadaleta, E., Garcia-Manteiga, J. M., Goodstein, D., Gray, K., Guerra-Assunção,

J. A., Haggarty, B., Han, D.-J., Han, B. W., Harris, T., Harshbarger, J., Hastings, R. K., Hayes, R. D., Hoede,

C., Hu, S., Hu, Z.-L., Hutchins, L., Kan, Z., Kawaji, H., Keliet, A., Kerhornou, A., Kim, S., Kinsella, R., Klopp,

C., Kong, L., Lawson, D., Lazarevic, D., Lee, J.-H., Letellier, T., Li, C.-Y., Lio, P., Liu, C.-J., Luo, J., Maass, A.,

Mariette, J., Maurel, T., Merella, S., Mohamed, A. M., Moreews, F., Nabihoudine, I., Ndegwa, N., Noirot,

C., Perez-Llamas, C., Primig, M., Quattrone, A., Quesneville, H., Rambaldi, D., Reecy, J., Riba, M.,

Rosanoff, S., Saddiq, A. A., Salas, E., Sallou, O., Shepherd, R., Simon, R., Sperling, L., Spooner, W.,

Staines, D. M., Steinbach, D., Stone, K., Stupka, E., Teague, J. W., Dayem Ullah, A. Z., Wang, J., Ware, D.,

Wong-Erasmus, M., Youens-Clark, K., Zadissa, A., Zhang, S.-J. & Kasprzyk, A. The BioMart community

portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res. 43, W589–98

(2015).

33. Durinck, S., Moreau, Y., Kasprzyk, A., Davis, S., De Moor, B., Brazma, A. & Huber, W. BioMart and

Bioconductor: a powerful link between biological databases and microarray data analysis.

Bioinformatics 21, 3439–3440 (2005).

34. Maan, H., Zhang, L., Yu, C., Geuenich, M. J., Campbell, K. R. & Wang, B. Characterizing the impacts of

dataset imbalance on single-cell data integration. Nat. Biotechnol. (2024).

doi:10.1038/s41587-023-02097-9

35. Latecki, L. J., Lazarevic, A. & Pokrajac, D. Outlier Detection with Kernel Density Functions. in Machine

Learning and Data Mining in Pattern Recognition: 5th International Conference, MLDM 2007, Leipzig,

Germany, July 18-20, 2007, Proceedings (ed. Perner, P.) (Springer, 2007). at

<https://play.google.com/store/books/details?id=pkxsCQAAQBAJ>

36. Kang, J. B., Nathan, A., Weinand, K., Zhang, F., Millard, N., Rumker, L., Moody, D. B., Korsunsky, I. &

Raychaudhuri, S. Efficient and precise single-cell reference atlas mapping with Symphony. Nat.

Commun. 12, 5890 (2021).

37. Dann, E., Cujba, A.-M., Oliver, A. J., Meyer, K. B., Teichmann, S. A. & Marioni, J. C. Precise identification

of cell states altered in disease using healthy single-cell references. Nat. Genet. (2023).

19

http://paperpile.com/b/WjPhqv/nC8tQ
http://paperpile.com/b/WjPhqv/nC8tQ
http://paperpile.com/b/WjPhqv/nC8tQ
http://paperpile.com/b/WjPhqv/nC8tQ
http://paperpile.com/b/WjPhqv/nC8tQ
http://paperpile.com/b/WjPhqv/nC8tQ
http://paperpile.com/b/WjPhqv/nC8tQ
http://paperpile.com/b/WjPhqv/nC8tQ
http://paperpile.com/b/WjPhqv/nC8tQ
http://paperpile.com/b/WjPhqv/nC8tQ
http://paperpile.com/b/WjPhqv/nC8tQ
http://paperpile.com/b/WjPhqv/nC8tQ
http://paperpile.com/b/WjPhqv/qdSvR
http://paperpile.com/b/WjPhqv/qdSvR
http://paperpile.com/b/WjPhqv/qdSvR
http://paperpile.com/b/WjPhqv/kUlaW
http://paperpile.com/b/WjPhqv/kUlaW
http://paperpile.com/b/WjPhqv/kUlaW
http://dx.doi.org/10.1038/s41587-023-02097-9
http://paperpile.com/b/WjPhqv/T6JFM
http://paperpile.com/b/WjPhqv/T6JFM
http://paperpile.com/b/WjPhqv/T6JFM
http://paperpile.com/b/WjPhqv/T6JFM
https://play.google.com/store/books/details?id=pkxsCQAAQBAJ
http://paperpile.com/b/WjPhqv/T6JFM
http://paperpile.com/b/WjPhqv/pQ9ZB
http://paperpile.com/b/WjPhqv/pQ9ZB
http://paperpile.com/b/WjPhqv/pQ9ZB
http://paperpile.com/b/WjPhqv/5Yl0F
http://paperpile.com/b/WjPhqv/5Yl0F


doi:10.1038/s41588-023-01523-7

38. Gupta, A., Tatbul, N., Marcus, R., Zhou, S., Lee, I. & Gottschlich, J. Class-Weighted Evaluation Metrics for

Imbalanced Data Classification. arXiv [cs.LG] (2020). at <http://arxiv.org/abs/2010.05995>

39. Matthews, B. W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme.

Biochim. Biophys. Acta 405, 442–451 (1975).

40. Yule, G. U. On the Methods of Measuring Association Between Two Attributes. J. R. Stat. Soc. 75,

579–652 (1912).

41. Dann, E., Henderson, N. C., Teichmann, S. A., Morgan, M. D. & Marioni, J. C. Differential abundance

testing on single-cell data using k-nearest neighbor graphs. Nat. Biotechnol. 40, 245–253 (2022).

42. Luecken, M., Buttner, M., Danese, A., Interlandi, M., Müller, M., Strobl, D., Zappia, L., Dugas, M.,

Colomé-Tatché, M., Theis, F. & Chaichoompu, K. Benchmarking atlas-level data integration in single-cell

genomics - integration task datasets. (2022). at

<https://figshare.com/articles/dataset/Benchmarking_atlas-level_data_integration_in_single-cell_gen

omics_-_integration_task_datasets_Immune_and_pancreas_/12420968>

43. Lance, C., Luecken, M. D., Burkhardt, D. B., Cannoodt, R., Rautenstrauch, P., Laddach, A., Ubingazhibov,

A., Cao, Z.-J., Deng, K., Khan, S., Liu, Q., Russkikh, N., Ryazantsev, G., Ohler, U., Data integration

competition participants, N. 2021 M., Pisco, A. O., Bloom, J., Krishnaswamy, S. & Theis, F. J. Multimodal

single cell data integration challenge: Results and lessons learned. in Proceedings of the NeurIPS 2021

Competitions and Demonstrations Track (eds. Kiela, D., Ciccone, M. & Caputo, B.) 176, 162–176 (PMLR,

06--14 Dec 2022).

44. Luecken, M. D., Burkhardt, D. B., Cannoodt, R., Lance, C., Agrawal, A., Aliee, H., Chen, A. T., Deconinck,

L., Detweiler, A. M., Granados, A. A., Huynh, S., Isacco, L., Kim, Y. J., Klein, D., de Kumar, B., Kuppasani,

S., Lickert, H., McGeever, A., Mekonen, H., Melgarejo, J. C., Morri, M., Müller, M., Neff, N., Paul, S.,

Rieck, B., Schneider, K., Steelman, S., Sterr, M., Treacy, D. J., Tong, A., Villani, A.-C., Wang, G., Yan, J.,

Zhang, C., Pisco, A. O., Krishnaswamy, S., Theis, F. J. & Bloom, J. M. A sandbox for prediction and

integration of DNA, RNA, and proteins in single cells. in Thirty-fifth Conference on Neural Information

Processing Systems Datasets and Benchmarks Track (Round 2) (2022). at

20

http://paperpile.com/b/WjPhqv/5Yl0F
http://dx.doi.org/10.1038/s41588-023-01523-7
http://paperpile.com/b/WjPhqv/uGV3A
http://paperpile.com/b/WjPhqv/uGV3A
http://arxiv.org/abs/2010.05995
http://paperpile.com/b/WjPhqv/uGV3A
http://paperpile.com/b/WjPhqv/r6n7D
http://paperpile.com/b/WjPhqv/r6n7D
http://paperpile.com/b/WjPhqv/QzDMd
http://paperpile.com/b/WjPhqv/QzDMd
http://paperpile.com/b/WjPhqv/lC9Lm
http://paperpile.com/b/WjPhqv/lC9Lm
http://paperpile.com/b/WjPhqv/tgmhH
http://paperpile.com/b/WjPhqv/tgmhH
http://paperpile.com/b/WjPhqv/tgmhH
http://paperpile.com/b/WjPhqv/tgmhH
https://figshare.com/articles/dataset/Benchmarking_atlas-level_data_integration_in_single-cell_genomics_-_integration_task_datasets_Immune_and_pancreas_/12420968
https://figshare.com/articles/dataset/Benchmarking_atlas-level_data_integration_in_single-cell_genomics_-_integration_task_datasets_Immune_and_pancreas_/12420968
http://paperpile.com/b/WjPhqv/tgmhH
http://paperpile.com/b/WjPhqv/Ho9h5
http://paperpile.com/b/WjPhqv/Ho9h5
http://paperpile.com/b/WjPhqv/Ho9h5
http://paperpile.com/b/WjPhqv/Ho9h5
http://paperpile.com/b/WjPhqv/Ho9h5
http://paperpile.com/b/WjPhqv/Ho9h5
http://paperpile.com/b/WjPhqv/S0bWj
http://paperpile.com/b/WjPhqv/S0bWj
http://paperpile.com/b/WjPhqv/S0bWj
http://paperpile.com/b/WjPhqv/S0bWj
http://paperpile.com/b/WjPhqv/S0bWj
http://paperpile.com/b/WjPhqv/S0bWj
http://paperpile.com/b/WjPhqv/S0bWj


<https://openreview.net/pdf?id=gN35BGa1Rt>

45. Clough, E., Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., Marshall, K.

A., Phillippy, K. H., Sherman, P. M., Lee, H., Zhang, N., Serova, N., Wagner, L., Zalunin, V., Kochergin, A. &

Soboleva, A. NCBI GEO: archive for gene expression and epigenomics data sets: 23-year update. Nucleic

Acids Res. (2023). doi:10.1093/nar/gkad965

46. Popescu, D.-M., Botting, R. A., Stephenson, E., Green, K., Webb, S., Jardine, L., Calderbank, E. F.,

Polanski, K., Goh, I., Efremova, M., Acres, M., Maunder, D., Vegh, P., Gitton, Y., Park, J.-E., Vento-Tormo,

R., Miao, Z., Dixon, D., Rowell, R., McDonald, D., Fletcher, J., Poyner, E., Reynolds, G., Mather, M.,

Moldovan, C., Mamanova, L., Greig, F., Young, M. D., Meyer, K. B., Lisgo, S., Bacardit, J., Fuller, A., Millar,

B., Innes, B., Lindsay, S., Stubbington, M. J. T., Kowalczyk, M. S., Li, B., Ashenberg, O., Tabaka, M.,

Dionne, D., Tickle, T. L., Slyper, M., Rozenblatt-Rosen, O., Filby, A., Carey, P., Villani, A.-C., Roy, A., Regev,

A., Chédotal, A., Roberts, I., Göttgens, B., Behjati, S., Laurenti, E., Teichmann, S. A. & Haniffa, M.

Decoding human fetal liver haematopoiesis. Nature 574, 365–371 (2019).

47. Haniffa Lab. Fetal Liver. CellAtlas.io at <https://app.cellatlas.io/fetal-liver/>

48. Reed, A. D., Pensa, S., Steif, A., Stenning, J., Kunz, D. J., Porter, L. J., Hua, K., He, P., Twigger, A.-J., Siu, A.

J. Q., Kania, K., Barrow-McGee, R., Goulding, I., Gomm, J. J., Speirs, V., Jones, J. L., Marioni, J. C. &

Khaled, W. T. A single-cell atlas enables mapping of homeostatic cellular shifts in the adult human

breast. Nat. Genet. 56, 652–662 (2024).

49. Reed, A. D., Pensa, S., Steif, A., Stenning, J., Kunz, D. J., He, P., Twigger, A.-J., Kania, K., Barrow-McGee,

R., Goulding, I., Gomm, J. J., Jones, L., Marioni, J. C. & Khaled, W. T. A Human Breast Cell Atlas Mapping

the Homeostatic Cellular Shifts in the Adult Breast. bioRxiv 2023.04.21.537845 (2023).

doi:10.1101/2023.04.21.537845

50. Chan Zuckerberg Initiative. CELLxGene Data Portal. Chan Zuckerberg CELLxGENE Discover at

<https://cellxgene.cziscience.com/>

51. Swamy, V. S., Fufa, T. D., Hufnagel, R. B. & McGaughey, D. M. Building the mega single-cell

transcriptome ocular meta-atlas. Gigascience 10, (2021).

52. McGaughey, D. & National Eye Institute. Data. plae: PLatform for Analysis of scEiad at

21

http://paperpile.com/b/WjPhqv/S0bWj
https://openreview.net/pdf?id=gN35BGa1Rt
http://paperpile.com/b/WjPhqv/S0bWj
http://paperpile.com/b/WjPhqv/Sw29w
http://paperpile.com/b/WjPhqv/Sw29w
http://paperpile.com/b/WjPhqv/Sw29w
http://paperpile.com/b/WjPhqv/Sw29w
http://dx.doi.org/10.1093/nar/gkad965
http://paperpile.com/b/WjPhqv/bjx0N
http://paperpile.com/b/WjPhqv/bjx0N
http://paperpile.com/b/WjPhqv/bjx0N
http://paperpile.com/b/WjPhqv/bjx0N
http://paperpile.com/b/WjPhqv/bjx0N
http://paperpile.com/b/WjPhqv/bjx0N
http://paperpile.com/b/WjPhqv/bjx0N
http://paperpile.com/b/WjPhqv/bjx0N
http://paperpile.com/b/WjPhqv/hpfcM
https://app.cellatlas.io/fetal-liver/
http://paperpile.com/b/WjPhqv/hpfcM
http://paperpile.com/b/WjPhqv/S11Vd
http://paperpile.com/b/WjPhqv/S11Vd
http://paperpile.com/b/WjPhqv/S11Vd
http://paperpile.com/b/WjPhqv/S11Vd
http://paperpile.com/b/WjPhqv/nTGdf
http://paperpile.com/b/WjPhqv/nTGdf
http://paperpile.com/b/WjPhqv/nTGdf
http://paperpile.com/b/WjPhqv/nTGdf
http://dx.doi.org/10.1101/2023.04.21.537845
http://paperpile.com/b/WjPhqv/fLMu8
http://paperpile.com/b/WjPhqv/fLMu8
https://cellxgene.cziscience.com/
http://paperpile.com/b/WjPhqv/fLMu8
http://paperpile.com/b/WjPhqv/nmZ9I
http://paperpile.com/b/WjPhqv/nmZ9I
http://paperpile.com/b/WjPhqv/WGnbA


<https://plae.nei.nih.gov/>

53. Yu, Q., Kilik, U., Holloway, E. M., Tsai, Y.-H., Harmel, C., Wu, A., Wu, J. H., Czerwinski, M., Childs, C. J., He,

Z., Capeling, M. M., Huang, S., Glass, I. A., Higgins, P. D. R., Treutlein, B., Spence, J. R. & Camp, J. G.

Charting human development using a multi-endodermal organ atlas and organoid models. Cell 184,

3281–3298.e22 (2021).

54. Yu, Q., Kilik, U., Holloway, E. M., Tsai, Y.-H., Harmel, C., Wu, A., Wu, J. H., Czerwinski, M., Childs, C., He,

Z., Capeling, M. M., Huang, S., Glass, I., Higgins, P. D. R., Treutlein, B., Spence, J. R. & Camp, J. G.

Charting human development using a multi-organ atlas and organoid models. (2021). at

<https://data.mendeley.com/datasets/x53tts3zfr/2>

55. Sikkema, L., Ramírez-Suástegui, C., Strobl, D. C., Gillett, T. E., Zappia, L., Madissoon, E., Markov, N. S.,

Zaragosi, L.-E., Ji, Y., Ansari, M., Arguel, M.-J., Apperloo, L., Banchero, M., Bécavin, C., Berg, M.,

Chichelnitskiy, E., Chung, M.-I., Collin, A., Gay, A. C. A., Gote-Schniering, J., Hooshiar Kashani, B., Inecik,

K., Jain, M., Kapellos, T. S., Kole, T. M., Leroy, S., Mayr, C. H., Oliver, A. J., von Papen, M., Peter, L., Taylor,

C. J., Walzthoeni, T., Xu, C., Bui, L. T., De Donno, C., Dony, L., Faiz, A., Guo, M., Gutierrez, A. J., Heumos,

L., Huang, N., Ibarra, I. L., Jackson, N. D., Kadur Lakshminarasimha Murthy, P., Lotfollahi, M., Tabib, T.,

Talavera-López, C., Travaglini, K. J., Wilbrey-Clark, A., Worlock, K. B., Yoshida, M., Lung Biological

Network Consortium, van den Berge, M., Bossé, Y., Desai, T. J., Eickelberg, O., Kaminski, N., Krasnow, M.

A., Lafyatis, R., Nikolic, M. Z., Powell, J. E., Rajagopal, J., Rojas, M., Rozenblatt-Rosen, O., Seibold, M. A.,

Sheppard, D., Shepherd, D. P., Sin, D. D., Timens, W., Tsankov, A. M., Whitsett, J., Xu, Y., Banovich, N. E.,

Barbry, P., Duong, T. E., Falk, C. S., Meyer, K. B., Kropski, J. A., Pe’er, D., Schiller, H. B., Tata, P. R.,

Schultze, J. L., Teichmann, S. A., Misharin, A. V., Nawijn, M. C., Luecken, M. D. & Theis, F. J. An

integrated cell atlas of the lung in health and disease. Nat. Med. 29, 1563–1577 (2023).

56. Zappia, L., Phipson, B. & Oshlack, A. Splatter: simulation of single-cell RNA sequencing data. Genome

Biol. 18, 174 (2017).

57. R Core Team. R: A Language and Environment for Statistical Computing. Preprint at

https://www.R-project.org/ (2021)

58. Huber, W., Carey, V. J., Gentleman, R., Anders, S., Carlson, M., Carvalho, B. S., Bravo, H. C., Davis, S.,

22

http://paperpile.com/b/WjPhqv/WGnbA
https://plae.nei.nih.gov/
http://paperpile.com/b/WjPhqv/WGnbA
http://paperpile.com/b/WjPhqv/kEdU4
http://paperpile.com/b/WjPhqv/kEdU4
http://paperpile.com/b/WjPhqv/kEdU4
http://paperpile.com/b/WjPhqv/kEdU4
http://paperpile.com/b/WjPhqv/v1uqR
http://paperpile.com/b/WjPhqv/v1uqR
http://paperpile.com/b/WjPhqv/v1uqR
http://paperpile.com/b/WjPhqv/v1uqR
https://data.mendeley.com/datasets/x53tts3zfr/2
http://paperpile.com/b/WjPhqv/v1uqR
http://paperpile.com/b/WjPhqv/EiUga
http://paperpile.com/b/WjPhqv/EiUga
http://paperpile.com/b/WjPhqv/EiUga
http://paperpile.com/b/WjPhqv/EiUga
http://paperpile.com/b/WjPhqv/EiUga
http://paperpile.com/b/WjPhqv/EiUga
http://paperpile.com/b/WjPhqv/EiUga
http://paperpile.com/b/WjPhqv/EiUga
http://paperpile.com/b/WjPhqv/EiUga
http://paperpile.com/b/WjPhqv/EiUga
http://paperpile.com/b/WjPhqv/EiUga
http://paperpile.com/b/WjPhqv/EiUga
http://paperpile.com/b/WjPhqv/EiUga
http://paperpile.com/b/WjPhqv/W58S5
http://paperpile.com/b/WjPhqv/W58S5
http://paperpile.com/b/WjPhqv/5Lh07
https://www.r-project.org/
http://paperpile.com/b/WjPhqv/5Lh07
http://paperpile.com/b/WjPhqv/N0ram


Gatto, L., Girke, T., Gottardo, R., Hahne, F., Hansen, K. D., Irizarry, R. A., Lawrence, M., Love, M. I.,

MacDonald, J., Obenchain, V., Oleś, A. K., Pagès, H., Reyes, A., Shannon, P., Smyth, G. K., Tenenbaum,

D., Waldron, L. & Morgan, M. Orchestrating high-throughput genomic analysis with Bioconductor. Nat.

Methods 12, 115–121 (2015).

59. Virshup, I., Rybakov, S., Theis, F. J., Angerer, P. & Wolf, F. A. anndata: Access and store annotated data

matrices. J. Open Source Softw. 9, 4371 (2024).

60. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling for single-cell

transcriptomics. Nat. Methods 15, 1053–1058 (2018).

61. Gayoso, A., Lopez, R., Xing, G., Boyeau, P., Valiollah Pour Amiri, V., Hong, J., Wu, K., Jayasuriya, M.,

Mehlman, E., Langevin, M., Liu, Y., Samaran, J., Misrachi, G., Nazaret, A., Clivio, O., Xu, C., Ashuach, T.,

Gabitto, M., Lotfollahi, M., Svensson, V., da Veiga Beltrame, E., Kleshchevnikov, V., Talavera-López, C.,

Pachter, L., Theis, F. J., Streets, A., Jordan, M. I., Regier, J. & Yosef, N. A Python library for probabilistic

analysis of single-cell omics data. Nat. Biotechnol. (2022). doi:10.1038/s41587-021-01206-w

62. Lotfollahi, M., Naghipourfar, M., Luecken, M. D., Khajavi, M., Büttner, M., Wagenstetter, M., Avsec, Ž.,

Gayoso, A., Yosef, N., Interlandi, M., Rybakov, S., Misharin, A. V. & Theis, F. J. Mapping single-cell data to

reference atlases by transfer learning. Nat. Biotechnol. (2021). doi:10.1038/s41587-021-01001-7

63. Xu, C., Lopez, R., Mehlman, E., Regier, J., Jordan, M. I. & Yosef, N. Probabilistic harmonization and

annotation of single-cell transcriptomics data with deep generative models. Mol. Syst. Biol. 17, e9620

(2021).

64. Slowikowski, K., @slowkow, @johnarevalo, @pinin4fjords & @bli. harmonypy: Integrate multiple

high-dimensional datasets with fuzzy k-means and locally linear adjustments. (GitHub). at

<https://github.com/slowkow/harmonypy>

65. Petrova, K., @potulabe, @serjisa & @maarten-devries. symphonypy: Port of symphony algorithm of

single-cell reference atlas mapping to Python. (GitHub). at

<https://github.com/potulabe/symphonypy>

66. Heumos, L., Schaar, A. C., Lance, C., Litinetskaya, A., Drost, F., Zappia, L., Lücken, M. D., Strobl, D. C.,

Henao, J., Curion, F., Single-cell Best Practices Consortium, Schiller, H. B. & Theis, F. J. Best practices for

23

http://paperpile.com/b/WjPhqv/N0ram
http://paperpile.com/b/WjPhqv/N0ram
http://paperpile.com/b/WjPhqv/N0ram
http://paperpile.com/b/WjPhqv/N0ram
http://paperpile.com/b/WjPhqv/EY7gY
http://paperpile.com/b/WjPhqv/EY7gY
http://paperpile.com/b/WjPhqv/q5VrM
http://paperpile.com/b/WjPhqv/q5VrM
http://paperpile.com/b/WjPhqv/Hd6PK
http://paperpile.com/b/WjPhqv/Hd6PK
http://paperpile.com/b/WjPhqv/Hd6PK
http://paperpile.com/b/WjPhqv/Hd6PK
http://paperpile.com/b/WjPhqv/Hd6PK
http://dx.doi.org/10.1038/s41587-021-01206-w
http://paperpile.com/b/WjPhqv/evJi3
http://paperpile.com/b/WjPhqv/evJi3
http://paperpile.com/b/WjPhqv/evJi3
http://dx.doi.org/10.1038/s41587-021-01001-7
http://paperpile.com/b/WjPhqv/D7Z4o
http://paperpile.com/b/WjPhqv/D7Z4o
http://paperpile.com/b/WjPhqv/D7Z4o
http://paperpile.com/b/WjPhqv/K8wLC
http://paperpile.com/b/WjPhqv/K8wLC
http://paperpile.com/b/WjPhqv/K8wLC
https://github.com/slowkow/harmonypy
http://paperpile.com/b/WjPhqv/K8wLC
http://paperpile.com/b/WjPhqv/PZcTx
http://paperpile.com/b/WjPhqv/PZcTx
http://paperpile.com/b/WjPhqv/PZcTx
https://github.com/potulabe/symphonypy
http://paperpile.com/b/WjPhqv/PZcTx
http://paperpile.com/b/WjPhqv/MczB
http://paperpile.com/b/WjPhqv/MczB


single-cell analysis across modalities. Nat. Rev. Genet. 1–23 (2023). doi:10.1038/s41576-023-00586-w

67. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer New York, 2010).

68. Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., Grolemund, G., Hayes, A.,

Henry, L., Hester, J., Kuhn, M., Pedersen, T., Miller, E., Bache, S., Müller, K., Ooms, J., Robinson, D.,

Seidel, D., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K. & Yutani, H. Welcome to the

Tidyverse. JOSS 4, 1686 (2019).

24

http://paperpile.com/b/WjPhqv/MczB
http://dx.doi.org/10.1038/s41576-023-00586-w
http://paperpile.com/b/WjPhqv/hJSpT
http://paperpile.com/b/WjPhqv/dKmWK
http://paperpile.com/b/WjPhqv/dKmWK
http://paperpile.com/b/WjPhqv/dKmWK
http://paperpile.com/b/WjPhqv/dKmWK



