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Two types of motifs enhance human recall
and generalization of long sequences
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Whetheritis listening to a piece of music, learning a new language, or solving a mathematical equation,
people often acquire abstract notions in the sense of motifs and variables —manifested in musical
themes, grammatical categories, or mathematical symbols. How do we create abstract
representations of sequences? Are these abstract representations useful for memory recall? In

addition to learning transition probabilities, chunking, and tracking ordinal positions, we propose that
humans also use abstractions to arrive at efficient representations of sequences. We propose and
study two abstraction categories: projectional motifs and variable motifs. Projectional motifs find a
common theme underlying distinct sequence instances. Variable motifs contain symbols representing
sequence entities that can change. In two sequence recall experiments, we train participants to
remember sequences with projectional and variable motifs, respectively, and examine whether motif
training benefits the recall of novel sequences sharing the same motif. Our result suggests that training
projectional and variables motifs improve transfer recall accuracy, relative to control groups. We show
that a model that chunks sequences in an abstract motif space may learn and transfer more efficiently,
compared to models that learn chunks or associations on a superficial level. Our study suggests that

humans construct efficient sequential memory representations according to the two types of
abstraction we propose, and creating these abstractions benefits learning and out-of-distribution
generalization. Our study paves the way for a deeper understanding of human abstraction learning and

generalization.

When the iconic notes strike: GGGE), FFFD,—Beethoven’s Fifth Symphony
comes immediately to our mind. As the music progresses, we note the
change of motif to GGGB or GGGC, variations in forms and voices, one at
each step. Our ability to effortlessly identify those forms of abstract motifs
endows us with an ability to learn mathematics, languages, and music. From
representing “x” as a variable to perceiving ‘noun’ as a category including
“cats”, “dogs”, and “elephants”, these abstract motifs automatically come to
our mind and help us to memorize sequences and generalize to novel
situations. How do we abstract motifs from perceiving sequences? What
advantages does this ability confer in terms of memory representations and
transfer? More importantly, how do we construct an abstract representation
during learning?

The literature suggests that we have the capability to learn multi-faced
aspects of sequences. In what is known as grammatical judgment tasks in
artificial grammar learning, after familiarizing participants to a set of
grammatically valid sequences generated by a finite state language'”, par-
ticipants acquire the ability to distinguish unseen grammatical from

ungrammatical sequences™. Further research suggested that sequence
learning extends beyond learning first-order transition probabilities. Fre-
quently occurring fragments shared between the test and training sequences
influence test judgment’ and are more likely to be judged as grammatical”™.
Such phenomenon can be explained by models that learn repeated sequence
fragments as chunks’"”.

Beyond learning sequence fragments and transition probabilities, a few
studies suggest the early cognitive capability to acquire sequential patterns
on an abstract level: After familiarizing infants early as 7-month-old to
sequences such as AAB and CCD, they were likelier to direct their gaze
toward novel sequences sharing the same structure, such as DDF, rather
than a different structure, such as KTK. Such ability to capture what was
named as ‘abstract algebraic structure™’ in sequences cannot be explained by
learning transition probabilities or chunks. Meanwhile, another abstract
pattern has been hypothesized by linguists: we acquire sequence knowledge
on a symbolic level'*"°. This ability is a prerequisite to learning phase
structures on the level of symbols such as noun phrase = determinant +
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Fig. 1 | Taxonomy of motifs and experimental design. a A taxonomy of sequence
motifs. Projectional motifs refer to patterns of sequences in a projected space that are
mapped from the concrete sequence space by a projection function. In the example
being shown, the projection function finds the distinct items in the sequence and
maps sequential observation into a binary sequence XYYX, with X being the first
unique item appearing and Y being the second. Variable motifs refer to a pattern of
invariant (dark box) and variant (gradient-colored box) sequential elements. The
variable motif contains at some position a variable-a symbol representing a
sequential component that can vary. Such a variable is identified when any of the
sequential components it represents is identified. In this example, the variable X
represents the possible occurrence of A, C, or E. We hypothesized that participants
could learn both types of motifs through practice and exploit their knowledge of both
motif types in memorizing and generalizing to novel sequences. b We study motif
learning in a sequence recall task. Participants are instructed to remember a

sequence of 12 colors. To make the sequence more digestible, the colors are displayed
one after another in three groups of four items separated by the display of pair of
paws after each group. ¢ Experiment 1 studies learning projectional motifs. Parti-
cipants are divided into three groups. Two motif groups (Motif 1 and Motif 2) and
one control group (Independent). d Each group is first trained on their respective
motif or random sequences (Independent) and then tested on randomly interleaved
transfer blocks of three types. There are no overlapping sequences between all
transfer blocks and training blocks. e Experiment 2 studies learning variable motifs.
The variable motif group is trained on sequences with an underlying variable motif.
That is, the second position of each subsequence display is randomly drawn among
three colors (purple, blue, or green). The fixed group is trained to recall fixed
sequences. Both groups are then subsequently tested on novel sequences sharing the
variable motif.

noun, and helps us to judge the grammaticity of very unlikely-occurring
sentences'”.

In this work, we zoom in, refine, and categorize different forms of
abstract sequential structures. We define and differentiate between two
algebraic abstractions: “projectional motifs,” which are patterns derived
from sequences using a projectional function, and “variable motifs,”
which include patterns involving concrete and variable elements. We
move beyond grammaticity judgements and examine the role of motifs
on sequence memory and recall. We test the learning of these abstract
motifs in a much longer sequences than previous work, demanding
participants to gradually build up their knowledge of the motif while
learning.

We study the effect of memorizing projectional and variable motifs
in sequences by asking the following questions: 1. Are sequences con-
structed according to an underlying motif memorized more accurately
than randomly generated sequences, and 2. Are novel sequences sharing
the same motif recalled more accurately than random sequences? We ask
these questions in two experiments, each studying one proposed motif
type. Furthermore, we hypothesized that identifying structures as motifs
helps to simply memory representations of long sequences. We imple-
mented this assumption in our computational model, which con-
tinuously finds recurring motifs from distinct sequences. The model
learns motifs as abstract representations incorporating components from
transition probabilities, chunks, and motifs to reduce memory com-
plexity. We look at the learning and transfer abilities of participants in
comparison to the model.

Methods

A taxonomy of sequence motifs

We define sequence motifs as underlying sequence patterns that are not on
the superficial item level but only detectable after performing transforma-
tions on sequences of items. We define and study two types of sequence
motifs: projectional and variable. An illustration of the two motif types is
shown in Fig. 1.

Projectional motif refers to a pattern in a projected space shared
amongst distinct sequences. Some transformation functions can map the
superficial sequential content to a projected space as illustrated in Fig. 1a, a
projectional motif denoted as XYYX appears in distinct sequences ACCA
and sequence BEEB shares (with X being the first appearing unique item in
the sequence, and Y being the second appearing item). In relation to Bee-
thoven’s Fifth in the introduction, the music phrases GGGE, and FFFD
contain a projectional motif XXXY.

Variable motif refers to a pattern containing invariant and variant
parts of the sequence. A sequence with a variable motif contains at some
position a variable—a symbol representing a quantity that can vary in its
identity. An example is illustrated in Fig. 1a. The variable “X,” described by a
gradient-colored box, is an unknown entity representing the possible
occurrence of A, C, or E. The same underlying variable motif appears in
sequence AXCD and sequence DXFE in the example. They share the same
structure of having a varying entity at the location of “X” and unchanging
entities at the rest of the sequence positions. In relation to the example in the
introduction: in Beethoven’s Fifth, a variable motif underlies the music
phrase GGGEb, GGGB, and GGGC, which progresses with the symphony.
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Fig. 2 | Motif learning model. Upon observations of instruction sequences, the model acquires the transition frequencies between the learned chunks, combines previously
learned chunks into new ones, and looks for abstract representations to compress its sequence memory.

Here, we construct a model that learns abstraction in the case of pro-
jectional and variable motifs to reduce representation complexity. The
model first tracks the transition probabilities in an abstract space and then
gradually chunks sequential elements together. We will test the predictions
of our model in two experiments.

Motif learning model

We put forward a model (Fig. 2) that learns to memorize long sequences via
a combination of three strategies: associative learning, chunking, and motif
abstraction.

Associative learning. When a sequence is presented to the model, the
model keeps track of the observational frequencies and the transition
frequencies between subsequently presented items. Once an item has
been identified, its occurrence frequency will increment by 1, and so will
the transition frequency between the current item and the previously
identified item. Meanwhile, all frequencies are subject to memory decay
via multiplying the count of both the marginal and transition frequency
entries by a decay parameter 6 < 1.

Chunking. Apart from associative learning, the model also remembers
sequences by chunking. This part of the model is based on the hier-
archical chunking model described in our earlier work (HCM'’). The
model stores learned chunks in long-term memory. These chunks are
used in addition to observation and transition frequencies to parse the
instruction sequence. The model keeps track of the marginal frequencies
of chunks and the transitional frequencies between chunks. A new chunk
is created by combining two correlated consecutively occurring chunks
into alonger chunk. The combined chunk is then added to the memory of
the model. This feature enables the model to learn longer and longer
sequences with practice. A picture of how memory chunks are acquired
during learning is: at the beginning of the training block, the model stores
no sequence segments, and therefore, the model parses the first
instruction sequence as 12 sequences of unitary length. These unitary
sequential chunks are stored in memory as distinct units. As the model
learns to combine previously learned chunks into larger chunks, these
larger chunks are, in turn, used to parse the upcoming instruction
sequences. During the parsing process, the memory chunk of the largest
size, consistent with the upcoming instruction sequence, is identified. In
this way, the longer the sequence segments the model has learned, the
fewer segments are needed to parse the instruction sequence, and the
further the model can predict the sequence. In this way, the model builds
up a stable memory representation of sequences over practice by com-
bining pre-existing stable representation of memory sequences in long-
term memory'*".

We also formalize memory chunks based on their occurrence prob-
abilities, consistent with memory models with memory strength increasing
with practice''. The lower bound on the number of bits needed to encode

this chunk c to be distinguished from other chunks in memory is —log, P(c).
The more probable that a chunk occurs in the instruction sequence, the less
the memory encoding cost.

Abstraction. When the same sequence is presented repeatedly, subparts
of the sequence will gradually chunk to combine into bigger sequence
segments. However, this process is slow because it requires many repe-
titions to form chunks. This is especially problematic when the instruc-
tion sequence repeats rarely, as each unique sequence has only a small
probability in the sequence observation space, and the number of repe-
titions would have to be increased for the chunking process to build up a
memory of the whole sequence. We propose the learning of projectional
and variable motifs as two mechanisms to reduce the complexity of
memory representations.

Abstraction via learning projectional motifs. The model identifies two
unique items to describe the sequence and assigns X to the first occurring
item and Y to the second item. In this case, X and Y represent separate
entities in the projectional motif space. This will be one way that the
sequence can be transformed into a lower-dimensional space, in which
only two dimensions exist.

Once observational sequences are projected onto a lower dimensional
projectional motif space, the model learns the sequence via associative
learning and chunking and builds up memory representations of sequences
by combining correlated consecutively occurring chunks in the projectional
motif space.

For example, upon seeing ACCC, BDDD, and FEEE sequences, the
model will map all three sequences onto the same sequence in the projec-
tional motif space: XYYY. Originally, there needed to be six dimensions to
describe the observational sequence, each representing the binary indicator
of observing each letter. The abstraction process enables all three sequences
to be described by the same pattern in an abstract projectional space.
Without abstraction, if each of the three sequences occurs uniformly likely,
then the minimal encoding length to distinguish between the three sub-
sequences shall be —log P(}). But once the projectional motif has been
identified, it explains all observational sequences and demands significantly
less encoding memory of — log P(1).

Abstraction via learning variable motifs. Under the demand of learning
to remember long sequences, an alternative way to compress sequence
representation is to learn variables. A variable is an abstract sequence
entity that entails a set of concrete sequence entities/chunks. The model
identifies the variable identity whenever any of its entailing entities is
identified.

The abstraction model discerns variables by analyzing the structure of
the transition matrix. Specifically, the model identifies structural patterns
within a series of sequential observation chunks that share a common
precursor and successor. For instance, if the model observes that entity A
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transitions to B, C, and E, and further notes that B, C, and E each transition
to F (as reflected in the transition matrix), it will recognize a new variable
encompassing B, C, and E. This variable becomes identifiable when any of
the elements B, C, or E are detected.

Once a variable entity has been learned, it is parsed and identified as
one entity to join forces with associative learning and chunking. In this way,
the variable helps the learning agent discover an overarching pattern in the
sequence, which would otherwise demand more sequence observations to
be learned as separate memory chunks.

The mechanism of variables naturally leads to sequence compression.
For example, assume the following subsequences: BADF, BBDF, and BCDF
have been observed to occur equally likely; each subsequence demands a
minimal encoding complexity of — log P(1/3). As soon as a variable X is
identified to entail A, E, or C, then the chunk BXDF would suffice to explain
all three observational instances, and this chunk demands a minimal
encoding length of — log P(1).

The model learns memory pieces by combining chunking and asso-
ciative learning. On top of that, sequence abstraction processes, including
projectional transformation and identifying variables, help the model to
locate recurring motifs in the abstract space, capable of explaining a larger
number of sequence observations and thereby learning faster and com-
pressing further.

A natural benefit of learning abstract motifs is generalization to novel,
unseen sequences sharing the same motif structure. The previously learned
projectional or variable motifs can be reused to remember novel sequences,
facilitating novel sequence acquisition and compression.

The model predicts that participants looking for the minimal com-
plexity representation to learn sequences should behave in the follow-
ing ways:

* When there are underlying projectional or variable motifs in the
sequence, participants’ representation of the sequence shall decrease in
complexity when more sequences are presented with the same
motif type.

¢ Participants who benefit from learning motifs from training sequences
will exploit their previously learned motif structure.

* In the case of projectional motif, motif structure that has been learned
before will be exploited to memorize a novel sequence that has never
been observed by participants.

* When participants learn the representation of a variable and extra-
polate it as a sequential unit to be combined with the unvarying part of
the sequence, the variable as a concept will be reused when novel
sequences share the same variable.

We will test these predictions in detail in the following two
experiments.

Ethics statement

Informed consent was obtained from all participants before participation,
and the experiments were performed following the relevant guidelines and
regulations approved by the ethics committee of the University of Tue-
bingen (Ethik-Kommission an der Medizinischen Fakultit der Eberhard-
Karls-Universitit und am Universitatsklinikum Tiibingen), under the study
title: Experimente zum Sequenz- und Belohnungslernen, with application
number 701/2020BO.

Participants’ data were analyzed anonymously. Upon agreement to
participate in the study, they consented to a data protection sheet approved
by the data protection officer of the MPG (Datenschutzbeauftragte der
MPG, Max-Planck-Gesellschaft zur Férderung der Wissenschaften).

Paradigm

Specifically, six equally distanced squares are horizontally placed on the
display. Each assumes a distinct color: blue, yellow, magenta, red, green, and
teal and corresponds to one legitimate key on the keyboard: S, D, F, ], K, and
L. Participants were instructed to place their fingers stationarily on these
designated keys throughout the task (left index finger on D, left middle

finger on S, left ring finger on A, right index finger on J, right middle finger
on K, and right ring finger on L). To control for finger familiarity biases, a
random mapping from keyboard position to color is generated for each
participant.

Before the start of each trial, all colors were initially covered by dark
shades. The sequence was then presented sequentially by revealing each
color for 800 ms followed by a brief re-covering of dark shades for another
200 ms before the next display color. The colored sequence was presented in
three groups of four, separated by pauses of 800 ms accompanied by the
display of a pair of paws, akin to the structure of a three-prose-poem with
four words in each prose and pauses in between.

Following the sequence display, participants were prompted to recall
the instructed sequence by pressing the corresponding key. Upon the press
of each key, the shade covering the corresponding color would disappear
and the color would be revealed for 200 ms. At the end of each group, a pair
of paws would appear to signify the completion of one subsequence. At the
end of the third recall group, participants received immediate feedback on
their recall accuracy and recall time which marks the completion of one trial.
Participants were instructed to prioritize both speed and accuracy and
received a performance-based bonus based on both factors. Before the
official trials, participants completed a practice trial to familiarize themselves
with the task. There was no preregistration of this study.

Recruitment of participants

We recruited 135 participants for Experiment 1 from Prolific, an online
crowd-sourcing experimental platform. Out of all participants, thirty-seven
were female, ninety-eight were male. Participants’ ages ranged from 18 to 67,
with an average of 32 and a median of 28. The experiment took an average of
45.06 minutes to complete. As compensation, participants received a base
pay of £4 and another performance-dependent bonus up to £4. The average
hourly pay for the study was £11.60.

We recruited 120 participants for Experiment 2 from Prolific, out of
which thirty-four were female, eighty-six were male. Participants’ ages
ranged from 19 to 63, with an average of 31.2 and a median of 28. The
experiment took an average of 47.55 minutes to complete. As compensation,
participants received a base pay of £4 and another performance-dependent
bonus up to £4. The average hourly pay for the study was £10.89.

Across both experiments, we did not collect participants’ race/
ethnicity data.

Payment

For both experiments, participants receive feedback about their trial-wise
bonus, which is dependent on a mixture of their sequence recall accuracy
and reaction time and is ceiled to the maximum bonus divided by the
number of trials. The reaction time bonus becomes the maximum when the
recall reaction time is less than 2000 ms, and is set to 0 when the recall
reaction time exceeds 10000 ms. For reaction time in the middle, the
bonusfast is calculated as bonusfast = bonusmax — (10000 — trialrt)/
(10000 — 2000) x maxtrialbonus. In this way, a reaction time between the
two limits will yield a steady bonus increase.

The trial-wise bonus for accuracy is calculated as follows: when the
recall accuracy is perfect, the bonusacc is set to maxtrialbonus. And when
the recall accuracy is below 50%, which corresponds to more than 6 of the
recalled sequences in a false order or a false recalled item, then the bonusacc
for this trial is set to 0. A recall accuracy in between will yield a bonusacc
calculated as bonusacc = bonus,,ax x (trialacc — 0.5)/(1 — 0.5).

Finally, the trial bonus is calculated as an average of the reaction time
bonus and the recall accuracy bonus trialbonus = 0.5 x bonusfast + 0.5 x
bonusacc.

At the end of the experiment, trial-wise performance-dependent bonus
was summed up to the total amount of bonus that participants will receive.

Filtering
We applied the same filtering criteria on the training blocks for all groups as
a basis to exclude participants: mean reaction time < 10,000 ms (that is
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10 seconds to press a sequence of 12 made of two distinct colors), mean
recall accuracy 2= 50%. On top of that, we measured whether participants
were learning by inspecting reaction time decrease, as a violation of a
decrease in rt would be an indication of distraction during the study. Data
distribution was assumed to be normal but this was not formally tested.
When applying a linear regression model regressing trial number on reac-
tion time on participant’s data during the training blocks, the reaction time
should on average, decrease, which translates to having a significant
(p < 0.05) of a negative beta coefficient. No filtering criteria were applied to
the transfer blocks. Filtering excludes 21.4% (29) of participants out of 135.
After filtering, 37 participants are left in group m1,41 in m2, and 28 in group
independent. The average accuracy was 0.80 =+ 0.22, and the average
reaction time was 5446 + 3723 ms.

For experiment 2, we excluded participants who took on average more
than 20 seconds to recall a sequence during the training block (since
experiment 2 employs more colors than experiment 1, we also relaxed this
exclusion criteria accordingly). Since the motif condition is harder than the
control condition, we applied different exclusion criteria for the two groups,
and excluded participants with an average sequence recall accuracy below
50% in the fixed group (as they have to recall the same sequence repeatedly),
and below 20% in the variable motif group. Additionally, we excluded
people who do not have a significant reaction time decrease (p < 0.05) during
the training block—an indicator of not learning during the task. The
exclusion criteria apply only to the training blocks and no participants are
excluded based on their transfer block performance. 23 participants were
excluded given that they have violated any of the above-mentioned criteria.
After exclusion, 45 participants out of 120 remained in group m1, and 52
remained in group control. The average accuracy was 0.70 + 0.28, and the
average reaction time was 8094 + 6209 ms.

Sequence recall. The model receives the same instruction sequences to
participants as its training sequences, except that the middle pauses were
removed. To recall, the initial item of the sequence is used as a primer for
the model to recall subsequent sequential items. Based on the sequence
segments stored in the model, it samples from the set of sequence seg-
ments that are consistent with the sequence prime while giving priority to
sampling larger segments. Once the first sequential segment is sampled,
the segment becomes the previous item to sample the next segment,
which is based on the transition given the occurrence of the previous
segment. The recall complexity is evaluated by calculating the sampled
probability of the recalled sequence. P(c;, ¢, ¢3) = P(c1)P(c2lc1)(cslca),
calculated from the marginal and conditional frequencies are both stored
in the model.

Random effect structure of regression analysis. To obtain the max-
imal random effect structure justified by design without inflating the
Type 1 error rate®, while balancing the loss of statistical power’', we
systematically select models across multiple possible random effect
structures and report the best model that is supported by data. Specifi-
cally, when fitting linear mixed effect logistic regression on keypress
correctness, we compared across random intercept per participant,
random slope per serial position, and trial ID, and always reported the
best fitting model that includes any subset of the three random effects.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
In Experiment 1, we tested whether people can learn and transfer sequences
described by a projectional motif as shown in Fig. 1. In Experiment 2, we
tested whether participants remember novel sequences better when these
sequences share the same variable structure as shown in Fig. 1.

Taken together, we implemented learning structured motifs as a
memory compression strategy in a computational model. The model

exhibits similar learning and transfer behavior to participants in two
sequence recall experiments testing each motif type.

Experiment 1: projectional motifs

Experiment 1 tested how projectional motifs could help memorization and
transfer by instructing participants to memorize long sequences. In a
sequence recall task, participants were instructed to play a memory game
and to memorize 12 consecutively displayed colors by a cartoon cat. After
the instruction, they had to recall the sequence by pressing the keys corre-
sponding to the colors.

Unbeknownst to the participants, the instruction sequences contained
underlying motifs. As shown in Fig. 1, the motifs consisted of two distinct
variables, X and Y, and individual motifs were constructed by arranging
patterns of Xs and Ys. All sequences contained an equal amount of 6 Xs and
6 Ys to control for stimulus-specific habituation effects. Each participant was
randomly assigned to one of the two motif groups (Motif 1; Motif 2), or to a
control group (Independent). Motif 1 followed the pattern XYYY YYXX
XXYX, while Motif 2 adhered to the format XXXY YXXY YYYX. In the
motif groups, the underlying motif remained consistent across trials.
Conversely, in the Independent group, a permutation of 6 Xs and 6 Ys was
generated for each trial. The instruction sequences were finalized by map-
ping X and Y to two distinct colors.

The task was divided into training and transfer blocks. The training
block comprised 40 trials, after which participants proceeded to three
randomly ordered transfer blocks, each testing for Motif 1, Motif 2, and the
Independent sequences with 8 trials. The transfer phase occurs immediately
following the training phase without explicit notification. In all trials, par-
ticipants were instructed to recall sequences by consecutively typing key-
board keys corresponding to the displayed item until the length of the
instruction sequence was reached. Within a trial, the response of individual
key presses is recorded. The number of key-press errors is calculated by
evaluating the hamming distance (the minimum number of substitutions
required to change one string into the other) between the recalled sequence
and the instruction sequence. The trial-recall accuracy was calculated by
evaluating the proportion of positions at which the corresponding keys are
the same. After participants finish recall, the trial-wise accuracy is displayed
in addition to the bonus corresponding to the current trial. Participants are
not informed about their specific mistakes or the position where they have
made the mistake. To ensure that no sequences in transfer blocks appeared
in the training block, the six colors were divided into two sets: the training set
with four colors and the transfer set with the remaining two colors.

Model prediction

Reducing representation complexity through projectional motifs. In the
case of projectional motifs, a rational agent that looks for minimal com-
plexity representations shall acquire the unchanging motifs during learning
since motifs in the abstract projectional space explain more instances of
sequences compared to memorizing concrete sequence instances.

Our hypothesis posits that an underlying motif within training
sequences in a projectional space will enhance memory and out-of-
distribution transfer. In this context, a sequence of length n can be
conceptualized as a point within an n-dimensional space, and out-of-
distribution refers to the capacity to transfer the representation to sequences
never encountered during training. We anticipate improved learning and
memorization performance during training for both motif groups and
positive transfer when the two groups are tested on motifs of the same type.

Training

Behavioral results. We first compared sequence recall accuracy amongst
the three groups in the training block as shown in Fig. 3a. We fitted a
linear mixed-effects regression model onto participants’ trial-wise
sequence recall accuracy, assuming a random intercept over partici-
pants and excluded trials that were immediate repetitions. We observed a
significant effect of group (x¥*(2) = 10.85, p = 0.004, Conditional
R* = 0.2), suggesting that participants in the Motif 1 group
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(B = 0.02,5e = 0.02,£(109) = 0.7, p = 0.46, 95% CI = —0.03 to 0.07)
and the Motif 2 group (B = 0.07,se = 0.02,¢(109) = 3.18,p = 0.002,
95% CI = 0.02 to 0.13) recalled sequences more accurately during the
training blocks than those in the Independent group.

Model simulation. We compared the behavioral results with the model
predictions. We used the same sequences instructed to the participants to
train the motif learning model, which creates memory representations of
sequence motifs from the observational sequences in an abstract space. We
then generated sequences based on the representations learned by the model
up to the current time point. We came up with generative accuracy as a
surrogate for sequence recall accuracy. The generative accuracy was the edit
distance between a generative sequence sampled from the model and the
instruction sequence in a particular trial. Figure 3b shows the average
generative accuracy of the model. We observed a significant effect of group
(’(2) = 216.23, p < 0.001, Conditional R* = 0.13), suggesting that partici-
pants in the Motif 1 group (8 = 0.18, se = 0.01, #(118) = 22.15, p<0.001,
9%5% CI = 016 to 020) and the Motif 2 group
(B =0.17,se = 0.01, £(119) = 20.23, p<0.001, 95% CI = 0.15 to 0.18)
recalled sequences more accurately during the training blocks than the
independent group. Similar to participants, the model remembered
sequences with underlying motifs more accurately.

Regression coefficient. Apart from having higher average recall accuracy,
both motif groups improved their recall accuracy faster. As shown in
Fig. 3¢, we analyzed participants’ recall key-press correctness by fitting a
logistic regression model assuming a random intercept of each partici-
pant and a random slope over individual serial positions (explanation on
random effect structure selection in method section Random Effect

Structure of Regression Analysis). We observed an effect for both Motifs
(for Motif 1: § = 0.62, se = 0.21, z = 2.88, p = 0.003 95% CI = 0.20 to 1.05;
for Motif 2: = 1.10, se = 0.21, z = 5.17, p < 0.001, 95% CI = 0.69 to 1.53).
Apart from that, we observed an interaction effect between the trial
number and group (x*(2) = 51.69, p < 0.001). Participants in the Motif 1
group improved their recall accuracy at a faster rate than participants in
the Independent group (8 = 0.21, se = 0.03, z = 7.55, p < 0.001, 95% CI =
0.16 to 0.28); the same effect was present for the Motif 2 group
(B =0.36, se = 0.03, z = 11.74, p < 0.001, 95% CI = 0.30 to 0.42). Thus,
people improved faster on remembering sequences with fixed motifs
than sequences without.

Model comparison. We compared the recall accuracy of the motif learning
model with two alternative models: an associative learning model and a
chunking model. The motif learning model constructs memory pieces by
combining chunking, associative learning, and abstraction via learning
projectional motifs. The chunking model contains the same components
except for abstraction. The associative learning model learns the first-order
transition between observed sequential items. We gave the same instruction
sequence to all three models and thereby arrived at an average recall
accuracy for each model on each proceeding experimental trial. To do so, we
used the same sequences instructed to the participants to train all models.
After updating memory components from each trial of sequences, the
memory components of the model are used to generate sequences that
emulate recall. Then, the model recall accuracy on a particular trial is cal-
culated as the percentage of matching items in the recalled sequence by the
models and the instruction sequence. After that, we calculated the group
accuracy progression (averaging across participants) for both the model-
simulated performance and the participants’ performance. The average
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generative accuracy per trial of the models is compared to the average recall
accuracy per trial of the participants.

We then regressed the generative accuracy of each model onto
empirical accuracy and evaluated the goodness of fit by computing the
R-squared value. The R-squared measure determines the proportion of
variance in the behavioral results that the model prediction can explain and
shows how well the data fit the regression model. As shown in Fig. 3d, the
motif learning model (R* = 0.63, 95% CI = 0.55 to 0.71) explained more
variance in the behavioral result than a chunking model (R* = 0.02,95% CI =
0 to 0.12) that did not abstract. This suggests that abstracting the sequence
via projecting the sequence onto the motif space is a critical component that
captures human behavior in this task.

Comparing the motif learning model to an associative learning model
shows that abstraction alone isn’t enough to explain the results. The asso-
ciative learning model factors in marginal and transition probabilities in the
sequences but doesn’t learn chunks. Additionally, it explains very little of the
variance in human behavior, with R* = 0.003, 95% CI = 0 to 0.06, compared
to the motiflearning model. This result suggests that learning the association
between items in the projected motif space is insufficient; combining the
previously memorized memory chunks into longer memory chunks is also
vital to explaining human learning progress.

Transfer. We then assessed whether training on motifs affected partici-
pants’ ability to memorize novel sequences in the transfer blocks.

Behavioral results. We compared participants’ performance in the transfer
blocks grouped by three transfer types relative to the training block types:
Same (Motif 1 - Motif 1, Motif 2 - Motif 2), Different (Motif 1 - Motif 2,
Motif 2 - Motif 1), and Control (Independent - Motif 1, Independent - Motif
2). Shown in Fig. 3e, we observed a significant effect of transfer type
(y’(2) = 9143, p < 0.001, Conditional R* = 0.63) on recall accuracy. Parti-
cipants remembered novel sequences with the same motifs more accurately
compared to control (8 = 0.16, se = 0.01, #(168) = 10.78, p<0.001, 95%
CI=0.13t0 0.19). Surprisingly, we also observed that participants benefited
from transferring to a different motif type compared to control
(B = 0.05,s¢ = 0.01, £(168) = 3.69, p<0.001, 95% CI = 0.02 to 0.08).
Consistent with our hypothesis, training on sequences with motifs helps
participants learn novel sequences sharing the same motifs. Participants’
reaction time data is also analyzed and visualized in Supplementary
References and Figure S1, S2.

Model prediction. Similarly, we evaluated the recall accuracy of the motif
learning model on the transfer blocks. Figure 3f shows the generative
accuracy of the motif learning model grouped by transfer types. Similar
to participants, the model recalled novel sequences with motifs better after it
had been trained on the same motif (y*(2) = 265.43, p < 0.001), compared to
having been trained on neither motif (8 =0.18, se = 0.01, f = 16.69, p < 0.001,
95% CI = 0.16 to 0.2). Different from the participant: it is harder for
the model to transfer to an alternative motif type
(B=—0.04,se=0.01, t = —3.35, p < 0.001, 95% CI = -0.06 to -0.02) than the
control. We inspect this discrepancy further in the discussion section.

Regression coefficients. We looked at participants’ correctness of recall key
presses by fitting a logistic regression model, assuming a random intercept of
participants and random slope over individual serial positions and trial
numbers (Fig. 3g). We found that the transfer types affect the recall key press
correctness (y(2) = 679.46, p < 0.001, Conditional R* = 0.23). Participants
who have been tested on the same motif as they had been trained on
(m1-mland m2-m2) (8=0.96,0=0.04,z=24.16, p <0.001,95% CI = 0.89
to 1.04) are more likely to recall the correct item compared to control. This
result resonates with our linear mixed-effect analysis on recall accuracy.
Interestingly, participants tested on a motif different from their training
motif also did better than the control (8 = 0.29, 0 = 0.04, z= 7.90, p < 0.001,
95% CI =0.22 to 0.36). We discuss the implications of this finding further in
the discussion section. Additional regression coefficients that confirm the

practice effect, recency effect, and chunk boundary effect are reported in the
Supplementary Reference file.

Model comparison. We then compared the resemblance to human behavior
between the motif learning model, the associative learning model, and the
chunking model (Fig. 3h) during the transfer blocks. Since all three models
change their representation when the training schedule switches from
training to the transfer blocks, we can compare the generative accuracy of
the models to participant recall accuracy. This feature allows us to regress the
generative accuracy of each of the three models onto empirical recall
accuracy per transfer trial and evaluate the R-squared of the regression as a
goodness-of-fit measure.

The motif learning model (R* = 0.41, 95% CI = 0.26 to 0.55) explains
more variance of participants’ transfer performance compared to the
chunking model (R* = 0.08, 95% CI = 0.003 to 0.27), suggesting that pro-
jecting sequences in a projected motif space, an abstraction process, is cri-
tical to capture human behavior in this task. The motif learning model also
explains more variance than the associative learning model (R* = 0.05, 95%
CI = 0 to 0.10). Associative learning only is insufficient to capture partici-
pants’ transfer behavior.

Experiment 2: variable motifs

Experiment 2 tested the learning and transfer of variable motifs in the
sequence recall paradigm. A training block of 40 trials was followed by a
transfer block of 24 trials. Participants were split into two groups: the
variable motif group (motif) and the fixed group (control). The variable
motif group was instructed to remember sequences with variable motif B X
DF,DXBF, FXD B (1). X represents a variable and randomly assumes a
letter amongst A, C, and E with equal probability with every occurrence. The
fixed group was instructed to remember unchanging sequences assuming
the fom: BADE,DCBF,FEDB.

During the test block, both groups were instructed to remember a novel
sequence with an embedded variable X: D X BF, F X D B, BX F D. The
location and entailment of X were the same as the training sequence with
variables, but we changed the fixed part of the sequence.

Similar to Experiment 1, the transfer phase proceeds immediately
following the training phase without explicit notification. Sequence recall
instruction, accuracy evaluation, and feedback are identical to Experiment 1.

Model prediction. We hypothesize that when participants are instructed
to memorize sequences with a component that varies, identifying variable
entities and memorizing them in conjunction with the unvarying part of
the sequence should facilitate transfer. That is, when participants
encounter novel sequences sharing the same variable entity but different
unvarying parts, they should memorize novel sequences with over-
lapping variables better compared to the control group.

Training

Behavioral results. Figure 4a shows the average sequence recall accuracy of
the variable motif group and the fixed group. We fitted participants’
sequence recall accuracy with a linear mixed-effects regression model,
assuming a by-participant random intercept. The result showed a significant
effect of group (¥’(1) = 50.012, p < 0.001, Conditional R* = 0.42). The fixed
group recalled sequences more accurately than the variable motif group
(B = —0.22,se = 0.03, £(95) = —0.806, p<0.001, 95% CI = —028 to
—0.17). A changing part of the instruction sequence hindered recall.

Model prediction. We trained the variable motiflearning model on the same
instruction sequences seen by participants. For sequences with the variable
motif, the model learned memory representation manifested in chunks and
variables. To do so, the model condensed observations of disparate instances
of A, C, and E into one variable entity and concatenates the variable entity
with the already-acquired fixed sequence parts in its memory. In this way,
the motif learning model learned to represent instruction sequences with
variable motifs as a chunk with embedded variable entities. Hence, the
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transfer block.

memory contains both concrete and abstract sequence parts as a low-
complexity sequence representation. For control sequences, the model
constructed memory pieces by chunking. During recall, sampling entail-
ment chunks of a variable entity introduces memory recall error
(¥’(1) = 3.72, p < 0.001, Conditional R* = 0.03). The motif learning model
recalled sequences with variable motifs less accurately than fixed sequences
(B = —0.02, se = 0.01, £(106) = —1.93, p<0.05, 95% CI = -0.04 to 0).

Regression coefficient. We then studied factors that influenced the keypress
correctness via fitting a logistic mixed-effects regression, assuming a per-
participant random intercept and a random slope per serial position
(Conditional R* = 0.32). Shown in Fig. 4c, the regression coefficient sug-
gested that the variable motif group was more prone to recall mistakes than
the fixed group (8 =—0.99, se=0.26,z= —3.78, p < 0.001,95% CI= —1.51 to
-0.48). Apart from that, the variable motif group learned sequences slower
than the fixed group (8 = —0.33, se = 0.11, z = —2.98, p = 0.002, 95% CI =
—0.54 to —0.11). Training on sequences with variables decreased partici-
pants’ probability of recalling the correct key and slowed down learning,.
Overall, the regression analysis was consistent with our predictions.

Model Comparison. We again compared the motif learning model with an
associative learning model and a chunking model by evaluating the
R-squared value regressing simulation recall accuracy onto empirical recall
accuracy in the same way as in Experiment 1. Figure 4d shows the goodness-
of-fit model comparison on the training blocks.

The associative learning model (R* = 0.0005, 95% CI = 0-0.08)
explained very little variance in participants’ recall accuracy progression
during learning, suggesting that just learning the first-order transition
probability was insufficient to explain participants’ learning curve on
memorizing sequences with variables. Having a chunking component that

builds up recall memory pieces together was essential to explain partici-
pants’ learning progression. Meanwhile, we observed that the chunking
model (R* = 0.76, 95% CI = 0.65 to 0.86) explained more variance of recall
accuracy progression than the variable learning model (R* = 0.39, 95% CI =
0.14-0.47), possibly because the average chunking process becomes more
predictive of participants’ recall accuracy than the average variable learning
process, as participants may have learned variables in idiosyncratic ways
that are not captured by the variable discovery process of the model but are
described better by a chunking model.

Transfer

Behavioral results. We hypothesized that participants transfer variable
representations from the training to the test block. Shown in Fig. 3e is the
average recall accuracy of the two groups across all transfer trials. We used
an independent-sample t-test to assess the performance difference between
the two groups, and a two-sided t-test to assess the superiority of the variable
group compared to the fixed group in sequence recall. We observed a
significant difference (#(2317.4) = 4.99; p < 0.001; 95%CI = [0.033,0.076])
in recall accuracy between the motif group (M = 0.64) and the control group
(M = 0.58), supporting our hypothesis that the variable group performs
better at transfer than the fixed group. Participants’ reaction time data is also
analyzed and visualized in Supplementary References and Figure S3.

Model prediction. As per model simulation shown in Fig. 4f, generative
accuracy was higher for the model trained on variable sequences than those
trained on fixed sequences (B = 0.04, SE = 0.02, £(106) = 2.11,p = 0.03)
(Y(1) = 4.47, p = 0.03, Conditional R* = 0.03). This transfer advantage results
from the variable learning model reusing the previously learned variables to
parse and chunk in conjunction with the novel sequence part. In other
words, the model trained on sequences with variables learned to ignore a
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certain part of the novel sequences to afford memorizing the unchanging
sequence part.

Regression coefficients. We fitted a mixed-effect logistic regression on
participants’ recall key press correctness in the transfer block, assuming a
per-participant random intercept and a logit link function (Conditional R* =
0.30). Shown in Fig. 4g, we observed a positive effect of train condition
(8=042, s =0.18, z=2.33, p = 0.02, 95% CI = 0.07 to 0.77). Training on
sequences with variable motifs helped participants recall novel sequences
sharing the same variable motif better than the control group trained on
fixed sequences, which was consistent with our model’s prediction.

Model comparison. We compared the motif learning model with the
chunking and associative learning model on the transfer block. Shown in
Fig. 4h, we observed that the motif learning model that reuses its previously
learned variables to memorize novel sequences explains the most human
recall accuracy variance (R* = 0.48, 95% CI from 0.33 to 0.65) than the
chunking (R* = 0.26, 95% CI from 0.13 to 0.44) and the associative learning
model (R* = 0.001, 95% CI from 0.0 to 0.16). This aspect suggests that
reusing previously learned variables to memorize novel sequences captures a
part of the human sequence memory variance when they transfer to novel
sequences.

Training improvement correlates with transfer performance. We also
assessed the effect of training improvement on transfer performance for
both experimental groups. The improvement measure is evaluated on
individual participants’ sequence average recall accuracy between the last
five trials at the end of the training block, subtracted by the first five trials at
the beginning of the training block. This difference reflects the average
improvement over the training period for every participant. We observed a
significant interaction between training improvement and group
(RSS = 2.44, F(1) = 1042, p = 0.001) affecting transfer recall accuracy.
Participants who improved more during training on variable motifs per-
formed better during the initial transfer blocks, compared to control
(8=0.53,se=0.17, t = 3.22, p = 0.002). Training improvement on variable
motifs facilitated transfer to sequences sharing the same variables.

Discussion

We effortlessly perceive and extract motifs in music, acquire grammatical
structure from languages, and use mathematical variables to find out about
the unknown. Already during early childhood, we can learn abstract con-
cepts as soon as we learn concrete concepts™*’. Linguistics suggest that the
conceptual metaphor — mapping similar structural concepts of a known
thing to construct an understanding of an unknown concept — plays a vital
role in human understanding and reasoning”**. Having seen a solution to a
problem, people can solve problems in a similar conceptual relational
space”. Abstraction as a principle has demonstrated its usage in mathe-
matics and machine learning. Mathematicians have used abstraction as a
mapping principle to transfer deductions from one formal system to a new
formal system”. Abstraction has long been postulated as a crucial
requirement for intelligent agents to solve problems in diverse situations™.
Reinforcement learning studies suggest that state or action abstraction
makes the representation more compact, easier to plan, and generalize
flexibly to different environments and across tasks™ . Yet, current artificial
intelligence systems do not explicitly abstract in the way that humans do™.
Hence, understanding how humans arrive at abstraction more generically
has wide and profound implications in the study of artificial and natural
intelligence.

As the key to generalization, transfer, and planning, our ability to
abstract from perceptual observations — which has not received sufficient
attention relative to its importance in intelligence — urges us to take a closer
look at how abstraction arises from sequential perceptual sequences. In the
current work, we have proposed two specific sequence abstraction types:
projectional motifs — patterns derived from sequences through a projec-
tional function, and variable motifs — patterns that combine both concrete

and variable elements. We studied the process of abstract motif learning in
sequences, tested the learning and transfer of both motifs in a sequence recall
paradigm, and proposed a model that abstracts sequences to compress
sequence representations with projectional and variable motifs. We found
that our model explained human behavior well.

Previously, associative learning models have been shown to explain
human judgment of grammatical versus agrammatical strings in artificial
grammar learning tasks******. Our model comparison between associative
learning and motif learning suggests that associative learning alone is
insufficient to explain human abstraction learning and transfer in sequence
recall. As an alternative account of sequence learning, chunking models
including PARSER’, HCM", CCN and TRACX'"'* acquire repeated pat-
terns from sequences as chunks. Model comparison between the chunking
model and motif learning model suggests that the chunking model captures
a part of variable motif learning but not variable motif transfer, nor the
learning and transfer of projectional motifs. Expanding the space of
chunking from concrete sequences to abstract spaces is vital to capture the
motif learning and transfer effects observed in our experiments. In experi-
ment 1, during training, when memorizing sequences with projectional
motifs, the chunking model does not align with our observation of human
behavior because the model learns chunks on the surface value of the
sequences. In comparison, the motif learning model learns chunks in the
projectional space of the motifs. While both models learn chunks by a
merging mechanism that combines preexisting memorized sequence sub-
parts into novel chunks of memorized sequence sub-parts, this chunk-
building efficiency correlates with the number of repetitions of the mem-
orized sequence chunks. The motif learning model, having memorized
chunks in the motif space, has more opportunities to hone in its memory
thanks to the frequent repetition of sequences in the projectional motif
space. This model comparison suggests that humans facing this task exert
learning behavior that resembles memorization in the projectional motif
space rather than memorization of the concrete sequence space.

The inflexibility of memorizing subsequences on the surface value
further disadvantages the chunking model in this experiment’s transfer
phase. Although the chunking model might have learned to compress
sequences in chunks in the training phase, the fact that the memory chunks
lie in the concrete sequence spaces makes the model inflexible to transfer any
learned chunks to the transfer sequences. In comparison, the motif learning
model learns chunks in the projectional motif space, which is shared
between training and transfer.

In the variable motiflearning experiment, the chunking model explains
better than the motif learning model on learning variable motifs during the
training phase but not the transfer to new ones. This is possible because
learning chunks on concrete sequences captures a part of the participant’s
learning behavior. However, during transfer, the concrete sequence chunks
are too stiff to adapt to novel sequences sharing the same variables. The
model comparison suggests that the ability of the variable motif learning
model to recycle the variable as an entity to construct new chunks is critical
to capture the transfer behavior for humans in experiment 2.

Related Work
A range of cognitive tasks examine learning of surface example structure in
text strings. In the artificial grammar learning paradigm, participants learn a
subset of the grammatical sequences generated from finite state languages'.
After observation, they are asked to discriminate grammatical versus
ungrammatical (inconsistent with the finite state language) sequences in a
test phase. It was observed that participants can generally identify gram-
matical sequences in the test phase with above-chance accuracy”. Previous
modeling work suggests that learning the associative transition probabilities
between items in the string can replicate participants’ performance in the
task™**>*. Our model comparison between associative learning and motif
learning suggests that associative learning alone cannot explain human
abstraction learning and transfer in sequence recall.

On top of the first-order transition structure, past research also sug-
gests that people learn explicit structures as frequently occurring fragments
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in sequences. Literature suggests that the similarity between the test and
training strings influences test judgment’. Specifically, test strings that
contain overlapping string fragments with the training string are more likely
to be judged as grammatical”®. This phenomenon can be explained by
chunking models such as PARSER’, HCM", CCN and TRACX"'"", which
learn repeated patterns from sequences as chunks. Our analysis suggests that
although the chunking model resembles participants’ learning progression
during variable motif learning, it fails to capture variable motif transfer or
the learning and transfer of projectional motifs. Expanding the space of
chunking from concrete sequences to abstract spaces is vital to capturing the
motif learning and transfer effects observed in our experiments.

Other works that relate sequence learning and mental compression
have used an outlier detection task”: participants detect violation upon
hearing a binary auditory sequence. Past work has shown that a language-of-
thought model’s minimal description length of binary sequences relates to
human psychological complexity””*". A sequence recall task differs from an
outlier detection task in that it directly probes human ability to recall the
sequences to be memorized and, therefore, is not limited to testing human
prediction of the subsequent element. Our work further relates mental
compression with sequence motif learning. Rather than a static account of
sequence complexity, the abstraction learning model proposes a discovery
process of actively constructing sequence motifs during practice.

The learning of explicit rules bridges between literature and has also
been considered in the field of category learning”. After presenting parti-
cipants with observation instances of artificial objects coming from artifi-
cially defined category memberships, participants categorize novel objects as
belonging to one category or the other. It was observed that both rules and
statistics of the categories influence judgment, as atypical examples take
longer to be categorized***". Most theories of rule-based category learning
assume that rules and similarities operate on the level of explicit perceptual
representations. Relating to our work, we suggest that regularities from
observational examples can also be manifested on an even more abstract
level, such as the variability structure or projectional space. Assuming that
the rule-discovery process operates on projected representations, previous
rule-based models are similar to our currently put-forward motif-learning
model. If we assume that models originally thought to operate on perceptual
representations can also operate on projected representations, different
interpretations of the current results become possible. For example, if every
presented sequence is stored in abstract space, motifs could also be con-
sidered as prototypical abstract sequences*>*’. Similarly, motifs could also be
considered as assemblies of similar multidimensional abstract exemplars™.
Our results cannot contribute to the debate about people’s strategy to learn
categories and regularities. The motif learning model is compatible with any
of these strategies. However, the current results show that people can
transform and use representations in an abstract, projected space to detect
regularities, over and above the algebraic rules put forward previously"” (see
Experiment 2).

On the level of learning non-explicit sequence patterns: previous
work"” showed that seven-month-old children could extract an abstract rule
when exposed to sequences with simple grammar (e.g., ABA). After expo-
sure, the infants were more likely to direct their gaze toward novel sequences
sharing the same structure, such as KTK, rather than toward a different
structure, such as DDF. Our experiment further examines the implication of
learning projectional motifs in sequence memorization and recall.

The notion of learning variable motifs relates to the symbolic
acquisition of language knowledge'*", endorsing the view that occur-
rence frequency cannot be the only basis of grammatical or syntactical
language learning, as we can judge very unlikely-occurring sentences to
be grammatical"’. Language acquisition involves learning phase structure,
such as a noun phrase usually consistent with a determinant followed by
a noun'®. suggests that abstract patterns on the level of symbols, such as
nouns and verbs, operate to utter grammatically valid sentences
without an enlisted preoccupied output. The acquisition and utterance of
language structure involves the acquisition of operations on the
symbolic level.

Previous work has postulated that similarities and rule knowledge are
two ends of the same continuum and may have separated learning origins*.
Moreover, abstraction learning tends to occur after learning the surface-
level structure™. Perceptual and abstract properties can concurrently occur
during the learning process”. Our model captures the process of bimodal
learning by learning both the surface-level fragments and the deep-level
structure and demonstrates its resemblance to human behavior in a
sequence recall task that both associative and chunk learning fall short of
explaining.

Limitations

Our work has limitations. In Experiment 1, learning one motif facilitated
participants’ transfer to a different motif (3e). The same was not true for the
model: learning one motif impaired its ability to transfer to the other dif-
ferent motif. The model’s ability to recall a new motif is hindered when it has
already learned one motif. This occurs because the recall process involves
sampling subsequences acquired since the start of training, and the pre-
viously learned chunks from the training motif may still get sampled during
the recall process which interferes with recall accuracy. This effect is con-
sistent with the proactive interference effect in theliterature that memory for
previously presented lists impairs memory for later presented lists**". In
contrast, in our experiment, it seems as if humans are establishing a fresh
context for structure discovery when encountering a new motif which is not
captured by the current model™*. This phenomenon can be attributed to
yet an additional layer of contextual abstraction that the model does not
capture. Namely, training on sequences with motifs guides people to look for
motifs in subsequent sequences. This observation that structural prior prime
participants to search for structure in another form resonates with previous
findings on structured multi-armed bandit tasks, where a learning-to-learn
effect was observed™. Future work could extend the current modeling fra-
mework to accommodate the flexibility of transferring across motifs. For
example, one option would be to introduce a mechanism that updates the
prior about the probability of having underlying structure in the sequence.
And consequentially, having trained on a motif helps a model to update the
structural prior and infer an alternative structural form with a higher like-
lihood than no structures in the sequence.

In this work, we compared model fit via generative accuracy, which
reflects the model’s internal memory representation acquired from
instruction sequences up to trial n, as it is evaluated on the recalled sequence
generated by the model in comparison to the instruction sequence presented
on that trial. This method provides one aspect of model fit. Future work
could look at other aspects of behavioral-model comparison. One example
could be to evaluate the likelihood of participants’ recalled sequence given
the models and compare the likelihood as a measure of model fit. Alter-
natively, the complexity of participant generated sequences as parsed by the
models can be compared with reaction time data, as less complex sequences
would be recalled faster.

Finally, most of our analysis compare model predictions with human
behavior on an aggregated level. We encourage future investigations to
examine participants’ idiosyncratic learning and transfer strategies. Apart
from that, our work defines and investigates two particular types of
abstraction. We encourage future work to extend the investigation and look
at more forms of abstraction or automatic ways of discovering abstraction
such as hierarchical clustering and chunking on recursive abstract levels.

Conclusion

A vital role of abstraction is to facilitate sequence compression and gen-
eralization, and we proposed a motif learning model based on this principle.
Our model builds up a sequence memory via chunking motifs in an abstract
space in search of a low-complexity sequence representation, facilitating
memorization and transfer. We developed a sequence recall task to examine
whether the two proposed motif types aid in learning and generalization.
Our findings suggest that both motifs facilitate sequence memorization and
generalization to novel, unseen sequences. Humans showed similar beha-
vior to the model in learning and generalization of both abstraction types.
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This suggests that sequence compression via abstraction is a plausible
mechanism to explain human performance in sequence memory tasks. Our
work paves the way for a better understanding of how people construct
abstract representations from observational sequences for efficient com-
pression and transfer.

Data availability
The data collected is also available at: https://github.com/swu32/motif
learning.

Code availability
The data collected and code used for analyzing this study can be found in
this github repository: https://github.com/swu32/motif_learning.
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