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x Faculty of Psychology, University of the Basque Country, San Sebastian, Spain
y Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, San Sebastian, Spain
z Institute of Psychology, Jagiellonian University, Krakow, Poland
aa Research Group “Health and Quality of Life in a Green and Sustainable Environment”, Strategic Research and Innovation Program for the Development of MU - 
Plovdiv, Medical University of Plovdiv, Plovdiv, Bulgaria
ab Environmental Health Division, Research Institute at Medical University of Plovdiv, Medical University of Plovdiv, Plovdiv, Bulgaria
ac MRC Centre for Environment and Health, Imperial College London, London, UK

Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; BAMSE, Children, Allergy, Milieu, Stockholm, Epidemiological Survey; CADSET, 
Chronic airway diseases early stratification; FEV1, Forced expiratory volume in the first second; FVC, Forced vital capacity; GINIplus, German Infant Study on the 
Influence of Nutrition Intervention plus Air pollution and Genetics on Allergy Development; INMA, Infancia y Medio Ambiente; LISA, Influence of Lifestyle factors on 
the development of the Immune System and Allergies in East and West Germany; NDVI, Normalized difference vegetation index; NO2, Nitrogen dioxide; PIAMA, 
Prevention and incidence of asthma and mite allergy; PM2.5 mass, Particulate matter 2.5 µm or less in diameter; PM10 mass, Particulate matter 10 µm or less in 
diameter.

* Corresponding author at: Emmanuel Kaye Building, 1B Manresa Road, London SW3 6LR, UK.
E-mail address: e.fuertes@imperial.ac.uk (E. Fuertes). 

1 Shared senior authorship.

Contents lists available at ScienceDirect

Environment International

journal homepage: www.elsevier.com/locate/envint

https://doi.org/10.1016/j.envint.2025.109493
Received 6 November 2024; Received in revised form 11 March 2025; Accepted 22 April 2025  

Environment International 199 (2025) 109493 

Available online 25 April 2025 
0160-4120/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://orcid.org/0000-0001-9392-5624
https://orcid.org/0000-0001-9392-5624
https://orcid.org/0000-0003-3612-5780
https://orcid.org/0000-0003-3612-5780
https://orcid.org/0000-0002-5345-2049
https://orcid.org/0000-0002-5345-2049
https://orcid.org/0000-0002-8007-5357
https://orcid.org/0000-0002-8007-5357
https://orcid.org/0000-0002-8248-0663
https://orcid.org/0000-0002-8248-0663
https://orcid.org/0000-0003-4147-5654
https://orcid.org/0000-0003-4147-5654
https://orcid.org/0000-0002-6619-9679
https://orcid.org/0000-0002-6619-9679
https://orcid.org/0000-0001-9461-8407
https://orcid.org/0000-0001-9461-8407
https://orcid.org/0000-0002-6165-3465
https://orcid.org/0000-0002-6165-3465
https://orcid.org/0000-0003-4781-5664
https://orcid.org/0000-0003-4781-5664
https://orcid.org/0000-0002-5214-0748
https://orcid.org/0000-0002-5214-0748
https://orcid.org/0000-0003-1285-7602
https://orcid.org/0000-0003-1285-7602
https://orcid.org/0000-0003-0205-9025
https://orcid.org/0000-0003-0205-9025
mailto:e.fuertes@imperial.ac.uk
www.sciencedirect.com/science/journal/01604120
https://www.elsevier.com/locate/envint
https://doi.org/10.1016/j.envint.2025.109493
https://doi.org/10.1016/j.envint.2025.109493
http://creativecommons.org/licenses/by/4.0/


A R T I C L E  I N F O

Handling Editor: Adrian Covaci

Keywords:
Adolescence
Children
Cohort
Greenspace
Greenness
Lung function

A B S T R A C T

Whether greenspace affects lung function is unclear. We explored associations between the level of greenness or 
presence of urban green space near the home with lung function measures taken repeatedly during childhood and 
adolescence in five European birth cohorts.

Lung function was measured by spirometry between six and 22 years (2–3 times), and 9,206 participants from 
BAMSE (Sweden), GINI/LISA South and GINI/LISA North (Germany), PIAMA (The Netherlands) and INMA 
(Spain) contributed at least one lung function measurement. The mean Normalized Difference Vegetation Index 
(NDVI) in a 300 m buffer and presence of urban green space within a 300 m buffer (yes/no) were estimated at the 
home address at the time of each spirometry measurement. Cohort-specific associations were assessed using 
adjusted linear mixed models and combined in a random-effects meta-analysis.

Residential greenness was not associated with forced expiratory volume in one second (FEV1), forced vital 
capacity (FVC) or FEV1/FVC in the meta-analysis (2.3 ml [-3.2, 7.9], 6.2 ml [-3.4, 15.7] and − 0.1 [-0.3, 0.1] per 
0.1 increase in NDVI, respectively), nor was having a nearby urban green space (− 8.6 ml [–22.3, 5.0], − 7.6 ml 
[-24.7, 9.4] and 0.0 [-0.4, 0.3], respectively). Heterogeneity was low to moderate (I2 = 0 –39 %). Asthma, atopy, 
air pollution, sex, socioeconomic status and urbanization did not modify the null associations.

Using repeated data from five large independent European birth cohorts, we did not find associations between 
vegetation levels around the home or the presence of an urban green space and lung function levels during 
childhood and adolescence.

1. Introduction

Lung function is an important marker of respiratory, cardiovascular 
and mental health and is associated with reduced premature death 
(Agustí et al., 2017). Lung development starts early in pregnancy and 
continues throughout childhood and adolescence, peaking around 
20–25 years of life, before declining due to physiological ageing. This 
growth trajectory can be influenced both positively and negatively by 
genetic and environmental factors (Melén et al., 2024).

In the face of climate change and rapid urbanization, greening our 
cities may be one pathway to design urban environments that maximize 
health, including respiratory health (van Daalen et al., 2024; Nieu
wenhuijsen et al., 2024; Zhao et al., 2025). However, how best to ach
ieve this remains unclear as greenspace (a term used here to refer to all 
types of vegetation exposure metrics) can have several roles. For 
example, it may represent areas of lower air pollution and may promote 
healthy lifestyles and immune development. However, greenspace can 
also contain higher amounts of allergic vegetation, which can aggravate 
allergic and respiratory symptoms among those sensitized.

The epidemiological evidence linking greenspace and lung function 
is so far limited and mixed. Most existing studies investigating the link 
between greenspace and lung function in children and adolescents are 
cross-sectional and their results are inconsistent. Some studies report 
greenspace is associated with better values of at least one lung function 
parameter (Almeida et al., 2022; Cilluffo et al., 2022; Fernandes et al., 
2024; Hartley et al., 2022; Paciência et al., 2019; Squillacioti et al., 
2020; Zhou et al., 2021), while others report mixed (both positive and 
negative) associations (Ye et al., 2023), null associations (Agier et al., 
2019; Boeyen et al., 2017) or significant associations that become null 
once air pollution levels are considered (Yu et al., 2021). Although they 
have advantages, cross-sectional studies are unable to assess temporality 
in cause and effect, are more susceptible to certain biases such as self- 
selection (in this case, healthier people choosing to live in greener pla
ces) and inferring causality is difficult (Wang and Cheng, 2020).

Only one study has so far utilized repeated data on greenspace 
metrics and lung function parameters and reported that participants of 
the English Avon Longitudinal Study of Parents and Children (ALSPAC) 
birth cohort with higher greenness levels close to their homes and 
nearby urban green spaces had higher forced expiratory volume in the 
first second (FEV1) and forced vital capacity (FVC) up to 24 years of age. 
Some associations were greater among those living in cities and areas of 
high air pollution (Fuertes et al., 2020).

Given the mixed results from cross-sectional studies and the limited 

number of studies with repeated data, this analysis investigates associ
ations between the level of greenness and the presence of urban green 
spaces near the home with repeated lung function measurements ob
tained using spirometry during childhood and adolescence in five large 
and independent European birth cohorts. This work is part of the 
‘Chronic Airway DiSeases Early sTratification’ (CADSET) network, 
which brings together European birth cohorts with high-quality lung 
function data (Agusti et al., 2019).

2. Methods

2.1. Study population

This study includes data from five large independent European birth 
cohorts: Children, Allergy, Milieu, Stockholm, Epidemiological Survey 
(BAMSE, Sweden) (Mitselou et al., 2022), Prevention and Incidence of 
Asthma and Mite Allergy (PIAMA, Netherlands) (Wijga et al., 2014), 
German Infant Study on the Influence of Nutrition Intervention plus Air 
pollution and Genetics on Allergy Development (GINIplus, Germany) 
(von Berg et al., 2013, 2010), Influence of Lifestyle factors on the 
development of the Immune System and Allergies in East and West 
Germany (LISA, Germany) (Heinrich et al., 2002) and INfancia y Medio 
Ambiente (INMA, Spain) (Gascon et al., 2017; Guxens et al., 2012). 
Given their similar study designs and follow-ups, the two German co
horts are combined and analysed separately by geographical region 
(GINI/LISA North and GINI/LISA South), as usually done in environ
mental epidemiological analyses of these data (e.g. (Fuertes et al., 2016, 
2015; Gehring et al., 2013)). The analyses in INMA were carried out 
separately for each geographically distinct sub-cohort (Gipuzkoa, 
Sabadell and Valencia in Spain).

Information on each cohort’s study design, geographical coverage 
and greenspace data sources is summarized in Table S1. Ethical approval 
was granted to each cohort individually by their local research ethics 
committees.

2.2. Lung function parameters

Lung function testing was performed without bronchodilation using 
spirometry by trained personnel and calibrated equipment according to 
the American Thoracic Society and European Respiratory Society 
guidelines existing at the time (Beydon et al., 2007a; Miller et al., 2005). 
FVC, as a parameter of lung volume, FEV1, and FEV1/FVC, as a measure 
of airway obstruction, were used as the primary outcomes. In a 
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secondary analysis and to allow international comparisons, standard 
deviation scores (z-scores) for FEV1 and FVC derived using reference 
equations for spirometry from the Global Lung Function Initiative 
(https://www.lungfunction.org) were calculated, as were percent pre
dicted volumes (Quanjer et al., 2012).

The ages at which lung function testing was conducted varied by 
cohort but covered most of later childhood and into adolescence (overall 
age range six to 22 years). Specifically, testing occurred at approxi
mately 8, 16 and 22 years in BAMSE, 8, 12 and 16 years in PIAMA, 6, 10 
and 15 years in GINI/LISA North, 6 and 15 years in GINI/LISA South and 
7/8 and 10/11 years in INMA (Table S2). As in a previous analysis of 
these data (Gehring et al., 2013), for the 6-year time point in GINI/LISA 
North and South, we used forced expiratory volume in 0.5 s instead of 
FEV1 as young children can usually perform reliable spirometry but 
often have short expiratory times (hence a reliable FEV1 cannot always 
be determined). We also did not use the FVC for this time point in these 
two German cohorts as young children often have difficulties fulfilling 
the guidelines for FVC (Beydon et al., 2007b). Individuals who 
contributed at least one lung function measurement at any time point 
were included in the analysis to maximize the use of available data.

2.3. Greenspace exposures

Mean residential greenness within a 300 m buffer was estimated 
using the Normalized Difference Vegetation Index (NDVI) (Rhew et al., 
2011). Briefly, using remote sensing technology, the amount of green 
vegetation was calculated based on the difference between near infra- 
red light, reflected by the green vegetation, and red light, not reflected 
by green vegetation. The values of NDVI range from + 1, which corre
sponds to dense green vegetation, to − 1 which corresponds to water. For 
all cohorts, NDVI values were calculated at a resolution of 30 m by 30 m 
from cloud-free Landsat Thematic Mapper satellite images obtained 
from the Global Visualisation viewer from the U.S. Geological Survey. 
NDVI data used in the study were based on satellite images taken during 
the spring/summer to capture the greatest variation in vegetation levels. 
For nearly all cohorts this involved combining cloud free images over a 
few months close in time to the year of lung function measurement, 
whereas for the INMA sub-cohorts, a 5-year rolling average was calcu
lated. Details of the months and years used to assign the satellite images 
to each lung function measurement per cohort are provided in Table S1.

Using these images, mean NDVI values within 300 m circular buffers 
surrounding the participants’ places of residence at each lung function 
measurement were calculated. We chose the NDVI as a measure of in
terest to facilitate comparisons with other studies as it is the most 
commonly used greenspace metric in health research, and the 300 m 
buffer as this size is used as an accessibility threshold and is the World 
Health Organization standard (Annerstedt van den Bosch et al., 2016; 
World Health Organization, 2017). Mean NDVI values in 500 m and 
1000 m circular buffers were used in sensitivity analyses.

The proportion of urban green space within a 300 m buffer around 
the home addresses was estimated from land use classification data 
(sources and years summarized in Table S1). This information was 
dichotomized as yes (i.e. any presence, proportion > 0) vs no (i.e. pro
portion = 0). These data were only available for a 500 m buffer for the 
GINI/LISA North and South cohorts and were unavailable in BAMSE. For 
GINI/LISA North and South as well as INMA − Gipuzkoa, data from a 
single year were available and assigned to all addresses across time, 
explicitly assuming the spatial distribution of the urban green spaces 
remained constant throughout each cohort’s follow-up. For the 
remaining cohorts, urban green space data for two years were available 
and that closest in time to the lung function measurements were used 
(Table S1). Urban green spaces correspond to public green areas used 
predominantly for recreation. We selected this measure for analysis due 
to the increasing percentage of the population living in urban areas and 
because it has been previously associated with better lung function up to 
24 years (Fuertes et al., 2020).

2.4. Statistical analysis

Using the R package ‘lme4′ (Bates et al., 2015; R Core Team, 2023), 
linear mixed models were used to estimate separate associations be
tween repeated measures of the two greenspace indicators (mean NDVI 
within a 300 m buffer and the presence of an urban green space within a 
300 m buffer) and the three lung function parameters (FEV1, FVC, and 
FEV1/FVC) in each cohort (Detry and Ma, 2016). Models were adjusted 
for age, age-squared (to capture non-linear lung function growth), 
weight, height, second-hand smoke exposure in the home as time- 
varying covariates (value provided at each follow-up), sex, a measure 
of socioeconomic status, older siblings, and maternal smoking during 
pregnancy as time-invariant covariates (value provided at birth). Models 
also included individual as a random intercept. Socioeconomic status 
was defined using parental education in BAMSE, PIAMA, GINI/LISA 
North and South, categorized into a 3-level variable (low, intermediate, 
high) with the low level corresponding to completing the compulsory 
level of education in each country, and using parental occupation in the 
INMA sub-cohorts (Office of Population Census and Survey, 1991). 
There were also additional adjustments made for certain cohorts due to 
their study design: study region in BAMSE and cohort/intervention in 
GINI/LISA North and South. All covariates were collected using parent- 
completed or self-completed questionnaires and harmonised for infer
ential comparability (Benet et al., 2019), except for height and weight 
which were measured. For FVC and FEV1/FVC in GINI/LISA South for 
which data were available for only one time point (15 years), we used 
simple linear regression models adjusted for the same covariates 
collected at the time of lung function testing.

Cohort-specific associations were combined using an individual- 
participant data random-effects meta-analysis, to allow for potential 
within- and between-cohort heterogeneity (DerSimonian and Laird, 
1986). Effect estimates from the models for mean NDVI are presented 
per 0.1 unit increase in mean NDVI. Effect estimates from the models of 
urban green space are presented comparing the presence (versus 
absence) of urban green space. The I2 statistic was used to examine the 
statistical heterogeneity among cohort-specific effect estimates and can 
be interpreted as the percentage of the variability in effect sizes attrib
utable to the between-study variability rather than sampling error 
(Huedo-Medina et al., 2006). Values between 30–60 %, 50–90 % and 
75–100 % represent moderate, substantial and considerable heteroge
neity, respectively (Higgins and Green, 2011). Cochran’s Q test was used 
to test for significant heterogeneity.

2.5. Additional analyses

The role of air pollution is complex as it may act as a confounder, 
effect modifier or may lie in the causal pathway (mediator) between 
greenspace and respiratory health (Markevych, 2021). We assumed at 
least partial mediation (Yu et al., 2021), and thus the main analyses were 
not adjusted for air pollution. To test to which extent long-term air 
pollution can be a confounder, models were further (separately) 
adjusted for annual average levels of nitrogen dioxide (NO2) and par
ticulate matter 2.5 µm or less in diameter (PM2.5) at the home address 
corresponding to the time of lung function measurement, derived from 
existing land-use regression models (Beelen et al., 2013; Cyrys et al., 
2012; Eeftens et al., 2012a, 2012b). To test whether long-term air 
pollution may be an effect modifier, we introduced interaction terms 
between each pollutant and greenspace variable and stratified the 
models by cohort-specific tertiles of NO2 and PM2.5 concentrations. To 
account for potential confounding by short-term air pollution levels, 
models were adjusted for the average of the daily concentrations of NO2 
and particulate matter 10 µm or less in diameter (PM10) in the seven 
days prior to lung function testing (not available for the 6-year follow-up 
of GINI/LISA North and South, and PM2.5 mass used in the INMA sub- 
cohorts due to better data availability). These daily pollution data 
were derived from routine regional and urban background sites of air 
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quality monitoring networks in the study areas, as done previously 
(Gehring et al., 2013).

To assess whether vulnerable subgroups exist, we introduced an 
interaction term between sex, self-report of doctor diagnosis of asthma 
(assessed by questionnaire, all time points considered), and atopic 
sensitization (positive reaction defined as having any allergen-specific 
IgE level ≥ 0.35 kU/l, with testing conducted against a set of common 
outdoor and indoor aeroallergens that varied slightly by cohort (Fuertes 
et al., 2016)). As socioeconomic status and urbanization may modify 
associations between greenness and health, we tested for effect modi
fication by these factors using data obtained at the earliest time point of 
lung function measurement in each cohort (urbanization was catego
rized as a 3-level variable based on tertiles of population density 
(BAMSE, PIAMA, INMA sub-cohorts) or rural/suburbs/cities (GINI/LISA 
North and South)). We conducted stratified models when interaction 
terms were statistically significant (p-interaction < 0.05).

To assess the impact of potential exposure misclassification, we (i) 
restricted the sample to those who did not move and (ii) replicated the 
models using mean NDVI values within 500 m and 1000 m buffers (data 
for the 1000 m buffer are unavailable in the INMA sub-cohorts).

Finally, to assess the robustness of our models to the selected 
modelling strategy in some cohorts, we 1) adjusted for ‘study region’ in 
the PIAMA cohort and 2) analysed the INMA cohort as a single study and 
adjusted for ‘region’, rather than analysing these data as three separate 
sub-cohorts. We also replicated the main analyses restricting to the 
4,568 participants who contributed at least two lung function 
measurements.

3. Results

3.1. Study population and lung function measurements

Overall, 9,206 individuals contributed at least one lung function 
measurement to the analysis (3,071 in BAMSE, 1,887 in PIAMA, 1,455 in 
GINI/LISA North, 1,588 in GINI/LISA South, 369 in INMA-Gipuzkoa, 
422 in INMA-Sabadell and 414 in INMA-Valencia). Demographic in
formation including the mean and standard deviation of the lung func
tion parameters per cohort and age at time of measurement is 
summarized in Table 1. All mean FEV1/FVC values were > 83 % for all 
time points and cohorts, indicating limited evidence of obstruction in 
these population-based child/adolescent participants.

3.2. Greenness and urban green space

The distribution of mean NDVI values in 300 m buffers per cohort is 
depicted in Fig. 1. The correlation between mean NDVI estimates in a 
300 m buffer and those in the alternative 500 m and 1000 m buffers was 
high for all cohorts (Pearson’s r > 0.91 and > 0.71, respectively, 
Table S3). When examining those who had moved during the study 
period, the correlation between mean NDVI estimates in a 300 m buffer 
across each reported address at the different timepoints was moderate to 
high across cohorts (Pearson’s r ranged from 0.47 to 0.92).

The percentage of participants with an urban green space within 300 
m of their home at the earliest time of lung function measurement was 
58.1 % in PIAMA, 56.1 % in GINI/LISA North, 76.6 % in GINI/LISA 
South, 30.1 % in INMA-Gipuzkoa, 75.3 % in INMA-Sabadell and 72.9 % 
in INMA-Valencia.

3.3. Associations between residential greenness and FEV1, FVC and 
FEV1/FVC

No associations were identified in the meta-analysis between green
ness and any of the spirometry-based measures considered (2.3 ml [-3.2, 
7.9], 6.2 ml [-3.4, 15.7] and − 0.1 [-0.3, 0.1] for FEV1, FVC and FEV1/ 
FVC, respectively, per 0.1 increase in mean greenness, Fig. 2). Hetero
geneity between studies was low to moderate (I2 = 0–––39 %). When 

considering cohort-specific analyses, associations were only significant 
for the PIAMA cohort (14.0 ml [0.9, 27.1], 23.8 ml [9.3, 38.4] and (− 0.3 
[-0.5, 0.0] for FEV1, FVC and FEV1/FVC, respectively, per 0.1 increase in 
mean greenness). When excluding the PIAMA cohort from the meta- 
analysis, there was no heterogeneity between studies for FEV1 and FVC 
(I2 = 0 %) and very little for FEV1/FVC (20.3 %).

3.4. Associations between urban green space and FEV1, FVC and FEV1/ 
FVC

There were no associations in the meta-analysis between the presence 
(versus absence) of an urban green space and FEV1, FVC and FEV1/FVC 
(− 8.6 ml [–22.3, 5.0], − 7.6 ml [-24.7, 9.4] and 0.0 [-0.4, 0.3], respec
tively, Fig. 2), with no heterogeneity observed between cohorts (I2 = 0 
%). All cohort-specific associations were null.

3.5. Additional analyses

Additionally adjusting the models for long-term annual average NO2 
(Fig. S1) and PM2.5 mass (Fig. S2) or short-term 7-day averages of NO2 
(Fig. S3) and PM10 mass (Fig. S4) did not greatly change the combined 
effect estimates. However, the adjustment for long-term NO2 did 
attenuate the previously statistically significant associations observed 
with greenness in the PIAMA cohort, suggesting some potential con
founding by air pollution in this study area (7.7 ml [-7.9, 23.3], 17.3 ml 
[0.0, 34.5] and − 0.1, [-0.4, 0.2] for FEV1, FVC and FEV1/FVC per 0.1 
increase in greenness, respectively, Fig. S1). A small attenuation was 
observed in this cohort for FEV1 when adjusting for long-term PM2.5 
mass (10.4 ml [-3.3, 24.0] per 0.1 increase in greenness, Fig. S2).

There was little evidence of effect modification by long-term NO2 
and PM2.5 mass. All p-values for the interaction terms between these 
pollutants and greenspace variables were large (p-interaction > 0.05) in 
the meta-analysis, except for between greenness and PM2.5 mass (p- 
interaction = 0.033) for FVC. Models stratified by tertiles of long-term 
PM2.5 mass did not yield a clear trend (− 4.0 ml [-18.9, 10.8], 16.8 ml 
[4.6, 29.0] and 7.3 ml [-20.6, 35.3] increase in FVC per 0.1 increase in 
greenness, in low, medium and high tertiles of PM2.5 mass, respectively).

No susceptible subgroups were identified as interaction terms be
tween both greenspace indicators and sex, socioeconomic status, 
asthma, sensitization and urbanization were not statistically significant 
(p-interaction > 0.05) in the meta-analysis, except that between asthma 
and urban green space (p-interaction = 0.037) for FEV1. Although larger 
negative effect estimates were observed among participants with asthma 
in stratified models, confidence intervals substantially overlapped be
tween the two groups (− 34.7 ml [-77.1, 7.7] and − 5.2 ml [-19.7, 9.4] 
change in FEV1 for those with an urban greenspace nearby compared to 
those without, among participants with and without asthma, 
respectively).

There were several differences between movers and non-movers, and 
these varied by cohort. However, the results remained null when 
restricting to those who did not move (3,378 participants, Fig. S5). 
Finally, the findings did not change when repeating the analyses using 
mean greenness values in 500 m and 1000 m buffers (Fig. S6), using z- 
scores or percent predicted values of FEV1 or FVC as the outcomes 
(Figs. S7 and S8, respectively), restricting the sample to those with at 
least two lung function measurements (N = 4,568, Fig. S9), analysing 
the INMA cohort as a single study and adjusting for ‘region’ or adjusting 
the PIAMA models for ‘region’.

4. Discussion

In this study of five large independent European birth cohorts, ana
lysed both individually and combined in a meta-analysis, we found no 
evidence that having higher greenness levels around the home or an 
urban green space close to the home is associated with lung function 
from childhood into adolescence. We also did not identify any 
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Table 1 
Characteristics of the study population. The number of individuals who contributed at least one lung function measurement to the analysis is indicated in bold per cohort.

Characteristic Time point1 BAMSE 
(N ¼ 3071)

PIAMA 
(N ¼ 1887)

GINI/LISA North 
(N ¼ 1455)

GINI/LISA South 
(N ¼ 1588)

INMA – Gipuzkoa 
(N ¼ 369)

INMA – Sabadell 
(N ¼ 422)

INMA – Valencia 
(N ¼ 414)

n or mean % or SD n or mean % or SD n or mean % or SD n or mean % or SD n or mean % or SD n or mean % or SD n or mean % or SD

Male Birth 1473 48.0 936 49.6 740 50.9 787 49.6 171 46.3 216 51.2 206 49.8
Older siblings Birth 1458 47.5 927 49.1 718 49.3 1065 67.1 155 42.0 157 40.8 178 43.2
Mother smoked in pregnancy Birth 365 11.9 286 15.3 215 15.0 195 12.5 81 22.5 110 26.4 145 35.0
High social class2 Birth 1670 54.4 1048 55.6 727 50.1 1233 77.8 185 50.1 131 33.9 119 28.7
Age (years) 1 8.3 0.5 8.1 0.3 6.3 0.2 6.1 0.1 7.9 0.2 7.4 1.2 7.6 0.2

2 16.7 0.6 12.7 0.4 10.3 0.2 − − 10.8 0.3 11.1 0.6 10.6 0.2
3 22.7 0.6 16.4 0.2 15.2 0.3 15.3 0.3 − − − − − −

FEV1 (ml) 1 1776.1 272.0 1798.1 247.5 1096.9* 162.3* 1088.1* 157.7* 1608.8 225.3 1149.9 264.2 1543.7 214.6
2 3930.2 749.0 2697.5 426.6 2162.3 291.1 − − 2104.8 308.3 2193.9 376.8 2076.4 282.7
3 4010.5 798.3 3944.6 714.0 3480.5 614.6 3526.9 632.2 − − − − − −

FVC (ml) 1 2066.0 327.0 2005.1 298.5 − − − − 1902.6 280.7 1645.9 301.0 1743.2 253.3
2 4640.7 940.8 3204.0 502.3 2386.1 348.0 − − 2439.9 366.8 2608.4 443.7 2463.4 353.2
3 4850.1 1060.2 4701.2 857.7 4079.8 768.7 4055.9 766.4 − − − − − −

FEV1/FVC 1 86.2 5.7 90.0 6.2 − − − − 84.9 6.1 86.5 6.1 88.8 5.8
2 85.3 6.5 84.4 5.7 90.9 5.6 − − 86.5 5.9 84.3 5.4 84.5 4.9
3 83.3 6.2 84.2 6.2 85.7 6.4 87.4 6.4 − − − − − −

Height (cm) 1 132.2 5.9 133.3 5.8 121.1 5.1 119.4 4.6 127.9 5.3 125.2 8.9 126.0 5.4
2 172.7 9.1 160.0 7.7 144.5 6.4 − − 144.8 6.4 145.9 7.7 142.5 6.7
3 174.3 9.5 175.6 8.7 172.5 8.2 170.8 8.2 − − − − − −

Weight (kg) 1 30.2 5.4 29.2 4.9 23.5 3.6 21.9 2.9 28.5 5.0 27.4 7.3 28.1 5.8
2 65.2 11.5 48.3 9.3 37.9 7.4 − − 39.5 7.6 42.0 10.3 40 9.5
3 70.5 14.0 64.3 10.2 63.8 12.8 60.4 10.9 − − − − − −

Secondhand smoke 1 322 17.6 240 13.4 267 21.6 157 10.6 36 9.8 121 28.7 148 35.7
2 257 12.4 169 10.1 212 19.4 − − 27 7.3 66 15.6 86 20.8
3 59 2.9 41 5.5 153 13.1 88 6.3 − − − − − −

PM2.5 mass (µg/m3) 1 9.5 0.9 16.3 0.7 17.3 0.6 13.3 0.9 11.1 0.9 13.1 1.6 8.5 0.5
2 7.8 1.1 16.3 0.7 17.4 0.7 − − 10.6 0.5 12.7 1.4 9.7 0.5
3 4.7 1.2 16.2 0.7 17.4 0.7 13.3 0.9 − − − − − −

NO2 (µg/m3) 1 20.2 6.2 23.0 6.6 23.5 3.0 20.1 5.3 12.2 2.2 32.1 11.0 16.8 6.9
2 17.9 6.7 22.5 6.2 23.8 3.3 − − 11.7 1.9 31.1 10.6 19.9 8.5
3 16.3 6.0 20.7 5.3 23.6 3.0 19.9 5.1 − − − − − −

High urbanization3 1 859 28.1 568 34.4 281 19.8 689 43.6 114 32.4 140 34.1 130 32.9
Ever asthma4 All 736 24.0 280 14.9 159 12.6 152 10.4 44 12.0 23 5.5 45 10.9
Atopic sensitization5 All 1586 51.6 775 45.0 538 39.2 792 51.2 − − 24 5.7 56 13.5
Did not move All 624 20.3 748 39.6 752 54.2 571 36.5 313 84.8 285 67.5 327 79.0

− = not available; *FEV0.5 used for 6-year time point instead of FEV1; 1 Time points correspond to approximately 8, 16 and 22 years in BAMSE, 8, 12 and 16 years in PIAMA, 6, 10 and 15 years in GINI/LISA North and 
South, and 7/8 and 10/11 years in the INMA subcohorts; 2 Defined using parental education in BAMSE, PIAMA, GINI/LISA North and South, and parental occupation in the INMA sub-cohorts; 3 Categorized as a 3-level 
variable based on tertiles of population density (BAMSE, PIAMA, INMA sub-cohorts) or rural/suburbs/cities (GINI/LISA North and South); 4 Defined as ever self-reported doctor diagnosis of asthma at any follow-up; 5 Any 
allergen-specific IgE level ≥ 0.35 kU/l, with testing conducted against a set of common outdoor and indoor aeroallergens that varied slightly by cohort. Testing was done at each time point for BAMSE, PIAMA, GINI/LISA 
North and GINI/LISA South, but only at age 4 years for INMA-Sabadell and 7 years for INMA-Valencia.
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vulnerable subgroups, in terms of disease (asthma, atopic sensitization), 
demographics (sex, socioeconomic status) and environmental factors 
(pollution, urbanization).

4.1. Interpretation of findings

Several pathways have been proposed to explain how greenspaces 
may be associated with lung function. Greenspaces may represent areas 
with low air pollution, although this relationship is complex (Venter 
et al., 2024). In the PIAMA cohort, which was the only cohort in which 
statistically significant beneficial associations were observed in the main 
models, effect estimates were substantially attenuated when adjusting 
for annual average NO2, suggesting some confounding by long-term air 
pollution in this study area. Air pollutants may also modify potential 
associations between greenspaces and lung function. For example, pre
vious studies have reported beneficial associations between lung func
tion and urban green space in the ALSPAC cohort that were greater 

among those living in cities and in areas of high PM10 concentrations 
(Fuertes et al., 2020), whereas the opposite was observed in a cross- 
sectional study in northeastern China (Zhou et al., 2021) (i.e. greening 
urban areas promotes lung health only in areas with low-moderate air 
pollution levels). In the current analysis, no effect modification by long- 
term air pollution was observed.

It is generally suspected that having greenspaces nearby promotes a 
healthier lifestyle, including increased physical activity (and conse
quently better respiratory muscle strength and body composition) and 
better diets (Koch et al., 2024). Some data also suggest that greenspaces 
may expose children to beneficial microbiota which could contribute to 
immune system development and better overall respiratory health 
(Rook, 2013; Zhang et al., 2024). Given the overall null findings 
observed in this study and because the relevant data are not available for 
many participants (e.g. accelerometery-based physical activity only 
available for smaller subsets), these potential underlying pathways were 
not explored in additional (i.e. mediation) analyses.

Fig. 1. Cohort-specific distribution of mean greenness values in a 300 m buffer around the home addresses at the earliest time point of lung function measurement. 
Direct comparisons across cohorts are not appropriate as it was not possible to obtain cloud-free images on the same days for all cohorts.

Fig. 2. Adjusted associations between FEV1 (top), FVC (middle), and FEV1/FVC (bottom) and mean NDVI values in a 300 m buffer (left) and the presence of an urban 
green space within a 300 m buffer (right).
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If any association does exist between greenspaces and lung function, 
it is likely that features of the greenspace itself such as type, quality, 
facilities, cleanliness, accessibility, safety, ecological quality and vege
tation species will affect the causal pathways. For example, greenness 
levels representing all vegetation types may be more important for 
pathways affecting immune system development whereas structured 
urban green space may be more relevant for pathways linked to physical 
activity. However, these hypotheses remain to be tested in the context of 
greenspace effects on lung function. Moving beyond the two measures 
considered in this analysis, identifying which allergenic species of trees 
and plants are present may be particularly relevant for allergic respi
ratory symptoms and disease (Parmes et al., 2020), if pollen exposure 
leads to reduced lung function among those sensitized and/or with 
allergic asthma (Baumbach et al., 2024; Idrose et al., 2021). In the 
current analysis, only the interaction term between asthma and urban 
green space was statistically significant for FEV1. Given the number of 
tests conducted, this may reflect a chance finding, especially as stratified 
analyses did not reveal a clear at-risk group.

Our null findings are consistent with some previous cross-sectional 
studies which report no associations after full model adjustments 
(Agier et al., 2019; Boeyen et al., 2017; Yu et al., 2021). However, other 
cross-sectional studies report positive (Almeida et al., 2022; Cilluffo 
et al., 2022; Fernandes et al., 2024; Hartley et al., 2022; Paciência et al., 
2019; Squillacioti et al., 2020) or mixed (both positive and negative) 
associations (Ye et al., 2023). Of note is a recent large cross-sectional 
meta-analysis using lung function data (6–8 years) from four young 
European birth cohorts, in which FEV1 and FVC values were positively 
associated with mean greenness in a 300 m buffer (Fernandes et al., 
2024). One of the four contributing cohorts in this analysis is the large 
ALSPAC cohort, for which positive associations were previously re
ported in a longitudinal analysis (Fuertes et al., 2020). Another was 
INMA for which cross-sectional associations at approximately seven 
years of age were positive but not statistically significant (Fernandes 
et al., 2024). We were able to replicate this finding using the 7/8-year 
lung function data in INMA (consistent with (Fernandes et al., 2024)), 
but not the 10/11-year data (e.g. 4.7 [-2.7, 12.2] and − 8.7 [-20.9, 3.5] 
per 0.1 increase, respectively, for the association between greenness in a 
300 m buffer and FEV1). This observation emphasizes the importance of 
longitudinal analyses. It is difficult to determine why a positive associ
ation was observed in the longitudinal analysis of the English ALSPAC 
cohort (Fuertes et al., 2020) but not in any of the five cohorts considered 
here. Differences in vegetation species, climatic conditions, air pollut
ants and numerous cultural and contextual factors that vary by study 
area/country are likely to be contributing factors.

4.2. Strengths and limitations

This study included several well characterized large European co
horts with repeated objective measure of lung function obtained using 
spirometry, which has been called for in greenspace research 
(Markevych et al., 2017). The inclusion of data from diverse cohorts and 
study areas likely enhanced the generalizability of our findings. It is 
indeed notable that in this analysis of data from seven distinct study 
areas which likely differ in terms of greenspace characteristics and cli
matic conditions, heterogeneity in the meta-analysis was low to mod
erate and associations were consistently null across cohorts, especially 
after adjusting for long-term air pollution.

All cohorts collected information using standardized and compre
hensive assessment tools including parent- or self-completed question
naires, which enhanced the reliability of the estimates within cohorts. 
We chose to combine cohort-specific associations using an individual- 
participant data meta-analysis which allowed a tailored set of con
founders to be considered in each cohort (a common list of confounders 
in all cohorts plus study design variables when necessary), and for dif
ferences in the number of times and ages at which lung function was 
measured across cohorts.

This study does however have limitations. First, not all participants 
contributed two or more lung function measurements, which could lead 
to some selection bias. However, results remained null when restricting 
the study sample to the 4,568 participants who contributed at least two 
lung function measurements. The ages at which lung function was 
measured varied by cohort, with the three Spanish cohorts contributing 
data up to around 11 years and the Swedish BAMSE cohort providing 
data up to 22 years of age. If the underlying mechanisms linking 
greenspace to lung function are age-specific, this could have affected our 
results. However, we observed generally null findings across all cohorts 
(and consequently ages) considered. Second, questionnaire data may be 
subject to recall or misclassification bias. Third, it is never possible to 
fully account for all relevant covariates, so residual confounding (e.g. by 
socioeconomic status) remains possible.

Fourth, although we attempted to use the same set of limited expo
sure variables across cohorts, defined a priori, in some cases the data 
were derived from different sources and years (Table S1), with likely 
differences in sensitivity and spatial resolution, both within a green
space metric (e.g. how urban green space was defined across cohorts) 
and between the two metrics used (greenness and urban green space). 
This may have contributed some heterogeneity to the results. We tried as 
much as possible to match the year of the greenspace data to that of the 
lung function measurement, but this was not always feasible, especially 
for the urban green spaces for which data were only available at one or 
two years depending on the cohort. Fifth, although exposure misclassi
fication is possible because of moving during the follow-ups and the size 
of the selected buffer, results remained null when restricting to those 
who did not move and when using larger buffer sizes of 500 m and 1000 
m. Nonetheless, some exposure misclassification remains likely as we 
only considered greenspaces around homes and did not consider expo
sures that may occur at schools or during other parts of a participant’s 
daily routine. Finally, we also were unable to consider specific qualities 
of the greenspaces (such as type, quality, facilities, cleanliness, acces
sibility, safety) which may have affected whether and how participants 
interact with them, as well as the extent of allergic plant species present 
which could lead to adverse effects on lung function among those 
sensitized (Parmes et al., 2020).

4.3. Conclusions

This individual-level participant data meta-analysis, including 
repeated data from five birth cohorts across Europe, did not find asso
ciations between greenspace around the home and lung function levels 
during childhood and adolescence.
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