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The Xenium In Situ platform is a new spatial transcriptomics product
commercialized by 10x Genomics, capable of mapping hundreds of genes
insitu at subcellular resolution. Given the multitude of commercially
available spatial transcriptomics technologies, recommendationsin
choice of platform and analysis guidelines are increasingly important.
Herein, we explore 25 Xenium datasets generated from multiple tissues
and species, comparing scalability, resolution, data quality, capacities and
limitations with eight other spatially resolved transcriptomics technologies
and commercial platforms. In addition, we benchmark the performance
of multiple open-source computational tools, when applied to Xenium
datasets, in tasks including preprocessing, cell segmentation, selection of
spatially variable features and domain identification. This study serves as
anindependent analysis of the performance of Xenium, and provides best
practices and recommendations for analysis of such datasets.

Imaging-based methods for spatially resolved transcriptomics
(SRT) enable targeted and highly multiplexed detection of indi-
vidual RNA molecules using fluorescence-based microscopy. These
methods are subdivided on the basis of their chemistry into in situ
hybridization-based (ISH) (for example MERFISH' and SeqFISH?) and
in situ sequencing-based (ISS) (for example in situ sequencing’ and
STARmap*). Similar to the rapid adoption of single-cell RNA-sequencing
(scRNA-seq), commercial products based on these techniques could
accelerate their dissemination. Several companies have recently
launched imaging-based SRT products (for example CosMx by
Nanostring, Molecular Cartography by Resolved Biosciences and
seqFISH by Spatial Genomics). Among those, Xenium, a product from
10x Genomics based on ISS, claims to generate maps of hundreds of
genesatasubcellular resolution. Although Xenium datasets have been
used by 10x Genomics to demonstrate the potential of the technology®

and benchmark it against specific platforms®’,acomprehensive inde-
pendent evaluation of the platform is still needed. In this study, we
explore the characteristics, capabilities and limitations of data from
the Xenium platform compared with other SRT technologies. In addi-
tion, we generate optimized pipelines for the analysis of Xenium data
for several computational tasks, highlighting the biological insights
that they can provide (Fig. 1a).

Results

Xenium datasets offer high-quality tissue population data
Toexplorethe characteristics of Xenium data, we compiled 25 datasets
from10x Genomics and our own Xenium instruments (Methods), derived
from 14 experiments. These samples span a variety of types, altogether
representing a total of 1.2 billion reads and 6 million cells (Fig. 1b and
Supplementary Table1). The number of genes profiled per sample type
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(the ‘panel’) ranged between 210 and 392 genes. All datasets included
the three-dimensional (3D) position (x, y and z), gene identity and
phred-based quality value (quv) of every decoded read, with 81% (range,
72-91%) of the reads on average exhibiting high quality (qu>20) (Fig.1b
and Supplementary Table 1). Using Xenium’s default segmentation, an
average of 186.6 reads per cell was observed throughout the datasets,
with76.8% of reads being assigned to cells, with no obvious differences
between fresh frozen (FF) and formalin-fixed paraffin-embedded (FFPE)
sections (Fig. 1b). Only 0.21% of the cells had fewer than ten assigned
reads and were excluded from further analysis, positioning Xenium as
asuitable platform for assessing cell-type frequencies in tissues.

Xenium enables reproducible identification of populations

To further explore the Xenium datasets’ characteristics, we examined
seven adjacent full coronal datasets from mouse brains. Xenium’s
cell-identification algorithm begins with segmentation of DAPI-stained
nuclei, followed by an expansion of the segmentation masks. Using the
cell-by-gene matrix of segmented nuclei, we identified 50 cell types that
couldbe mapped onto thetissueto create a cell-type map (Fig.1c,d and
Methods). When assigning these cells to anatomical tissue domains
(Methods), we observed a consistent distribution of domain-specific
celltypes® (Extended Data Fig. 1g-i). Datasets generated inindependent
experiments onsimilar samples usingidentical probe panels exhibited
astrongsimilarity in gene-specific detection efficiency, dispersion and
reads per cell (Extended Data Fig.1a-f). Cell-type proportions remained
consistent across experiments, with notable differences observed
only in the less abundant population owing to biological differences
between samples (Extended DataFig. 1e).

Xenium retains key 3D and subcellular cell information
Xenium datasets provide the 3D position of each read, yet this spatial
dimension is often overlooked during cell segmentation. To address
this, we used segmentation-free models in which spatially resolved
molecular signatures are identified independently of segmentation.
The more parsimonious nature of segmentation-free approaches, which
analyze signals asthey are detected, enables investigation of local signal
properties before the spatial assignment into cells. Using one of these
approaches, SSAM’ de novo mode, we identified 44 cell-type-specific
clusters (Extended Data Fig.2a). Thisapproach consistently linked extra-
nuclear reads to specific signatures without requiring cell segmentation.
Xenium’s 3D coordinates were used to detect potential mixed-source
signals from cells overlapping strongly in the z-dimension (Fig. 1e and
Extended DataFig. 2b-e), found in 1.8% of the total cells.

Motivated by the insights that segmentation-free analysis
can provide, we next focused on exploring its potential to uncover
subcellular patterns. Across datasets, we identified some mRNAs

enriched in the nucleus, and others in the cytoplasm (Fig. 1f-h).
To systematically identify subcellular mRNA clusters, we applied
Points2Regions'®, a second segmentation-free model, on mouse brain
datasets (Fig. liand Extended Data Fig. 3a). We classified these clusters
as nuclear, cytoplasmic or extracellular (Extended Data Fig. 3b). As
expected, most of these subcellular clusters exhibited associations
with specific cell types. However, we also observed subtle yet distinct
expression variations between nuclear and cytoplasmic clusters linked
to the same cell population (Fig. 1i and Extended Data Fig. 3c,d), indi-
cating that Xenium’s signal density facilitates the in situ identification
of subcellular structures. Multiple studies have illustrated how these
differences canbe used to understand RNA biology and tissue dynam-
ics™. Overall, our analysis underscores the value of interpreting spatial
datasets as 3D subcellular maps, rather than reducing themto expres-
sion matrices with only two-dimensional (2D) spatial information.

Xenium detection efficiency matches ISH

To gaininsightsinto the limitations and benefits of Xenium compared
with other SRT platforms, we conducted a comparative analysis of
various quality metrics. Given the comprehensive understanding of
the cellular composition of the mouse brain established through many
studies using single-cell RNA-sequencing (scRNA-seq)®'>* and various
SRT methods>**%, this tissue serves as an ideal benchmark. We set
out to evaluate Xenium against available datasets from similar areas
of the mouse brain. Our analysis included imaging-based SRT data-
sets generated using open-source technologies, as well as commercial
platforms (Vizgen’s MERSCOPE, high-sensitivity ISS (HS-1SS)?°, MER-
FISH®, Resolve Biosciences’s Molecular Cartography and Nanostring’s
CosMx). For sequencing-based SRT, we used a publicly available Visium
dataset”.. To facilitate a fair comparison of the datasets, cells were
resegmented using a common segmentation algorithm (Cellpose®),
and reads were reassigned to individual cells (Fig. 2a, Extended Data
Fig. 4b,g and Methods). To minimize potential segmentation errors
that could affect our specificity and efficiency estimates, we used a
conservative nuclei-based segmentation approach, wherein only a
limited proportion of the detected reads (<10-30%) were assigned
to individual cells across platforms. Furthermore, tissues were ana-
tomically annotated, and cells from common brain regions (isocortex,
hippocampus and thalamus) were kept for further comparison (Fig. 2a
and Extended Data Fig. 4a). Different technologies profiled varying
numbers of genes, resulting in very different numbers of reads per cell,
with CosMx yielding the highest number (Fig. 2b). Broadly speaking,
the reads detected per cell can be increased by simply profiling more
genes. Given the current commercial trend of proposing higher-plex
panels, these numbers will most likely increase with time; therefore, the
analyzed datasets provide only a current snapshot. We chose instead

Fig.1| Overview of the analysis and Xenium’s main characteristics. a, Overview
ofthe analysis performed on Xenium datasets. b. Summary table of the Xenium
datasets, detailing dataset characteristics, descriptors and quality metrics. IDC,
invasive ductal carcinoma; DCIS, ductal carcinomain situ; ILC, invasive lobular
carcinoma; MS, multiple sclerosis. ¢, Uniform manifold approximation and
projection (UMAP) of cells in seven mouse brain sections, colored by cell type.
ACA, anterior cerebral artery; ARH, arcuate nucleus of the hypothalamus; BLA,
basolateral amygdala; BMA, basomedial amygdala; CAl, cornu ammonis areal;
CA3, cornuammonis area 3; Car3, carbonic anhydrase 3; CEA, central amygdala;
Chol, cholinergic; CR, calretinin; CT, cortical transition; CTX, cortex; DG, dentate
gyrus; ENT, entorhinal cortex; ET, embryonic time; GABA, gamma-aminobutyric
acid; Glut, glutamate; Gpi, globus pallidus pars interna; HPF, hippocampal
formation; IT, interneuron; LA, lateral amygdala; LH, lateral hypothalamus;

LS5, layer 5; L6, layer 6; MEA, medial amygdala; MSN, medium spiny neuron;

NDB, nucleus of the diagonal band; NP, nucleus pontis; OPC, oligodendrocyte
precursor eell; Otp, orthopedia homeobox; PAL, pallidum; PF, Purkinje fiber; PH,
posterior hypothalamus; ProS, prosubiculum; PSTN, pre-subthalamic nucleus;
PVH, paraventricular hypothalamus; Pvp, paraventricular nucleus, posterior

part; RSP, rostral superior parietal; RT, reticular thalamus; Scg, superior cervical
ganglion; SI, substantiainnominata; Slc17a6, solute carrier family 17 member

6; STN, subthalamic nucleus; STR, striatum; STRv, striatum ventral part; Thal,
thalamus; VLMC, vascular leptomeningeal cells; ZI, zona incerta. d, Spatial map
of celltypesin c; replicate 1is shown. The green square highlights the region of
interest (ROI) ine. e, Spatial maps illustrating 3D coherence in Xenium datasets,
including xy, xzand yz views of the ROI. f, Box plot of subcellular distribution for
genes enriched in nucleiand cytoplasm in mouse brain (left) and glioblastoma
(right) datasets. The box plot represents percentiles (0, 25,50, 75and 100),
excluding outliers, with the center representing the median. g,h, Spatial

maps showing transcript locations of specific genes in mouse brain (g) and
glioblastoma (h) datasets. i, Map of transcripts in oligodendrocytes, colored

by Points2Regions cluster in one of the mouse brain datasets (msbrain2). j, Box
plotof the distribution of the Points2Regions clusters 0,37,46,80 and 89 iniin
relation to their distance to the nuclei edge. The box plot represents percentiles
(0,25,50,75and 100), excluding outliers, with the center representing the
median. k, Differentially expressed genes for each subcellular clusterini.
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to focus on quantifying gene-specific characteristics of the different
assays. We calculated the detection efficiency for individual genes for
eachtechnology by comparing read counts obtained for each gene with
areference region-matched scRNA-seq dataset®. Our analysis revealed
that Xenium was the most sensitive ISS-based technique: its sensitivity
was similar to that of ISH-based technologies such as MERSCOPE and
Molecular Cartography (Fig. 2c and Extended Data Fig. 4c,e). Notably,
all commercial SRT platforms, unlike their homemade counterparts®,

demonstrated a very similar detection efficiency, highlighting the
convergence of platforms in this aspect. For Xenium, this detection
efficiency was found to be between 1.2 and 1.5 times higher than that
of scRNA-seq (Chromium v2), depending on the metric and region
analyzed (Fig.2c and Extended DataFig. 4c,e). To further validate these
observations, we independently clustered the cells from each data-
set using standardized analysis pipelines, identified shared popula-
tions and compared gene expression levels across technologies. This
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revealed acomparable number of molecules detected per cellbetween
Xenium and other commercial SRT platforms (Fig. 2e).

To contextualize Xenium’s performance alongside
sequencing-based methods, we compared it with Visium (Fresh Fro-
zen)?, the most widely used SRT platform. Given that Visium doesn’t
have single-cell resolution, we assessed pseudo-bulk gene-specific
readsidentified by each method foracommon anatomical region, nor-
malized by area. Results showed that Xenium was more sensitive than
Visiumat the tissue level, detectingamedian of 12.8 times more reads
(Fig.2g). Notably, some genes that were barely detected by Visium were
found to be highly abundant by Xenium.

Efficient detectionis crucial in SRT assays, but equally vital is assay
specificity. To evaluate the latter, we implemented a metric called
negative co-expression purity (NCP), which quantifies the percentage
of non-co-expressed genes in our reference single-cell dataset that do
not appear to be coexpressed in each SRT dataset. Therefore, a high
NCP, close to 1, indicates a high specificity in the dataset. Overall, all
the different SRT technologies presented a mean high specificity
(NCP > 0.8), with HS-ISS and Molecular Cartography being the most
specific technologies (Fig. 2d). The specificity of Xenium was slightly
lower than that of other commercial platforms, but was consistently
higher than that of CosMx, which presented the lowest values. These
results remained consistent after removing all highly expressed genes,
which could resultinlower NCP scores owing to abroader expression
across cells (Extended Data Fig. 4d). Last, we observed differences in
the subcellular distribution of profiled reads across different technolo-
gies (Fig. 2f). MERFISH and ISS methods displayed a higher concentra-
tion of reads near the cellular centroid, whereas ISH-based commerecial
platforms (CosMx, Molecular Cartography and MERSCOPE) had reads
positioned farther away. These discrepancies were evident when com-
paring individual genes across the various technologies (Extended
DataFig. 4f).

Nuclear expansion influences cell-type expression profiles
Nuclear expressionsignatures are typically sufficient for defining cell
populations in situ, but incorporating cytoplasmic reads could then
enhance cell clustering and labeling. Under this assumption, Xenium’s
nuclear segmentationis followed by a default radius expansion of 15 pm.
This expanded cell-by-gene matrix allows for the identification of cell
typesthatare organized into region-specific clusters, in contrast with
the more homogeneous classifications achieved using unexpanded
segmentation (Extended Data Fig. 1h). For instance, thalamic oligo-
dendrocytes were grouped together with thalamic astrocytes, rather
than with other oligodendrocytes (Extended Data Fig. 1i), indicating
that expansion captures domain-specific expression signatures.

Toidentify the optimal cell expansion, we defined nuclear expres-
sion signatures for each cell type and domain-specific background
expression signatures (Methods). Our analysis revealed that tran-
scriptslocated more than10.71 um, onaverage, from the cell centroid
exhibited a higher gene expression correlation with domain-specific
background signatures than with nuclear cell-type-specific signatures
(Fig.3a,b). This distance likely reflects the average radius of the profiled
cells, including both nuclei and cytoplasm. Given that nuclei in this
dataset presented a radius of 5.06 um, on average, the ideal expan-
sion of cells inthe samples should be 5.64 pum. However, different cell
types presented different optimal expansion distances (Fig. 3b). Thus,
segmentation strategies based on the identification of nucleifollowed
by arigid expansion might not provide the best solution.

Baysor and Cellpose outperform standard Xenium
segmentation

Theinfluence of cell segmentation on cell-typing accuracy motivated
us to explore alternative segmentation methods. We benchmarked
the performance of Xenium segmentation against commonly used
segmentation strategies (Fig. 3c, Extended DataFig. 5a,b and Methods).

These strategies canbe broadly categorized as staining-based, inwhich
the position of cellsis determined by an auxiliary staining such as DAPI
(Watershed”, MESMER? and Cellpose??); read-based, inwhich cells are
defined on the basis of the read density and composition of tissues
(Baysor?); or mixed models, inwhichbothstaining and the position of
readsis used for defining cells (Baysor” and Clustermap?®). Segmenta-
tion based on equally distributed bins across the tissue (binning) was
includedinthe comparison as an example of simplistic segmentation.
We also applied various cell expansions to each segmentation output
(1,2,5,10 and 15 pm).

We next identified groups of strategies that performed similarly
(Fig. 3d and Extended Data Fig. 5d). Staining-based strategies using
DAPI generated similar outputs, with cell expansion being the force
driving their differences. Inaddition, Baysor-based, Clustermap-based
and binning strategies clustered according to method, indicating
method-specific segmentation output. We defined the optimal seg-
mentation strategy as the one maximizing the proportion of reads
assigned to cells while maintaining specific expression patterns,
quantified by negative marker purity (NMP) (Methods) (Fig. 3e and
Extended Data Fig. 5¢,e). NMP calculates the percentage of detected
reads expected in each identified cell type on the basis of a reference
scRNA-seq”. We found that Baysor-based strategies, particularly Bay-
sor combined with Xenium'’s nuclei segmentation (BA2 P0.8), represent
the best segmentation strategy (Fig. 3e and Extended Data Fig. 5e).
Moreover, including Xenium’s segmentation as a prior resultsin fewer
missed cells (Extended Data Fig. 5b,c). These results were consistent
across all datasets (Extended DataFig. 5d,e).

Finally, we jointly processed the cells segmented using the best
strategy (BA2 P0.8) alongside those defined by Xenium'’s nuclear seg-
mentation (Fig. 1c). Although cells defined by Baysor had a higher
count per cell, the identified cellular populations were the same across
bothsegmentationstrategies (Fig. 3f-h), with mostly mild differences
in cell-type abundance. Overall, our analysis indicates that Xenium'’s
default nuclear segmentation masks provide adequate information
for defining the main populations detectable in situ, comparable to
more-sophisticated segmentation strategies.

Preparing Xenium data: best practices in preprocessing
Toidentify populationsinsitu, cell-by-gene dataare typically prepro-
cessed. The preprocessing of in situ datasets involves essential steps,
suchasfiltering out low-quality cells and genes, applying appropriate
transformations, reducing dimensionality, and clustering. These steps,
derived from the single-cell field, can have amajorimpacton cell-type
identificationinsitu. Thus, we aimed to define the optimal preprocess-
ing steps for Xenium data.

In the absence of a reliable cell-type reference for Xenium data-
sets, we used scRNA-seq datasets from Census® as our starting point
(Methods). Census datasets were transformed to resemble Xenium
data by (1) reducing the number of captured genes, (2) varying the
detection efficiency of individual genes and (3) introducing the effect
of mis-segmentation and technical noise (Fig. 4a, Extended DataFig. 6a
and Methods). Our preprocessing approach involved multiple steps,
including scaling, normalization, highly variable feature (HVF) selec-
tion and clustering. We considered omitting certain steps and used
multiple hyperparametersin each process (Extended Data Fig. 6aand
Methods). Finally, we assessed the similarity between the new clusters
and the reference labels, identifying preprocessing workflows that
maximized accurate cell grouping into clusters. Of note, we found a
set of workflows that, when applied, consistently maximizes the simi-
larity between the original and newly generated clusters (Fig. 4b and
Extended Data Fig. 6b). The most effective method consisted of: (1)
library-size-based normalization, with the total library size set to100;
(2) log-transformation; (3) scaling; (4) the construction of a k-nearest
neighbors graph usingall principal components and 16 neighbors; and
(5) Louvain clustering (Fig. 4c). Surprisingly, some top-performing
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Fig. 4| Assessing the best preprocessing methods for Xenium. a, Workflow
diagram showing simulation of Xenium-like datasets from CELLXxGENE Census
single-cell data. b, Heatmap ranking preprocessing workflows on the basis of
alignment with reference cell types, with workflows sorted from best (blue) to
worst (white). Asummary of the processing setups is included (right), with colors
indicating the preprocessing steps chosen, as indicated in Extended Data Fig 6b.
Epith., epithelium; p.z., peripheral zone; t.z., transition zone; duod-jejunal junct.,
duodenojejunal junction. ¢, Top 20 preprocessing paths, with the best path
marked inred. PCs, principal components; MCV, Markov cluster algorithm. d. Bar
plot of ARI, showing the effects of different preprocessing steps on clustering

consistency relative to ground truth. e, Bar plot of ARI. comparing workflow
consistency across real Xenium datasets with different preprocessing steps.

f, Heatmap of SVF scores across algorithms in abreast-cancer dataset. Example
spatial maps of non-SVF, partial and SVF are shown (top). g,h, Mean agreement
(Kendall’s tau) (g) and Jaccard similarity index (h) showing agreement in SVF gene

rankings across datasets. i,

Proportion of genes (left) and control probes (right)
identified as SVFs across Xenium datasets. Algorithm colors indicate whether

each algorithmused 5,000 cells or the full sample. j. Scatter plot comparing the
proportion of control probes with features identified as SVFs by the algorithm,
with colors representing 5,000-cell or full-sample input.
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workflows omitted the log-transformation step but maintained scal-
ing, emphasizing that there is no universal best way to process spatial
datasets. We next conducted parameter-tuning analysis, taking as a
gold standard the previously described best-performing workflow.
Using simulated datasets, we identified that the most essential fac-
tors in the processing workflow were the normalization method, the
library size used in library-size-based normalization, scaling and the
number of principal components, selected when building the k-nearest
neighbors graph (Fig. 4d).

After using simulated data toidentify the best preprocessing work-
flows, we explored the impact on real Xenium data. Using the top pre-
processing workflow as areference, we conducted aparameter-tuning
analysis (Fig. 4e). We found that some preprocessing steps, such as
HVF selection, normalization and data scaling, were crucial, as their
absence led to dramatic differences in clustering outcomes. These
results were consistent across datasets, regardless of the metrics used
to compute clustering similarity, and closely mirrored results obtained
using simulated datasets (Extended Data Fig. 6¢c-e).
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Selection of spatially variable features using Xenium datasets
Asanalternative to HVF selection, identifying spatially variable features
(SVFs) is useful in distinguishing genes that explain the main spatial
variation patterns within tissue. Given the variety of methods, the
choice of algorithm could influence the results. To better understand
the differences, we compared the performance of the commonly used
methods developed for this task (Squidpy’s Moran’s 1and Geary’s C*°,
Hotspot®, SomDE?, SpatialDE®, Sinfonia**, Seurat’s mark variogram
and Moran’s I and Giotto*), using full Xenium datasets when possible.
Because some algorithms could not be applied to the full datasets owing
totheirlong expected execution times (Extended Data Fig. 7a), we also
compared their performance on a subset of 5,000 cells.

Despite the large disparity in the proportion of SVFs identified
by each algorithm, we observed a good agreement in gene ranking
across most algorithms, with the exception of SpatialDE, Seurat’s mark
variograms’s and Squidpy’s Geary’s C (5,000 cells) (Fig. 4f,g). However,
algorithms differ when classifying genes as SVFs (Fig. 4h-j), with some
methods consistently identifying a large proportion of the panel as
SVFs (Seurat or Sinfonia), and others selecting a lower proportion
(hotspot, Squidpy). Because Xenium datasets include some control
probes, which by nature are not going to be spatially variable, we used
themto quantify the percentage of false positive features detected by
each algorithm. None of the SVF algorithms successfully classified all
control probes asnon-variable features, with Hotspot being the closest
one, selecting <5% of control genes as SVFs. As expected, algorithms
that selected a higher proportion of SVFs also reported more false
positives, suggesting that the available algorithms might still confuse
noisy patterns with spatial variability. Notably, this was not true for the
algorithm used to identify HVFs, which detected all control probes
as non-variable features while still consistently detecting ~18% of the
genes as HVFs (Fig. 4i,j).

Benchmarking gene imputation tools on Xenium datasets
Targeted SRT methods are typically constrained by the number of
genes measured simultaneously. Imputation approaches overcome this
limitation by predicting gene expression from a reference scRNA-seq
ontoacellular-resolution SRT dataset”. We sought to benchmark the
performance of seven methods (gimVI*®, SpaGE*, Tangram*’, Liger*,
Seurat®, SpaOTsc*’ and NovoSpaRc*?) using the workflow developed
by Lietal.” (Fig. 5a and Methods).

Imputation performance was assessed by Pearson correlation
coefficient (PCC), structural similarity index (SSIM), root mean square
error (RMSE) and the Jensen-Shannon divergence (JS), with a higher
PCCandSSIM and alower RMSE and S value indicating better predic-
tion accuracy. Using these metrics, we consistently identified SpaGE
as the optimal method (Fig. 5b). In addition, Seurat, Tangram and
SpaOTsc achieved an overall high performance. Surprisingly, gimVI's
performance was lower than one previously reported when using it to
integrate scRNA-seq with other SRT technologies®.

Our workflow compares detected and imputed gene expression
of individual genes, making it an effective method for identifying
genes withoverall low agreement between scRNA-seq and Xenium. By
quantifying gene-specific differences using the PCC across all genes
and methods, we observed anenormous difference in the imputation
performance between genes, consistent across imputation methods
(Fig. 5¢). We discovered that, among the characteristics we exam-
ined, expression level and overall correlation with other genes in the
panel were the most strongly associated with effective imputation.
By contrast, other factors, such as the subcellular localization of the
transcript or its variability, did not significantly affect the imputation
performance. (Fig. 5d-f)

Assessing computational tools to explore tissue architecture
Identifying the architecture of tissue can be helpful to understand its
function. Identifying reliable tools for defining these domains is of

greatinterest, yet noindependent comparisonis available. Therefore,
we benchmarked five domain-identification algorithms (Banksy**,
DeepST*, SpaGCN*®, SPACEL*” and STAGATE*®) against the regions
identified through expert manual annotation from the coronal P56
section of the Allen Brain Atlas* (Fig. 5¢ and Extended Data Fig. 7b).
We also included two simple methods to identify cell compartments
(binning-based and neighborhood-based*’). We found that the
domains predicted by binning-based clustering consistently exhib-
ited the highest similarity to manual annotations, outperforming
more-sophisticated algorithms (Fig. 5h and Extended Data Fig. 7c).
However, these findings might be influenced by the specific archi-
tecture of the tissue type analyzed, meaning that the performance of
various methods could vary in different tissue types.

Best practices for processing and analyzing Xenium datasets
On the basis of the evidence presented here, we propose an optimal
approach for processing and analyzing Xenium datasets. We have
condensed this information in an end-to-end pipeline with the aim of
helping Xenium users to maximize the value of their data.

In brief, taking the data obtained from Xenium as aninput, first
we would re-segment the cells. The optimal algorithm involves two
steps: first, identifying nuclei using Cellpose* and second, assign-
ing reads to individual cells using Baysor?. Cellular expansion is
unnecessary, because extra-nuclear reads are assigned directly
by Baysor. If cellular segmentation results in poor performance,
segmentation-free methods such as SSAM’ or Points2Regions'’ can
be used to identify molecular signatures without identifying indi-
vidual cells. After segmentation, a cell-by-gene matrix is generated,
which can be taken as an input for cell-type identification through
standard scRNA-seq workflows consisting of (1) cell filtering, (2)
log-transformation and normalization, (3) identification of the main
principal components, (4) dimensionality reduction and (5) cluster-
ing. To rank SVFs, various algorithms can be used; however, they
mightyieldinconsistent resultsin their selection of spatially variable
genes. Inaddition, if scRNA-seq or single-nucleus RNA-seqis available,
geneimputation can be performed using algorithms such as Seurat,
SpaGE* or Tangram*, Finally, for the identification of domains, using
binning-based strategies or algorithms, such as Banksy** or SPACEL",
can be a convenient solution.

Discussion

In this study, we present an independent exploration and evaluation
of Xeniumin situ datasets. Xenium can be used to generate highly mul-
tiplexed spatial gene expression maps with subcellular resolution.
The identification of hundreds of reads per cell, combined with the
extensive tissue characterization, facilitates the easy identification
of cellular populations in situ.

The detection efficiency of Xenium was comparable to that of
Chromium v2 and slightly higher than that of other commercially
available platforms, while maintaining a high specificity. These fea-
tures are consistent across samples, as shown in recent studies®’.
Notably, however, most recently launched SRT platforms demon-
strate similar performance in most metrics, with the mostimportant
difference being the number of profiled genes, a metric expected to
change over time as new gene panels are introduced. To enhance our
understanding of the strengths and weaknesses of each assay, further
independent comparisons of technical aspects, such asimaging time,
experimental costs, user-friendliness and reproducibility, are crucial.
Several processing steps were identified to be crucial for analyzing
Xenium datasets, with segmentation highlighted as one of the most
important. The current segmentation provided by 10x Genomics
effectively identifies cell nuclei and gathers sufficientinformation to
identify the main cell populationsin the analyzed sections. Cell mask
expansion after segmentation can negatively impact the characteriza-
tion of cell populations by misassigning reads to neighboring cells.
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We found that Baysor in combination with Cellpose segmentation
outperformed the rest of the strategies, effectively defining individual
cells on the basis of both the density and identity of individual reads
insitu. This strategy enables Baysor to identify cells of varying sizes
and compositions; it can even detect cells whose nuclei are not cap-
tured inthe section. This can happen, for example, when the section-
ing plane separates a nucleus from the bulk of its corresponding cell
body. Overlapping cells present acommon but challenging segmen-
tation issue, owing to the 2D nature of most of the algorithms used.
Thus, implementing new segmentation algorithms that account for
the 3D structure of the dataand incorporating additional staining for
cellular membranes would facilitate the correct identification of indi-
vidual cells. In this context, segmentation-free cell-typing methods
represent analternative to the typical segmentation-then-clustering
workflow, enabling identification of cell populations and subcel-
lular patterns. The exploration of subcellular patterns represents an
underexplored layer of information that isnow becoming accessible
thanks to the sensitivity and resolution of new imaging-based SRT
methods, such as Xenium.

Given the extensive range of available methods, only a subset of
the most popular techniques was included in the benchmarking pro-
cessfor varioustasks; therefore, the top-performing method for each
task might not be the best one available. In addition, some published
algorithms approached the tasks in an alternative manner, result-
ing in non-comparable outputs (for example, SpaGCN*® identifies
domain-specific SVFs) and were not suitable for benchmarking. Overall,
although some efforts have beenmade, amore systematic benchmark-
ing of these and other algorithms using datasets generated in different
tissues with different experimental designs would be beneficial to
decipher when to use each algorithm. To achieve this, new and more
diverse datasets are essential.

In summary, Xenium represents an overall improvement over
other ISS-based technologies. Its increased detection efficiency and
high specificity, together withits resolution, enable the identification
of cell types in their spatial context, making it a useful tool to explore
spatial biology.

Online content
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Methods

Xenium experiments

Fresh frozen male mouse brain tissue sample (no. 676) from an
8-week-old C57BL/6 strain was purchased from Adlego Biomedical
AB/Scantox under ethical permit16316-2022 and profiled using in situ
Xenium platform (10x Genomics). The predesigned 248-gene Xenium
Mouse Brain Gene Expression panel was profiled across the 4 sec-
tions by the In Situ Sequencing Infrastructure Unit (Science for Life
Laboratory), where probe hybridization, ligation and rolling circle
amplification were performed, following the manufacturer’s proto-
col (CGO00582 Rev E, 10x Genomics). Background fluorescence was
chemically quenched. Imaging and signal decoding were done using
the Xenium Analyzer instrument (10x Genomics).

Xenium dataset processing

The25datasetsincluded in this study were formatted as anndata using
a customized function (https://github.com/Moldia/Xenium_bench-
marking) and processed using Scanpy (v1.9.1). To identify main popu-
lations in situ, cell-by-gene raw matrices provided by 10x Genomics
software were log-transformed and normalized. Neighborhood graphs
were then computed considering 40 principal components and 12
neighbors, followed by Leiden clustering. Cell-type annotations were
performed using differentially expressed marker genes previously
described in Zhang et al.”>. The same preprocessing steps were per-
formed on cell-by-gene matrices obtained for alternative segmenta-
tion methods.

Annotation of mouse brain architecture

Tissue domains from SRT datasets were manually annotated using the
mouse coronal P56 sample from Allen Brain Atlas*. Datasets were first
processed as described above and then used to create plots display-
ing cell cluster or spot identity, overlaid on their respective DAPI-,
immunofluorescence- or H&E-stained images. Region delimitations
were created using enclosed vectorized Bézier curves, which were
saved as polygons in scalable vector graphics format (.svg). Annota-
tions were integrated to the cell and/or spot coordinate system from
each sample, allowing both classification of cells and/or spots and
projection of annotated regions onto the datasets for inspection and
downstreamanalysis (see below). Allannotations and detailed instruc-
tions on how to use them are freely available at https://github.com/
Moldia/Xenium_benchmarking.

Single-cell RNA-sequencing processing

A subset of the scRNA-seq dataset from Zhang et al.”? was used in this
study. To ensure a fair comparison between the single cell atlas and
the various SRT datasets, we included only populations that were
spatially mapped in sections of the MERFISH spatially resolved atlas
correspondingto the same brainregions represented in the SRT data-
setsused in this study. Owing to the dimensionality of the dataset, only
20% of the remaining cells were used for comparison, guaranteeing
equal representation of all populations. The resulting subset consisted
0f 193,000 cells used for integration and annotation. Out of those,
a subset 0f 13,800 cells was used as an input for gene imputation.
Cell-type signatures for each type were also obtained for the different
levels of annotations presented in Zhang et al. and used as an input in
cell-typing methods such as SSAM. Region-specific subsets including
only populations mapped in the regions presented in Figure 2 were
used for comparison with SRT methods.

Benchmarking Xenium against other SRT methods

To benchmark Xenium against other SRT platforms, DAPI staining
and transcript locations were obtained for all datasets. Datasets from
open-source technologies were obtained from their original publica-
tions (HS-1SS?°, MERFISH?*), and datasets from commercial platforms
were downloaded from the companies web portals (CosMx, Vizgen and

Resolved Biosciences). Cells from all datasets were resegmented using
common segmentation algorithm Cellpose (cytoplasmic model)?,
followed by the assignment of reads to cells. With the aim of exploring
the diffusion of the different technologies, reads identified outside
the nuclei were assigned to their closest cell. However, these reads
were excluded from the comparison of efficiency and specificity
between datasets. To guarantee a fair comparison across platforms,
anatomical regions were annotated across datasets, and cells profiled
in each region were used for further analyses. For comparison with
scRNA-seq, asubset of dataset from Zhang et al.” was considered (see
previous section). Raw counts were compared between all methods.
Only genes presentin atleast four datasets were used for comparison.
Two approaches were used to compare SRT platformsin terms of gene
efficiency detection. First, taking scRNA-seq as the reference dataset,
the detection efficiency of each gene relative to scRNA-seq was assessed
by (1) identifying positive cells (cells with more than one read), (2)
computing the median expression of the gene among positive cells
and (3) computing the ratio between the two medians. Because we
aimed to identify the efficiency of each gene in each SRT method, we
divided the SRT median by the scRNA-seq median. Second, to provide
adirect comparisonbetweentechnologies, datasets fromall platforms
were preprocessed, clustered and annotated. Populations consistently
identified across technologies were further used for comparison.

To compare the specificity between technologies, the NCP was
computed for each gene. It aims to quantify the presence of coex-
pressed genesinsituthat weren’t detected in the single-cell reference
dataset. These genes not coexpressed in single-cell but coexpressed
in situ can be attributed to non-specific reads, with single-cell data-
sets serving as the benchmark. In brief, this metric is computed by:
(1) identifying pairs of non-coexpressed genes in the reference single
cell dataset, (2) quantifying the presence of these pairs across datasets
and (3) computing the percentage of these pairs that were not coex-
pressedinsitu. The NCP scoreranges from 0 to 1. Ascore near 0 means
most gene pairs not coexpressed in the reference single-cell dataset do
coexpressinsitu, indicating low specificity. Conversely, ascore near1
indicates that gene pairs not coexpressed in the reference also do not
coexpressinsitu, reflecting high specificity.

For the side-by-side comparison between Xenium and Visium,
manually annotated regions presentin both datasets were used. Counts
per region were normalized by the total area. The ratio between the
number of molecules detected in Xenium and Visium was computed
for the common genes.

Optimal expansion identification
We developed a customized algorithm to identify the optimal expan-
siondistance for each celltype. The rationale behind this algorithmis
that the optimal expansionis defined as the point at which the correla-
tion betweenreads atincreasing distances from the nucleus shifts from
the nuclear signature to the domain-specific background signature.
To compute this, nuclear expression signatures were defined on
the basis of nuclear masks (Fig. 1c), whereas domain-specific signatures
were derived from reads not assigned to any cell in Xenium’s default
expansion. For each cell type-domain pair with at least 5,000 reads,
we calculated Pearson’s correlation for distance-specific signatures—
grouped in 1-pm intervals—with both nuclear and background signa-
tures. The optimal expansion distance was identified as the smallest
intervalinwhich correlation with the background exceeded that with
the nuclear signature. To determine a cell type’s overall mean optimal
expansion, we averaged values across all relevant domains. Addition-
ally, we calculated the nuclear edge distance as the mean distance from
the cell centroid to the points forming the convex hull of the nuclear
region. Similarly, we estimated the cell-edge distance on the basis of
all reads assigned to each cell, following Xenium’s segmentation and
expansion. This algorithm was applied to the mouse brain 1 dataset,
asshowninFigure 3a,b.
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Benchmarking segmentation algorithms

We benchmarked the segmentation methods Baysor, MESMER, Water-
shed, Cellpose and Clustermap against the segmentations provided by
10x Genomics, using uniformly distributed bins across the tissue with
acustom pipeline. Allsegmentation masks were expandedby1,2, 5,10
and 15 pm (0-70 pixels). Watershed segmentation was applied using
scikit-image v0.22.0. The DAPlimage was first preprocessed as follows:
theimage was gamma-corrected using default parameters (gamma, 1;
gain, 1). Next, the contrast was adjusted using contrast limited adaptive
histogram equalization with default values (clip_limit, 0.01; bins, 256),
followed by Gaussian blurring with sigma parameter1or 3 (referring to
212.5and 637.5 nmrespectively). After retrieving initial cell segments
withthe watershed algorithm, three postprocessing steps were applied.
The first two steps leveraged scikit-image functions to remove small
objects with sizes below 64 pixels (13.6 pm), and small holes with a
maximum area of 64 pixels (13.6 pm). Owing to local Otsu threshold-
ing, the Watershed segmentationidentifies false positive cellsinlarger
regions of low DAPlintensity. Therefore, as athird postprocessing step,
acustombackground-intensity-based cell filter was applied to remove
these cells. Thefilter removes segmented cellsin window sizes 0f 1,000
x1,000 pixels that have amean intensity lower than 0.3 times the mean
intensity of the background in the surrounding 2,000 x 2000 pixel
window. Baysor (v0.6.2) was tested using scale parameters of 20, 30
and 40 pixels (BA20-BA40); minimum molecules per cell of 30, 50, 70
and 100; and optionally a prior segmentation with prior segmentation
confidence 0of 0.2,0.4,0.6,0.8,0.9 and 0.99 (for example, CPc BA28).
Whena prior segmentation was provided, the Baysor algorithm could
also automatically adjust the scale parameter. The configurations were
run with and without the z coordinate information (that is, 2D versus
3D). TheCellpose (v2.2.3) deep-learning models ‘nuclei’ (CPn) and ‘cyto’
(CPc) were applied onthe DAPI channels with diameter parameters of
none, 20,30 and 40. Similarly, MESMER was applied with compartment
parameters ‘nuclear’ and ‘whole-cell’. Clustermap (github code from
8 November2022) was applied with Gaussianblurring at sigma values
ofland 5, and xy_radius 20, 30, 40.

The pipeline takes as input the DAPI image, the gene spots with
cell-type annotations and x, yand z coordinates, as well as a scRNA-seq
reference dataset with cell-type annotations that are matched with
the cell-type naming for the spatial cells. The datasets described in
‘scRNA-seq processing’ were used as references. Cell-type annota-
tions on the nuclear segmentation from 10x Genomics (see ‘Xenium
dataset processing’) was provided. After each segmentation run, a
count-per-gene matrix was generated for the cells, and cell types were
assigned. With each new segmentation run, new cells were identified,
and their cell types were assigned on the basis of the spot’s majority
vote from the previous nuclear-segmentation-based annotation. For
each segmentation output, the pipeline assessed the proportion of
assigned reads, number of identified cells, the median and 5th percen-
tile of reads per cell, and the median and 5th percentile of genes per
cell. Additionally, we introduced the NMP metric, which is based on
the assignment distribution of reads from negative markers: anegative
marker for a set of ‘negative cell types’ is defined, on the basis of the
single-cell reference, asagene thatis expressedinless than 0.5% of cells
in each of the negative cell types. The NMP measures the percentage
of reads of negative markers in the cell types expected to express the
gene. To ensure the NMP metric is independent of cell-type propor-
tions, we normalized the mean expressions by the total of the mean
expressions of all cell types:

(m)

o (m) X

Xg,c = —(m)
ZC’ECXg,C’

where xé’? isthe mean raw expression of agene (g) inacell type (c) and
a modality (m) (sp, spatial; sc, single-cell reference). x;f;” can be

understood as the cell-type-balanced reads ratio of a given cell type
for a given gene. The normalized mean expression over negative
marker-cell type pairsisthen:
o (m)
o (m deczcecf_.'e’gxgyc
neg — |Pneg|

with Grepresenting the set of genes, C,* the set of cell types for which
gene gis a negative marker and P the set of pairs {(g, ¢)}, withas ga
negative marker for cell type c. As we sum the ratios )'(gf , negative
markers are equally weighted in principle; however, on the basis of the
formulation of )’(,EZ;), each negative marker is weighted by its number
of negative cell types|C,*|. Finally, the negative marker purity is calcu-
lated as:

gp | 1 (s = e ) Koy > Ko

lotherwise

)'(,(,Zf; is close to 0. The term is added because the NMP metric aims to

measure the extent to which the spatial signal’s purity is reduced com-
pared with the scRNA-seq reference. Finally, we scaled the NMP values
suchthat O corresponds to the mean NMP of 20 random permutations
of cell-type assignments for the binning reference, while the maximum
is still 1.

Simulating Xenium-like datasets and benchmarking
preprocessing strategies
To use datasets similar to SRT data while incorporating accurate
cell-type annotations, we transformed pre-annotated single-cell data-
sets in Xenium-like datasets. For this, we first filtered the available
datasets provided by CELLXGENE Census®, keeping only (1) human
datasets; (2) chromium v2 datasets; and (3) subsets originated from 1
single donor, to avoid batch effects. Only cell types with more than ten
cellswerekept.Inaddition, we identified differentially expressed genes
between the remaining cell types using the Scanpy function ‘scanpy.
tl.rank_genes_groups’, keeping the 50 most differentially expressed
genes from each cell type to composite the Xenium-like panel later on.
Next, each dataset was transformed to resemble the structure of
aXenium dataset. This transformation includes (1) a reduction in the
number of genes detected to match Xenium panels, (2) introduction
of non-specific signals, (3) simulation of mis-segmentation and (4)
adjustment of the detection efficiency of each gene, mimicking the
single cell to Xenium ratios previously detected in mouse brain. To
reduce the number of retained genes, marker genes for each cell type
were selected from a previously generated list, following the standard
approach used in target spatial transcriptomics. The introduction of
non-specific signals, simulation of mis-segmented cells and adjustment
of the detection efficiency of each gene were implemented to mimic
thefrequency and characteristics of these effects in Xenium datasets.
Finally, various preprocessing strategies were applied to simulated
Xenium-like datasets to identify the preprocessing strategy that best
reflected original ground truth clusters. Scanpy and Seurat were used
tobuild the different preprocessing workflows (Extended Data Fig. 6a).
Inbrief, preprocessing workflows consisted of multiple normalization
strategies (Pearson’s residuals, SCTransform, library-size-based nor-
malization or absence of normalization, defined as ‘None’in Extended
Data Fig. 6). For library-size-based normalization, different library
sizes (10,100,1,000 and default) were used as hyperparameters. Next,
we optionally performed log-transformation, HVF selection and data
scaling. For Pearson’s residual normalization, log transformation was
alwaysskipped, becauseitis not required. For SCTransform normaliza-
tion, both log-transformation and HVF selection steps were skipped,
because SCTransform® is designed to replace these steps. Subse-
quently, a graphis constructed, considering the number of principal
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components and nearest neighbors as hyperparameters. Finally, clus-
tering was performed using either Leiden, Louvain or Markov cluster
algorithms. For each preprocessing workflow tested, the clustering
resolution was adjusted to obtaina comparable number of clusters to
thereference cell types (+2 clusters). To measure the similarity between
both clustering results, different metrics were used, including ARI,
Vland FML. Further details about the simulation are available in the
associated Github repository.

Exploring preprocessing strategies in Xenium datasets

To further assess the effectiveness of the preprocessing strategies on
real Xenium datasets, we applied the top-performing preprocessing
strategy, identified using simulated data, to the 25 Xenium datasets
used in this study (see main text). For the Xenium datasets, default
segmentation was used, considering only nuclear reads to avoid the
effect of mis-segmentation. To quantify the importance of each of
the steps and parameters, we preprocessed each dataset, modifying
one step at a time. We quantified the effects of these modifications
by measuring the similarity between the new clusters and the ones
obtained with the top-performing preprocessing strategy. We used
various metrics, including ARI, Vland FMI.

Benchmarking algorithms to identify spatially variable features
We compared the performance of different algorithms to identify
spatially variable features including Sinfonia**, Squidpy (Moran’sland
Geary’s C)*°, Giotto (rank and k-means)*®, Seurat (markvariogram and
moran’s1)*, hotspot®, somDE?*?, spatialDE*, Inaddition, highly variable
genes (HVG) are also identified using Scanpy. Since not all algorithms
canbeused with full Xenium datasets, we compared the performances
of the algorithms in two situations, when possible: usings only 5000
cells and using the entire datasets. All algorithms were applied to a
diverse subset of all Xenium datasets available. The algorithm’s per-
formance was compared in terms of (1) the ranking of the genes based
onhow spatially variable they are (2), the number of genes identified as
SVF and (3) the similarity between the genes identified as SVF by each
algorithm. Finally, since control probes are included in the Xenium
experiments which, by definition are not spatially variable, we use this
trick to quantify the false positive ratio of each algorithm.

Benchmarking gene imputation algorithms

We evaluated the performance of seven integration methods (gimVI,
SpaGE, Tangram, Liger, Seurat, SpaOTsc and NovoSpaRc) following
the published Jupyter notebook by Li et al.*’ (https://github.com/
QuKunLab/SpatialBenchmarking/blob/main/BLAST_GenePredic-
tion.ipynb). We used the raw normalized expression matrices for both
the scRNA-seq and spatial transcriptomics datasets for input of the
integration methods. Because the spatial transcriptomics dataset
contained fewer than 300 detected genes, we built the ground truth
of our dataset using genes detected in both the spatial transcriptom-
ics and scRNA-seq datasets (total 248 genes). For the evaluation, we
used tenfold cross-validation, dividing the genes into ten portions,
nine of which were used for training and one for prediction. Because
of the large sizes of our datasets (scRNA-seq dataset, ~150,000 cells;
spatial transcriptomics dataset, ~-80,000 spots), we downsampled the
datasets by afactor of ten. This reduction considerably alleviated the
computational-resource demands of the integration methods without
compromising the results.

We next defined theimputationaccuracy of each gene as the PCC
betweenthe predicted expression and the real expression. Therefore,
values range from 0 to 1, with 1 indicating a perfect prediction. After
identifying variability in the imputation accuracy of each gene, we
aimed toidentify the cause of this variability. For this, we built alinear
regression model to predict theimputationaccuracy on the basis of the
characteristics of each gene, including mean expression, dispersion,
subcellularlocalization and correlation with other genes in the panel.

Benchmarking domain finder algorithms

Using the adjacent mouse brain slide (slide 1), we evaluated the per-
formance of different domain finder algorithms, including SpaGCN*,
Banksy**, DeepST*, STAGATE*® and SPACEL". The algorithms were used
to define tissue domains, adjusting the number of domains identified
tomatch the number of manually annotated tissue domains at different
resolutions. In addition, domains were also identified using a primitive
neighborhood-based approach, wherein cells were redefined on the basis
oftheidentity of their neighboring cells, formingacell-by-cell type matrix
before clustering. A binning-based approach was also used. These two
approaches are simple ways toidentify tissue domains and canbe used as
abaseline to comparethe performance of more-sophisticated algorithms.
Furthermore, we manually annotated the tissue domains in the slides
analyzed using the mouse coronal P56 sample from Allen Brain Atlas*’,
whichwetreated asthe ground truth. Several metrics were used to evalu-
ate the performance of each algorithm, including ARI, VI, NMl and FMI.

Segmentation-free analysis using SSAM

Segmentation-free output was produced using the SSAM package
(v1.0.1)° with Python v3.6. Two rounds of analysis were performed with
different parameterizations.

Inthe first round, a de novo cell-type-mapping analysis was con-
ducted using the xand y coordinates of Xenium’s mouse brain coronal
section. SSAM was run at a resolution of 2 pixels pm™, with the kernel
bandwidth setat 2.5 pm. Local maximum signal points were sampled
from SSAM’s vector field at a signal threshold of 0.2, and the signatures
of the sampled expression vectors were normalized and clustered by
first reducing the data to 40 dimensions using principal component
analysis (PCA) and then applying the Leiden algorithm ataresolution
of 2.0. Sixty clusters were detected and were assigned a cell type on
the basis of a correlation analysis, with the mean gene expression sig-
natures of cellsidentified in the analysisin Figure 1d. After correlation
analysis, atotal of 44 cell-type classes were retained. The reductionin
class numbersis caused by SSAM’s oversegmentation of glial cells and
challenges in assigning three gabaergic and three glutamatergic sub-
clusters, whichwere instead merged into the main GABA/Glut clusters.
A SSAM cell-type map was produced and filtered using amedian filter
toremove potential noise. A scanpy UMAP embedding was generated
on SSAM’s sampled localmax expression vectors, using an adapted
minimum-distance parameter of 0.02.

To assess the z-axis coherence of the sample tissue, we devised an
algorithm that involved generating a latent space of gene expression
signatures through unsupervised analysis. Subsequently, acompara-
tive analysis was conducted on the latent gene expression signatures
between the upper and lower halves of the tissue slice.

The construction of the low-dimensional gene expression
space employed a segmentation-free de novo approach akin to the
SSAM algorithm. A vector field of the gene expression space was
established through Gaussian kernel density estimation (KDE) on
the mRNA spot signals, using a resolution of 2.5 pixels pm ™ and a
bandwidth of 2.5 pm. Local maximum locations of the vector field
norm were identified and used as sampling locations to construct
a gene-expression-by-local-maximum matrix from the vector field.
This matrix was subjected to PCA, retaining the first n principal com-
ponents explaining over 80% of the total variance. The resulting
low-dimensional gene expression space was utilized to create two
vector fields for the gene expression space, maintaining the previously
mentioned parameters. The divisioninto top and bottom halves of the
tissue slice was achieved by binning moleculesintoa2-umgridinthe x
and y directions. The center of gravity of molecules in the z-direction
(mean of z-coordinate values) determines the assignment of molecules
tothe ‘top’ or ‘bottom’ halves. AKDE was then applied to both halves,
with parameters consistent with those previously mentioned. Subse-
quently, the resulting vector fields underwent transformation into
latent space using the PCA model. The cosine similarity between the

Nature Methods


http://www.nature.com/naturemethods
https://github.com/QuKunLab/SpatialBenchmarking/blob/main/BLAST_GenePrediction.ipynb
https://github.com/QuKunLab/SpatialBenchmarking/blob/main/BLAST_GenePrediction.ipynb
https://github.com/QuKunLab/SpatialBenchmarking/blob/main/BLAST_GenePrediction.ipynb

Analysis

https://doi.org/10.1038/s41592-025-02617-2

two latent space vector fields served as a metric for assessing z-axis
incoherence. Analogous to the SSAM algorithm, vector field regions
with atotal expression norm below 5were considered low-confidence
and were excluded from subsequent analyses.

Visualization of theincoherence maps employed the heatmap vis-
ualization function from Matplotlib, wherein color values represented
signal coherence, and alpha values denoted local molecular density
(measured by vector field norm). Regions classified as low-confidence
were excluded from the visual representation.

Moreover, areas exhibiting significant coherence were selectively
chosen for display, using a SSAM-inspired pipeline. A supervised, 3D
execution of the SSAM algorithm assigned cell types to all molecules
withinthe visualizationarea. Molecules were then depicted as particle
clouds in 3D space, colored according to their assigned cell types,
following the project’s overarching cell-type coloring scheme. For
individual samples, a coherence score of <0.2 proved to be strongly
indicative of overlapping cell-type structures. The meanincoherence
scoreinside the areaof the DAPI-based nucleus segmentation served as
ameasure of local signal coherence, and the ratio of nuclei withamean
signal coherence of <0.2 was indicative of strong overlap.

Points2Regions

Points2Regions'® was used as one of the segmentation-free approaches.
Inessence, Points2Regionsiis a plugin for TissUUmaps 3%, intended for
quick exploratory and interactive dissection of molecular patternsin
insitu transcriptomics data. At its core, the plugin works by collecting
markersinspatial bins of width w. Each bin thus comprises acomposi-
tion of molecular markers. Adjacent bins are blurred together using a
Gaussian filter parameterized by the standard deviation o. Bins con-
taining few markers are excluded based on a user-defined threshold
7. Bins passing the threshold are finally normalized by total count and
clustered using mini-batch KMeans clustering with k clusters. The
plugin thus comes with four tunable parameters: w, g, T and k, each
respectively set here to1pum, 3 pm, 0 and 100 for all experiments.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Three types of Xenium datasets were used through the manuscript,
including (1) datasets provided by 10x Genomics, (2) datasets published
elsewhere and (3) datasets generated specifically for this project.
First, for the 10x Genomics datasets, the original datasets used in this
study canbe obtained fromin https://www.10xgenomics.com/datasets
(accessed 5 March 2024). In addition, the spinal-cord datasets used
were originally published by Kukanja & Mattsson-Langseth et al.>>.
Freshly generated datasets include four mouse-brain sections, labeled
as‘hm’ through the study. Their original data can be downloaded from:
https://doi.org/10.5281/zenod0.10566172 (ref. 54).

Inaddition, we have also made Xenium datasets available as AnnData
objects. These files can be downloaded from various Zenodo reposi-
tories: https://doi.org/10.5281/zenodo0.11124988 (ref. 55), https://doi.
org/10.5281/zenodo.11121221 (ref. 56) and https://doi.org/10.5281/
zenodo.11120307 (ref. 57).

All datasets used inthe comparison between SRT platforms (Fig.2) are
publicly available. Commercial platforms provide datasets through
their respective data portals: MERSCOPE, https://vizgen.com/
data-release-program/; CosMx, https://nanostring.com/products/
cosmx-spatial-molecular-imager/ffpe-dataset/; and Molecular Cartog-
raphy, https://resolvebiosciences.com/datasets/. For both MERFISH
and HS-ISS, datasets are available in their original publications®>*.
In addition, resegmented and regionally annotated datasets that can
be used to reproduce the comparison can be found at https://doi.
org/10.5281/zenodo0.11619309 (ref. 58).

Code availability

All the code used in this analysis can be found at https://github.com/
Moldia/Xenium_benchmarking. Since different tools require their own
environment, analysis is subdivided in folders, providing different
condarecipesfiles torecreate the environments needed to reproduce
the analysis.
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Extended Data Fig. 1| Extended analysis of the mouse brain datasets.
a.Comparison between two Xenium biological replicates, including a scatter
plotrepresenting the total transcripts of each gene in the preview 1 dataset
compared to the total transcripts of each gene in preview dataset 2 (up), with
axesrepresented inlogl0 scale. In addition, a scatter plot representing the
abundance of each cell type identified in the preview dataset 1 compared to
the preview dataset 2 isincluded (down). Axes are represented in logl0 scale

b. UMAP representation of cells from the 7 mouse brain datasets, colored by
the experiment of origin. c. Violin plot representing the transcripts/cell (up)
and genes/cell (bottom) identified on each of the mouse brain datasets. Violins
are colored by the experiment of origin. d. Scatter plot representing the mean
transcripts/cell of each gene in the home made datasets compared to their mean
transcripts/cell on the preview datasets. Axes are represented in log10 scale.
e.Scatter plot representing the abundance of each cell type identified in the

home made datasets compared to the preview datasets. Axes are represented
inloglOscale.f. Density plotillustrating the density of reads depending

on their distance to their assigned cell centroid. Individual lines represent
different samples. A violin plot quantifying the subcellular distribution of reads
experimentisincluded (bottom, right). g. Spatial map of the mouse brainsection1,
colored by annotated tissue domains h. UMAP representations of the cells
analyzed from the 7 mouse brain datasets obtained from using only nuclear
information (up) or expanded segmentation masks (bottom) to assign reads to
individual cells. Cells are colored by the annotated tissue domain where they are
found.i. UMAP representations of specific populations including astrocytes (up),
microglia (middle) and oligodendrocytes (bottom) defined using nuclei-based
segmentation masks (left) and projected onto the cells’ expanded segmentation
masks (right). Cells are colored by the tissue domain where they are found,
accordingto panel G.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3| Subcellular analysis of Xenium datasets with
Points2Regions. a. Spatial map of the entire mouse brain 2 dataset (up), with
reads colored by their Points2Regions cluster. The color map used is shown
in panel B. Two regions of interest (1,2) are highlighted in the entire map and
visualized (bottom). b. Confusion matrix between the Points2Regions clusters
and the segmentation-based clusters represented in Fig. 1c. Points2Regions
clusters are annotated based on (1) anumber (2), the cell type its reads had
been mostly assigned to in the segmentation-based analysis and (3) the main
subcellular localization of the reads assigned to each cluster (cyto or nuclei).
Points2Regions clusters that have a majority of their reads within the nuclei
boundaries, defined using DAPI staining, are annotated as nuclei clusters.
Oppositely, clusters with most of their reads outside the nuclei boundaries
are annotated as cytoplasmic clusters (cyto). On the other hand, cytoplasmic
clusters (cyto) present most of their reads outside the segmented nuclei.

Nuclear clusters are represented by the presence of acircle in the confusion
matrix. This circle is placed, for the rows where it’s needed, in the cell with the
highest value of the row, with the highest similarity between a segmentation-
based cluster and the Points2Regions’ cluster represented on the row. c. Box plot
representing the distribution of reads assigned to the Points2Regions clusters
inastrocytesinrelation to their distance to the nuclei edge. Red horizontal
dashed line at y=0represents the nuclear edge. Box plot represents percentiles
excluding outliers (0,25,50,75,100), with center representing median distance.
d. Differentially expressed genes for each subcellular cluster found in astrocytes.
Y-axis represents the relative percentage of reads of a certain gene assigned
totheinterrogated cluster. Note that this relative percentage is computed
considering only the astrocytic clusters, meaning that, overall, the sum of all
percentagesin all astrocytic clusters should sum1.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4| Comparison of Xenium with SRT platforms. a. Spatial
map of SRT datasets, colored by region. The scRNA-seq dataset is represented
asa UMAP colored by region of origin. b. Stacked bar plot representing the
percentage of transcripts assigned to cells in each datasets after Cellpose.

c. SRT/scRNA-seq gene efficiency ratios of different SRT methodsin the
hippocampal (left) and thalamic (right) regions. Boxplots represent the
distribution of the efficiencies, divided in quartiles, where the central line
represents the median efficiency. Gene ratios are represented as individual dots.
d.Box plot representing the negative coexpression purity (NCP) of each SRT
method, including only genes with an efficiency ratio below 1. Boxplots represent
the distribution of the NCP scores, divided in quartiles, where the central line
represents the median NCP. NCP scores are represented as individual dots

for each method. e. Pairwise comparison of the detection efficiency between

each SRT and scRNA-seq dataset in the cortical region. For each pair, ascatter
plot of the number of transcripts detected per gene in SRT method 1 (y-axis)
and SRT method 2 (x-axis) is included. Only common genes are included in

the comparison. Red line represents x=y. The median of ratios for each pair of
methods is included (bottom,right). Spots of each subplot are colored by the
method that presented a higher median in each comparison. f. Density plots
illustrate the cumulative proportion of reads depending on their distance

from the centroid for individual genes across technologies. Values indicate the
proportions of reads that are found at distances greater than or equal to the
specified distance. g. Regions of interest corresponding to resegmented datasets
across platforms. DAPI staining is shown as a background and reads assigned to
resegmented cells are overlaid as yellow dots.
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Extended Data Fig. 5| Extended benchmarking of segmentation strategies.
aLocalization of regions of interest represented in Extended Data Fig. Sb and
Fig. 3c.b.Regions of interest representing the cellsidentified using different
segmentation algorithms inaregion of interest outlined in Extended Data 5B.
DAPI background is represented as a background and individual isolated color-
specific masks represent individual cells. Segmentation strategies were selected
torepresent different segmentation outputs, as described in Fig. 3c. Each ROI
represents an area of 160 x 160 pm. c. Heat map representing the segmentation
metrics of all segmentation strategies described in Fig. 3d. d. Adjusted rand
index (ARI) between the different outputs produced by combinations of
segmentation algorithms, hyperparameters and expansions when applied to
human breast sections. Segmentation methods included Cellpose

Proportion of assigned reads

(CPn: nuclei, CPc: cyto models), binning (bins), clustermap (CM), watershed
(WA), Mesmer, Baysor (BA) and Baysor with prior segmentation (Baysor Px.x).
Xenium segmentation were also included in the comparison (XENIUM cel,
XENIUM nuc). Hyperparameters for each method are described in methods.
Methods on the y-axis were colored depending on the expansion performed after
segmentation. 315 evaluated configurations of the grid search were reduced

to the shown 52 top performers per hyperparameter group (highest negative
marker purity e. Scatter plot representing the number of reads assigned (x-axis)
and the negative marker purity (y-axis) of different assessed segmentation
strategies in human breast tumor samples. The name and color of each
segmentation strategy are represented as in Fig. 3d.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Extended analysis on preprocessing. a. Workflow of the
different preprocessing steps and parameters considered in the assessment of
the best preprocessing workflow. b. Heat map representing the Adjusted Rand
Index (ARI) between the clusters derived from the different preprocessing
workflows and the ground truth cell type labels. Preprocessing workflows are
sorted from best (bottom) to worst (top) based on their median ARI. Datasets
are also sorted based on their median ARI, indicating in which datasets it was
possible to recover the original cell type labels better (right) and in which ones
it was more difficult to achieve (left). Asummary of the processing setups is
summarized on the left part of the panel, with every row representing a specific
step inthe preprocessing workflow and every color representing the specific
hyperparameter/ algorithm chosen. Inaddition, specific characteristics of

the simulated datasets are included on the top part of the panel in the form

of dot plot c. Heat map representing the mean Adjusted Rand Index (ARI)

between the clusters obtained when applying the most optimal preprocessing
workflow (identified in Fig. 4c) to different Xenium datasets and the clusters
obtained with the same workflow, but modifying different preprocessing steps,
specified in the x-axis, in the different Xenium datasets (y-axis). A reduced ARI
signifies decreased similarity between clustering outputs, highlighting amore
pronounced impact on the workflow when altering a specific parameter. d. Same
as C, but using Fowlkes-Mallows Index (FMI) to measure the similarity between
the clustering outputs. A low FMI indicates differences between the clustering
outputs, suggesting amore pronounced impact on the workflow when altering
aspecific parameter. e. Same as C, but using the variability index (VI) to measure
the similarity between the clustering outputs. A high Vlindicates important
differences between the clustering outputs, suggesting amore pronounced
impact on the workflow when altering a specific parameter.
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Extended Data Fig. 7 | Extended exploration of the SVF identification
algorithms. a. Running time of the different algorithms used to identify SVFs.
The running times depending on the number of cells used as aninput are shown
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- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Three types of Xenium datasets were used through the manuscript, including (1) datasets provided by 10X Genomics, (2) datasets published elsewhere and (3)
datasets generated specifically for this project. First, for the 10X Genomics datasets, the original datasets used in this study can be obtained from in https://
www.10xgenomics.com/datasets [03.05.2024]. In addition, the spinal cord datasets used were originally published by Kukanja & Mattsson-Langseth et al. (24).
Lastly, freshly generated datasets include four mouse brain sections, labelled as "hm" through the study. Their original data can be downloaded from: https://
doi.org/10.5281/zen0do0.10566172.

In addition, we have also made Xenium datasets available as AnnData objects. These files can be downloaded from various—-— Zenodo repositories (https://
doi.org/10.5281/zen0do.11124988, https://doi.org/10.5281/zenod0.11121221, https://doi.org/10.5281/zenodo.11120307 )

All datasets used in the comparison between SRT platforms (Figure 2) are publicly available datasets. In the case of the commercial platforms, the datasets are
available in the company’s data portals (MERSCOPE: https://vizgen.com/data-release-program/, CosMx: https://nanostring.com/products/cosmx-spatial-molecular-
imager/ffpe-dataset/, Molecular Cartography: https://resolvebiosciences.com/datasets/). For both MERFISH and HS-ISS, datasets were made available in their
original publications (3,4). In addition, resegmented and regionally annotated datasets, ready to reproduce the comparison, can be found at https://
doi.org/10.5281/zen0do0.11619309.

Allen brain atlas single cell dataset ABC atlas) used through the study is available at https://portal.brain-map.org/atlases-and-data/bkp/abc-atlas.
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Sample size All publicly and internally available Xenium datasets at the time of the study (25 different Xenium datasets) were used with the aim of
generalize the conclusions of the study. Due to the recent commercialization of the Xenium product, limited datasets are available

Data exclusions  Cells that did not pass several quality filters based on the number of transcripts and genes detected were excluded from analysis
Replication Due to the recent commercialization of the Xenium product, limited datasets were available through the study. As a consequence, no
biological replicates could be used. Mouse brain datasets, however, presented technical replicates,which were used through the study to

assess the robustness of the method.

Randomization  This study presents reduce sample size with n=1 in many cases. Thus, randomization is not relevant to this study

Blinding Due to the limited sample size, with n=1 in most cases, blinding does not apply to this study.
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