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Significance

 The yellow fever vaccine is one 
of the most successful vaccines 
available. After a single dose, 
it induces long-lasting protective 
immunity against yellow fever, 
a severe disease caused by 
the yellow fever virus which 
is transmitted by mosquitoes. 
It is not clear why this live  
vaccine is so exceptionally 
efficient. Antigen-presenting 
cells (APCs) are crucial for the 
induction of immunity against 
viral infection. We therefore 
investigated the early response 
of APC subpopulations in the 
blood of healthy vaccinees 
and found that a specific 
activation state of APCs induced 
by interferons was associated 
with the early production of 
protective antibodies.
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Yellow fever vaccination provides long-lasting protection and is a unique model for 
studying the immune response to an acute RNA virus infection in humans. To elucidate 
the early innate immune events preceding the rapid generation of protective immunity, 
we performed transcriptome analysis of human blood dendritic cell (DC) and monocyte 
subpopulations before and 3, 7, 14, and 28 d after vaccination. We detected temporary 
upregulation of IFN-stimulated genes (ISG) in all DC and monocyte subsets on days 
3 and 7 after vaccination as well as cell type–specific responses and response kinetics. 
Single-cell RNA sequencing revealed rapid appearance of activated DC and monocyte 
clusters dominated by ISGs, inflammatory chemokines, and genes involved in antigen 
processing and presentation. This was confirmed by flow cytometric analysis in a large 
cohort of vaccinees. We identified SIGLEC1/CD169 upregulation as a sensitive indicator 
of the transient IFN-induced activation state elicited in DCs and monocytes by YF17D 
vaccination correlating with early protective IgM antibody responses.

dendritic cells | yellow fever virus | vaccination | monocytes | interferon

 Acute viral infections caused by flaviviruses such as yellow fever (YF), dengue, and West 
Nile virus represent a major global health threat. The attenuated YF vaccine virus 17D-204 
(YF17D) is one of the most successful live-attenuated vaccines available and provides 
long-lasting immune protection against yellow fever after a single dose ( 1     – 4 ). Therefore, 
this vaccine can be used as an excellent model to study the immunological characteristics 
of a highly efficient and long-lasting protective immune response to an acute self-limited 
RNA virus infection.

 The response to YF17D is marked by a systemic innate immune response involving the 
induction of and response to type I interferons, and inflammasome activation in peripheral 
blood mononuclear cells within the first week after vaccination ( 5   – 7 ). YF17D vaccination 
in rare incidents can cause life-threatening viscerotropic or neurotropic disease. In a recent 
study of eight patients with severe vaccine-associated disease, IFNAR1  and IFNAR2  defi­
ciency as well as neutralizing autoantibodies against type I IFNs accounted for more than 
half of the cases, demonstrating the importance of the type I Interferon response in 
controlling YF17D replication and inducing protective immune responses ( 8 ,  9 ). 
Characteristically a transient activation of circulating dendritic cells (DCs) and monocytes 
within the first week after vaccination ( 10 ) is followed by the activation and expansion of 
specific CD4+  and CD8+  T cells with a peak between 11 and 14 d after vaccination 
( 11   – 13 ). A strong humoral immune response with neutralizing antibodies initially dom­
inated by IgM is detected within 2 wk and persists in the majority of vaccinated patients 
( 4 ,  14 ,  15 ). Data obtained in the mouse model suggest that the protective immune 
response to YF17D is mainly mediated by humoral immunity and CD4+  T cell responses 
( 16 ), but cytotoxic CD8+  T cells are probably also relevant for long-term protection ( 17 ). 
Systems vaccinology approaches using the transcriptome of whole PBMC defined genes 
and gene modules that may predict the adaptive immune response to YF17D and other 
vaccines. For example, expression of genes encoding molecules involved in the 
stress-response pathway such as EIF2AK4  and B cell genes such as TNFRSF17  were found 
to be predictive of the CD8+  T cell and antibody responses to YF17D respectively ( 7 ). 
Subsequently “blood transcriptional modules” were identified that correlated with anti­
body responses across several vaccines including YF17D ( 18 ,  19 ). However, a compre­
hensive analysis of the responses of the different human DC and monocyte subpopulations 
to YF17D vaccination and their association with parameters of adaptive immunity is 
lacking until now.D
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 Circulating monocytes rapidly respond to pathogens and 
pathogen-derived molecules by producing inflammatory media­
tors including cytokines and chemokines. Human monocytes 
comprise three subpopulations: CD14+  classical monocytes, 
CD14+  CD16+  intermediate monocytes, and CD14lo  CD16+  
nonclassical patrolling monocytes. An increased frequency of 
proinflammatory CD14+  CD16+  intermediate monocytes has 
been observed in patients with bacterial sepsis, dengue fever, Zika 
virus, and SARS-CoV2 infection ( 10 ,  20   – 22 ) and also in response 
to YF vaccination ( 10 ,  23 ). DCs are professional antigen-presenting 
cells (APCs) and essential for recognizing viruses and presenting 
viral antigens to T cells for induction of efficient adaptive immu­
nity. In the human peripheral blood, we distinguish three types 
of conventional DCs (cDC1, cDC2, and DC3), plasmacytoid 
DCs (pDC), and transitional DCs (tDCs) ( 24   – 26 ). While cDC1 
preferentially promote cytotoxic T cell and Th1 responses, cDC2 
are important for T helper (Th)2, Th17, and T follicular helper 
responses. DC3 which are phenotypically similar to cDC2 but 
also exhibit monocytic traits were shown to be proinflammatory 
and promote Th1 and Th17 responses and CD8+  tissue-resident 
memory T cells ( 27   – 29 ). CD14+  DC3 were described as an 
inflammatory DC subset that increases in frequency in the blood 
during flares of systemic lupus erythematosus (SLE) ( 29 ) and in 
COVID-19 patients correlating with disease severity ( 30 ). pDCs 
produce large amounts of type I IFNs in response to viral stimu­
lation. tDCs, also called pre-DCs or Axl+ Siglec 6 + (AS)-DCs 
( 24 ,  26 ,  31 ) can give rise to cDCs with cDC2 phenotype suggest­
ing they are cDC2 precursors. At the same time, tDC actively 
participate in immune responses suggesting they have additional 
functions beyond their role as precursors ( 30 ,  32 ).

 We hypothesized that functionally distinct DC and monocyte 
subpopulations show common as well as unique responses to 
YF17D vaccination and we sought to define cell type-specific 
activation states associated with effective and long-lasting adaptive 
immune responses in a vaccination cohort of naïve healthy adults. 

Results

YF17D Immunization Induces a Common Core Signature of 
IFN-Stimulated Genes in All APC Subsets and Cell Type–Specific 
Responses. To characterize the response of circulating APC 
subpopulations to YF17D vaccination, bulk RNA sequencing was 
performed on sorted DC and monocyte subsets, B cells as well as 
total PBMCs, before and on days 3, 7, 14, and 28 after vaccination 
in four healthy donors, two males and two females between 23 
and 27 y of age (Fig. 1A). Principal component analysis (PCA) of 
the cell subset transcriptomes showed positioning of the samples 
governed by cell type. B cells and PBMCs were separated from 
DCs and monocytes in PC2 (Fig. 1B). Along PC1, pDC samples 
clustered together, followed by tDCs, cDC2, DC3, and then 
classical (mo1), intermediate (moint), and nonclassical monocytes 
(mo2). Time point after vaccination contributed little to the 
overall variance. Thus, circulating subsets of DCs and monocytes 
largely maintain their transcriptional identity after vaccination.

 Gene signatures were extracted that allow distinction of DC 
subpopulations after acute viral stimulation. Cell type–defining 
genes preserved after vaccination included CADM1 , CLEC9A,  
and XCR1  for cDC1; CD1C , GRIP1,  and CD1E  for cDC2; 
﻿VSIG4 , RNASE1,  and DTNA  for DC3 ; PLEKHD1 , SMIM5,  and 
﻿VASH2  in pDCs; and AXL , SIGLEC6,  and ADAM33  in tDCs 
(SI Appendix, Fig. S1  and Dataset S1 ). While some populations 
like cDC1, pDCs, and tDCs showed clearly distinct gene expres­
sion profiles, cDC2, DC3, and monocytes gene signatures were 
overlapping, confirming the similarity of these populations seen 

in the PCA. DC3 characteristically expressed genes found in both 
monocytes (e.g., F13A ) and in cDC2 (e.g., CD1C ).

 The greatest variance in gene expression was explained by cell 
type, but comparison of individual time points after vaccination 
to baseline within each population revealed time-dependent tran­
scriptomic changes ( Fig. 1C   and Dataset S1 ). The highest average 
numbers of significantly up- and downregulated genes (differen­
tially expressed genes, DEGs) were found on day 7 after vaccina­
tion in most cell types, indicating the peak of the systemic innate 
immune response. Both mo1 and DC3 showed a higher number 
of DEGs compared to the other populations, while moint  were the 
least responsive cell type. In mo1 and pDCs, changes in transcrip­
tome were still observed 28 d after vaccination, while gene expres­
sion in the other populations returned to baseline or showed only 
few DEGs at that time point.

 By hierarchical clustering of genes showing significant changes 
in expression over time, we identified distinct temporal patterns 
( Fig. 1D   and Dataset S2 ). Each cell population exhibited multiple 
clusters with different dynamics. In the majority of DC and mono­
cyte subpopulations (cDC2, DC3, mo1, mo2, and pDCs), the 
largest clusters ( Fig. 1D  , indicated in bold) were those with a peak 
on day 7 and/or day 3 after vaccination confirming the results of 
the DEG analysis shown in  Fig. 1C  . Notably, each cell population, 
except for PBMCs, had a cluster with peak gene expression on day 
7 postvaccination ( Fig. 1D  , red). Overrepresentation analysis using 
MSigDB Hallmark and C2 canonical pathways showed significant 
enrichment for the Reactome pathway “Interferon gamma signa­
ling” and “Interferon alpha response” or “Interferon alpha/beta 
signaling” in these predominant clusters across all populations 
(Dataset S2 ).

 In cDC1 and tDCs, the largest clusters showed the highest level 
of gene expression before vaccination followed by a decrease on 
day 3 and fluctuation at later time points. In cDC1 cluster 1, genes 
from the Hallmark pathways “TNFα signaling via NF- κB” and 
“P53 pathway” were overrepresented. Conversely, tDCs cluster 1 
showed no significant pathway enrichment but contained genes 
such as RAD1  and ZBTB40  involved in cell cycle checkpoints and 
transcriptional regulation. In PBMCs, B cells, and moint  the largest 
clusters encompassed genes with increased expression on day 28 
compared to the other time points: in B cells, cluster 3 with this 
dynamic was enriched for genes from Reactome pathways 
“Cellular response to chemical stress”, “Fatty acid metabolism,” 
and KEGG pathway “Oxidative phosphorylation.” Within the 
PBMC cluster 1, we found genes such as IFNLR1 , GZMB,  and 
﻿VEGFB  while in moint  cluster 2 we found genes such as HMGB1 . 
Temporal gene clusters with a similar upregulation at the later 
time points were also found in the other subsets most prominently 
in mo1 (cluster 5) and pDCs (cluster 5) consistent with the higher 
number of DEGs observed between d28 and d0 in these subsets. 
Cluster 5 in mo1 was enriched for ISGs, Hallmark “E2F targets”, 
“Adipogenesis” and Fatty Acid Metabolism. We also observed 
biphasic clusters with peaks on day 3 and day 14. These were 
enriched for Reactome Interferon alpha/beta signaling and 
Interferon gamma signaling in mo2 and Hallmark Fatty acid 
metabolism and Adipogenesis in mo1. Thus, common and diverse 
dynamics of gene expression were observed in the different pop­
ulations highlighting the complex and coordinated early immune 
response to YF17D vaccination.

 Comparing the DEGs of day 7 vs. baseline between the differ­
ent APC subsets we identified a group of commonly upregulated 
genes ( Fig. 1E  ). This shared response gene signature consisted of 
12 interferon-stimulated genes (ISGs): IFITM1 , IFIT3 , IFI6 , 
﻿OASL , SP110  (also known as IFI41  or IFI75 ), IFI44L , ISG15 , 
﻿RSAD2 , OASL , XAF , OAS2 , and EIF2AK2 . Depending on the D
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Fig. 1.   YF17D vaccination induces common and distinct time-dependent transcriptome changes in blood APC subpopulations. (A) Experimental design of the 
study. (B) PCA of VST-transformed bulk RNA-seq data after prefiltering. Sorted populations are indicated by colors and the symbols indicate the time after 
vaccination. (C) DESeq2 was used to find the significantly up- and downregulated genes (adjusted P < 0.05, Bonferroni corrected) of each population and each 
time point after YF17D vaccination compared to day 0. The number of up- and downregulated DEGs are shown and the colors indicate the populations. (D) 
Expressed genes (log counts per million ≥ 0.5) with significant changes in expression between time points (ANOVA, P < 0.05) were clustered according to their 
similar dynamic of expression over time for each population. Colored lines connect the average expression of each gene at the indicated time points (z-score 
scaled per row). Line colors refer to the cell populations. Clusters are numbered in random order. Clusters in bold have the highest gene number compared to 
other clusters within the population. Numbers in brackets indicate the number of genes in each cluster. Cluster headings are highlighted in colors indicating 
different dynamics with peak of gene expression on day 0 (blue), on day 3 (pink), on day 7 (red), on day 14 (orange), or on day 28 (green). (E) Heatmap showing 
hierarchically clustered DEG upregulated on day 7 vs. day 0 common to all APC subsets (cDC1, cDC2, DC3, mo1, moint, mo2, tDC, pDC, B, and PBMCs). Gene 
expression is indicated by the color (red: high expression, blue: low expression) for each donor and all DC and monocyte subpopulations, B cells, and PBMCs. 
Time points, vaccinees, and subpopulations indicated by colors above the heatmap. Four samples were excluded due to insufficient quality.D
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individual vaccinee, these genes were upregulated on day 3 and/or 
on day 7 and returned to baseline on day 14 after vaccination 
reflecting a regulated temporary ISG response. Thus, distinct pop­
ulations of APCs showed common and distinct dynamics of gene 
expression and shared a core ISG response peaking on day 3 or 7 
after yellow fever vaccination.

 Gene set enrichment analysis (GSEA) comparing each time 
point with the baseline before vaccination in all APC populations 
using all expressed genes confirmed the common enrichment of 
ISGs on days 3 and 7 after vaccination ( Fig. 2A  ). Reactome 
“Antigen processing and presentation” was enriched in all DC 
subsets, in moint  and mo2 at all time points with peak on day 7 
( Fig. 2A   and SI Appendix, Fig. S2A﻿ ). Gene sets involved in trans­
lational pathways, oxidative phosphorylation, and respiratory 
electron transport were underrepresented in mo1 on days 3, 7, 
and 14, in pDCs on day 14, and in cDC1 on day 3, but were 
enriched in cDC2, DC3, and tDCs at all time points and cDC1 
at later time points indicating differences between cell types in the 
metabolic response and impact of the vaccination on ribosome 
biogenesis and translation ( Fig. 2A  ).        

 We next compared DEGs (d7 vs. d0) between related APC 
populations ( Fig. 2B  ). tDCs shared more response genes with 
cDC2 than with pDCs. Hallmark gene set “Interferon gamma 
response” was overrepresented uniquely in cDC2 when compared 
to pDCs and tDCs. DC3, mo1, and cDC2 had many overlapping 
peak response genes with overrepresentation of ISGs as expected. 
Response genes shared between DC3 and cDC2 were enriched 
for “antigen processing and cross-presentation,” “proteasome,” 
“signaling by Wnt,” “MAPK family signaling cascades,” “C-type 
lectin like receptors,” and “Interleukin 1 family signaling” while 
response genes unique for mo1 were enriched in Hallmark 
“inflammatory response” and “TNF- α signaling via NFκB.” This 
unique response in mo1 was also observed in comparison with 
moint  and mo2. Unique among the monocyte subsets mo2 

response genes showed overrepresentation of “Class I MHC medi­
ated antigen processing and presentation.” cDC1, cDC2, and 
DC3 shared many peak response genes. Besides ISG these were 
enriched for Reactome gene sets “Class I MHC mediated antigen 
processing and presentation” and “signaling by interleukins” high­
lighting their common antigen presentation function ( Fig. 2B   and 
﻿Dataset S3 ).

 Further analysis of cell type–specific response genes revealed 
for example upregulation in cDC1 of lysosomal associated mem­
brane protein 3 (LAMP3 ) implicated in DC maturation and 
MHC class II presentation ( 33 ) and transient upregulation of 
chemokine expression, e.g., CXCL10 , CCL2,  and CCL7  particu­
larly in monocytes (SI Appendix, Fig. S2B﻿ ). DDX58 , encoding 
viral RNA sensor RIG-I, was also significantly upregulated in 
monocytes, and less so in cDC2 and DC3 suggesting that these 
cell types become more responsive to RIG-I ligands after vaccina­
tion (SI Appendix, Fig. S2B﻿ ).

 Thus, besides a common ISG-dominated response to YF17D 
we detected cell type–specific changes in gene expression suggest­
ing distinct functional contributions of different DC and mono­
cyte subpopulations.  

Single-Cell RNA Seq Reveals Activated Cell Clusters Expressing 
ISGs and Inflammatory Genes on Days 3 and 7 After Vaccination. 
The expression of response genes in defined cell populations may 
be heterogeneous with several differentiation and activation states 
coexisting within the same subpopulation. To identify distinct 
activation states within APC subpopulations in an unbiased 
manner, we performed single-cell RNA sequencing (scRNA-seq) 
of the DC and monocyte fractions sorted from PBMCs of four 
donors (two males and two females) before and at day 3 and 
7 after vaccination. Sorted DCs and monocytes of each donor 
were combined at a ratio of 4:1 to enrich DCs and increase the 
cell number for rare DC subsets. After removing doublets and 
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Fig. 2.   Transcriptome response of circulating APC subsets 
to YF17D is dominated by ISGs. (A) Heatmap of unscaled 
normalized enrichment scores (NES) for selected pathways 
from Hallmark and Reactome across four time point com-
parisons against baseline. Displayed pathways include only 
those with NES greater than 2 in at least one comparison. 
GSEA was applied using the t-statistic of each comparison. 
Upper margin colors indicate populations and time points. 
The color scale bar represents NES values. (B) Venn dia-
grams showing the number of overlapping and distinct DEGs  
upregulated on d7 vs. d0 (Padj. < 0.05) in the indicated set 
of populations. Hallmark and Reactome pathways identified 
by overrepresentation analysis are shown for DEGs unique 
to one population or overlapping between populations for 
each Venn diagram.D
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cells with high mitochondrial RNA (>7.5%) or low total RNA 
(<200 genes), we analyzed ~35,000 cells. Individual donors were 
integrated using harmony normalization. Unbiased clustering 
revealed 14 clusters, with clusters 3, 4, 6, and 7 found mostly 
on days 3 and 7 after vaccination (SI Appendix, Fig. S3 A and 
B). These clusters showed high expression of ISGs indicating an 
activated antiviral cell state (SI Appendix, Fig. S3C).

 The individual clusters were annotated manually using known 
marker genes for DC and monocyte subpopulations derived from 
publications ( 26 ,  29 ) and our own bulk RNA gene signatures 
(SI Appendix, Fig. S3 C  and D ). After merging highly similar clusters, 
cDC1, cDC2, DC3, mo1, moint /mo2, tDC, and pDC populations 
as well as activated cDC2, activated DC3, activated pDC, and acti­
vated monocytes expressing ISGs exemplified by IFI44L  and ISG15  
were identified ( Fig. 3 A  and D  ). The percentages of cells found in 
the activated DC and monocyte clusters greatly increased on days 
3 and 7 ( Fig. 3B  ). This ISG-driven response was most prominent 
in cDC2, DC3, and mo1 where on day 7, the activated clusters 
almost entirely replaced the clusters found on day 0 ( Fig. 3C  ).  
In three donors, a partial shift toward more activated cells was  
already seen on day 3 after vaccination (SI Appendix, Fig. S4A﻿ ).  

These results demonstrate that most cells responded to the vacci­
nation in a concerted fashion especially cDCs and monocytes with 
full activation reached by day 7. IFN-Typ I/II  transcripts were not 
detected above threshold in this dataset at any of the time points 
investigated ( Fig. 4C  ) similar to the bulk RNA-seq results 
(SI Appendix, Fig. S2C﻿ ). IFN- α2, IFN- β, IFN- γ, IFN- λ1, and 
- λ2 were measured in plasma samples from day 0, 3, 7, 14, and 
28 in a subgroup of 22 vaccinees using a bead-based multiplex 
assay, but could not be detected in any of the samples.                

 Since tDCs were previously shown to differentiate into cells with 
a cDC2 phenotype in vitro ( 24 ) and in mice in vivo ( 32 ,  34 ), we 
inferred trajectories from RNA velocity analysis of the combined 
data of cDC and pDC subsets from all time points using the scVelo 
method. RNA velocity vectors were bidirectional pointing from 
tDCs toward cDC2 as well as pDCs ( Fig. 3E  ). This was confirmed 
using two additional pseudotime ordering methods (diffusion pseu­
dotime and Palantir, SI Appendix, Fig. S4 B –D ). These results sug­
gest that human tDCs are heterogeneous and contain cells with 
divergent trajectories toward pDCs and cDC2.

 Pairwise comparison between the activated and nonactivated 
APC clusters confirmed upregulation of ISGs such as IFI44L , 
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Fig. 3.   scRNA-seq indicates collective acquisition of an activated cell state in blood DCs and monocytes early after vaccination. (A) UMAP visualization of 
concatenated scRNA-seq data with the annotated cell clusters (Louvain) indicated by colors. (B) Stacked bars show the frequency of the individual populations 
annotated before (d0) and at d3 and d7 after vaccination. (C) UMAP visualization of scRNA-seq data from different time points (before (d0) and at d3 and d7 
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projected onto the UMAP with annotated cell clusters indicated by colors.
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Fig. 4.   SIGLEC1 expression on the cell surface marks the IFN-induced activation state in cDC2, DC3, and monocytes. (A) Volcano plots showing comparison of activated 
and nonactivated clusters of cDC2, DC3, mo1, and pDCs with annotation of significantly up-and downregulated genes (P-value < 0.1, log2 fold-change > 0.3). (B) Violin plots 
showing the indicated gene expression scores based on average counts of the module genes in each cell cluster. Significant difference of scores between activated and 
nonactivated cell clusters are indicated by asterisks (Wilcoxon test using the mean module scores of the individual donors, n = 4). (C) Dot plot showing the expression of 
all detected IFN and IFN receptor genes in the cell clusters. Color intensities indicate the average gene expression values and diameters indicate the percentages of cells 
expressing the genes within the cluster. (D) Violin plot showing surface expression of SIGLEC1 as measured using TotalSeqB antibody. UMAP showing surface expression 
of SIGLEC1 detected by TotalSeqB antibody as color overlay projected onto the separate UMAP before and on days 3 and 7 after vaccination. Red: high expression; 
gray: low expression. (E) Pearson correlation analysis of surface SIGLEC1 expression. Correlation coefficients (R values) are shown in the heatmap for selected genes 
highly correlating with SIGLEC1 gene expression in each population. (F) Scatter plot of IFITM3 RNA expression and SIGLEC1 expression of all cells with linear regression 
line. Colors indicate belonging of cells to a specific cell cluster. Pearson correlation coefficient R and P-values are indicated in the graph.
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﻿EIF2AK2,  and ISG15  in activated clusters of cDC2, DC3, mono­
cytes, and pDCs ( Fig. 4A  ). Relative expression scores derived from 
the type I IFN-induced gene module ( 35 ) were significantly higher 
in the activated clusters ( Fig. 4B  ). The type II IFN-induced gene 
module scores were also significantly increased in the activated 
compared to the nonactivated cDC2 and DC3 clusters and in the 
moint /mo2 cluster compared to mo1 ( Fig. 4B  ). This was not the 
case for the activated pDC cluster coinciding with a lower mRNA 
expression level of IFN- γ receptors IFNGR1  and IFNGR2  in 
pDCs compared to cDCs and monocytes ( Fig. 4C  ). Relative 
expression scores of the hallmark inflammatory gene set also 
tended to be increased in the activated compared to the nonacti­
vated cDC2 and DC3 clusters and were constitutively high in 
monocytes and low in pDCs and tDCs ( Fig. 4B  ). For cDC1 and 
tDCs where a separate activation cluster was not detected, we 
found significant upregulation of multiple ISGs on days 3 and 7 
after vaccination compared to baseline confirming the bulk 
RNA-seq results (SI Appendix, Fig. S4E﻿ ).

 Expression of SIGLEC1 encoding for the CD169 surface mol­
ecule, which was one of the genes highly upregulated in the activated 
cDC2, DC3, and mo1 clusters ( Fig. 4A  ), was quantified on the 
protein level in the same experiment using TotalSeq B antibody 
labeling and sequencing. It was highly expressed in tDCs and in the 
activated cDC2, DC3, and mo1 clusters ( Fig. 4D  ). Surface expres­
sion of SIGLEC1 protein correlated positively with mRNA expres­
sion of different ISGs such as IFITM2 , IFITM3 , IFI6 , IFI30,  and 
﻿ISG15  within all cells analyzed together and in each individual 
cluster except for tDCs and pDCs ( Fig. 4 E  and F  ). Therefore, 
surface expression of SIGLEC1 is a sensitive marker for the early 
response to IFNs and marks the temporary activated state of circu­
lating cDCs and monocytes after YF17D vaccination.  

Upregulation of SIGLEC1 Coincides with Upregulation of Costi­
mulatory Molecules and Activation Markers on the Surface of 
cDCs and Monocytes. To further characterize the functional state 
of circulating DC and monocyte subsets before and after YF17D 
vaccination and investigate interindividual variation of this 
response, we analyzed the phenotype of DC and monocyte subsets 
in cryopreserved PBMC samples by multidimensional spectral 
flow cytometry in a larger number of vaccinees. To link phenotype 
and transcriptome results, SIGLEC1/CD169 was included as a 
marker in addition to costimulatory molecules and chemokine 
receptors. First, PBMC from all four time points were analyzed 
in a subgroup of 10 patients. We detected temporary upregulation 
of mean fluorescence intensities (MFI) for CD86, PD-L1, and 
SIGLEC1 on day 7 after vaccination in all populations except 
for tDCs and pDCs consistent with the transcriptomic data. 
SIGLEC1 was already upregulated on day 3 and further increased 
on day 7 (Fig.  5 A and B). Expression of AXL, another IFN-
induced surface molecule, was induced on day 7 in all DC subsets 
and in mo1 (Fig. 5A). CD83 was upregulated in cDC2, DC3, and 
monocytes on day 7. CD40 was also upregulated in many subsets 
on day 7 except in cDC1 and DC3. HLA-DR was upregulated 
in monocytes but not in DCs. CXCR3 expression was induced 
whereas CCR2 expression was reduced on day 7 in mo1 and in 
pDCs, whereas CCR2 expression was induced in mo2 indicating 
differential regulation of chemokine receptor expression between 
cell types after the vaccination. Population frequencies were also 
significantly altered after vaccination, with a shift from mo1 to 
moint and mo2 on day 7 and a slight reduction of cDC1 and 
cDC2 subsets (significant for cDC1) on day 7 after vaccination 
(SI Appendix, Fig. S5A) confirming previous results obtained from 
freshly isolated PBMC (10).

 We selected the time points day 0 and day 7 to perform the 
same analysis for a cohort of additional 214 vaccinees. Significant 
increases in the MFIs of CD86, CD83, and AXL were detected 
on day 7 in all DC and monocyte subsets except for tDCs ( Fig. 5 
﻿B  and D  ). Upregulation of SIGLEC1 was detected in all subsets, 
except tDCs and pDCs. CD40 was significantly upregulated in 
pDCs and monocytes, but not in cDCs. Downregulation of 
CCR2 was observed in all populations, except for mo2. HLA-DR 
was significantly upregulated in monocyte subsets but rather 
downregulated in cDC subsets ( Fig. 5D  ).

 To identify activation clusters that might be missed by manual 
gating analysis, unbiased FlowSOM clustering was performed on 
the HLA DR+  Lin–  viable cells containing the DC and monocyte 
fractions. The clusters were visualized in a UMAP and assigned 
to monocytes or DCs according to the presence or absence of 
CD88/CD89 expression (SI Appendix, Fig. S5 B –D ). The DC and 
monocyte fractions were then each clustered separately. Clusters 
were annotated and similar clusters were fused (SI Appendix, 
Fig. S5E﻿ ). Within the DC fraction, cDC1, cDC2, CD163–  DC3, 
CD163+  CD14+  DC3, SIGLEC1+  DC3, tDC, and pDC were 
identified ( Fig. 6 A  and B  ). Monocyte clusters were annotated as 
mo1 (CD163–  SIGLEC1– ), SIGLEC1+  mo1, CD163+  SIGLEC1–  
mo1, CD163+  SIGLEC1+  mo1, moint , mo2 ( Fig. 6 C  and D  ). 
Within the DC compartment, cDC1 and cDC2 were reduced 
and pDCs slightly increased. In the monocytes, the frequency of 
moint  was significantly increased as seen previously in the explo­
ration cohort ( Fig. 6E  ). The frequency of cells in the SIGLEC1+  
DC3 and monocyte clusters increased dramatically on day 7 and 
only few vaccinees had SIGLEC1+  cells at baseline with frequen­
cies below 25% ( Fig. 6E  ). Thus, the upregulation of SIGLEC1 
surface expression on day 7 after YF17D vaccination and the 
appearance of distinct SIGLEC1+  DC and monocyte clusters 
reflecting an IFN-induced activation state could be validated in a 
large cohort. Although an increase in SIGLEC1 expression was 
seen in the great majority of vaccinees on day 7 after vaccination, 
this response was variable between individuals warranting further 
investigation as a predictor of vaccination outcome.          

High SIGLEC1 Upregulation on cDCs and Monocytes Is Associated 
with High Protective Antibody Titers Early After YF17D Vacci­
nation. Vaccination with YF17D induced high titers of neutrali­
zing antibodies (dominated by IgM isotype) on days 14 and 
28 after vaccination indicating protection against infection was 
reached in all vaccinees of our cohort with highly variable titers 
(15). We hypothesized that the IFN-induced activation of blood 
cDCs and monocytes indicated by upregulation of SIGLEC1 
surface expression relates to the rapid generation of protective 
antibody and T cell responses characteristic for YF vaccination. 
To explore this, we categorized individuals based on high and 
low SIGLEC1 fold-change (d7 vs. d0) in cDC1, cDC2, DC3, 
mo1, and mo2 through unsupervised clustering (Fig. 7A). pDCs 
and tDCs were excluded from the analysis due to the absence of 
SIGLEC1 upregulation postvaccination. Interestingly, the extent 
of SIGLEC1 upregulation was consistent across the different APC 
populations suggesting a concerted action and association with 
vaccine responsiveness. Stratification of vaccinees into high and 
low SIGLEC1 upregulation, with the exclusion of intermediate 
levels, allows a focused examination of this signature’s impact on 
subsequent vaccine responses, which exhibit high variability across 
individuals.

 Vaccinees with high SIGLEC1 upregulation on day 7 showed 
significantly higher neutralizing antibody titers and virus-specific 
IgM titers early after vaccination (day 14) than vaccinees with low 
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SIGLEC1 upregulation ( Fig. 7 B  and C  ). Antigen-specific T cell 
responses and antibody responses on day 28 were not significantly 
altered between the subgroups ( Fig. 7 B  and C  ). Spearman rank 
correlation analyses confirmed the correlation of SIGLEC1 MFI 
on day 7 and fold change (d7 vs. d0) in DC3 and mo1 with early 
antibody titers. SIGLEC1 and CD86 expression correlated with 
each other and with day 7 plasma CXCL10 concentrations rep­
resenting the systemic IFN-induced cytokine response. The fre­
quency of moint  on day 7 also positively correlated with plasma 
CXCL10 levels at the same time point. In sum, the temporary 
IFN-induced activation of circulating APCs detected by SIGLEC1 
upregulation on day 7 after YF17D vaccination is associated with 
the early protective antibody response.   

Discussion

 Our study provides a comprehensive analysis of the temporal dynam­
ics of gene expression in individual blood DC and monocyte sub­
populations following YF17D vaccination in humans. We observed 
a transient ISG response within the first week after vaccination as 
the predominant feature in all subsets and defined a common set of 

significantly upregulated ISGs known to play a crucial role in the 
antiviral immune responses. Specifically, IFI44L , OAS2 , OAS3 , 
﻿IFIT2 , IFIT3 , and RSAD2  have been shown to impede viruses by 
disrupting viral replication and translation ( 36       – 40 ). Additionally, 
members of the IFN-inducible transmembrane family, such as 
﻿IFITM1  and IFITM3 , obstruct viral entry and hinder early stages 
of the life cycle of various viruses ( 41 ). Consequently, this robust 
ISG signature reflects a systemic antiviral state within the circulating 
DC and monocyte compartment after YF17D vaccination which 
contrasts with the downregulation of ISGs that is seen in severe 
Dengue and Zika virus infections ( 42 ,  43 ). In the context of YF17D 
vaccination, several studies have identified the importance of a func­
tional type I IFN response to control replication and pathogenicity 
of the vaccine virus. Patients with IFNAR1 and IFNAR2 deficiency 
or with autoantibodies against multiple type I interferons can present 
with life-threatening complications after vaccination ( 8 ,  9 ). 
Therefore, the antiviral state caused by upregulation of these ISGs 
seems to be highly relevant for controlling YF17D and ensuring the 
safety of this live vaccine. This is supported by the kinetic of viremia 
which is seen in a variable proportion of vaccinees between day 2 
and day 9, but not thereafter ( 44   – 46 ).
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 As the virus is present in the blood with a peak between days 
3 to 7 after vaccination ( 44 ), direct contact between the virus and 
APCs could induce the observed ISG response. DCs can be 
infected and respond to direct contact with the YF17D virus 
through the activation of diverse pattern-recognition receptors, 
triggering cellular activation and cytokine secretion, including 
IFN- α ( 47       – 51 ). However, expression of IFN transcripts in the 
various APC subsets in peripheral blood was minimal or unde­
tectable (in the case of IFN- α) by bulk and scRNA-seq, in the 
individuals and time points used for this study. In line with our 
findings, Hou et al. failed to detect IFN- α/- β/- λ mRNA expres­
sion in PBMC at earlier time points (4 and 24 h) in a cohort of 
21 vaccinees ( 6 ). Additionally, our scRNA-seq data revealed a 
synchronized shift of the majority of cells within DC and mono­
cyte subpopulations toward ISG-expressing clusters after vaccina­
tion consistent with a response to IFNs produced at the vaccination 
site or other tissues containing the vaccine virus and released into 
the circulation. However, neither IFN- α/- β nor IFN- γ or IFN- λ 
could be detected in plasma samples of our cohort using a sensitive 
bead-based multiplex assay. But even in acute flares of systemic 
lupus erythematosus with high ISG expression in PBMCs IFNs 
are only detectable in the plasma using ultrasensitive methods ( 52 ) 
suggesting that IFNs could be present in the blood of our vaccinees 
at very low concentrations. In fact, we observed in our bulk tran­
scriptome analysis that also B cells upregulated ISGs on day 7 after 
vaccination reflecting a more general innate immune activation 
state induced by IFNs in circulating immune cells at this time 
point. We observed a higher expression of type I IFN module 
genes compared to type II IFN module genes in blood DCs and 
monocytes suggesting that type I IFNs are the dominant cytokines 
inducing the ISG response, but IFN- γ produced early after YF17D 
vaccination by NK cells ( 53 ,  54 ) may also contribute. It was 
described for SARS-CoV-2 mRNA vaccination for example that 
the frequency of myeloid cells with increased ISG expression 

emerging shortly after booster vaccination correlated with plasma 
IFN- γ levels at this time point ( 55 ).

 SIGLEC1/CD169 expression is induced by IFN- α, IFN- β, and 
IFN- ω, but not IFN- γ ( 56 ) suggesting a role especially in antiviral 
defense ( 57 ) and as a marker of acute viral infection ( 30 ,  58 ,  59 ). 
We identified SIGLEC1 upregulation as a sensitive indicator of the 
early systemic response to IFNs and the transient activation state 
elicited in blood cDCs and monocytes by YF17D vaccination, 
which correlated with plasma CXCL10 levels and early antibody 
responses. A transient induction of SIGLEC1/CD169 expression 
on monocytes and CD1c+  DCs associated with the IFN response 
signature was also reported after booster vaccination with a 
VSV-vectored HIV-1 vaccine ( 60 ). In our study, simultaneous 
upregulation of SIGLEC1 and costimulatory molecules indicated 
a temporary IFN-mediated functional maturation of cDCs as a 
characteristic feature of YF17D vaccination that may promote 
induction of adaptive immunity. We found an association of high 
SIGLEC1 upregulation on day 7 with high neutralizing antibody 
titers and virus-specific IgM titers on day 14 after vaccination pro­
viding a link between the systemic IFN response and rapid produc­
tion of high titers of protective antibodies. Our findings resonate 
with an Ebola vaccine study that demonstrated upregulation of ISGs 
by the rVSVΔG-ZEBOV-GP vaccine and correlation with subse­
quent protective antibody titers ( 61 ). The type I IFN response may 
be directly linked to rapid antibody induction via activity of type I 
IFN on B cells promoting differentiation into antibody-secreting 
cells ( 62   – 64 ). In addition, type I IFN induces in DCs, monocytes, 
and neutrophils the secretion of B cell activating factor (BAFF), a 
critical survival factor for B cells, thereby supporting the neutralizing 
antibody response to infection ( 64 ,  65 ). Furthermore, IFN-induced 
activation of APCs supports B cell differentiation in germinal 
centers and antibody response via induction of T follicular helper 
cells ( 66 ), which we found to be rapidly activated within the first 
week after YF17D vaccination correlating with neutralizing 
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Fig. 6.   Unbiased clustering of flow cytometric data confirms 
generation of SIGLEC1-positive DC3 and monocyte clusters 
with interindividual variability. FlowSOM clustering was 
performed on the HLA-DR+ Lin– living cells containing both 
the DC and monocyte fractions. The clusters were visualized 
in a UMAP and assigned to monocytes or DCs according to the 
presence or absence of CD88/CD89 expression. Reclustering 
of DC and monocyte fractions was performed using FlowSOM. 
After annotating and fusing similar clusters, the data were 
depicted in a UMAP with annotated clusters shown as 
colored overlay. (A) Annotated DC clusters on d0 and d7 after 
vaccination. (B) SIGLEC1 scaled expression indicated by red-
brown color overlayed on the UMAP embeddings of DCs. (C) 
Annotated monocyte clusters on d0 and d7 after vaccination. 
(D) SIGLEC1 scaled expression indicated by red-brown color 
overlayed on the UMAP embeddings of monocytes. (E) Violin 
plots show DC and monocyte subpopulation frequencies 
identified using FlowSOM clustering on d0 and 7 after 
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(n = 214). Horizontal lines indicate the median. Measured 
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antibody titers ( 12 ). Gressier et al. showed that conditioning of 
murine DCs with type I IFNs increased responsiveness to CD40 
engagement by CD40L expressed on T helper cells leading to opti­
mal priming of CD8+  T cells ( 67 ). However, we did not find a 
positive correlation of SIGLEC1 expression in DCs or monocytes 
with the frequency of YF17D-specific CD8+  T cells on day 28 nor 
the neutralizing antibody titers at that time point after YF17D 
vaccination suggesting that the early positive effect of APC activa­
tion may be counteracted by other mechanisms. For example, 
IFN-mediated reduction of viral replication may limit the 

availability of viral antigen for B cell activation and for CD8+  T cell 
induction, which was shown to be determined by the YF17D viral 
load ( 44 ).

 While all blood APC populations exhibited upregulation of a 
common set of ISGs and activation markers on day 7 postvaccina­
tion, distinct subset-specific responses to YF17D vaccination were 
evident underscoring the diverse and specialized functions of APC 
subpopulations in response to vaccination. pDCs for example did 
not significantly upregulate SIGLEC1 but other ISGs suggesting a 
differential response to IFNs and acquisition of a different activation 
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depicts the means, with significance estimated using a Student’s t test. (C) Boxplots comparing the neutralization and IgM antibody titers on days 14 and 28 for 
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state than cDCs and monocytes. The specific upregulation of 
LAMP3 in cDC1 may indicate preferential conversion of this cell 
type to a mature migratory DC type which has been described in 
tumors and inflamed tissues ( 68 ,  69 ). Monocytes and DC3 showed 
heightened expression of various chemokines, including CXCL10, 
CCL7, and CCL2, aligning with their proinflammatory potential 
( 29 ). The similar transcriptomic responses of cDC2, DC3, and 
monocytes after vaccination with YF17D are consistent with the 
reported convergence of transcriptomic changes in DC3, mono­
cytes, and cDC2 following type I IFN stimulation demonstrating 
their close relationship and distinction from other APC subtypes 
( 70 ). We also noticed that gene sets involved in translation, ribo­
some biogenesis, and oxidative phosphorylation were underrepre­
sented in classical monocytes and pDCs after vaccination but 
enriched in intermediate monocytes and cDC subsets indicating 
differences between cell types in the metabolic response to vaccina­
tion. A decrease in oxidative phosphorylation and switch to glyco­
lysis is associated with a proinflammatory response of monocytes 
to microbial stimulation and an innate immune training effect after 
exposure to beta-glucan or the BCG vaccine ( 71 ). For pDCs it was 
shown that type I IFN increases oxidative phosphorylation and fatty 
acid oxidation required for pDC activation in response to TLR 
stimulation ( 72 ). Thus, further investigation of changes in metab­
olism of monocyte and DC subpopulations after viral vaccination 
and the relevance for vaccine responses is warranted.

 In conclusion, our study presents a comprehensive analysis of 
the transcriptomic responses of blood APC subpopulations to 
YF17D vaccination, highlighting a global ISG response within 
and across diverse subsets as well as cell type-specific responses. 
Notably, we found that upregulation of SIGLEC1 expression 
which represents IFN-induced activation in blood cDCs and 
monocytes is associated with early but not later protective anti­
body titers, unveiling a pivotal link between IFN-mediated APC 
activation and early humoral immunity. Thus, our study provides 
insights and resources to inform development of vaccines to rap­
idly induce protective immunity in naïve individuals.  

Material and Methods

See SI Appendix, Extended Methods for more details.

Sample Collection and Study Design. The yellow fever vaccination study was 
conducted by the Department of Clinical Pharmacology of the University Hospital, 
LMU Munich, Germany. The study protocol was approved by the Institutional Review 
Board of the Medical Faculty of LMU Munich (IRB #86-16) and adhered to the most 
recent version of the Declaration of Helsinki (registered as ISRCTN17974967). All 
participants were healthy (aged 19 to 44 y, SI Appendix, Table S1) and had not been 
previously exposed to wild-type YFV, and were not previously immunized against YF. 
After giving informed consent, the patients received a single subcutaneous injec-
tion of the YF17D vaccine (Stamaril, Sanofi Pasteur, Lyon, France) at the Division 
of Infectious Diseases and Tropical Medicine at LMU Munich. Blood was drawn 
directly before vaccination and on days 3, 7, 14, and 28 after vaccination. PBMC 
were isolated by Ficoll density gradient centrifugation and frozen.

Flow Cytometric Analysis and Cell Sorting. Cryopreserved PBMC samples of 
vaccinees containing 1.5 to 3 × 106 cells were thawed, processed, stained, and 
analyzed by flow cytometry in four batches. The exploratory batch of 10 donors 
included time points days 0, 3, 7, and 14. The follow-up cohort of 214 patients 
included only day 0 and day 7 after vaccination and was separated into three 
batches measured within 1 wk of 60, 82, and 78 vaccinees each. Analysis of flow 
cytometric data was performed in Flow Jo, version 10.8.1. Living single cells in 
the HLA DR+ Lin– gate were exported from Flow Jo and used for further analysis 
in R. For sorting APC populations for bulk RNA sequencing analysis, T cells were 
separated via CD3 magnetic bead isolation, and the CD3 negative cell fraction 
was stained with antibody master mix, washed, and subsequently used for cell 
sorting on BD FACSAria Fusion (BD Biosciences).

Bulk RNA Sequencing Using SmartSeqv2. RNA was isolated from sorted 
cells using the Qiagen RNeasy Plus Microkit (Qiagen, Hilden, Germany). The 
Smart-Seqv2 protocol was performed with minor modifications. Samples were 
sequenced with NextSeq1000 using 100 bp paired-end sequencing. The number 
of reads was counted using HTSeq-count (0.6.1p1). Analysis was performed using 
DESeq2 (v1.34.0), fgsea, and ranked gene lists.

Single-Cell RNA Sequencing Using 10× Chromium. Gene expression libraries 
were prepared according to the manufacturer’s protocol (10× Genomics). All 
libraries were sequenced using a NovaSeq 6000 (Illumina) to achieve 25,000 
reads/cell for gene expression and 5,000 reads/cell for protein expression. 
Droplet libraries were processed using Cell Ranger v4.0. Reads were aligned to 
the GRCh38. Data were analyzed using Seurat and scVelo.

Quantification of Plasma Cytokines, Antibody Titers, and T Cell Respon­
ses. Cytokine concentrations were measured in plasma samples using Bio-Plex 
Multiplex Assay (Bio-Rad Laboratories, USA). The neutralizing antibody titers in 
serum samples were quantified by a Fluorescence Reduction Neutralization Test 
(FluoRNT) as previously described (73). YF17D-specific antibodies in human 
serum samples were quantified with an in-house ELISA using recombinantly 
produced soluble E protein or YF17D-virion as antigens as described (15, 74). 
These results have been published in a separate manuscript. To detect specific 
T cell responses PBMC were stimulated with live YF17D virus (1.5 × 107 PFU/mL) 
or with the equivalent volume of purified supernatant of uninfected cells (unstim-
ulated control) for 20 h with addition of Brefeldin A (BioLegend) and anti-CD107a 
(clone H4A3, BD Biosciences) for the last 4 h followed by intracellular staining.

Statistical Analysis. Statistical analysis for scRNA seq data was performed as 
described above. Statistical analysis of flow cytometry data was performed in 
GraphPad Prism (v 9.1.0) or in R using ggpubr (v 0.5.0) Kruskal–Wallis test, or 
Wilcoxon test with Bonferroni correction as indicated in the individual figure 
legends. Vaccinees were clustered according to the fold-change in SIGLEC-1 
expression in DCs and monocytes using hybrid hierarchical k-means clustering. 
Spearman rank correlation analysis was performed in R.

Data, Materials, and Software Availability. RNA-sequencing data are availa-
ble at https://doi.org/10.5281/zenodo.13844224 (75). All other data are included 
in the manuscript and/or supporting information.
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