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LETTER

MALT1 inhibitor MI- 2 induces ferroptosis by direct targeting 
of GPX4
Eikan Mishimaa,b,1, Thomas J. O’Neillc,1 , Kai P. Hoefigd, Deng Chena, Gesine Behrensd, Bernhard Henkelmanna, Junya Itoe,  
Kiyotaka Nakagawae, Vigo Heissmeyerd,f,2, Marcus Conrada,g,2 , and Daniel Krappmannc,h,2

                                                                        Ferroptosis, a form of cell death driven by excessive lipid 
peroxidation, is induced by inhibiting GPX4, a key regulator 
of ferroptosis. Wang et al. reported that MALT1 protease 
activity regulates GPX4 protein stability, thereby modulating 
sensitivity of cancer cells to ferroptosis ( 1 ). Their study sug-
gests that MALT1 protects GPX4 from ubiquitin-dependent 
degradation by cleavage of the E3 ubiquitin ligase Roquin-1 
(RC3H1). However, ferroptosis induction by MALT1 inhibi-
tion was investigated using MI-2, a low-potency, irreversible 
MALT1 inhibitor (IC50  2.1 µM;  Fig. 1A  ) ( 2 ). Here, we reexamine 
the role of the MALT1–Roquin-1 axis and unravel the actual 
ferroptosis-inducing mechanism of MI-2.        

 Neither MALT1 nor Roquin-1 knockout (KO) significantly 
influenced GPX4 expression in mouse embryonic fibroblasts 
(MEFs) or Huh7 and SK-HEP-1 liver cancer cells ( Fig. 1 B  and 
 C  ). Furthermore, Roquin-1 reconstitution in KO MEFs had 
no impact on GPX4 expression ( Fig. 1D  ). In MEFs and Huh7 
cells, sensitivity to the bona fide GPX4 inhibitors RSL3 and 
ML210 remained unaltered in the absence of MALT1 or 
Roquin-1 ( Fig. 1 E –G  ). These discrepancies may arise from 
different culture conditions, as GPX4 expression is influ-
enced by medium components, particularly selenium con-
centrations ( 3 ). Nonetheless, as reported, MI-2 induced cell 
death, which was rescued by the ferroptosis inhibitor liprox-
statin-1 (Lip1) [ Fig. 1 E –G   ( 1 )]. However, ferroptosis induction 
by MI-2 was not impaired in MALT1- or Roquin-1-deficient 
cells. Moreover, the highly potent and selective MALT1 
inhibitor MLT-985 (IC50  3.6 nM,  Fig. 1A  ) ( 4 ) failed to induce 
ferroptosis, demonstrating that MI-2 acts independently of 
the MALT1–Roquin-1 axis.

 MI-2 and RSL3 share a chloroacetamide moiety ( Fig. 2A  ), 
an electrophilic warhead in RSL3 that irreversibly inactivates 
GPX4 by covalently targeting the active site selenocysteine 
residue U46 ( 5 ). Indeed, GPX4-expressing cells or affinity-
purified GPX4 incubated with RSL3 or MI-2, but not MLT-985, 
caused a GPX4 shift indicative of covalent binding ( 5 ) ( Fig. 2B  ). 
In MEFs, this shift was independent of MALT1 expression. 
Additionally, RSL3 and MI-2, but not MLT-985, inhibited GPX4 
enzymatic activity in vitro ( Fig. 2C  ). Covalent inhibitors can 
promote GPX4 degradation ( 6 ), and both MI-2 and RSL3 
decreased GPX4 expression independently of MALT1 
( Fig. 2D  ). MI-2, like RSL3, failed to induce ferroptosis in MEFs 
expressing the GPX4 U46C missense variant, which is more 
resistant to covalent GPX4 inhibitors due to the lower affinity 
of the chloroacetamide moiety toward cysteine ( Fig. 2E  ) ( 7 ).        

 Our data failed to support a relevant role of MALT1 and 
Roquin-1 in counteracting or promoting ferroptosis. Instead, 
we demonstrate that MI-2 induces ferroptosis by directly 
inhibiting GPX4, independent of MALT1 or Roquin-1 ( Fig. 2F  ). 
MI-2 lacks selectivity, targets MALT1 outside the active site, 
and couples to numerous cellular proteins ( 8 ). Thus, studies 
implicating MALT1 protease in ferroptosis based on MI-2 
treatments need to be reevaluated ( 1 ,  9 ). Importantly, pre-
clinical studies supporting targeting of MALT1 in chronic lym-
phocytic leukemia (CLL) have largely relied on MI-2 ( 10 ), which 
may have influenced the inclusion of CLL in clinical trials using 
allosteric MALT1 inhibitors (NCT03900598, NCT04876092, 
NCT05544019, NCT05515406, and NCT05618028). Collectively, 
we strongly advocate for excluding MI-2 from future analysis 
of MALT1 protease functions in physiological and pathological 
contexts.  
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Fig. 1.   MI- 2 induces ferroptosis independent of MALT1–Roquin- 1. (A) Dose titration curves and IC50 values of recombinant GST- MALT1 (aa 325–760) activity after 
incubation with indicated compounds using the fluorescence substrate (Ac- LRSR- AMC) assay. (B) GPX4 amounts in Malt1+/+ and Malt1−/− MEFs (Right: genotyping 
PCR for Malt1) or Roquin- 1 KO induced by 4- hydroxy- tamoxifen (TAM) treatment of Rc3h1/2fl/fl;CreERT2 MEFs. (C) GPX4 amounts in Huh7 and SK- HEP- 1 ctrl (Cas9- 
only), sgMALT1, and sgRC3H1 cells. (D) GPX4 amounts in Rc3h1/2−/−;rtTA3 MEFs after doxycycline (DOX)- induced reconstitution of Roquin- 1; expression changes of 
Roquin- 1 target IκBNS to verify genetic manipulation. (E–G) Cell viability of indicated MALT1 and Roquin- 1 KO cells (B- D) after GPX4 inhibitor (RSL3 or ML210), and 
MALT1 inhibitor (MI- 2 or MLT- 985) treatment with or without ferroptosis inhibitor liproxstatin- 1 (Lip1, 1 μM) for 24 h. Data depict mean ± SD, n = 3 (A and E–G).
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Fig. 2.   MI- 2 directly binds and inhibits GPX4. (A) MI- 2 and RSL3 chemical structures (red: chloroacetamide). (B) GPX4 migration- shift in Huh7 cells (Left), purified 
StrepII- tagged GPX4 protein (Middle), or Malt1+/+ and Malt1−/− MEFs (Right) after incubation with indicated compounds. (C) Affinity- purified GPX4 from StrepII- tagged 
GPX4- expressing HT- 1080 cells pretreated with indicated inhibitors (10 μM with Lip1) for 3 h was incubated with reduced glutathione (1 mM) and phosphatidylcholine 
hydroperoxide (PCOOH, 10 μM; 30 min at 37 °C). PCOOH was quantified by LC–MS. (D) GPX4 degradation analyzed by immunoblot after RSL3 and MI- 2 treatment 
in MALT1 WT and KO Huh7 cells. (E) Cell viability of Gpx4 WT and Gpx4 U46C MEFs treated with RSL3 and MI- 2 for 24 h. (F) Scheme for direct GPX4 inhibition and 
ferroptosis induction by MI- 2 (created by BioRender.com). Data are mean ± SD, n = 3 (C and E).
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