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The Xenium In Situ platform is a new spatial transcriptomics product 
commercialized by 10x Genomics, capable of mapping hundreds of genes 
in situ at subcellular resolution. Given the multitude of commercially 
available spatial transcriptomics technologies, recommendations in 
choice of platform and analysis guidelines are increasingly important. 
Herein, we explore 25 Xenium datasets generated from multiple tissues 
and species, comparing scalability, resolution, data quality, capacities and 
limitations with eight other spatially resolved transcriptomics technologies 
and commercial platforms. In addition, we benchmark the performance 
of multiple open-source computational tools, when applied to Xenium 
datasets, in tasks including preprocessing, cell segmentation, selection of 
spatially variable features and domain identification. This study serves as 
an independent analysis of the performance of Xenium, and provides best 
practices and recommendations for analysis of such datasets.

Imaging-based methods for spatially resolved transcriptomics 
(SRT) enable targeted and highly multiplexed detection of indi-
vidual RNA molecules using fluorescence-based microscopy. These 
methods are subdivided on the basis of their chemistry into in situ 
hybridization-based (ISH) (for example MERFISH1 and SeqFISH2) and 
in situ sequencing-based (ISS) (for example in situ sequencing3 and 
STARmap4). Similar to the rapid adoption of single-cell RNA-sequencing 
(scRNA-seq), commercial products based on these techniques could 
accelerate their dissemination. Several companies have recently 
launched imaging-based SRT products (for example CosMx by 
Nanostring, Molecular Cartography by Resolved Biosciences and 
seqFISH by Spatial Genomics). Among those, Xenium, a product from 
10x Genomics based on ISS, claims to generate maps of hundreds of 
genes at a subcellular resolution. Although Xenium datasets have been 
used by 10x Genomics to demonstrate the potential of the technology5 

and benchmark it against specific platforms6,7, a comprehensive inde-
pendent evaluation of the platform is still needed. In this study, we 
explore the characteristics, capabilities and limitations of data from 
the Xenium platform compared with other SRT technologies. In addi-
tion, we generate optimized pipelines for the analysis of Xenium data 
for several computational tasks, highlighting the biological insights 
that they can provide (Fig. 1a).

Results
Xenium datasets offer high-quality tissue population data
To explore the characteristics of Xenium data, we compiled 25 datasets 
from 10x Genomics and our own Xenium instruments (Methods), derived 
from 14 experiments. These samples span a variety of types, altogether 
representing a total of 1.2 billion reads and 6 million cells (Fig. 1b and 
Supplementary Table 1). The number of genes profiled per sample type 
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enriched in the nucleus, and others in the cytoplasm (Fig. 1f–h). 
To systematically identify subcellular mRNA clusters, we applied 
Points2Regions10, a second segmentation-free model, on mouse brain 
datasets (Fig. 1i and Extended Data Fig. 3a). We classified these clusters 
as nuclear, cytoplasmic or extracellular (Extended Data Fig. 3b). As 
expected, most of these subcellular clusters exhibited associations 
with specific cell types. However, we also observed subtle yet distinct 
expression variations between nuclear and cytoplasmic clusters linked 
to the same cell population (Fig. 1i and Extended Data Fig. 3c,d), indi-
cating that Xenium’s signal density facilitates the in situ identification 
of subcellular structures. Multiple studies have illustrated how these 
differences can be used to understand RNA biology and tissue dynam-
ics11. Overall, our analysis underscores the value of interpreting spatial 
datasets as 3D subcellular maps, rather than reducing them to expres-
sion matrices with only two-dimensional (2D) spatial information.

Xenium detection efficiency matches ISH
To gain insights into the limitations and benefits of Xenium compared 
with other SRT platforms, we conducted a comparative analysis of 
various quality metrics. Given the comprehensive understanding of 
the cellular composition of the mouse brain established through many 
studies using single-cell RNA-sequencing (scRNA-seq)8,12,13 and various 
SRT methods2–4,14–19, this tissue serves as an ideal benchmark. We set 
out to evaluate Xenium against available datasets from similar areas 
of the mouse brain. Our analysis included imaging-based SRT data-
sets generated using open-source technologies, as well as commercial 
platforms (Vizgen’s MERSCOPE, high-sensitivity ISS (HS-ISS)20, MER-
FISH18, Resolve Biosciences’s Molecular Cartography and Nanostring’s 
CosMx). For sequencing-based SRT, we used a publicly available Visium 
dataset21. To facilitate a fair comparison of the datasets, cells were 
resegmented using a common segmentation algorithm (Cellpose22), 
and reads were reassigned to individual cells (Fig. 2a, Extended Data 
Fig. 4b,g and Methods). To minimize potential segmentation errors 
that could affect our specificity and efficiency estimates, we used a 
conservative nuclei-based segmentation approach, wherein only a 
limited proportion of the detected reads (<10–30%) were assigned 
to individual cells across platforms. Furthermore, tissues were ana-
tomically annotated, and cells from common brain regions (isocortex, 
hippocampus and thalamus) were kept for further comparison (Fig. 2a 
and Extended Data Fig. 4a). Different technologies profiled varying 
numbers of genes, resulting in very different numbers of reads per cell, 
with CosMx yielding the highest number (Fig. 2b). Broadly speaking, 
the reads detected per cell can be increased by simply profiling more 
genes. Given the current commercial trend of proposing higher-plex 
panels, these numbers will most likely increase with time; therefore, the 
analyzed datasets provide only a current snapshot. We chose instead 

(the ‘panel’) ranged between 210 and 392 genes. All datasets included 
the three-dimensional (3D) position (x, y and z), gene identity and 
phred-based quality value (qv) of every decoded read, with 81% (range, 
72–91%) of the reads on average exhibiting high quality (qv > 20) (Fig. 1b 
and Supplementary Table 1). Using Xenium’s default segmentation, an 
average of 186.6 reads per cell was observed throughout the datasets, 
with 76.8% of reads being assigned to cells, with no obvious differences 
between fresh frozen (FF) and formalin-fixed paraffin-embedded (FFPE) 
sections (Fig. 1b). Only 0.21% of the cells had fewer than ten assigned 
reads and were excluded from further analysis, positioning Xenium as 
a suitable platform for assessing cell-type frequencies in tissues.

Xenium enables reproducible identification of populations
To further explore the Xenium datasets’ characteristics, we examined 
seven adjacent full coronal datasets from mouse brains. Xenium’s 
cell-identification algorithm begins with segmentation of DAPI-stained 
nuclei, followed by an expansion of the segmentation masks. Using the 
cell-by-gene matrix of segmented nuclei, we identified 50 cell types that 
could be mapped onto the tissue to create a cell-type map (Fig. 1c,d and 
Methods). When assigning these cells to anatomical tissue domains 
(Methods), we observed a consistent distribution of domain-specific 
cell types8 (Extended Data Fig. 1g–i). Datasets generated in independent 
experiments on similar samples using identical probe panels exhibited 
a strong similarity in gene-specific detection efficiency, dispersion and 
reads per cell (Extended Data Fig. 1a–f). Cell-type proportions remained 
consistent across experiments, with notable differences observed 
only in the less abundant population owing to biological differences 
between samples (Extended Data Fig. 1e).

Xenium retains key 3D and subcellular cell information
Xenium datasets provide the 3D position of each read, yet this spatial 
dimension is often overlooked during cell segmentation. To address 
this, we used segmentation-free models in which spatially resolved 
molecular signatures are identified independently of segmentation. 
The more parsimonious nature of segmentation-free approaches, which 
analyze signals as they are detected, enables investigation of local signal 
properties before the spatial assignment into cells. Using one of these 
approaches, SSAM9 de novo mode, we identified 44 cell-type-specific 
clusters (Extended Data Fig. 2a). This approach consistently linked extra-
nuclear reads to specific signatures without requiring cell segmentation. 
Xenium’s 3D coordinates were used to detect potential mixed-source 
signals from cells overlapping strongly in the z-dimension (Fig. 1e and 
Extended Data Fig. 2b–e), found in 1.8% of the total cells.

Motivated by the insights that segmentation-free analysis 
can provide, we next focused on exploring its potential to uncover  
subcellular patterns. Across datasets, we identified some mRNAs 

Fig. 1 | Overview of the analysis and Xenium’s main characteristics. a, Overview 
of the analysis performed on Xenium datasets. b. Summary table of the Xenium 
datasets, detailing dataset characteristics, descriptors and quality metrics. IDC, 
invasive ductal carcinoma; DCIS, ductal carcinoma in situ; ILC, invasive lobular 
carcinoma; MS, multiple sclerosis. c, Uniform manifold approximation and 
projection (UMAP) of cells in seven mouse brain sections, colored by cell type. 
ACA, anterior cerebral artery; ARH, arcuate nucleus of the hypothalamus; BLA, 
basolateral amygdala; BMA, basomedial amygdala; CA1, cornu ammonis area 1; 
CA3, cornu ammonis area 3; Car3, carbonic anhydrase 3; CEA, central amygdala; 
Chol, cholinergic; CR, calretinin; CT, cortical transition; CTX, cortex; DG, dentate 
gyrus; ENT, entorhinal cortex; ET, embryonic time; GABA, gamma-aminobutyric 
acid; Glut, glutamate; Gpi, globus pallidus pars interna; HPF, hippocampal 
formation; IT, interneuron; LA, lateral amygdala; LH, lateral hypothalamus; 
L5, layer 5; L6, layer 6; MEA, medial amygdala; MSN, medium spiny neuron; 
NDB, nucleus of the diagonal band; NP, nucleus pontis; OPC, oligodendrocyte 
precursor eell; Otp, orthopedia homeobox; PAL, pallidum; PF, Purkinje fiber; PH, 
posterior hypothalamus; ProS, prosubiculum; PSTN, pre-subthalamic nucleus; 
PVH, paraventricular hypothalamus; Pvp, paraventricular nucleus, posterior 

part; RSP, rostral superior parietal; RT, reticular thalamus; Scg, superior cervical 
ganglion; SI, substantia innominata; Slc17a6, solute carrier family 17 member 
6; STN, subthalamic nucleus; STR, striatum; STRv, striatum ventral part; Thal, 
thalamus; VLMC, vascular leptomeningeal cells; ZI, zona incerta. d, Spatial map 
of cell types in c; replicate 1 is shown. The green square highlights the region of 
interest (ROI) in e. e, Spatial maps illustrating 3D coherence in Xenium datasets, 
including xy, xz and yz views of the ROI. f, Box plot of subcellular distribution for 
genes enriched in nuclei and cytoplasm in mouse brain (left) and glioblastoma 
(right) datasets. The box plot represents percentiles (0, 25, 50, 75 and 100), 
excluding outliers, with the center representing the median. g,h, Spatial 
maps showing transcript locations of specific genes in mouse brain (g) and 
glioblastoma (h) datasets. i, Map of transcripts in oligodendrocytes, colored 
by Points2Regions cluster in one of the mouse brain datasets (msbrain2). j, Box 
plot of the distribution of the Points2Regions clusters 0, 37, 46, 80 and 89 in i in 
relation to their distance to the nuclei edge. The box plot represents percentiles 
(0, 25, 50, 75 and 100), excluding outliers, with the center representing the 
median. k, Differentially expressed genes for each subcellular cluster in i.
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to focus on quantifying gene-specific characteristics of the different 
assays. We calculated the detection efficiency for individual genes for 
each technology by comparing read counts obtained for each gene with 
a reference region-matched scRNA-seq dataset23. Our analysis revealed 
that Xenium was the most sensitive ISS-based technique: its sensitivity 
was similar to that of ISH-based technologies such as MERSCOPE and 
Molecular Cartography (Fig. 2c and Extended Data Fig. 4c,e). Notably, 
all commercial SRT platforms, unlike their homemade counterparts24, 

demonstrated a very similar detection efficiency, highlighting the 
convergence of platforms in this aspect. For Xenium, this detection 
efficiency was found to be between 1.2 and 1.5 times higher than that 
of scRNA-seq (Chromium v2), depending on the metric and region 
analyzed (Fig. 2c and Extended Data Fig. 4c,e). To further validate these 
observations, we independently clustered the cells from each data-
set using standardized analysis pipelines, identified shared popula-
tions and compared gene expression levels across technologies. This 

Segmentation Domain identification Gene imputationSpatially variable 
features

× 25
Profiled tissues

Exploration 
and benchmarking 

Colocalization Preprocessing Main characteristics Method comparison

a b

Opalin
Gfap

msbrain 1

Opalin
Sox10

Igf2
Ly6a
Gjc3

Arc
Acsbg1

Gfap
Unc13c
Cabp7

Most
nuclear

genes

Least
nuclear

genes

0 5 10 15
Distance to centroid (µm)

Mouse brain 1 Nuclei edge

Most
nuclear

genes

Least
nuclear

genes

Glioblastoma Nuclei edge

0 5 10 15 20

ERBB3
MAG
ST18

CAPN3
UGT8
NRGN

MGST1
NRN1
MMD
ENC1

Distance to centroid (µm)

d

G
jc

3
D

ep
to

r
C

dh
20

N
rp

2
So

x1
0

Ta
nc

1
St

ar
d5

0.3

0.4

0.5

0.6

0.7 80
Oligo

nuclear

O
pa

lin
G

pr
17

Se
m

a3
d

Tm
em

16
3

Se
m

a6
a

Ad
am

ts
2

Ad
am

ts
l1

46
Oligo

nuclear

C
ld

n5
Em

cn
O

pa
lin Fn

1
C

lm
n

Sl
fn

5
Pe

ca
m

1

73
Oligo

nuclear

St
ar

d5
G

ad
d4

5a
C

pl
x3

Sd
k2

D
py

d
Ar

c
Rn

f1
52

89
Oligo

nuclear

C
bl

n4
Sl

c1
7a

6
La

m
p5

Sy
t2 N
ts

Ra
sg

rf
2

Bt
bd

11

0
Oligo

cyto

G
fa

p
Ig

fb
p5

Pr
ph D
cn

C
d4

4
Aq

p4
C

d2
4a

37
Oligo

cyto

f

i

g

c

Datasets

Tissue Species

Sample prep. No. datasets

No. genesSource

Quality metricsDescriptors

Area (cm2)

Cells Reads per cell

Genes per cell

High-quality
 reads (%)

Imaged in house 
Provided  by 10x

Homo sapiens
Mus musculus

Species

Source

Brain  (coronal) FF

Brain  (coronal) FF

Healthy lung

Lung cancer

Breast cancer (IDC)

Glioblastoma

Brain (cortex)

Spinal chord (MS)

Brain (Alzehimer)

Breast cancer (IDC/ILC)

Breast cancer (IDC/ILC)

Mouse brain (coronal)

FFPE

FFPE

FFPE

FFPE

FFPE

FFPE

FFPE

FFPE

FF

FF

2

4

2

2

1

1

1

1

1

1

2

3

Breast cancer (IDC/DCIS) FFPE

FFPE

2

2Breast cancer (IDC/ILC)

248

248

392

319

319

392

354

380

380

280

310

280

248

266

4 6 8 10 12

Area imaged (cm2)

Cells recovered (×105)

2 4 6 8

Reads assigned to cells (%)No. reads

Total reads (millions)

20015010050

Mean genes per cell

100 150 200 250

Mean reads per cell

5030 40 60 70 80

ROI coherence map

0.2
20 µm

0.4

0.6

0.8

0

Cosine 
similarity

top/bottom

e ROI cell type map, top

20 µm

ROI cell type map, bottom

20 µm

ROI, vertical, x-cut 20 µm

ROI, vertical, y-cut 20 µm

msbrain 2
840–4

Distance to nuclei edge (µm)

80_Oligo

46_Oligo

73_Oligo

89_Oligo

0_Oligo

37_Oligo

Nuclear clusters
Cytoplasm clusters

Re
ad

s 
(%

 in
 o

lig
os

)

ARH Gaba
ARH-Pvp Gaba

Astrocytes

CA1-ProSCA3 GlutCar3 Glut

Choroid plexus

DG Glut

Endothelial cells
Ependymal

Gpi Gaba-Glut
HPF CR Glut

Inh. Gaba Mixed 1
Inh. Gaba Mixed 2

L2/3 IT CTX Glut
L2/3 IT ENT Glut
L2/3 IT RSP Glut
L4 RSP-ACA Glut
L4/5 IT CTX Glut
L5 ET CTX Glut
L5 NP CTX Glut
L5/6 IT CTX Glut
L6 CT CTX Glut
L6b CTX Glut

LA-BLA-BMA-PA Glut
LH Glut 1
LH Glut 2
MEA Glut
MEA-COA-BMA Slc17a6

MSN Gaba 1
MSN Gaba 2

Microglia

NDB-SI-MA-STRv

OPC
Oligo

PAL-STR Gaba-Chol

PF Glut
PH Glut
PVH-PVHd-SO Otp Glut

Pericytes

Pvalb Gaba
RT ZI Gaba

STN-PSTN Glut

STR-PAL-CEA Gaba
Scsg Gaba

Thal. Glut Neurons

VLMC

Non-neuronal

Various neurons

Exc. neurons

GABA neurons

Hipp. neurons

Cell types in mouse brain

Points2regions clusters (Oligo)

MAG
NRGN1

GBMh

j

k

Nuclear edge

1 mm

20 µm20 µm

20 µm

http://www.nature.com/naturemethods


Nature Methods | Volume 22 | April 2025 | 813–823 816

Analysis https://doi.org/10.1038/s41592-025-02617-2

Image-based ST
Xenium CosMx

Mol. Cartography (MC)
MERSCOPE HS-ISS

MERFISH

Nuclei
Segmentation

Cellpose
(cyto mod.)

no expansion

Regional annotation Region-specific
comparable

 datasets

Comparison between
 technologies 

Gene e�iciency
Detection specificity

Read di�ussion

*Total reads per cell

*Genes profiled
*Cells profiled

ABC atlas
reference 
scRNA-seq

a c

e

g

0.5

1

2

4

SR
T/

SC
 ra

tio

0.25

16

8

Detection e�iciency (cortex)

HS-IS
S

MER
FIS

H
CosM

x

MER
SCOPE

MC

Xenium

d Gene specificity (cortex), all genes

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
C

P 
sc

or
e

HS-IS
S

MERFIS
H

CosM
x

MERSCOPE
MC

Xenium

HS-ISS

MERFISH

CosMx

MERSCOPE

MC

Xenium

b

Transcripts per cell
8 64 256 1,024 4,096

Genes per cell
8 64 256 1,024 0 400 800

Profiled genes

0 1 2 3 4 5
Total counts

Slc17a7

−1 0 1 2 3 4 5 6
Total counts

Sox10

0 1 2 3 4
Total counts

Pvalb

0 1 2 3 4 5 6
Total counts

Gad1

CosMx

HS-ISS

MERFISH

MC

Xenium

CosMx

HS-ISS

MERFISH

MC

MERSCOPE

Xenium

CosMx

HS-ISS

MERFISH

MC

MERSCOPE

Xenium

HS-ISS

MERFISH

MC

Xenium

100 101 102 103 104 105

Counts per cm2 (Visium)Counts per cm2 (Visium)Counts per cm2 (Visium)

101

102

103

104

105

Hippocampus ThalamusCortex

X/V ratio: 
6.8 (median)

X/V ratio:
12.8 (median)

X/V ratio:
13.6 (median)

f

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 re
ad

s 
(c

um
ul

at
iv

e)

Distance to centroid (µm)

HS-ISS

MERFISH

CosMx

MERSCOPE

MC

Xenium

NGS-based ST
Visium (FF)

C
ou

nt
s 

pe
r c

m
2  (X

en
iu

m
)

C
ou

nt
s 

pe
r c

m
2  (X

en
iu

m
)

n = 39 n = 171 n = 123 n = 122 n = 110 n = 73

n = 106 n = 65 n = 63 n = 45 n = 88 n = 19

100 101 102 103 104 105

101

102

103

104

105

102

103

104

105

C
ou

nt
s 

pe
r c

m
2  (X

en
iu

m
)

100 101 102 103 104 105

Fig. 2 | Benchmarking Xenium against other SRT platforms. a, Overview of the 
workflow for comparing SRT platforms. In the ‘Comparison between technologies’ 
box, the asterisk indicates that the values for the metric differ between 
experiments. Cyto mod, cellpose cytoplasm model. b, Box plot showing the 
numbers of transcripts per cell and genes per cell for each dataset (left and center). 
The box plots represent percentiles (0, 25, 50, 75 and 100), excluding outliers, 
with the center representing the median. The bar plot (right) shows the number of 
profiled genes per platform. c, SRT/scRNA-seq (SRT/SC) gene efficiency ratios for 
various SRT platforms. Gene efficiency refers to the proportion of transcripts of a 
certain gene of interest detected using a given platform. The box plot represents 

gene efficiency in quartiles, excluding outliers, with individual dots showing gene-
specific ratios. n, number of genes. d, Box plot showing NCP scores, ranging from  
0 to 1, in quartiles excluding outliers, reflecting the percentage of non-coexpressed  
pairs in single-cell data that remain non-coexpressed in situ. n, number of pairs.  
e, Violin plot of transcripts detected per gene across datasets, focusing on clusters 
with highest marker expression. f, Cumulative proportion of reads by distance 
from the cell centroid across platforms. Values indicate the proportions of reads 
that are found at distances greater than or equal to the specified distance.  
g, Scatter plot of reads per gene per square centimeter in Visium versus Xenium 
across brain regions. X/V ratio, Xenium to Visium ratio.
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revealed a comparable number of molecules detected per cell between 
Xenium and other commercial SRT platforms (Fig. 2e).

To contextualize Xenium’s performance alongside 
sequencing-based methods, we compared it with Visium (Fresh Fro-
zen)21, the most widely used SRT platform. Given that Visium doesn’t 
have single-cell resolution, we assessed pseudo-bulk gene-specific 
reads identified by each method for a common anatomical region, nor-
malized by area. Results showed that Xenium was more sensitive than 
Visium at the tissue level, detecting a median of 12.8 times more reads 
(Fig. 2g). Notably, some genes that were barely detected by Visium were 
found to be highly abundant by Xenium.

Efficient detection is crucial in SRT assays, but equally vital is assay 
specificity. To evaluate the latter, we implemented a metric called 
negative co-expression purity (NCP), which quantifies the percentage 
of non-co-expressed genes in our reference single-cell dataset that do 
not appear to be coexpressed in each SRT dataset. Therefore, a high 
NCP, close to 1, indicates a high specificity in the dataset. Overall, all 
the different SRT technologies presented a mean high specificity 
(NCP > 0.8), with HS-ISS and Molecular Cartography being the most 
specific technologies (Fig. 2d). The specificity of Xenium was slightly 
lower than that of other commercial platforms, but was consistently 
higher than that of CosMx, which presented the lowest values. These 
results remained consistent after removing all highly expressed genes, 
which could result in lower NCP scores owing to a broader expression 
across cells (Extended Data Fig. 4d). Last, we observed differences in 
the subcellular distribution of profiled reads across different technolo-
gies (Fig. 2f). MERFISH and ISS methods displayed a higher concentra-
tion of reads near the cellular centroid, whereas ISH-based commercial 
platforms (CosMx, Molecular Cartography and MERSCOPE) had reads 
positioned farther away. These discrepancies were evident when com-
paring individual genes across the various technologies (Extended 
Data Fig. 4f).

Nuclear expansion influences cell-type expression profiles
Nuclear expression signatures are typically sufficient for defining cell 
populations in situ, but incorporating cytoplasmic reads could then 
enhance cell clustering and labeling. Under this assumption, Xenium’s 
nuclear segmentation is followed by a default radius expansion of 15 μm. 
This expanded cell-by-gene matrix allows for the identification of cell 
types that are organized into region-specific clusters, in contrast with 
the more homogeneous classifications achieved using unexpanded 
segmentation (Extended Data Fig. 1h). For instance, thalamic oligo-
dendrocytes were grouped together with thalamic astrocytes, rather 
than with other oligodendrocytes (Extended Data Fig. 1i), indicating 
that expansion captures domain-specific expression signatures.

To identify the optimal cell expansion, we defined nuclear expres-
sion signatures for each cell type and domain-specific background 
expression signatures (Methods). Our analysis revealed that tran-
scripts located more than 10.71 μm, on average, from the cell centroid 
exhibited a higher gene expression correlation with domain-specific 
background signatures than with nuclear cell-type-specific signatures 
(Fig. 3a,b). This distance likely reflects the average radius of the profiled 
cells, including both nuclei and cytoplasm. Given that nuclei in this 
dataset presented a radius of 5.06 μm, on average, the ideal expan-
sion of cells in the samples should be 5.64 μm. However, different cell 
types presented different optimal expansion distances (Fig. 3b). Thus, 
segmentation strategies based on the identification of nuclei followed 
by a rigid expansion might not provide the best solution.

Baysor and Cellpose outperform standard Xenium 
segmentation
The influence of cell segmentation on cell-typing accuracy motivated 
us to explore alternative segmentation methods. We benchmarked 
the performance of Xenium segmentation against commonly used 
segmentation strategies (Fig. 3c, Extended Data Fig. 5a,b and Methods). 

These strategies can be broadly categorized as staining-based, in which 
the position of cells is determined by an auxiliary staining such as DAPI 
(Watershed25, MESMER26 and Cellpose22); read-based, in which cells are 
defined on the basis of the read density and composition of tissues 
(Baysor27); or mixed models, in which both staining and the position of 
reads is used for defining cells (Baysor27 and Clustermap28). Segmenta-
tion based on equally distributed bins across the tissue (binning) was 
included in the comparison as an example of simplistic segmentation. 
We also applied various cell expansions to each segmentation output 
(1, 2, 5, 10 and 15 μm).

We next identified groups of strategies that performed similarly 
(Fig. 3d and Extended Data Fig. 5d). Staining-based strategies using 
DAPI generated similar outputs, with cell expansion being the force 
driving their differences. In addition, Baysor-based, Clustermap-based 
and binning strategies clustered according to method, indicating 
method-specific segmentation output. We defined the optimal seg-
mentation strategy as the one maximizing the proportion of reads 
assigned to cells while maintaining specific expression patterns, 
quantified by negative marker purity (NMP) (Methods) (Fig. 3e and 
Extended Data Fig. 5c,e). NMP calculates the percentage of detected 
reads expected in each identified cell type on the basis of a reference 
scRNA-seq23. We found that Baysor-based strategies, particularly Bay-
sor combined with Xenium’s nuclei segmentation (BA2 P0.8), represent 
the best segmentation strategy (Fig. 3e and Extended Data Fig. 5e). 
Moreover, including Xenium’s segmentation as a prior results in fewer 
missed cells (Extended Data Fig. 5b,c). These results were consistent 
across all datasets (Extended Data Fig. 5d,e).

Finally, we jointly processed the cells segmented using the best 
strategy (BA2 P0.8) alongside those defined by Xenium’s nuclear seg-
mentation (Fig. 1c). Although cells defined by Baysor had a higher 
count per cell, the identified cellular populations were the same across 
both segmentation strategies (Fig. 3f–h), with mostly mild differences 
in cell-type abundance. Overall, our analysis indicates that Xenium’s 
default nuclear segmentation masks provide adequate information 
for defining the main populations detectable in situ, comparable to 
more-sophisticated segmentation strategies.

Preparing Xenium data: best practices in preprocessing
To identify populations in situ, cell-by-gene data are typically prepro
cessed. The preprocessing of in situ datasets involves essential steps, 
such as filtering out low-quality cells and genes, applying appropriate 
transformations, reducing dimensionality, and clustering. These steps, 
derived from the single-cell field, can have a major impact on cell-type 
identification in situ. Thus, we aimed to define the optimal preprocess-
ing steps for Xenium data.

In the absence of a reliable cell-type reference for Xenium data-
sets, we used scRNA-seq datasets from Census29 as our starting point 
(Methods). Census datasets were transformed to resemble Xenium 
data by (1) reducing the number of captured genes, (2) varying the 
detection efficiency of individual genes and (3) introducing the effect 
of mis-segmentation and technical noise (Fig. 4a, Extended Data Fig. 6a 
and Methods). Our preprocessing approach involved multiple steps, 
including scaling, normalization, highly variable feature (HVF) selec-
tion and clustering. We considered omitting certain steps and used 
multiple hyperparameters in each process (Extended Data Fig. 6a and 
Methods). Finally, we assessed the similarity between the new clusters 
and the reference labels, identifying preprocessing workflows that 
maximized accurate cell grouping into clusters. Of note, we found a 
set of workflows that, when applied, consistently maximizes the simi-
larity between the original and newly generated clusters (Fig. 4b and 
Extended Data Fig. 6b). The most effective method consisted of: (1) 
library-size-based normalization, with the total library size set to 100; 
(2) log-transformation; (3) scaling; (4) the construction of a k-nearest 
neighbors graph using all principal components and 16 neighbors; and 
(5) Louvain clustering (Fig. 4c). Surprisingly, some top-performing 
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shown. c, Comparison of cells identified with different segmentation algorithms 
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of the mouse brain samples profiled (mouse brain section 2). e, Scatter plot 
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applied to mouse brain section 2. Prior segm. confidence refers to the value 
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Fig. 4 | Assessing the best preprocessing methods for Xenium. a, Workflow 
diagram showing simulation of Xenium-like datasets from CELLxGENE Census 
single-cell data. b, Heatmap ranking preprocessing workflows on the basis of 
alignment with reference cell types, with workflows sorted from best (blue) to 
worst (white). A summary of the processing setups is included (right), with colors 
indicating the preprocessing steps chosen, as indicated in Extended Data Fig 6b. 
Epith., epithelium; p.z., peripheral zone; t.z., transition zone; duod-jejunal junct., 
duodenojejunal junction. c, Top 20 preprocessing paths, with the best path 
marked in red. PCs, principal components; MCV, Markov cluster algorithm. d. Bar 
plot of ARI, showing the effects of different preprocessing steps on clustering 

consistency relative to ground truth. e, Bar plot of ARI. comparing workflow 
consistency across real Xenium datasets with different preprocessing steps.  
f, Heatmap of SVF scores across algorithms in a breast-cancer dataset. Example 
spatial maps of non-SVF, partial and SVF are shown (top). g,h, Mean agreement 
(Kendall’s tau) (g) and Jaccard similarity index (h) showing agreement in SVF gene 
rankings across datasets. i, Proportion of genes (left) and control probes (right) 
identified as SVFs across Xenium datasets. Algorithm colors indicate whether 
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with colors representing 5,000-cell or full-sample input.
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workflows omitted the log-transformation step but maintained scal-
ing, emphasizing that there is no universal best way to process spatial 
datasets. We next conducted parameter-tuning analysis, taking as a 
gold standard the previously described best-performing workflow. 
Using simulated datasets, we identified that the most essential fac-
tors in the processing workflow were the normalization method, the 
library size used in library-size-based normalization, scaling and the 
number of principal components, selected when building the k-nearest 
neighbors graph (Fig. 4d).

After using simulated data to identify the best preprocessing work-
flows, we explored the impact on real Xenium data. Using the top pre-
processing workflow as a reference, we conducted a parameter-tuning 
analysis (Fig. 4e). We found that some preprocessing steps, such as 
HVF selection, normalization and data scaling, were crucial, as their 
absence led to dramatic differences in clustering outcomes. These 
results were consistent across datasets, regardless of the metrics used 
to compute clustering similarity, and closely mirrored results obtained 
using simulated datasets (Extended Data Fig. 6c–e).
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Fig. 5 | Benchmarking imputation and domain identification algorithms 
with Xenium. a, Detected and imputed expression of Slc17a6 in mouse brain 
dataset 1 using various imputation algorithms. b, Performance of imputation 
methods assessed with four metrics: PCC, SSIM, JS and RMSE; data are shown as 
mean ± 95% confidence intervals. c, Imputation accuracy (PCC) across genes, 
highlighting the ten best and ten worst predicted genes. d, Scatter plot showing 
the correlation between PCC for imputation accuracy and mean gene expression. 
e, Relationship between gene-specific imputation accuracy (PCC) and mean 

gene correlation with other detected genes in situ. f, Bar plot of linear regression 
model (LRM) coefficients indicating feature importance for predicting gene-
specific imputation accuracy. g, Spatial map of manually annotated domains in 
a mouse brain section (replicate 1) compared with domains identified by various 
algorithms. h, Ranked performance of algorithms in domain identification using 
the manual segmentation as a reference, evaluated with ARI, variability index 
(VI), normalized mutual information (NMI) and Fowlkes–Mallows index (FMI), for 
different domain numbers6,9,17,49.
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Selection of spatially variable features using Xenium datasets
As an alternative to HVF selection, identifying spatially variable features 
(SVFs) is useful in distinguishing genes that explain the main spatial 
variation patterns within tissue. Given the variety of methods, the 
choice of algorithm could influence the results. To better understand 
the differences, we compared the performance of the commonly used 
methods developed for this task (Squidpy’s Moran’s I and Geary’s C30, 
Hotspot31, SomDE32, SpatialDE33, Sinfonia34, Seurat’s mark variogram 
and Moran’s I35 and Giotto36), using full Xenium datasets when possible. 
Because some algorithms could not be applied to the full datasets owing 
to their long expected execution times (Extended Data Fig. 7a), we also 
compared their performance on a subset of 5,000 cells.

Despite the large disparity in the proportion of SVFs identified 
by each algorithm, we observed a good agreement in gene ranking 
across most algorithms, with the exception of SpatialDE, Seurat’s mark 
variograms’s and Squidpy’s Geary’s C (5,000 cells) (Fig. 4f,g). However, 
algorithms differ when classifying genes as SVFs (Fig. 4h–j), with some 
methods consistently identifying a large proportion of the panel as 
SVFs (Seurat or Sinfonia), and others selecting a lower proportion 
(hotspot, Squidpy). Because Xenium datasets include some control 
probes, which by nature are not going to be spatially variable, we used 
them to quantify the percentage of false positive features detected by 
each algorithm. None of the SVF algorithms successfully classified all 
control probes as non-variable features, with Hotspot being the closest 
one, selecting <5% of control genes as SVFs. As expected, algorithms 
that selected a higher proportion of SVFs also reported more false 
positives, suggesting that the available algorithms might still confuse 
noisy patterns with spatial variability. Notably, this was not true for the 
algorithm used to identify HVFs, which detected all control probes 
as non-variable features while still consistently detecting ~18% of the 
genes as HVFs (Fig. 4i,j).

Benchmarking gene imputation tools on Xenium datasets
Targeted SRT methods are typically constrained by the number of 
genes measured simultaneously. Imputation approaches overcome this 
limitation by predicting gene expression from a reference scRNA-seq 
onto a cellular-resolution SRT dataset37. We sought to benchmark the 
performance of seven methods (gimVI38, SpaGE39, Tangram40, Liger41, 
Seurat35, SpaOTsc42 and NovoSpaRc43) using the workflow developed 
by Li et al.37 (Fig. 5a and Methods).

Imputation performance was assessed by Pearson correlation 
coefficient (PCC), structural similarity index (SSIM), root mean square 
error (RMSE) and the Jensen-Shannon divergence ( JS), with a higher 
PCC and SSIM and a lower RMSE and JS value indicating better predic-
tion accuracy. Using these metrics, we consistently identified SpaGE 
as the optimal method (Fig. 5b). In addition, Seurat, Tangram and 
SpaOTsc achieved an overall high performance. Surprisingly, gimVI’s 
performance was lower than one previously reported when using it to 
integrate scRNA-seq with other SRT technologies37.

Our workflow compares detected and imputed gene expression 
of individual genes, making it an effective method for identifying 
genes with overall low agreement between scRNA-seq and Xenium. By 
quantifying gene-specific differences using the PCC across all genes 
and methods, we observed an enormous difference in the imputation 
performance between genes, consistent across imputation methods 
(Fig. 5c). We discovered that, among the characteristics we exam-
ined, expression level and overall correlation with other genes in the 
panel were the most strongly associated with effective imputation. 
By contrast, other factors, such as the subcellular localization of the 
transcript or its variability, did not significantly affect the imputation 
performance. (Fig. 5d–f)

Assessing computational tools to explore tissue architecture
Identifying the architecture of tissue can be helpful to understand its 
function. Identifying reliable tools for defining these domains is of 

great interest, yet no independent comparison is available. Therefore, 
we benchmarked five domain-identification algorithms (Banksy44, 
DeepST45, SpaGCN46, SPACEL47 and STAGATE48) against the regions 
identified through expert manual annotation from the coronal P56 
section of the Allen Brain Atlas49 (Fig. 5g and Extended Data Fig. 7b). 
We also included two simple methods to identify cell compartments 
(binning-based and neighborhood-based50). We found that the 
domains predicted by binning-based clustering consistently exhib-
ited the highest similarity to manual annotations, outperforming 
more-sophisticated algorithms (Fig. 5h and Extended Data Fig. 7c). 
However, these findings might be influenced by the specific archi-
tecture of the tissue type analyzed, meaning that the performance of 
various methods could vary in different tissue types.

Best practices for processing and analyzing Xenium datasets
On the basis of the evidence presented here, we propose an optimal 
approach for processing and analyzing Xenium datasets. We have 
condensed this information in an end-to-end pipeline with the aim of 
helping Xenium users to maximize the value of their data.

In brief, taking the data obtained from Xenium as an input, first 
we would re-segment the cells. The optimal algorithm involves two 
steps: first, identifying nuclei using Cellpose22 and second, assign-
ing reads to individual cells using Baysor27. Cellular expansion is 
unnecessary, because extra-nuclear reads are assigned directly 
by Baysor. If cellular segmentation results in poor performance, 
segmentation-free methods such as SSAM9 or Points2Regions10 can 
be used to identify molecular signatures without identifying indi-
vidual cells. After segmentation, a cell-by-gene matrix is generated, 
which can be taken as an input for cell-type identification through 
standard scRNA-seq workflows consisting of (1) cell filtering, (2) 
log-transformation and normalization, (3) identification of the main 
principal components, (4) dimensionality reduction and (5) cluster-
ing. To rank SVFs, various algorithms can be used; however, they 
might yield inconsistent results in their selection of spatially variable 
genes. In addition, if scRNA-seq or single-nucleus RNA-seq is available, 
gene imputation can be performed using algorithms such as Seurat, 
SpaGE39 or Tangram40. Finally, for the identification of domains, using 
binning-based strategies or algorithms, such as Banksy44 or SPACEL47, 
can be a convenient solution.

Discussion
In this study, we present an independent exploration and evaluation 
of Xenium in situ datasets. Xenium can be used to generate highly mul-
tiplexed spatial gene expression maps with subcellular resolution. 
The identification of hundreds of reads per cell, combined with the 
extensive tissue characterization, facilitates the easy identification 
of cellular populations in situ.

The detection efficiency of Xenium was comparable to that of 
Chromium v2 and slightly higher than that of other commercially 
available platforms, while maintaining a high specificity. These fea-
tures are consistent across samples, as shown in recent studies6,7. 
Notably, however, most recently launched SRT platforms demon-
strate similar performance in most metrics, with the most important 
difference being the number of profiled genes, a metric expected to 
change over time as new gene panels are introduced. To enhance our 
understanding of the strengths and weaknesses of each assay, further 
independent comparisons of technical aspects, such as imaging time, 
experimental costs, user-friendliness and reproducibility, are crucial. 
Several processing steps were identified to be crucial for analyzing 
Xenium datasets, with segmentation highlighted as one of the most 
important. The current segmentation provided by 10x Genomics 
effectively identifies cell nuclei and gathers sufficient information to 
identify the main cell populations in the analyzed sections. Cell mask 
expansion after segmentation can negatively impact the characteriza-
tion of cell populations by misassigning reads to neighboring cells. 
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We found that Baysor in combination with Cellpose segmentation 
outperformed the rest of the strategies, effectively defining individual 
cells on the basis of both the density and identity of individual reads 
in situ. This strategy enables Baysor to identify cells of varying sizes 
and compositions; it can even detect cells whose nuclei are not cap-
tured in the section. This can happen, for example, when the section-
ing plane separates a nucleus from the bulk of its corresponding cell 
body. Overlapping cells present a common but challenging segmen-
tation issue, owing to the 2D nature of most of the algorithms used. 
Thus, implementing new segmentation algorithms that account for 
the 3D structure of the data and incorporating additional staining for 
cellular membranes would facilitate the correct identification of indi-
vidual cells. In this context, segmentation-free cell-typing methods 
represent an alternative to the typical segmentation-then-clustering 
workflow, enabling identification of cell populations and subcel-
lular patterns. The exploration of subcellular patterns represents an 
underexplored layer of information that is now becoming accessible 
thanks to the sensitivity and resolution of new imaging-based SRT 
methods, such as Xenium.

Given the extensive range of available methods, only a subset of 
the most popular techniques was included in the benchmarking pro-
cess for various tasks; therefore, the top-performing method for each 
task might not be the best one available. In addition, some published 
algorithms approached the tasks in an alternative manner, result-
ing in non-comparable outputs (for example, SpaGCN46 identifies 
domain-specific SVFs) and were not suitable for benchmarking. Overall, 
although some efforts have been made, a more systematic benchmark-
ing of these and other algorithms using datasets generated in different 
tissues with different experimental designs would be beneficial to 
decipher when to use each algorithm. To achieve this, new and more 
diverse datasets are essential.

In summary, Xenium represents an overall improvement over 
other ISS-based technologies. Its increased detection efficiency and 
high specificity, together with its resolution, enable the identification 
of cell types in their spatial context, making it a useful tool to explore 
spatial biology.

Online content
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maries, source data, extended data, supplementary information, 
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Methods
Xenium experiments
Fresh frozen male mouse brain tissue sample (no. 676) from an 
8-week-old C57BL/6 strain was purchased from Adlego Biomedical 
AB/Scantox under ethical permit 16316-2022 and profiled using in situ 
Xenium platform (10x Genomics). The predesigned 248-gene Xenium 
Mouse Brain Gene Expression panel was profiled across the 4 sec-
tions by the In Situ Sequencing Infrastructure Unit (Science for Life 
Laboratory), where probe hybridization, ligation and rolling circle 
amplification were performed, following the manufacturer’s proto-
col (CG000582 Rev E, 10x Genomics). Background fluorescence was 
chemically quenched. Imaging and signal decoding were done using 
the Xenium Analyzer instrument (10x Genomics).

Xenium dataset processing
The 25 datasets included in this study were formatted as anndata using 
a customized function (https://github.com/Moldia/Xenium_bench-
marking) and processed using Scanpy (v1.9.1). To identify main popu-
lations in situ, cell-by-gene raw matrices provided by 10x Genomics 
software were log-transformed and normalized. Neighborhood graphs 
were then computed considering 40 principal components and 12 
neighbors, followed by Leiden clustering. Cell-type annotations were 
performed using differentially expressed marker genes previously 
described in Zhang et al.23. The same preprocessing steps were per-
formed on cell-by-gene matrices obtained for alternative segmenta-
tion methods.

Annotation of mouse brain architecture
Tissue domains from SRT datasets were manually annotated using the 
mouse coronal P56 sample from Allen Brain Atlas49. Datasets were first 
processed as described above and then used to create plots display-
ing cell cluster or spot identity, overlaid on their respective DAPI-, 
immunofluorescence- or H&E-stained images. Region delimitations 
were created using enclosed vectorized Bézier curves, which were 
saved as polygons in scalable vector graphics format (.svg). Annota-
tions were integrated to the cell and/or spot coordinate system from 
each sample, allowing both classification of cells and/or spots and 
projection of annotated regions onto the datasets for inspection and 
downstream analysis (see below). All annotations and detailed instruc-
tions on how to use them are freely available at https://github.com/
Moldia/Xenium_benchmarking.

Single-cell RNA-sequencing processing
A subset of the scRNA-seq dataset from Zhang et al.23 was used in this 
study. To ensure a fair comparison between the single cell atlas and 
the various SRT datasets, we included only populations that were 
spatially mapped in sections of the MERFISH spatially resolved atlas 
corresponding to the same brain regions represented in the SRT data-
sets used in this study. Owing to the dimensionality of the dataset, only 
20% of the remaining cells were used for comparison, guaranteeing 
equal representation of all populations. The resulting subset consisted 
of 193,000 cells used for integration and annotation. Out of those, 
a subset of 13,800 cells was used as an input for gene imputation. 
Cell-type signatures for each type were also obtained for the different 
levels of annotations presented in Zhang et al. and used as an input in 
cell-typing methods such as SSAM. Region-specific subsets including 
only populations mapped in the regions presented in Figure 2 were 
used for comparison with SRT methods.

Benchmarking Xenium against other SRT methods
To benchmark Xenium against other SRT platforms, DAPI staining 
and transcript locations were obtained for all datasets. Datasets from 
open-source technologies were obtained from their original publica-
tions (HS-ISS20, MERFISH24), and datasets from commercial platforms 
were downloaded from the companies web portals (CosMx, Vizgen and 

Resolved Biosciences). Cells from all datasets were resegmented using 
common segmentation algorithm Cellpose (cytoplasmic model)22, 
followed by the assignment of reads to cells. With the aim of exploring 
the diffusion of the different technologies, reads identified outside 
the nuclei were assigned to their closest cell. However, these reads 
were excluded from the comparison of efficiency and specificity 
between datasets. To guarantee a fair comparison across platforms, 
anatomical regions were annotated across datasets, and cells profiled 
in each region were used for further analyses. For comparison with 
scRNA-seq, a subset of dataset from Zhang et al.23 was considered (see 
previous section). Raw counts were compared between all methods. 
Only genes present in at least four datasets were used for comparison. 
Two approaches were used to compare SRT platforms in terms of gene 
efficiency detection. First, taking scRNA-seq as the reference dataset, 
the detection efficiency of each gene relative to scRNA-seq was assessed 
by (1) identifying positive cells (cells with more than one read), (2) 
computing the median expression of the gene among positive cells 
and (3) computing the ratio between the two medians. Because we 
aimed to identify the efficiency of each gene in each SRT method, we 
divided the SRT median by the scRNA-seq median. Second, to provide 
a direct comparison between technologies, datasets from all platforms 
were preprocessed, clustered and annotated. Populations consistently 
identified across technologies were further used for comparison.

To compare the specificity between technologies, the NCP was 
computed for each gene. It aims to quantify the presence of coex-
pressed genes in situ that weren’t detected in the single-cell reference 
dataset. These genes not coexpressed in single-cell but coexpressed 
in situ can be attributed to non-specific reads, with single-cell data-
sets serving as the benchmark. In brief, this metric is computed by:  
(1) identifying pairs of non-coexpressed genes in the reference single 
cell dataset, (2) quantifying the presence of these pairs across datasets 
and (3) computing the percentage of these pairs that were not coex-
pressed in situ. The NCP score ranges from 0 to 1. A score near 0 means 
most gene pairs not coexpressed in the reference single-cell dataset do 
coexpress in situ, indicating low specificity. Conversely, a score near 1 
indicates that gene pairs not coexpressed in the reference also do not 
coexpress in situ, reflecting high specificity.

For the side-by-side comparison between Xenium and Visium, 
manually annotated regions present in both datasets were used. Counts 
per region were normalized by the total area. The ratio between the 
number of molecules detected in Xenium and Visium was computed 
for the common genes.

Optimal expansion identification
We developed a customized algorithm to identify the optimal expan-
sion distance for each cell type. The rationale behind this algorithm is 
that the optimal expansion is defined as the point at which the correla-
tion between reads at increasing distances from the nucleus shifts from 
the nuclear signature to the domain-specific background signature.

To compute this, nuclear expression signatures were defined on 
the basis of nuclear masks (Fig. 1c), whereas domain-specific signatures 
were derived from reads not assigned to any cell in Xenium’s default 
expansion. For each cell type–domain pair with at least 5,000 reads, 
we calculated Pearson’s correlation for distance-specific signatures—
grouped in 1-μm intervals—with both nuclear and background signa-
tures. The optimal expansion distance was identified as the smallest 
interval in which correlation with the background exceeded that with 
the nuclear signature. To determine a cell type’s overall mean optimal 
expansion, we averaged values across all relevant domains. Addition-
ally, we calculated the nuclear edge distance as the mean distance from 
the cell centroid to the points forming the convex hull of the nuclear 
region. Similarly, we estimated the cell-edge distance on the basis of 
all reads assigned to each cell, following Xenium’s segmentation and 
expansion. This algorithm was applied to the mouse brain 1 dataset, 
as shown in Figure 3a,b.
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Benchmarking segmentation algorithms
We benchmarked the segmentation methods Baysor, MESMER, Water-
shed, Cellpose and Clustermap against the segmentations provided by 
10x Genomics, using uniformly distributed bins across the tissue with 
a custom pipeline. All segmentation masks were expanded by 1, 2, 5, 10 
and 15 μm (0–70 pixels). Watershed segmentation was applied using 
scikit-image v0.22.0. The DAPI image was first preprocessed as follows: 
the image was gamma-corrected using default parameters (gamma, 1; 
gain, 1). Next, the contrast was adjusted using contrast limited adaptive 
histogram equalization with default values (clip_limit, 0.01; bins, 256), 
followed by Gaussian blurring with sigma parameter 1 or 3 (referring to 
212.5 and 637.5 nm respectively). After retrieving initial cell segments 
with the watershed algorithm, three postprocessing steps were applied. 
The first two steps leveraged scikit-image functions to remove small 
objects with sizes below 64 pixels (13.6 µm), and small holes with a 
maximum area of 64 pixels (13.6 µm). Owing to local Otsu threshold-
ing, the Watershed segmentation identifies false positive cells in larger 
regions of low DAPI intensity. Therefore, as a third postprocessing step, 
a custom background-intensity-based cell filter was applied to remove 
these cells. The filter removes segmented cells in window sizes of 1,000 
× 1,000 pixels that have a mean intensity lower than 0.3 times the mean 
intensity of the background in the surrounding 2,000 × 2000 pixel 
window. Baysor (v0.6.2) was tested using scale parameters of 20, 30 
and 40 pixels (BA20–BA40); minimum molecules per cell of 30, 50, 70 
and 100; and optionally a prior segmentation with prior segmentation 
confidence of 0.2, 0.4, 0.6, 0.8, 0.9 and 0.99 (for example, CPc BA28). 
When a prior segmentation was provided, the Baysor algorithm could 
also automatically adjust the scale parameter. The configurations were 
run with and without the z coordinate information (that is, 2D versus 
3D). The Cellpose (v2.2.3) deep-learning models ‘nuclei’ (CPn) and ‘cyto’ 
(CPc) were applied on the DAPI channels with diameter parameters of 
none, 20, 30 and 40. Similarly, MESMER was applied with compartment  
parameters ‘nuclear’ and ‘whole-cell’. Clustermap (github code from 
8 November 2022) was applied with Gaussian blurring at sigma values 
of 1 and 5, and xy_radius 20, 30, 40.

The pipeline takes as input the DAPI image, the gene spots with 
cell-type annotations and x, y and z coordinates, as well as a scRNA-seq 
reference dataset with cell-type annotations that are matched with 
the cell-type naming for the spatial cells. The datasets described in 
‘scRNA-seq processing’ were used as references. Cell-type annota-
tions on the nuclear segmentation from 10x Genomics (see ‘Xenium 
dataset processing’) was provided. After each segmentation run, a 
count-per-gene matrix was generated for the cells, and cell types were 
assigned. With each new segmentation run, new cells were identified, 
and their cell types were assigned on the basis of the spot’s majority 
vote from the previous nuclear-segmentation-based annotation. For 
each segmentation output, the pipeline assessed the proportion of 
assigned reads, number of identified cells, the median and 5th percen-
tile of reads per cell, and the median and 5th percentile of genes per 
cell. Additionally, we introduced the NMP metric, which is based on 
the assignment distribution of reads from negative markers: a negative 
marker for a set of ‘negative cell types’ is defined, on the basis of the 
single-cell reference, as a gene that is expressed in less than 0.5% of cells 
in each of the negative cell types. The NMP measures the percentage 
of reads of negative markers in the cell types expected to express the 
gene. To ensure the NMP metric is independent of cell-type propor-
tions, we normalized the mean expressions by the total of the mean 
expressions of all cell types:

X̄ (m)
g,c =

̄x(m)g,c

∑c′∈C ̄x(m)g,c′

where ̄x(m)g,c  is the mean raw expression of a gene (g) in a cell type (c) and 
a modality (m) (sp, spatial; sc, single-cell reference). X̄ (m)

g,c  can be  

understood as the cell-type-balanced reads ratio of a given cell type 
for a given gene. The normalized mean expression over negative 
marker–cell type pairs is then:

X̄ (m)
neg =

∑g∈G∑c∈Cneg
c
X̄ (m)
g,c

|Pneg|

with G representing the set of genes, Cneg
g  the set of cell types for which 

gene g is a negative marker and Pneg  the set of pairs {(g, c)}, with as g a 
negative marker for cell type c. As we sum the ratios X̄ (m)

g,c , negative 
markers are equally weighted in principle; however, on the basis of the 
formulation of X̄ (m)

neg , each negative marker is weighted by its number 
of negative cell types ||Cneg

g ||. Finally, the negative marker purity is calcu-
lated as:

NMP = {
1 − (X̄ (sp)

neg − X̄ (sc)
neg ) X̄ (sp)

neg > X̄ (sc)
neg

1otherwise

X̄ (sc)
neg  is close to 0. The term is added because the NMP metric aims to 

measure the extent to which the spatial signal’s purity is reduced com-
pared with the scRNA-seq reference. Finally, we scaled the NMP values 
such that 0 corresponds to the mean NMP of 20 random permutations 
of cell-type assignments for the binning reference, while the maximum 
is still 1.

Simulating Xenium-like datasets and benchmarking 
preprocessing strategies
To use datasets similar to SRT data while incorporating accurate 
cell-type annotations, we transformed pre-annotated single-cell data-
sets in Xenium-like datasets. For this, we first filtered the available 
datasets provided by CELLxGENE Census29, keeping only (1) human 
datasets; (2) chromium v2 datasets; and (3) subsets originated from 1 
single donor, to avoid batch effects. Only cell types with more than ten 
cells were kept. In addition, we identified differentially expressed genes 
between the remaining cell types using the Scanpy function ‘scanpy.
tl.rank_genes_groups’, keeping the 50 most differentially expressed 
genes from each cell type to composite the Xenium-like panel later on.

Next, each dataset was transformed to resemble the structure of 
a Xenium dataset. This transformation includes (1) a reduction in the 
number of genes detected to match Xenium panels, (2) introduction 
of non-specific signals, (3) simulation of mis-segmentation and (4) 
adjustment of the detection efficiency of each gene, mimicking the 
single cell to Xenium ratios previously detected in mouse brain. To 
reduce the number of retained genes, marker genes for each cell type 
were selected from a previously generated list, following the standard 
approach used in target spatial transcriptomics. The introduction of 
non-specific signals, simulation of mis-segmented cells and adjustment 
of the detection efficiency of each gene were implemented to mimic 
the frequency and characteristics of these effects in Xenium datasets.

Finally, various preprocessing strategies were applied to simulated 
Xenium-like datasets to identify the preprocessing strategy that best 
reflected original ground truth clusters. Scanpy and Seurat were used 
to build the different preprocessing workflows (Extended Data Fig. 6a). 
In brief, preprocessing workflows consisted of multiple normalization 
strategies (Pearson’s residuals, SCTransform, library-size-based nor-
malization or absence of normalization, defined as ‘None’ in Extended 
Data Fig. 6). For library-size-based normalization, different library 
sizes (10, 100, 1,000 and default) were used as hyperparameters. Next, 
we optionally performed log-transformation, HVF selection and data 
scaling. For Pearson’s residual normalization, log transformation was 
always skipped, because it is not required. For SCTransform normaliza-
tion, both log-transformation and HVF selection steps were skipped, 
because SCTransform51 is designed to replace these steps. Subse-
quently, a graph is constructed, considering the number of principal 
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components and nearest neighbors as hyperparameters. Finally, clus-
tering was performed using either Leiden, Louvain or Markov cluster 
algorithms. For each preprocessing workflow tested, the clustering 
resolution was adjusted to obtain a comparable number of clusters to 
the reference cell types (±2 clusters). To measure the similarity between 
both clustering results, different metrics were used, including ARI, 
VI and FMI. Further details about the simulation are available in the 
associated Github repository.

Exploring preprocessing strategies in Xenium datasets
To further assess the effectiveness of the preprocessing strategies on 
real Xenium datasets, we applied the top-performing preprocessing 
strategy, identified using simulated data, to the 25 Xenium datasets 
used in this study (see main text). For the Xenium datasets, default 
segmentation was used, considering only nuclear reads to avoid the 
effect of mis-segmentation. To quantify the importance of each of 
the steps and parameters, we preprocessed each dataset, modifying 
one step at a time. We quantified the effects of these modifications 
by measuring the similarity between the new clusters and the ones 
obtained with the top-performing preprocessing strategy. We used 
various metrics, including ARI, VI and FMI.

Benchmarking algorithms to identify spatially variable features
We compared the performance of different algorithms to identify 
spatially variable features including Sinfonia34, Squidpy (Moran’s I and 
Geary’s C)30, Giotto (rank and k-means)36, Seurat (markvariogram and 
moran’s I)35, hotspot31, somDE32, spatialDE33. In addition, highly variable 
genes (HVG) are also identified using Scanpy. Since not all algorithms 
can be used with full Xenium datasets, we compared the performances 
of the algorithms in two situations, when possible: usings only 5000 
cells and using the entire datasets. All algorithms were applied to a 
diverse subset of all Xenium datasets available. The algorithm’s per-
formance was compared in terms of (1) the ranking of the genes based 
on how spatially variable they are (2), the number of genes identified as 
SVF and (3) the similarity between the genes identified as SVF by each 
algorithm. Finally, since control probes are included in the Xenium 
experiments which, by definition are not spatially variable, we use this 
trick to quantify the false positive ratio of each algorithm.

Benchmarking gene imputation algorithms
We evaluated the performance of seven integration methods (gimVI, 
SpaGE, Tangram, Liger, Seurat, SpaOTsc and NovoSpaRc) following 
the published Jupyter notebook by Li et al.37 (https://github.com/
QuKunLab/SpatialBenchmarking/blob/main/BLAST_GenePredic-
tion.ipynb). We used the raw normalized expression matrices for both 
the scRNA-seq and spatial transcriptomics datasets for input of the 
integration methods. Because the spatial transcriptomics dataset 
contained fewer than 300 detected genes, we built the ground truth 
of our dataset using genes detected in both the spatial transcriptom-
ics and scRNA-seq datasets (total 248 genes). For the evaluation, we 
used tenfold cross-validation, dividing the genes into ten portions, 
nine of which were used for training and one for prediction. Because 
of the large sizes of our datasets (scRNA-seq dataset, ~150,000 cells; 
spatial transcriptomics dataset, ~80,000 spots), we downsampled the 
datasets by a factor of ten. This reduction considerably alleviated the 
computational-resource demands of the integration methods without 
compromising the results.

We next defined the imputation accuracy of each gene as the PCC 
between the predicted expression and the real expression. Therefore, 
values range from 0 to 1, with 1 indicating a perfect prediction. After 
identifying variability in the imputation accuracy of each gene, we 
aimed to identify the cause of this variability. For this, we built a linear 
regression model to predict the imputation accuracy on the basis of the 
characteristics of each gene, including mean expression, dispersion, 
subcellular localization and correlation with other genes in the panel.

Benchmarking domain finder algorithms
Using the adjacent mouse brain slide (slide 1), we evaluated the per-
formance of different domain finder algorithms, including SpaGCN46, 
Banksy44, DeepST45, STAGATE48 and SPACEL47. The algorithms were used 
to define tissue domains, adjusting the number of domains identified 
to match the number of manually annotated tissue domains at different 
resolutions. In addition, domains were also identified using a primitive 
neighborhood-based approach, wherein cells were redefined on the basis 
of the identity of their neighboring cells, forming a cell-by-cell type matrix 
before clustering. A binning-based approach was also used. These two 
approaches are simple ways to identify tissue domains and can be used as 
a baseline to compare the performance of more-sophisticated algorithms. 
Furthermore, we manually annotated the tissue domains in the slides 
analyzed using the mouse coronal P56 sample from Allen Brain Atlas49, 
which we treated as the ground truth. Several metrics were used to evalu-
ate the performance of each algorithm, including ARI, VI, NMI and FMI.

Segmentation-free analysis using SSAM
Segmentation-free output was produced using the SSAM package 
(v1.0.1)9 with Python v3.6. Two rounds of analysis were performed with 
different parameterizations.

In the first round, a de novo cell-type-mapping analysis was con-
ducted using the x and y coordinates of Xenium’s mouse brain coronal 
section. SSAM was run at a resolution of 2 pixels µm–1, with the kernel 
bandwidth set at 2.5 µm. Local maximum signal points were sampled 
from SSAM’s vector field at a signal threshold of 0.2, and the signatures 
of the sampled expression vectors were normalized and clustered by 
first reducing the data to 40 dimensions using principal component 
analysis (PCA) and then applying the Leiden algorithm at a resolution 
of 2.0. Sixty clusters were detected and were assigned a cell type on 
the basis of a correlation analysis, with the mean gene expression sig-
natures of cells identified in the analysis in Figure 1d. After correlation 
analysis, a total of 44 cell-type classes were retained. The reduction in 
class numbers is caused by SSAM’s oversegmentation of glial cells and 
challenges in assigning three gabaergic and three glutamatergic sub-
clusters, which were instead merged into the main GABA/Glut clusters. 
A SSAM cell-type map was produced and filtered using a median filter 
to remove potential noise. A scanpy UMAP embedding was generated 
on SSAM’s sampled localmax expression vectors, using an adapted 
minimum-distance parameter of 0.02.

To assess the z-axis coherence of the sample tissue, we devised an 
algorithm that involved generating a latent space of gene expression 
signatures through unsupervised analysis. Subsequently, a compara-
tive analysis was conducted on the latent gene expression signatures 
between the upper and lower halves of the tissue slice.

The construction of the low-dimensional gene expression 
space employed a segmentation-free de novo approach akin to the 
SSAM algorithm. A vector field of the gene expression space was 
established through Gaussian kernel density estimation (KDE) on 
the mRNA spot signals, using a resolution of 2.5 pixels μm–1 and a 
bandwidth of 2.5 μm. Local maximum locations of the vector field 
norm were identified and used as sampling locations to construct 
a gene-expression-by-local-maximum matrix from the vector field. 
This matrix was subjected to PCA, retaining the first n principal com-
ponents explaining over 80% of the total variance. The resulting 
low-dimensional gene expression space was utilized to create two 
vector fields for the gene expression space, maintaining the previously 
mentioned parameters. The division into top and bottom halves of the 
tissue slice was achieved by binning molecules into a 2-μm grid in the x 
and y directions. The center of gravity of molecules in the z-direction 
(mean of z-coordinate values) determines the assignment of molecules 
to the ‘top’ or ‘bottom’ halves. A KDE was then applied to both halves, 
with parameters consistent with those previously mentioned. Subse-
quently, the resulting vector fields underwent transformation into 
latent space using the PCA model. The cosine similarity between the 
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two latent space vector fields served as a metric for assessing z-axis 
incoherence. Analogous to the SSAM algorithm, vector field regions 
with a total expression norm below 5 were considered low-confidence 
and were excluded from subsequent analyses.

Visualization of the incoherence maps employed the heatmap vis-
ualization function from Matplotlib, wherein color values represented 
signal coherence, and alpha values denoted local molecular density 
(measured by vector field norm). Regions classified as low-confidence 
were excluded from the visual representation.

Moreover, areas exhibiting significant coherence were selectively 
chosen for display, using a SSAM-inspired pipeline. A supervised, 3D 
execution of the SSAM algorithm assigned cell types to all molecules 
within the visualization area. Molecules were then depicted as particle 
clouds in 3D space, colored according to their assigned cell types, 
following the project’s overarching cell-type coloring scheme. For 
individual samples, a coherence score of <0.2 proved to be strongly 
indicative of overlapping cell-type structures. The mean incoherence 
score inside the area of the DAPI-based nucleus segmentation served as 
a measure of local signal coherence, and the ratio of nuclei with a mean 
signal coherence of <0.2 was indicative of strong overlap.

Points2Regions
Points2Regions10 was used as one of the segmentation-free approaches. 
In essence, Points2Regions is a plugin for TissUUmaps 352, intended for 
quick exploratory and interactive dissection of molecular patterns in 
in situ transcriptomics data. At its core, the plugin works by collecting 
markers in spatial bins of width w. Each bin thus comprises a composi-
tion of molecular markers. Adjacent bins are blurred together using a 
Gaussian filter parameterized by the standard deviation σ. Bins con-
taining few markers are excluded based on a user-defined threshold 
τ. Bins passing the threshold are finally normalized by total count and 
clustered using mini-batch KMeans clustering with k clusters. The 
plugin thus comes with four tunable parameters: w, σ, τ and k, each 
respectively set here to 1 µm, 3 µm, 0 and 100 for all experiments.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Three types of Xenium datasets were used through the manuscript, 
including (1) datasets provided by 10x Genomics, (2) datasets published 
elsewhere and (3) datasets generated specifically for this project. 
First, for the 10x Genomics datasets, the original datasets used in this 
study can be obtained from in https://www.10xgenomics.com/datasets 
(accessed 5 March 2024). In addition, the spinal-cord datasets used 
were originally published by Kukanja & Mattsson-Langseth et al.53. 
Freshly generated datasets include four mouse-brain sections, labeled 
as ‘hm’ through the study. Their original data can be downloaded from: 
https://doi.org/10.5281/zenodo.10566172 (ref. 54).
In addition, we have also made Xenium datasets available as AnnData 
objects. These files can be downloaded from various Zenodo reposi-
tories: https://doi.org/10.5281/zenodo.11124988 (ref. 55), https://doi.
org/10.5281/zenodo.11121221 (ref. 56) and https://doi.org/10.5281/
zenodo.11120307 (ref. 57).
All datasets used in the comparison between SRT platforms (Fig. 2) are 
publicly available. Commercial platforms provide datasets through 
their respective data portals: MERSCOPE, https://vizgen.com/
data-release-program/; CosMx, https://nanostring.com/products/
cosmx-spatial-molecular-imager/ffpe-dataset/; and Molecular Cartog-
raphy, https://resolvebiosciences.com/datasets/. For both MERFISH 
and HS-ISS, datasets are available in their original publications20,24. 
In addition, resegmented and regionally annotated datasets that can 
be used to reproduce the comparison can be found at https://doi.
org/10.5281/zenodo.11619309 (ref. 58).

Code availability
All the code used in this analysis can be found at https://github.com/
Moldia/Xenium_benchmarking. Since different tools require their own 
environment, analysis is subdivided in folders, providing different 
conda recipes files to recreate the environments needed to reproduce 
the analysis.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Extended analysis of the mouse brain datasets.  
a. Comparison between two Xenium biological replicates, including a scatter 
plot representing the total transcripts of each gene in the preview 1 dataset 
compared to the total transcripts of each gene in preview dataset 2 (up), with 
axes represented in log10 scale. In addition, a scatter plot representing the 
abundance of each cell type identified in the preview dataset 1 compared to 
the preview dataset 2 is included (down). Axes are represented in log10 scale 
b. UMAP representation of cells from the 7 mouse brain datasets, colored by 
the experiment of origin. c. Violin plot representing the transcripts/cell (up) 
and genes/cell (bottom) identified on each of the mouse brain datasets. Violins 
are colored by the experiment of origin. d. Scatter plot representing the mean 
transcripts/cell of each gene in the home made datasets compared to their mean 
transcripts/cell on the preview datasets. Axes are represented in log10 scale.  
e. Scatter plot representing the abundance of each cell type identified in the 

home made datasets compared to the preview datasets. Axes are represented 
in log10 scale. f. Density plot illustrating the density of reads depending 
on their distance to their assigned cell centroid. Individual lines represent 
different samples. A violin plot quantifying the subcellular distribution of reads 
experiment is included (bottom, right). g. Spatial map of the mouse brain section 1,  
colored by annotated tissue domains h. UMAP representations of the cells 
analyzed from the 7 mouse brain datasets obtained from using only nuclear 
information (up) or expanded segmentation masks (bottom) to assign reads to 
individual cells. Cells are colored by the annotated tissue domain where they are 
found. i. UMAP representations of specific populations including astrocytes (up), 
microglia (middle) and oligodendrocytes (bottom) defined using nuclei-based 
segmentation masks (left) and projected onto the cells’ expanded segmentation 
masks (right). Cells are colored by the tissue domain where they are found, 
according to panel G.
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Extended Data Fig. 2 | SSAM segmentation-free analysis of Xenium datasets.  
a. Spatial map of the clusters obtained from the SSAM segmentation-free analysis 
applied on the mouse brain section 2. Reads are colored following the colormap 
used on Fig. 1c to represent cell types. Regions of interest are highlighted in the 
whole map (up) and visualized in the bottom part of the panel. b. 3D-coherence 
map of the dataset analyzed in panel A. Colors represent the cosine similarity, 
with low values representing regions with a low top-bottom signal coherence, 
indicating potentially overlapping cells. ROIs selected as examples of regions of 
low 3D- coherence are indicated using colored squares c. Umap of the signatures 

identified by SSAM analysis included in mouse brain section 2, colored by 
the cell types represented in Extended Data Fig. 2a d. 3-D visualization of the 
ROIs with low 3D-coherence regions, as indicated in panel B. e. Spatial maps 
illustrating the 3D nature of Xenium datasets. A second region of interest with a 
low 3D-coherence is presented, indicating the presence of overlapping cell types. 
The coherence map (left) is complemented by X- and Y-axis (XY maps) of the ROI, 
viewed from the bottom and top (mid) and XZ and YZ maps (right). Each spot 
represents an individual read, colored based on the cell type assignment done 
using SSAM and following the color code presented in Fig. 1c.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Subcellular analysis of Xenium datasets with 
Points2Regions. a. Spatial map of the entire mouse brain 2 dataset (up), with 
reads colored by their Points2Regions cluster. The color map used is shown 
in panel B. Two regions of interest (1,2) are highlighted in the entire map and 
visualized (bottom). b. Confusion matrix between the Points2Regions clusters 
and the segmentation-based clusters represented in Fig. 1c. Points2Regions 
clusters are annotated based on (1) a number (2), the cell type its reads had 
been mostly assigned to in the segmentation-based analysis and (3) the main 
subcellular localization of the reads assigned to each cluster (cyto or nuclei). 
Points2Regions clusters that have a majority of their reads within the nuclei 
boundaries, defined using DAPI staining, are annotated as nuclei clusters. 
Oppositely, clusters with most of their reads outside the nuclei boundaries 
are annotated as cytoplasmic clusters (cyto). On the other hand, cytoplasmic 
clusters (cyto) present most of their reads outside the segmented nuclei.  

Nuclear clusters are represented by the presence of a circle in the confusion 
matrix. This circle is placed, for the rows where it’s needed, in the cell with the 
highest value of the row, with the highest similarity between a segmentation-
based cluster and the Points2Regions’ cluster represented on the row. c. Box plot 
representing the distribution of reads assigned to the Points2Regions clusters 
in astrocytes in relation to their distance to the nuclei edge. Red horizontal 
dashed line at y=0 represents the nuclear edge. Box plot represents percentiles 
excluding outliers (0,25,50,75,100), with center representing median distance. 
d. Differentially expressed genes for each subcellular cluster found in astrocytes. 
Y-axis represents the relative percentage of reads of a certain gene assigned 
to the interrogated cluster. Note that this relative percentage is computed 
considering only the astrocytic clusters, meaning that, overall, the sum of all 
percentages in all astrocytic clusters should sum 1.

http://www.nature.com/naturemethods


Nature Methods

Analysis https://doi.org/10.1038/s41592-025-02617-2

Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Comparison of Xenium with SRT platforms. a. Spatial 
map of SRT datasets, colored by region. The scRNA-seq dataset is represented 
as a UMAP colored by region of origin. b. Stacked bar plot representing the 
percentage of transcripts assigned to cells in each datasets after Cellpose.  
c. SRT/scRNA-seq gene efficiency ratios of different SRT methods in the 
hippocampal (left) and thalamic (right) regions. Boxplots represent the 
distribution of the efficiencies, divided in quartiles, where the central line 
represents the median efficiency. Gene ratios are represented as individual dots. 
d. Box plot representing the negative coexpression purity (NCP) of each SRT  
method, including only genes with an efficiency ratio below 1. Boxplots represent 
the distribution of the NCP scores, divided in quartiles, where the central line 
represents the median NCP. NCP scores are represented as individual dots 
for each method. e. Pairwise comparison of the detection efficiency between 

each SRT and scRNA-seq dataset in the cortical region. For each pair, a scatter 
plot of the number of transcripts detected per gene in SRT method 1 (y-axis) 
and SRT method 2 (x-axis) is included. Only common genes are included in 
the comparison. Red line represents x=y. The median of ratios for each pair of 
methods is included (bottom,right). Spots of each subplot are colored by the 
method that presented a higher median in each comparison. f. Density plots 
illustrate the cumulative proportion of reads depending on their distance 
from the centroid for individual genes across technologies. Values indicate the 
proportions of reads that are found at distances greater than or equal to the 
specified distance. g. Regions of interest corresponding to resegmented datasets 
across platforms. DAPI staining is shown as a background and reads assigned to 
resegmented cells are overlaid as yellow dots.

http://www.nature.com/naturemethods


Nature Methods

Analysis https://doi.org/10.1038/s41592-025-02617-2

Extended Data Fig. 5 | Extended benchmarking of segmentation strategies. 
a Localization of regions of interest represented in Extended Data Fig. 5b and 
Fig. 3c. b. Regions of interest representing the cells identified using different 
segmentation algorithms in a region of interest outlined in Extended Data 5B. 
DAPI background is represented as a background and individual isolated color-
specific masks represent individual cells. Segmentation strategies were selected 
to represent different segmentation outputs, as described in Fig. 3c. Each ROI 
represents an area of 160 × 160 μm. c. Heat map representing the segmentation 
metrics of all segmentation strategies described in Fig. 3d. d. Adjusted rand  
index (ARI) between the different outputs produced by combinations of 
segmentation algorithms, hyperparameters and expansions when applied to 
human breast sections. Segmentation methods included Cellpose  

(CPn: nuclei, CPc: cyto models), binning (bins), clustermap (CM), watershed 
(WA), Mesmer, Baysor (BA) and Baysor with prior segmentation (Baysor Px.x). 
Xenium segmentation were also included in the comparison (XENIUM cel, 
XENIUM nuc). Hyperparameters for each method are described in methods. 
Methods on the y-axis were colored depending on the expansion performed after 
segmentation. 315 evaluated configurations of the grid search were reduced 
to the shown 52 top performers per hyperparameter group (highest negative 
marker purity e. Scatter plot representing the number of reads assigned (x-axis) 
and the negative marker purity (y-axis) of different assessed segmentation 
strategies in human breast tumor samples. The name and color of each 
segmentation strategy are represented as in Fig. 3d.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Extended analysis on preprocessing. a. Workflow of the 
different preprocessing steps and parameters considered in the assessment of 
the best preprocessing workflow. b. Heat map representing the Adjusted Rand 
Index (ARI) between the clusters derived from the different preprocessing 
workflows and the ground truth cell type labels. Preprocessing workflows are 
sorted from best (bottom) to worst (top) based on their median ARI. Datasets 
are also sorted based on their median ARI, indicating in which datasets it was 
possible to recover the original cell type labels better (right) and in which ones 
it was more difficult to achieve (left). A summary of the processing setups is 
summarized on the left part of the panel, with every row representing a specific 
step in the preprocessing workflow and every color representing the specific 
hyperparameter/ algorithm chosen. In addition, specific characteristics of 
the simulated datasets are included on the top part of the panel in the form 
of dot plot c. Heat map representing the mean Adjusted Rand Index (ARI) 

between the clusters obtained when applying the most optimal preprocessing 
workflow (identified in Fig. 4c) to different Xenium datasets and the clusters 
obtained with the same workflow, but modifying different preprocessing steps, 
specified in the x-axis, in the different Xenium datasets (y-axis). A reduced ARI 
signifies decreased similarity between clustering outputs, highlighting a more 
pronounced impact on the workflow when altering a specific parameter. d. Same 
as C, but using Fowlkes-Mallows Index (FMI) to measure the similarity between 
the clustering outputs. A low FMI indicates differences between the clustering 
outputs, suggesting a more pronounced impact on the workflow when altering 
a specific parameter. e. Same as C, but using the variability index (VI) to measure 
the similarity between the clustering outputs. A high VI indicates important 
differences between the clustering outputs, suggesting a more pronounced 
impact on the workflow when altering a specific parameter.
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Extended Data Fig. 7 | Extended exploration of the SVF identification 
algorithms. a. Running time of the different algorithms used to identify SVFs. 
The running times depending on the number of cells used as an input are shown 
as a line plot (left), together with a bar plot representing the processing times of 
different algorithms when using 5.000 cells (middle) and the predicted running 
times for each algorithm when using a full dataset (~150.000 cells) (right). 
b. Spatial map of the manually annotated domains identified in the mouse 

brain section (ROI2) (replicate 1, left) and the domains identified by different 
algorithms. c. Ranked performance of different algorithms in identifying tissue 
domains in mouse brain sections (ROI 2), using the manually segmented domains 
as a reference. Four metrics are used: Adjusted Rand index (ARI), variability 
index (VI), NMI and Fowlkes-Mallows Index (FMI). Different numbers of domains 
are predicted, based on the number of domains included in the hierarchical 
annotation of the tissue done manually6,9,17,49.
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