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Recent advances and perspectives on the
development of circular RNA cancer
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Engineered circular RNAs (circRNAs) are emerging as promising platforms for RNA-based vaccines in
cancer treatment. We summarize the recent advances of design, synthesis, and delivery of circRNA-
based cancer vaccines, and highlight the applications and challenges of circRNA vaccines in cancer
therapy. Further enhancements are required in areas such as antigen selection, targeted delivery,
multidimensional crosstalks, and clinical trial assessments to advance the efficacy and safety of
circRNA vaccines in cancer.

CircularRNAs (circRNAs) represent aunique typeofRNAcharacterizedby
their covalently closed circular structure1, and they play crucial roles in
cancer development through various mechanisms. Cancer is a systemic
disease marked by tumor-promoting inflammation and immune evasion,
leading to changes in the immune landscape. Immunotherapy has revolu-
tionized cancer treatment by targeting the immune system2, with vaccines
being critical in public health and cancer management. Despite advance-
ments in therapeutic cancer vaccines, challenges remain in candidate
identification, immune response evaluation, and overcoming tumor
immune microenvironment suppression3. RNA-based vaccine are emer-
ging as a promising approach in cancer immunotherapy, particularly with
the success of messenger RNA (mRNA) vaccines4. Recent developments in
synthetic circRNAs suggest their potential as a new category of RNA
therapeutics and vaccines for cancer treatment5. This review discusses the
current state of circRNA-based vaccines in cancer, including design,
synthesis, purification, delivery, application, and the challenges and future
perspectives in precision oncology.

Discovery of circRNA vaccines
CircRNAs were initially identified in plant pathogenic viroids6 and in
eukaryotic cells7. Subsequently, circRNAs were yielded by exon splicing
during in vivo maturation of eukaryotic nuclear mRNAs8. Natural cir-
cRNAs have been found to function as efficient microRNA (miRNA)
sponges9,10. The advent of artificial in vitro circRNA synthesis has enabled
the expression of cancer antigens in the development of circRNAvaccines11.

CircRNAs as therapeutic targets in cancer
The circular structure of naturally occurring circRNAs confers resistance to
exonuclease activity, enhancing their stability compared to linear RNAs,
suggesting their roles as promising biomarkers for liquid biopsy in cancer

detection and potential therapeutic targets for cancer treatment12. Dysre-
gulated circRNA expression can contribute to cancer initiation, under-
scoring their potential as targets for therapeutic intervention. Noteworthy
examples include circNUP50, which promotes cisplatin resistance in
ovarian cancer (OC)13, and various other circRNAs such as
hsa_circ_000791914, circRBM3315, circPLPP416, circPVT117 implicated in
drug resistance across different cancer types. In addition, circRNAs like
circHERC118, and circITGB619 have been associatedwith tumorprogression
and show promise as targets for cancer therapy. Interestingly, the corre-
sponding linear transcripts of circRNAs are not considered essential.
Although the levels of the corresponding linear mRNA are usually verified
to be unaffected, off-target effects beyond their linear counterparts are less
predictable. Importantly, ongoing clinical trials worldwide are investigating
the therapeutic targeting of circRNAs (Table 1), althoughmany are in early
phases and have garnered significant interest in exploring the roles of cir-
cRNAs in cancer therapy.

CircRNAs as promising vaccine platforms
The potential of artificial circRNAs as a vaccine platform was initially
recognized following the discovery of translated circRNAs in human and
Drosophila cells20. In contrast to the short half-lives of less than 20 h for
linear transcripts, circRNA isoforms exhibit high stability and sustained
expression for up to 168 h21,22. The key step in synthesizing in vitro-
transcribed (IVT) circRNA involves circularizing linear RNA molecules
through diverse methods. Advances in artificial RNA circularization tech-
niques have paved the way for circRNAs to be considered as promising
vaccine platforms. A recent milestone in circRNA vaccine development
involved the creation of a circRNA vaccine targeting the severe acute
respiratory syndrome coronavirus (SARS-CoV-2). This circRNA vaccine
demonstrated superior and more sustained antigen production compared
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to linear mRNA vaccines, eliciting a higher proportion of neutralizing
antibodies and distinct Th1-skewed immune responses23. Furthermore,
Li et al. explored the potential of a circRNA platform for protein expression
and compared its durationwith linearRNA, aswell as its anti-tumor efficacy
in challenging malignancies24. Together, circRNA cancer vaccines hold the
potential to boost immune responses against cancer cells.

Design of circRNA-based cancer vaccines
To improve the stability and efficacy, diverse strategies should be considered
during the development of circRNA vaccines25.

Optimization of circRNA vaccine backbone to promote transla-
tion efficiency
The efficacy of circRNA vaccines relies significantly on the translation
machinery of their host organisms to generate antigens that can subse-
quently trigger an immune response. As such, the open reading frame
(ORF) responsible for encoding the antigen and the elements facilitating its
translation are crucial considerations in the design of linear precursors of
circRNAs (pre-circRNAs). Some elements that promote circularization and
reduce immunogenicity are also important for the design of artificial cir-
cRNAs. Given that internal ribosome entry sites (IRES) and continuous
ORFs can initiate translation on artificial circRNA26, IRES-ORF cassettes
serve as core components in pre-circRNAs20,27. The translation of desired
proteins commences when 40S ribosomal subunits engage with the start
coding codons of ORF and terminate at the stop codons of ORF in both
prokaryotic and eukaryotic cells28,29. Although IRES-mediated translation
can occur via an intron splicing scar, it is less efficient than having the IRES
immediately upstream of a gene. Furthermore, incorporating spacers
between the IRES and the gene of interest, as well as optimizing the 5’ and 3’
untranslated regions (UTRs), can improve circRNA translation30. These
findings highlight the relevance of vector topology and non-coding RNA
element tuning for enhanced circRNA translation.

A customized ORF is critical for enhancing the efficiency of circRNA
translation. The reduction in yields due to nicking of longer circRNAs,
potentially facilitated by magnesium-catalyzed autohydrolysis, represents a
notable drawback that requires enhancement22,31. A growing focus has been
directed towards utilizing shorter ORFs (sORFs) to express immunoglo-
bulin neoantigens, whichmay trigger the desired immune responses32. New
methodologies and datasets have also developed for identifying sORFs.
Through an integrated workflow for sORF discovery33, a repository of
sORFs identifiedvia ribosomeprofiling (RIBO-seq), anda techniqueknown
as ProTInseq have been developed to characterize unnotated sORFs34,35.
Recent advances include the use of various technologies and methods to
identify unannotated translated sORFs and previously unknown non-
canonical peptides in human cancer proteomes36,37.

m6A modification of encoding antigens to reduce circRNA
immunogenicity
TheN6-methyladenosine (m6A)modification iswidely observed in various
types of RNAmolecules, includingmRNA38, long non-coding RNA39, small
nuclear RNA40, and circRNA41. The presence of m6A may contribute to
circRNA translation and immunoregulation42. To mitigate innate immu-
nogenicity, circRNAs can be engineered as endogenous nucleic acids to
evade immune surveillance and modification with m6A. In comparison to
unmodified circRNAs that encode detectable reporter proteins, circRNAs
with 5% m6A incorporation exhibit similar translation levels and demon-
strate increased resistance to nucleases30. This suggests that m6A mod-
ification does not hinder circRNA translation andmay enhance its stability.
Notably, the Epstein-Barr virus (EBV) nuclear antigen 3C (EBNA3C), a
latent oncoprotein and tumor antigen, has been found to upregulate the
transcription of METTL14, an m6A writer enzyme, and directly interact
with METTL14 to enhance its stability43. Moreover, m6A modification of
the oncoprotein CUB domain containing protein 1 (CDCP1) in bladder
cancerhasbeen showntosynergizewith chemical carcinogens inpromoting
malignant transformation of uroepithelial cells and bladder cancer

tumorigenesis44. Further study has revealed that programmable m6A
installation on CDCP1 mRNA using RCas9-METTL3 system accelerates
bladder cancer progression45. These findings indicate the involvement of
m6A modification in tumor antigens in cancer development, suggesting
that artificial circRNAs encoding antigens can be modified with m6A to
prevent immune responses.

Selection of targeting neoantigens to improve anti-tumor
specificity
Personalized vaccines based on neoantigens have shown promise in eli-
citing broad anti-tumor responses tailored to individual cancer patients. A
cancer vaccination strategy can also be designed to induce immunological
memory for long-term cancer control46. Veatch et al. utilized genetically
modified T cells as a vaccine platform to develop a cancer vaccine con-
sisting of autologous T cells modified with neoantigens and additional
adjuvant signals (Tvax). Subsequently, this therapeutic vaccination
showed anti-tumor activity in subcutaneous and metastatic preclinical
mouse models47. More importantly, concurrent delivery of immune
checkpoint blockade might alter T cell dynamics and boost neoantigen
vaccine-induced anti-tumor immunity48. Similarly, subcutaneous
immunizationwith a nanovaccine that combined a BCGbacterial cell wall
skeleton (BCG-CWS) based nanoscale adjuvant (BCNA) with peptide
neoantigens effectively targeted lymph nodes, elicited robust innate and
tumor-specific immune responses, enhanced neoantigen
immunogenicity49. Conversely, chemotherapy-induced neoantigen
nanovaccines comprised multiple neoantigens and damage-associated
molecular patterns (DAMPs) exhibited enhanced immune responses in
tumor-bearing mice, and increased efficiency of checkpoint blockade
cancer immunotherapy50. Clinically, a personalized therapeutic cancer
vaccine (PTCV) (GNOS-PV02) encoding up to 40 neoantigens coadmi-
nistered with plasmid-encoded interleukin-12 plus pembrolizumab in
patients with advanced hepatocellular carcinoma (HCC) previously
treated with a multityrosine kinase inhibitor, showed clinical responses
were associated with the number of neoantigens encoded in the vaccine,
and neoantigen-specific T cell responses were confirmed in the vast
majority of evaluable patients51. Recently, neoepitopes from cir-
cRAPGEF5 and circMYH9 have been found to elicit antigen-specific
T cells response and expansion, T cells trained with circMYH9 peptides
can specifically target and eliminate tumor-derived organoids in color-
ectal cancer (CRC)52. In addition, circRNA-based neoantigen vaccine has
demonstrated superior tumor immunotherapeutic effects in HCC53.
Despite advances in the identification, prioritization, and immunological
targeting of personalized neoantigens, challenges such as the limited
availability of immunogenic neoantigens, the inadequate efficacy of
tumor-specific T cells, and the immune evasion strategies employed by
tumor cells continue to hinder the attainment of optimal clinical out-
comes in neoantigen-directed immunotherapy.

Synthesis of stable circRNAs
CircRNAs are generally formed through one or multiple precursor linear
RNAs, and then circularized to covalently closed loops. This process is often
mediated by chemical, enzymatic, or ribozymatic ligation methods.

Chemical synthesis
The chemical synthesis involves the use of cyanogen bromide (BrCN) or
1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) as coupling
agents to activate the chemical ligation of linear RNA precursors (Fig. 1a).
Although chemically synthesized circRNAs can serve as translation tem-
plates, the presence of unnatural phosphoramidate linkages raises concerns
regarding biosafety in protein production and RNA-based therapy54. To
address these concerns, the application of in vivo chemistry in bioconju-
gationhas gained significant attentiondue to its rapid reaction kinetics, high
yields, minimal byproducts, and strong chemospecificity and
biocompatibility55. Therefore, further study is warranted to enhance
translation efficacy in living systems.
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Enzymatic synthesis
Enzymatic methods commonly utilize RNA ligases, such as T4 RNA
ligase I and T4 RNA ligase II, which facilitate the formation of a
covalent 3’-5’ phosphodiester bonds between 5’-phosphate and 3’-
hydroxyl end groups of linear RNA precursors in an ATP-dependent
manner (Fig. 1b). T4 RNA ligase I is particularly effective in linking
single-stranded RNA precursors smaller than 500 nt with unstructured
ends56, although it has been observed to produce unexpected products
due to partial reversal and the lower reaction specificity. T4 RNA ligase
II has been shown to selectively and efficiently produce circRNAs
without the need for a splint, through the strategic design of precursor
strands57. The ligation of two single-stranded RNA strands by T4 RNA
ligase II is facilitated by the formation of a “nick-like intermediate”,
which can lead to intermolecular ligation and byproduct formation58.
However, RNA circles synthesized by T4 RNA ligases without addi-
tional fragments demonstrate minimized immunogenicity59. Improv-
ing the circularization efficiency of T4 RNA ligases can be
accomplished by integrating unstructured elements and homologous
sequences.

Ribozymatic synthesis
Longer RNA circularization is mediated by ribozymatic ligation and it
involves consecutive ester exchange reactions facilitated by the per-
muted intron-exon (PIE) system. Both group I and group II introns,
which are autocatalytic ribozymes, catalyze the ligation of longer linear
RNA precursors through self-catalyzed splicing reactions in circRNA
synthesis (Fig. 1c). However, group I introns are more frequently
employed compared to group II introns. In addition, engineered cir-
cRNA regulators can enhance the production of endogenous circRNAs
by specifically binding to linear precursors60. Furthermore, a specific
RNA binding protein (RBP) has been identified to bind to sites within
the flanking intron splice sites of linear RNA, promoting back-splicing
and playing essential roles as back-splicing factors in regulating cir-
cRNA biosynthesis61. Therefore, the design of RBP motifs in linear
precursors can significantly enhance in vitro circularization and cir-
cRNA production. It is also imperative to explore novel approaches for
constructing a PIE system devoid of exogenous fragments to facilitate
the efficient circularization of linear RNA precursors62.

Purification of circRNAs
Effective purification of circRNAs is crucial due to the manifestation of
immunodeficiency and protein degradation resulting from an imbalanced
circRNA composition. The gel electrophoresis has frequently employed for
the differentiation and isolation of intact circRNAs from other RNAs63.
However, it is important to note that while the electrophoresis system is
suitable for quality control of circRNA purification for vaccine develop-
ment, it may not be ideal for large-scale preparation and/or GMP produc-
tion from the gels. An improved method has been established for circRNA
purification usingRNaseR to remove linear RNAs64, the efficiency of RNase
R can be influenced by the specific recognition sequences and structured 3’
ends present linear RNAs. By tailoring the length and characteristics of
interested RNAs, high performance liquid chromatography (HPLC) can
achieve high purity and significant quantities of RNAs65. In addition, HPLC
is effective in eliminating unwanted byproducts during IVT66. Size-
exclusion chromatography (SEC) is capable of separating molecules based
on their size, and the combinationof SECwithHPLC(SEC-HPLC)hasbeen
utilized to enhance the homogeneity of recombinant hepatitis B vaccine and
to characterize constituents of influenza virus vaccine67,68. In the context of
in vitro engineered circRNAs, complete elimination of nicked circRNAs is
challenging due to degradation during processing. Wesselhoeft and col-
leagues successfully obtained notably pure circRNA (90% circular, 10%
nicked) by employing gel extraction for small quantities and SEC-HPLC for
larger quantities of splicing reaction starting material22. Despite the cur-
rently available methods for purifying circRNAs, it is crucial to either
combine these techniques or qualify novel methodologies to improve pur-
ification processes for vaccine development.

Delivery of circRNA vaccines
Due to the negatively charged nature and large molecular size of RNA
molecules, the passage of circRNAs through the cell membrane is
challenging69,70. Various delivery strategies have been devised to address
this issue.

Direct injection of circRNAs
Most vaccines are typically administered through injection, making
direct injection a more expedient and cost-effective approach. Naked
RNA can be selectively absorbed by dendritic cells (DCs) through

Fig. 1 | Synthesis of circRNA from linear RNA
precursor. a Chemical synthesis by the treatment of
T4 polynucleotide kinase (T4 PNK) and calf
intestinal alkaline phosphatase (CIAP) followed by
the conjugation of 5’-end phosphate with 3’-end
hydroxyl catalyzed by the treatment of condensing
agents (BrCN or EDC). b Enzymatic synthesis cat-
alyzed by T4 RNA ligases using a DNA splint in a
complementary base-paring manner to facilitate
site-specific ligation. c Ribozymatic synthesis by
Group I intron-based permuted intron‒exon (PIE)
system. Permutation of a native group I intron and
insertion of a custom sequence (C-S) into the exonic
region (E2 and E1). And then this PIE system
spontaneously ligates in the presence of free gua-
nosine to form circRNA and release the two half-
intron fragments.
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micropinocytosis, leading to the activation of T-cell responses71,72.
Frequently, naked RNA vaccines are formulated in a solution without a
carrier to aid RNA uptake (Fig. 2a)73,74. Following direct injection,
naked RNAs can induce antigen-specific antibodies and T-cell-specific
responses. While in vivo experiments have showed significant
expression of circRNApost direct injection75, the efficacy of the vaccine
is limited by the degradation of naked circRNA. To address this
challenge, continuous long-term injection of circRNA vaccines is
necessary to sustain anti-tumor activity. Alternatively, coadministra-
tion of circRNA vaccines with liposomes can protect circRNAs against
degradation and enhance the cellular uptake of circRNAs.

Ex vivo loading of circRNAs into DCs
Owing to DC-mediated MHC-antigen binding and various cytokines
for T-cell activation76,77, DC vaccination has been recognized as an
active immunotherapy in cancer treatment and shown to be safe in
clinical trials, both in terms of short- and long-term side effects. The
primary approach for loading DCs with antigens ex vivo involves the
introduction of mRNA encoding the desired antigens78. DCs can be
transfected with circRNAs encoding tumor antigens or neoantigens,
and subsequently administered to the host to trigger immune
responses against the antigens. The nanochannel electro-injection
(NEI) system has been utilized for the safe and efficient delivery of
various nucleic acid molecules into DCs (Fig. 2b). NEI has demon-
strated the ability to efficiently deliver circRNA into primary mouse
bone marrow DC2.4 cells with 68.3% efficiency rate, enabling the
expression of target proteins without significant cytotoxic effects.
Furthermore, DCs transfectedwith circRNAdo not remarkably impact
cellular viability or induce DC maturation79. These findings suggest
that NEI serves as a safe and effective transfection platform for the
in vitro transformation of DCs, showing promise for the development
of DC vaccines against cancer. While ex vivo DC loading offers precise
control over transfection efficiency and cellular targeting, this strategy
is costly and labor-intensive.

Lipid-based delivery
Liposomes are frequently used to deliver RNA due to their versatility as
nanocarriers capable of transporting both hydrophobic and hydrophilic
molecules across cell membranes (Fig. 2c)80. Lipid nanoparticles (LNPs)
characterized by favorable biocompatibility, are currently considered the
most promising materials for organ-selective nucleic acid drug delivery and
have demonstrated success in cancer treatment81. The delivery of self-
amplifyingmRNAvaccines via cationic LNPs has been shown to elicit robust
humoral and cellular-mediated immune responses in mice, indicating high
RNA vaccine encapsulation efficiency82. Furthermore, the incorporation of
helper polymer can be employed to enhance the efficacy of LNP delivery
system83. By encapsulating the antigen-coding circRNAwithin LNPs, Li and
colleagues have established a novel circRNA vaccine platform that effectively
stimulates robust innate and adaptive immune responses, showing enhanced
anti-tumor efficacy across various mouse tumormodels24. In addition, LNP-
mediated targeted delivery of mRNA cancer vaccine is predicted to reduce
side effects and increase the immune response84. To prevent against hepatic
damage, optimizations of LNP structure and organ-targeted system are
necessary to improve the delivery of circRNA vaccines to target cells.

Other delivery strategies
RNA-enriched extracellular vesicles show therapeutic potential in RNA
delivery85, making them less likely to be rejected when delivering circRNA
cargos into cells. Virus-like particle (VLP) is self-assembling spherical
nanocarrier that has been designed to encapsulate and deliver mRNA
vaccines86. Adeno-associated virus (AAV)has been also employed to deliver
DNA molecules encoding circRNA precursors for efficient circRNA
expression (Fig. 2d)87. Despite the early phase of clinical delivery of circRNA
vaccines, it is essential to focus on improving the efficiency of circRNA
delivery.

Current circRNA vaccines in cancer therapy
CircRNA vaccines show promising efficacy and potential superiority over
mRNA vaccines in cancer treatment. Nevertheless, the progress of circRNA

Fig. 2 | Delivery of circRNA vaccines. a CircRNAs
are formulated in solution and then directly injected
into mouse. b CircRNAs are ex vivo transfected into
dendritic cells (DCs) by the nanochannel electro-
injection (NEI) system. c CircRNAs are entrapped in
lipid with microfluidic mixer to form lipid-based
nanoparticle (LNP). Virus-like particle (VLP) (d) and
adeno-associated virus (AAV) (e) can be engineered
to encapsulate and deliver circRNAs. The icons of
tube, dendritic cell, lipid, virus, mouse, and syringe
were freely sourced from https://bioicons.com/.
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vaccine development remains in its initial stage, with limited human studies
reported thus far.

CircRNAOVA-luc-LNP vaccine
A recently in vivo investigation examined the efficacy of a circRNA
vaccine in challengingmouse tumor models24. This vaccine, known as
circRNAOVA-luc-LNP, utilized the shared antigen OVA (257-264,
SIINFEKL) to trigger an immune response and applied LNP as a
delivery system. Both group I intron-mediated PIE system and
backbone elements were employed for in vitro synthesis of transla-
table circRNA. The circRNA products were purified using HPLC as
referring to previous study88. The in vitro assay showed that circRNA
exhibited greater longevity compared to its modified mRNA coun-
terpart. The circRNAOVA-luc-LNP vaccine was successfully delivered
into cells, translated into protein, and elicited an anti-tumor immune
response24. These findings indicate that circRNA-LNP platform holds
promise as a compelling vaccination strategy for clinical translation.

Combination of circRNA vaccines with other treatments
Chimeric antigen receptor (CAR) T-cell therapy has significantly revolu-
tionized themanagement of hematological malignancies89. A recent clinical
trial demonstrated that the integration of CAR T-cell therapy with
sequential mRNA vaccine administrations resulted in potent anti-
neoplastic effects in patients with genitourinary cancers, offering a pro-
mising avenue for a novel targeted therapeutic strategy90. In addition, a
personalized mRNA vaccine combined with adjuvant pembrolizumab
exhibited superior efficacy compared to pembrolizumab alone in patients
with resected, high-risk melanoma91. Administration of naked circRNA
elicits innate immune responses inmice upon injection, activatingDCs and
promoting antigen presentation and robust T cell reactions when engi-
neered circRNAs encoding proteins are employed. Immunization with a
circOVA vaccine complexed with a charge-altering releasable transporter
has demonstrated anti-tumor efficacy92. Recently, a circRNA vaccine
encoding cytokines has been shown to modulate intratumoral immune
responses and impede tumor growth in colon and melanoma models.
Functioning as an adjuvant-type circRNA, this vaccine has the potential to
enhance the anti-programmed cell death protein 1 (PD-1) antibody-
induced tumor repression93. As an intrinsic adjuvant, CXCL13 can promote
broad immune protection induced by circRNA vaccines and offer a higher
level of safety94. Such antigen-adjuvant-circRNA vaccine make it adaptable
for their applications in cancer therapy.

Conclusions and perspectives
DNA vaccines represent a promising strategy for the prevention and
treatment of cancer, as they facilitate the delivery of protein antigens to elicit
immune responses in both animals and humans95,96. Despite the lower cost
and better stability than those of mRNA or circRNA vaccines, DNA vac-
cines have not yet beenwidely adopted in clinical practice. Similarly,mRNA
vaccines have shown considerable potential in cancer immunotherapy with
lower price than circRNA vaccines. Nevertheless, the low immunogenicity
resulting from suboptimal mRNA expression poses a challenge to the effi-
ciency of mRNA vaccines97,98. Tumor-specific cryptic antigenic peptides
translated from circRNAs have been found to trigger immune responses,
with vaccines containing these tumor-specific circRNAs or the encoded
peptides proving effective in mouse cancer models99. Although engineered
circRNAs have emerged as a novel platform for developing cancer vaccines,
circRNA vaccines in precision oncology are still at the early stage and need
more achievements.

First, the selection of tumor-specific antigens is important for the
efficacy of cancer vaccines. Conventional tumor-associated antigen (TAA)
may trigger both central and peripheral tolerance, leading to suboptimal
efficacy of TAA-targeting cancer vaccines. In contrast, neoantigens are truly
tumor-specific and highly immunogenic100. Nevertheless, neoantigen-
specific cytotoxic type 1 regulatory T (Tr1) cells can inhibit anti-tumor
responses and thereby impede immune control of cancer101. Notably, the

application of artificial intelligence (AI) has been utilized to predict and
identify immunogenic neoantigens, advancing neoantigen-based vaccine
development102,103. These discoveries will promote the discovery of novel
neoantigens and the development of circRNA-based vaccines.

Next, targeted delivery of circRNA vaccines is crucial for enhanced
therapeutic effects. Currently, LNPs are the primary delivery system for
circRNAs. The development of targeted LNPs should be further refined to
ensure effective delivery performance. Alternatively, novel delivery systems
that can replace LNPsmay be explored104. Recent study indicates that LNPs
modified with mannose maintain their physical properties even after lyo-
philization, offering long-term lymph node-targeting delivery stability and
inducing potent and persistent immune responses105. Therefore, reducing
off-target effects through targeted delivery systems is essential to maximize
the therapeutic efficacy of circRNA vaccines.

Then, multidimensional crosstalks between exogenous circRNAs and
endogenous biomolecules can influence the therapeutic efficacy of circRNA
vaccines in cancer treatment. While circRNAs encoding neoantigens do not
regulate parental gene transcription innormal cells, exogenous circRNAs can
modulate gene expression through miRNA-mediated competitive endo-
genous RNA (ceRNA) crosstalks106. In addition, exogenous circRNAs can
interact with RBPs to regulate their parental genes107. Together, these mul-
tidimensional crosstalks may impact the translation of circRNAs encoding
neoantigens, potentially leading to undesired side effects in cancer treatment.

Last, many early phase trials of circRNA-related therapeutics are cur-
rently ongoing. However, no circRNA-based cancer vaccines have received
regulatory approval. To improve personalized therapeutic effects, combina-
tions of circRNA cancer vaccines with immune checkpoint inhibitors (ICIs)
or CAR T cells should be considered. Given their promising tolerability,
circRNA vaccines in combination with other regimens could be further
expanded to broaden immunotherapeutic platforms for enhanced synergy.

In brief, circRNA-based vaccines hold significant promise for cancer
therapy. However, it is essential to address challenges related to large-scale
purification and biosafety determination of circRNA vaccines. While
circRNA-based vaccines have shown success in animal studies, further
clinical trials are urgently required to evaluate their effectiveness in human
cancer treatment. The comparative advantages of different approaches will
become clearer as clinical trials progress. In addition to effectiveness, factors
like production costs will also impact the clinical acceptance of circRNA
vaccines. It is important to note that a vaccine alonemay not be adequate to
enable the immune system to overcome a tumor’s defenses, and ongoing
trials are combing vaccines with drugs to boost T-cell responses108. With
advancements in technologies, the widespread use of circRNA vaccines for
preventing infectious diseases and treating tumor malignancies holds pro-
mise for the future.
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