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Identifying safe and effective CAR T cell targets in acute
myeloid leukemia (AML) is challenging due to the disease’s
complexity and overlap with normal hematopoiesis. This
review highlights advances in target discovery for AML,
emphasizing innovative approaches. Structural surfaceomics
identifies tumor-specific protein conformations, while AI-driven
single-cell RNA sequencing integrates multi-source data to
pinpoint optimal targets. Refined cell surface capture technol-
ogy maps the AML surfaceome without relying on predefined
antibodies. These strategies enhance CAR T cell specificity
and minimize off-tumor effects, offering promising pathways for
safer and more effective AML treatments and broader cancer
therapies.
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Introduction
Chimeric antigen receptor (CAR) engineered Tcells are
a revolutionary form of immunotherapy. They are
genetically engineered T cells that utilize a modified B
www.sciencedirect.com
cell receptor-like structure (mostly VH-VL domain) to
recognize and bind specific tumor-associated antigens
(TAAs) [1,2]. Upon binding its target antigen, the CAR
transmits an activation signal via the cluster of differ-
entiation 3 zeta (CD3z) intracellular domain, leading to

an MHC-independent activation of the T cell and, ul-
timately, a powerful and significant anti-tumor effect
[3]. The development of CAR Tcell therapy has shown
great advancement in several hematologic malignancies,
mostly B cell-derived cancers, where antigens such as
CD19 and B cell maturation antigen (BCMA) were
proven as well-defined, safe, and effective tar-
gets [4e7].

Despite the success of CAR T cell therapy in B cell
malignancies, the application of this therapy in acute

myeloid leukemia (AML) has encountered significant
challenges [8]. One of the most prominent pitfalls is the
lack of AML-specific antigens that can be safely targe-
ted without harming healthy tissue and particularly
healthy hematopoiesis [9]. This review will explore the
evolving strategies and technological advancements for
discovering novel and more suitable CAR T cell targets
in AML, focusing on their potential to improve the
safety and efficacy of this therapy. Moreover, these ad-
vancements could serve as a blueprint for expanding
CAR Tcell therapy to other types of cancer, paving the

way for broader oncological applications.

CAR T cell therapy in B cell malignancies:
establishing a successful model
The development of CAR Tcells for B cell malignancies
has transformed treatment outcomes for patients with B
cell acute lymphoblastic leukemia (B-ALL) and B cell
non-Hodgkin lymphoma. By targeting CD19, which is
highly expressed on malignant B cells but also present
on healthy B cells, CAR Tcells have demonstrated high
response rates and significant survival benefits.

Maude et al. reported that tisagenlecleucel, a CD19-

directed CAR T cell, showed unprecedented remission
rates in pediatric and young adult patients with B-ALL
[4]. A key aspect of CD19-targeting therapies is the on-
target off-tumor effect, where healthy B cells are also
depleted due to their expression of CD19 [10]. This off-
tumor effect, while notable, is manageable because
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patients can a) live without B cells and b) when needed,
receive intravenous immunoglobulin (IVIG) to
compensate for B cell loss [11].

Similarly, in multiple myeloma (MM), CAR T cell
therapy targeting BCMA has demonstrated impressive,
long-lasting efficacy. In KarMMa-3, as well as
CARTITUDE-1 study patients with relapsed/refractory

MM treated with idecabtagene vicleucel (BCMA CAR
Tcell therapy) or ciltacabtagene autoleucel respectively,
experienced a longer progression-free survival compared
to patients receiving standard therapies [5,12].

These examples set a strong foundation for CAR T cell
therapy in hematologic malignancies, but they also un-
derscore the importance of identifying a safe target an-
tigen, a challenge that remains to be solved until today
for many if not most disease entities.

Current immunotherapeutic strategies in AML
Historically, antigen discovery for cancer therapies has
relied on the development of monoclonal antibodies

(mAbs). This approach began with the pioneering work
of Köhler and Milstein, who developed a technique to
generate mAbs by immunizing animals (such as mice)
with specific antigens and fusing isolated B cells from
the animal’s spleen with an immortal myeloma cell line
to create hybridomas [13,14]. These hybridomas pro-
duce large amounts of antibodies against specific anti-
gens, which could then be screened and isolated.

This technique enabled the identification of CD19 and
CD33 as target antigens for B cell and myeloid malig-

nancies, respectively [15,16]. In AML, CD33 became an
attractive target because of its high expression on AML
cells [17,18]. Thus far, CD33 remains the only target-
able antigen validated in AML. Gemtuzumab-
Ozogamicin (GO), a CD33-targeting antibody drug
conjugate (ADC) is the only approved immunotherapy
in AML and has shown to have an acceptable safety
profile [19,20]. Pivekimab sunirine (IMGN623), a
CD123 targeting antibody-drug conjugate has been
studied in a phase 1/2 trial, combined with azacitidine
and venetoclax in patients presenting with CD123-

positive R/R AML disease. The trial results were
encouraging as they showed complete response rate
(CRR) of 25 % and overall response rate (ORR) of up to
45 %. However, this high intensity treatment might lead
to significant treatment associated side effects such as
myelosuppression [21,22].

Tcell bispecific antibody therapy in B cell malignancies
targeting antigens such as CD19 or CD20 have shown
very promising results and impressive response rates in
B cell tumors [23,24]. Clinical trials evaluating bispe-

cific antibody therapies in AML, targeting CD3 and
CD123 or CD33 have however shown relatively low
Current Opinion in Pharmacology 2025, 82:102524
response rates [25e27]. Flotetuzumab, a bispecific
dual-affinity re-targeting antibody directed against
CD123, achieved a CRR of 20 % and an ORR of 24 % in
R/R AML. Treatment was also associated with a high
frequency of cytokine release syndrome (CRS) and
other infusion-related side effects, which raised signifi-
cant safety concerns and resulted in the decision to halt
further clinical development [25]. The expression of

CD33 and CD123 on hematopoietic stem progenitor
cells poses a significant challenge, as targeting said an-
tigen leads to significant myelotoxicity due to depletion
of healthy progenitor cells in the bone marrow [28,29].

Challenges of targeting antigens in AML
One of the main challenges in developing CAR T cell
therapy for AML is the lack of AML-specific target an-
tigens that are uniquely or preferentially expressed on
AML cells without being expressed on healthy cells,
particularly HSPCs.

Several factors make AML a difficult target for CAR T
cell therapy.

1. Shared antigen expression: Many of the antigens
expressed on AML cells are also found on healthy
myeloid cells, making it difficult to target AML
without causing significant toxicity [30]. As AML
originates from early stem or progenitor cells,
expression of any targets is at high risk of being
conserved in the downstream progeny, creating a
large pool of on-target-off-tumor events.

2. Heterogeneity of target expression: AML is known
for its molecular and genetic heterogeneity, with

diverse subtypes and mutational profiles. Antigen
target expression is known to be heterogenous both
intra-as well as interindividually [31]. This makes it
difficult to find a solitary antigen that is uniformly
and broadly expressed [32,33]. Combinatorial ap-
proaches may be necessary to overcome the hetero-
geneity of the disease [34]. Interestingly, a study by
Krupka et al. showed that >99 % of patient samples
processed showed positivity for CD33 [35].

3. Clonal evolution: AML is a disease notoriously
evolving throughout its history and particularly under

therapeutic pressure, with both clonal shifts as well as
de novo clonal occurrence arising simultaneously or
sequentially [36]. Furthermore, the antigen expres-
sion within the myeloid compartment can contribute
to toxicity, specifically CRS [37,38]. It is unclear
whether this clonal evolution and potential antigen
loss may have an impact on antigen targetability in
AML for immunotherapies, however phenotypic
changes in AML patients undergoing chemotherapy
have been reported in up to 90 % of cases [39].

4. Immunosuppressive tumor microenvironment

(TME): The bone marrow and vascular microenvi-
ronments in AML create an immunosuppressive
www.sciencedirect.com
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TME through the action of Tregulatory cells (Tregs),
myeloid-derived suppressor cells (MDSCs), mesen-
chymal stromal cells (MSCs), and macrophages.
These cells contribute to the downregulation of
MHC expression on AML blasts and natural killer
(NK) or Tcell ligands, impairing immune recognition
[40,41]. To address this, strategies such as engi-
neering CAR T cells to synthesize arginine, using
Clustered Regularly Interspaced Short Palindromic
Repeats/Cas9 (CRISPR/Cas9) to delete Regnase-1,
and knocking out tumor growth factor b (TGF-b)
receptor 2 have been explored to enhance CARTcell
efficacy and overcome the TME’s immunosuppres-
sive effects [42e44].

Defining an adequate CAR T cell target in AML
To be considered an ideal target for CAR Tcell therapy
in AML, an antigen should meet the following criteria
(Table 1) [45].

1. Extracellular accessibility: The antigen needs to be
present on the surface of the target cell, enabling the
CAR T cell to bind and trigger an immune response.

2. Tumor-selective expression: The antigen should be
highly expressed on AML and leukemic stem or

leukemia initiating cells and minimally or not at all
expressed on healthy tissues, particularly HSPCs, to
minimize off-tumor toxicities.

3. Ubiquitous expression in AML: Ideally, the antigen
should be expressed across different genetic subtypes
of AML. This would ensure that CAR T cells could
target disease across various AML-subtypes, making
patient selection more feasible.

4. Absence of expression on T cells: The antigen
epitope should not be expressed on T cells to avoid
fratricide. T cell fratricide occurs, when T cells

recognize themselves, preventing adequate expan-
sion and activation, ultimately preventing strong anti-
tumor efficacy and T-cell persistence.

5. Minimal expression on vital tissues: The antigen
should not be expressed on any essential tissues,
Table 1

Characteristics of an ideal CAR T cell target.

Characteristics

Extracellular accessibility Must
and

Tumor-selective expression Shou
Ubiquitous expression in AML Shou

patie
Absence of expression on T cells Shou
Minimal expression on vital tissues Shou

survi

Table 1 explains all the characteristics a novel CAR T cell target must fulfill to
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particularly those that could not be compensated for,
to avoid severe side effects.
Approaches for discovery of novel CAR
targets in AML
Identification of safe and effective targets for CARTcell

therapy in AML remains challenging. Due to the het-
erogeneity of AML and the lack of distinct tumor anti-
gens that are absent from healthy tissues, researchers
have been exploring novel technologies for target iden-
tification. These include mass spectrometric approaches
to analyze the surface proteome of AML cells, structural
surfaceomics to detect tumor-specific conformations of
proteins, and transcriptomic studies combined with
artificial intelligence (AI) to pinpoint AML-specific
markers. Below, we discuss these cutting-edge tech-
niques and their implications for the discovery of novel

CAR T cell targets in AML (graphically described in
Figure 1 and summarized in Table 2). Importantly, while
many of these methods have been developed and pri-
marily tested in AML, they can be readily translated to
other diseases.

Mass-spectrometric determination of AML cell
surface proteome
Köhnke et al. integrated cell surface proteomic data with
gene expression and mutational analyses to identify
potential CAR T cell targets in AML [46]. This was
done by optimizing previously established cell surface
capture (CSC) protocols [47] and implementing these

specifically for primary AML patient samples. Their
approach used biotinylation to label the surface proteins
of these cells, followed by mass spectrometric analysis of
peptides. This allowed mapping the AML surfaceome
without the need for antibody-based detection, which
might miss novel targets, due to the lack of suitable or
specific antibodies.

In addition to this proteomic data, they incorporated
gene expression data from databases such as BloodSpot,
HemaExplorer, and Genotype-Tissue Expression
Description

be present on the surface of AML cells to allow CAR T cells to bind
trigger an immune response
ld be highly expressed on AML cells
ld ideally be expressed across all AML subtypes or at least in most
nts to ensure broad applicability
ld not be present on T cells to prevent CAR T cell fratricide
ld not be expressed on essential tissues, especially those vital for
val, to avoid severe adverse effects

qualify as a reliable target.

Current Opinion in Pharmacology 2025, 82:102524
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Figure 1

New strategies for target identification in AML. a, Cell surface proteins on primary AML blasts are biotinylated (1) and subsequently bound by streptavidin
(2). The cells are lysed and digested with trypsin (3) before being analyzed using mass-spectrometry which allows the determination of the cell surface
proteome. b, Cell surface proteins on AML cell lines are cross-linked (1), biotinylated (2) before being digested with trypsin and enriching cross-linked
peptides using size-exclusion chromatography (SEC) only or supplemented with immobilized metal affinity chromatography (IMAC). This process allows
the analysis of tumor-specific protein conformations. c, Analog to (a), after biotinylation of the cell surface of AML cell lines and MS-analysis of the cell
surface proteome (1), this data is correlated to RNA sequencing data to filter out antigens which, while being highly expressed on AML cells, are equally
present on healthy tissue. d, An AI-generated safety pipeline was developed to filter RNA sequencing data to distinguish highly expressed antigens on
AML cells. These putative antigens were subsequently exemplary filtered based on expression on healthy tissue. Following these steps novel antigens
were found to generate anti-AML CAR T cells. e, The comprehensive surfaceome profiling of 100 primary AML samples using the LAS atlas identified
pan-AML antigens, leukemia stem cell markers, and subgroup-specific targets, revealing distinct surface expression patterns.
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(GTEx), allowing them to discard targets highly
expressed on healthy tissues such as HSPC [48e50].
Mutational analysis was performed using COSMIC,
which enabled them to filter targets that were not
expressed in at least 50 % of patient samples. Identified
candidate target antigens, were then validated by flow

cytometry. This study identified three promising tar-
gets: CD148, integrin subunit alpha 4 (ITGA4; CD49d),
and Integrin beta 7 (ITGB7), which were considered
suitable for further development of targeted immuno-
therapies such as CAR T cell therapy.

Structural surfaceomics for AML-specific
conformations
Mandal et al. utilized a novel approach termed “struc-
tural surfaceomics,” which combines cross-linking mass
spectrometry (XL-MS) with cell surface capture tech-
nology to detect unique conformational states of pro-
teins on AML cells [51]. The cross-linking approach
Current Opinion in Pharmacology 2025, 82:102524
allowed the identification of specific inter- and intra-
protein links, capturing the structure of proteins as
they natively occur on the cell surface. Two different
cross-linking agentsddisuccinimidyl sulfoxide (DSSO)
and disuccinimidyl phenyl phosphonic acid (PhoX)d
were used to analyze both inter- and intra-peptide

linkages, providing a detailed map of protein structures.

This study focused on integrin beta 2, a protein that
exhibited a tumor-specific “open-active” conformation
on AML cells compared to healthy cells. Anti-active
integrin beta 2 CAR T cells were then engineered and
demonstrated potent anti-tumor activity in both AML
cell line xenograft models (CDX) and patient-derived
xenografts (PDX). Importantly, safety of these novel
CAR T cells was validated in a humanized non-tumor-
bearing mouse model. In these patient-relevant dis-

ease models, anti-active integrin beta 2 CAR T cells
showed lower signs of hematopoietic toxicity than state-
www.sciencedirect.com
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Table 2

Novel approaches to target identification in AML.

Article information Novel approach to AML target identification Novel target found

Köhnke et al., Biomarker
Research, 2022

Cell surface capture, mass spectometry technique in
primary AML samples

CD148, ITGA4, Integrin beta 7

Mandal et al., Nature
Cancer, 2023

Structural surfaceomics (Combination of cross-
linking MS and CSC) to determine cancer-specific
conformations of antigens

Activated conformation of Integrin Beta 2

Perna et al., Cancer Cell,
2017

Correlation of proteomic data with transcriptomic
data, combinatorial targeting strategy

ADGRE2, CCR1, CD70, LILRB2

Gottschlich et al., Nature
Biotechnology, 2023

Development of a single-cell RNA sequencing
algorithm pipeline to determine safe but highly
expressed antigens

CSF1R, CD86

Bordeleau et al. Surfaceome profiling using the LAS atlas (sc and bulk
RNAseq data, surface proteomics), with a focus on
AML heterogeneity and primitive markers

Including but not limited to:
Pan AML:
- MILR1, CTSG, PTPRC, CD47, CD37, ITGA4,
CD74

Primitive:
- CD34, NPR3, SLC38A1

CK-AML:
- ENG, PTPRC, CD47, PROM1

Table 2 summarizes the different novel approaches as well as specific antigen findings for AML-specific CAR T cell antigen targets.
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of-the-art anti-CD33 CARTcells. However, a limitation
of this approach was that the active conformation of
integrin beta 2 was also detected on activated mono-

cytes and granulocytes, highlighting the potential risk of
on-target, off-tumor toxicity.

Proteomics and transcriptomics for surfaceome
analysis
Perna et al. leveraged a combined proteomic and
transcriptomic strategy to study the surface proteins
of AML cells, focusing on how mutations reshape the
surfaceome [52]. They used a multi-step procedure,
starting with the surface biotinylation of AML cell
lines and subsequent mass spectrometric analysis.
This proteomic data was then compared to mRNA
expression databases like the Human Protein Atlas
and the Human Proteome Map to exclude targets

that are highly expressed in healthy tissues. The
results were validated by flow cytometry using pa-
tient samples, and a subset of top targets was
further analyzed.

This study revealed four key AML-specific targetsd
adhesion G protein-coupled receptor E2 (ADGRE2),
CeC chemokine receptor type 1 (CCR1), CD70, and
leukocyte immunoglobulin-like receptor subfamily B
member 2 (LILRB2)dthat were validated as potential
candidates for CAR T cell therapy. By comparing these

targets to established markers such as CD33 and
CD123, the researchers demonstrated their superior
specificity. They also explored the potential of
www.sciencedirect.com
combinatorial targeting approaches to enhance the
effector function of CAR T cells while maintaining
safety, a strategy that could be crucial for improving CAR

T cell therapy outcomes in AML.

AI-powered single-cell RNA sequencing for target
discovery
Recently, we developed an innovative single-cell RNA-
sequencing (scRNA-seq)-based approach to identify
novel AML-specific target antigens [53]. By leveraging
scRNA-seq data, we could compare gene expression
profiles of malignant AML blasts and HSPC at an un-
precedented resolution, identified several so far unrec-
ognized target antigens, highly overexpressed on AML
blasts. Importantly, by integrating 11 different scRNA-
seq datasets of 9 healthy organs into a “cross-organ off-
target transcriptomic atlas” (COOTA), we tried to

identify target antigens with minimal expression on
healthy tissues.

Two promising targetsdCSF1R and CD86dwere
discovered through this method. These antigens were
subjected to extensive preclinical testing, including
in vitro functional assays using human and murine
models, as well as in vivo validation in CDX and PDX
models. Anti-CSF1R and anti-CD86 CAR T cells
demonstrated strong anti-tumor effects both in vitro and
in vivo. Importantly, safety profile was confirmed in

syngeneic mouse models and using advanced in vitro
models of HSPC and induced-pluripotent stem cell
(iPSC)-derived microglia.
Current Opinion in Pharmacology 2025, 82:102524
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Comprehensive surfaceome profiling and subgroup
analysis
A recent study conducted an extensive surfaceome
analysis of 100 primary AML patient samples to explore
immunotherapeutic targeting of surfaceome heteroge-
neity in AML [54]. Given the highly heterogeneous
nature of AML, the study aimed to identify differen-
tially expressed antigens on leukemia stem cells
(LSCs), as well as novel antigens specific to AML sub-
groups and pan-AML markers. These findings have the
potential to facilitate more personalized and precise

treatment strategies by targeting both LSCs and AML-
specific antigens.

Deploying a multi-step approach, with proteomics-
based surfaceome analysis using the Leucegene collec-
tion, 100 primary AML samples were investigated. Of
these, 20 samples underwent further subanalysis
through single-cell RNA sequencing to identify primi-
tive AML blasts. Transcriptomic data from this cohort
were used as a follow-up quality check to validate ac-
quired proteomic data. To determine if the analyzed

proteins were cell surface-bound, the Surface Protein
Annotation Tool (SPAT) was employed. Researchers
then performed differential surfaceome analysis across
AML subgroups, revealing distinct surfaceome expres-
sion patterns among various AML subunits.

The study identified several antigens of interest,
including pan-AML antigens such as mast cell
immunoglobulin-like receptor 1 (MILR1), cathepsin G
(CTSG), protein tyrosine phosphatase receptor type C
(PTPRC), CD47, CD37, ITGA4, and CD74. Addition-

ally, AML antigens related to LSCs were identified,
notably pan-AML hematopoietic stem cell markers like
CD34, natriuretic peptide receptor 3 (NPR3) and
solute carrier family 38 member 1 (SLC38A1). Further
subgroup-specific analyses revealed unique antigen
targets, including Semaphorin 4D (SEMA4D) (with low
correlation between surface proteomic and RNA
sequencing data), solute carrier family 4 member 1
(SLC4A1), and ficolin 1 (FCN1) in RUNX1-mutated
AML. In CK-AML, targets such as endoglin (ENG)
(also overexpressed in MECOM-rearranged AML),

protein tyrosine phosphatase receptor type C (PTPRC),
CD47, and prominin-1 (PROM1) were highlighted.

This comprehensive atlas of AML surfaceome profiles,
encompassing subgroup analyses and LSC marker
identification, serves as a valuable resource for future
immunotherapeutic targeting strategies.
Conclusion and discussion: overcoming
limitations and moving forward
The integration of novel technologies such as mass
spectrometry, structural surfaceomics, and scRNA-seq
has opened new avenues for identifying AML-specific
Current Opinion in Pharmacology 2025, 82:102524
targets for CAR T cell therapy. Each of these ap-
proaches addresses a different aspect of the challen-
gedwhether it’s refining specificity of target antigens,
reducing off-tumor effects, or improving anti-tumor ef-
ficacy. However, limitations remain, such as low sample
input requirements, partial expression of some targets
on healthy cells, and the need for further in vivo vali-
dation. Despite these challenges, the combined efforts

of researchers in these areas bring the field closer to
developing safer and more effective CAR T cell thera-
pies for AML. Future directions will likely involve
refining these technologies, integrating them with gene
editing techniques like CRISPR/Cas9 [55,56], or
epitope editing [57] and exploring combinatorial or
multi-target approaches [29,58] to maximize therapeu-
tic benefit while minimizing risks.

Targeting a single antigen in AML poses significant
challenges for CAR T cell therapy due to disease’s high

heterogeneity and expression of candidate antigens on
healthy, vital cells. Consequently, alternative approaches
such as dual targeting or combinatorial strategies are
emerging as promising solutions to enhance therapeutic
efficacy and safety.

One such approach was recently introduced by Volta
et al., who developed a combinatorial adaptor-mediated
targeting platform for AML known as AdCAR T cells
[59]. This innovative strategy utilizes adaptor CAR T
cells that bind to fluorochrome-bound antigen-binding

diabody adaptors. In their study, Volta et al. targeted
CD33 and CD117, demonstrating potent anti-tumor
effects both in vitro and in vivo. The flexibility of this
system lies in the half-life of the adaptor molecules and
the ability to combine multiple adaptors, allowing for a
more personalized treatment strategy. This approach
not only improves efficacy but also mitigates toxicity by
enabling precise antigen targeting.

Another promising strategy, involved co-targeting CAR
T cells with an attenuated ADGRE2 and CLEC12A
costimulatory receptor using the IF-BETTER gate CAR

T cell design [60]. This method selectively targets
cancer cells with high ADGRE2 and C-type lectin
domain family 12 member A (CLEC12A) expression,
sparing HSPCs that exhibit low or no expression of
these antigens. The IF-BETTER approach effectively
minimizes off-tumor toxicity while maintaining potent
anti-tumor activity.

Building on the concept of combinatorial targeting, Silva
et al. introduced a dual-strategy approach combining
two targets [61]. They engineered a CD70 CARTcell to

secrete an anti-CD33, anti-CD3 dual-targeting anti-
body. This local secretion mechanism reduces systemic
on-target off-tumor effects, thereby minimizing toxicity.
Additionally, the secreted dual-targeting antibody en-
hances the activation and efficacy of non-CAR T cells
www.sciencedirect.com
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within the tumor microenvironment, further potenti-
ating the anti-tumor response.

These advanced targeting strategies underscore the
importance of combinatorial approaches in overcoming
the challenges associated with antigen heterogeneity
and minimizing adverse effects in AML treatment. By
leveraging dual targeting and adaptor-mediated systems,

these innovative methods pave the way for safer, more
effective, and personalized CAR T cell therapies
in AML.
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