
Vol.:(0123456789)

Acta Neuropathologica          (2025) 149:46  
https://doi.org/10.1007/s00401-025-02884-5

ORIGINAL PAPER

Oligodendroglia vulnerability in the human dorsal striatum 
in Parkinson’s disease

Juan M. Barba‑Reyes1 · Lisbeth Harder2 · Sergio Marco Salas3,4 · Methasit Jaisa‑aad5,6 · Clara Muñoz‑Castro5,6 · 
Leonardo D. Garma2 · Nima Rafati7 · Mats Nilsson3 · Bradley T. Hyman5,6 · Alberto Serrano‑Pozo5,6 · 
Ana B. Muñoz‑Manchado1,2,8

Received: 13 February 2025 / Revised: 15 April 2025 / Accepted: 23 April 2025 
© The Author(s) 2025

Abstract
Oligodendroglia are the responsible cells for myelination in the central nervous system and their involvement in Parkinson’s 
disease (PD) is poorly understood. We performed sn-RNA-seq and image-based spatial transcriptomics of human caudate 
nucleus and putamen (dorsal striatum) from PD and control brain donors to elucidate the diversity of oligodendroglia 
and how they are affected by the disease. We profiled a total of ~ 200.000 oligodendroglial nuclei, defining 15 subclasses, 
from precursor to mature cells, 4 of which are disease-associated. These PD-specific populations are characterized by the 
overexpression of heat shock proteins, as well as distinct expression signatures related to immune responses, myelination 
alterations, and disrupted cell signaling pathways. We have also identified impairments in cell communication and 
oligodendrocyte development, evidenced by changes in neurotransmitter receptors expression and cell adhesion molecules. 
In addition, we observed significant disruptions in oligodendrocyte development, with aberrant differentiation trajectories and 
shifts in cell proportions, particularly in the transition from mature oligodendrocytes to disease-associated states. Quantitative 
immunohistochemical analysis revealed decreased myelin levels in the PD striatum, which correlated with transcriptomic 
alterations. Furthermore, spatial transcriptomics mapping revealed the distinct localization of disease-associated populations 
within the striatum, with evidence of impaired myelin integrity. Thus, we uncover oligodendroglia as a critical cell type in 
PD and a potential new therapeutic target for myelin-based interventions.
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Abbreviations
PD	� Parkinson’s disease
SNpc	� Substantia nigra pars compacta
LBs	� Lewy bodies
LNs	� Lewy neurites
OLs	� Oligodendrocytes
AD	� Alzheimer’s disease

sc/sn-RNA-seq	� Single-cell/single-nucleus RNA 
sequencing

OPCs	� Oligodendrocyte progenitor cells
MS	� Multiple sclerosis
GWAS	� Genome Wide Association Studies
Pu	� Putamen
CN	� Caudate nucleus
PDA-OLs	� PD-associated oligodendrocytes
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FACS	� Fluorescent-activated cell sorting
RT	� Reverse transcription
UMIs	� Unique molecular identifiers
PCA	� Principal component analysis
PCs	� Principal components
scCODA	� Single-cell compositional data analysis
GSEA	� Gene Set Enrichment Analysis
NES	� Normalized Enrichment Score
FDR	� False discovery rate
GO	� Gene ontology
KEGG	� Kyoto Encyclopedia of Genes and 

Genomes
MBP	� Myelin basic protein
TH	� Tyrosine hydroxylase
ROIs	� Regions of interest
α-syn	� α-Synuclein
kNN	� K-nearest neighbors
GCN	� Graph convolutional network
WM	� White matter
GM	� Gray matter
SEM	� Standard error mean
COPs	� Committed OPCs
MOL	� Mature oligodendrocytes
HSP	� Heat shock proteins
immOL	� Immature OLs
TCA​	� Citric acid
LAMA2	� Laminin-2
ECM	� Extracellular matrix
CAMs	� Cell adhesion molecules
HSPR	� Heat shock protein response
MSA	� Multiple system atrophy

Introduction

Parkinson’s disease (PD) has a significant impact on society 
due to its widespread implications both in patients’ health 
and caretakers, with a rapid increase in incidence over the 
past 2 decades [55, 57]. PD is a heterogeneous condition, 
with mutations in multiple genes presenting with a similar 
parkinsonian syndrome and a single causative mutation 
resulting in a range of clinical presentations [9, 36]. This 
heterogeneity suggests different underlying mechanisms 
at a biological level that are not yet fully understood. 
While the loss of dopaminergic neurons in the substantia 
nigra pars compacta (SNpc) and the accumulation of 
intracellular α-synuclein aggregates in Lewy bodies 
(LBs) and Lewy neurites (LNs) have long been associated 
with the development of PD [21, 31], recent studies have 
demonstrated the involvement of glial cells, in particular 
oligodendrocytes (OLs), in neurodegenerative disorders such 
as PD and Alzheimer’s disease (AD) [16, 23, 29, 47, 48, 52, 
62, 64, 85].

While they have traditionally been considered 
homogeneous populations [4, 15, 34], recent advancements 
including single-cell/single-nucleus RNA sequencing (sc/
sn-RNA-seq) have revealed that OLs are heterogeneous, 
comprising numerous subpopulations and states that 
participate in distinct biological processes [35, 46], 
redefining the maturation process as a continuum. Indeed, 
OLs are known to progress through distinct developmental 
states, starting as oligodendrocyte progenitor cells (OPCs), 
which proliferate and differentiate into pre-myelinating 
OLs, that eventually mature into fully myelinating 
oligodendrocytes [5, 12]. These different states correspond 
to distinct transcriptomic and morphologic profiles that can 
also vary along brain regions [6, 7, 40, 65, 75, 77].

Recent works suggest that alterations in myelin integrity 
and OL survival can play a crucial role in the progression 
of neurodegenerative diseases and MS [30, 35, 46–48, 
62]. Interestingly a few studies have also demonstrated a 
connection between OLs and PD [2, 3, 13, 51, 79]. Bryois 
et al. [13] found a genetic association between PD GWAS 
variants and OLs, while Wakabayashi et al. [79] and Arai 
et al. [2] observed α-synuclein inclusions in OLs of PD 
brains. These findings suggest that OLs may play a critical 
role in the development of PD. However, few studies have 
investigated the role of the OL lineage in PD, particularly 
in the dorsal striatum [3, 72], a brain region that includes 
the putamen (Pu) and caudate nucleus (CN) and is central 
to PD pathophysiology [41] and therapeutic development, 
as it receives the nigrostriatal axons from the dopaminergic 
neurons of the SNpc [71].

In this study, we elucidated the transcriptomic changes 
induced by PD across OLs lineage populations using 
sn-RNA-seq in the dorsal striatum from 63 donors and 
image-based spatial transcriptomics in a subset of them. Our 
results reveal distinct transcriptomic states of PD-associated 
oligodendrocytes (PDA-OLs), delineating diverse altered 
functional pathways, the spatial organization of OLs, and 
the potential biological consequences of OL dysfunction 
for the extent of both dopaminergic neuron loss and LB/
LN formation.

Materials and methods

Human tissue

Human brain samples for this study were obtained from 
donors with a clinical and neuropathological diagnosis of 
PD and controls not meeting clinical or neuropathological 
diagnostic criteria for any neurodegenerative disease. 
Specifically, the CN and Pu were dissected from coronal 
slabs at the level of the nucleus accumbens. The control 
group comprised 27 individuals (Pu = 27, CN = 24) 
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ranging in age from 25 to over 90 years. The PD group 
included 36 individuals (Pu = 35, CN = 34) aged between 
60 and over 90 years. Samples were collected from three 
sources: the Human Brain and Spinal Fluid Resource 
Center (Los Angeles, CA, USA), the Parkinson’s UK Brain 
Bank at Imperial College London (London, UK), and 
the Massachusetts Alzheimer’s Disease Research Center 
(Charlestown, MA, USA). Donors or their next-of-kin 
provided written informed consent for brain autopsy, and the 
study was approved by the review board of each brain bank. 
Detailed information regarding the samples is provided 
in Supplementary Table 1. Since PD is more common in 
men, the control and PD groups were not matched by sex 
(i.e., there were 19 females and 44 males in the full cohort, 
control: 18/9 and PD: 26/10 male/female). Consequently, the 
study lacks sufficient power to robustly analyze sex-specific 
effects, such as differences in cell class proportions or the 
influence of sex on gene expression regulation.

Tissue dissociation

Nuclei isolation from fresh frozen tissue was conducted 
following the protocol outlined by the Allen Institute for 
Brain Science (https://​www.​proto​cols.​io/​view/​isola​tion-​of-​
nuclei-​from-​adult-​human-​brain-​tissue-​eq2ly​d1nql​x9/​v2), 
with specific guidelines. All procedures were performed 
at 4  °C to maintain sample integrity. Tissue samples 
(100–150 mg) were thawed on ice and homogenized in 
2  mL of chilled, nuclease-free homogenization buffer. 
The buffer composition included 10  mM Tris (pH 8), 
250  mM sucrose, 25  mM KCl, 5  mM MgCl2, 0.1  mM 
DTT, protease inhibitor cocktail (1 × , 50 × stock in 100% 
ethanol, G6521, Promega), 0.2 U/μL RNasin Plus (N2615, 
Promega), and 0.1% Triton X-100. Homogenization was 
carried out using a dounce tissue grinder with loose and 
tight pestles (20 strokes each; 357,538, Wheaton). The 
nuclei solution was filtered sequentially through 70 μm and 
30 μm strainers. Tubes and strainers were rinsed with an 
additional homogenization buffer to achieve a final volume 
of 6 mL. The filtered solution was centrifuged at 900 rcf 
for 10 min, after which the supernatant was discarded, 
leaving 50 μL of buffer above the pellet. The pellet was 
resuspended in 200 μL homogenization buffer, yielding a 
final volume of 250 μL. Next, the suspension was mixed 1:1 
with 50% iodixanol (OptiPrep Density Gradient Medium, 
D1556, Sigma) prepared in 60 mM Tris (pH 8), 250 mM 
sucrose, 150 mM KCl, and 30 mM MgCl2. This mixture was 
carefully layered over 500 μL of 29% iodixanol in a 1.5 mL 
tube and centrifuged at 13,500 rcf for 20 min. Following 
centrifugation, the supernatant was gently removed to avoid 
disrupting the pellet. The pellet was resuspended in 50 μL 
of chilled, nuclease-free blocking buffer containing 1 × PBS, 
1% BSA, and 0.2 U/μL RNasin Plus. This suspension was 

transferred to a fresh tube, brought to a total volume of 
500 μL with blocking buffer, and prepared for fluorescent 
activated cell sorting (FACS). For neuronal enrichment, 1 
μL of NeuN antibody (1:500, Millimark mouse anti-NeuN 
PE conjugated, FCMAB317PE, Merck) was added to the 
samples, which were incubated on ice in the dark for 30 min. 
After centrifugation at 400 rcf for 5 min, the supernatant was 
discarded, leaving approximately 50 μL of buffer above the 
pellet. The pellet was resuspended in 500 μL of blocking 
buffer, passed through a 20 μm filter into FACS tubes, and 
stained with 1 μL of DAPI (0.1 mg/mL, D3571, Invitrogen) 
prior to sorting.

Fluorescent‑activated nuclei sorting

The nuclei suspension was maintained in darkness 
throughout the sorting process, which was developed 
using a flow cytometer (either BD FACSAria Fusion or 
BD FACSAria III) at 4 ℃. Gating was performed based on 
DAPI and phycoerythrin signals, separating the nuclei into 
two distinct populations: NeuN+ and NeuN−. Each sorted 
population was collected into separate tubes containing 
50 μL of blocking buffer, with sorting continued until 
approximately 200,000 nuclei per population were obtained. 
Following sorting, the nuclei populations were centrifuged 
at 400 rcf for 4 min. The supernatant was carefully removed, 
leaving approximately 30 μL of buffer to resuspend the 
pellet. The samples were kept on ice to preserve their 
integrity for subsequent analysis.

Library preparation

Library preparation from the sorted nuclei suspensions 
was carried out using the Chromium Next GEM Single 
Cell 3’ Reagent Kit v3.1 (PN-1000268, 10 × Genomics). 
Nuclei populations were manually counted, and their 
concentrations were adjusted to a range of 200–1700 nuclei/
μL. Following the manufacturer’s protocol (CG000204 Rev 
D, 10× Genomics), reverse transcription (RT) mix was added 
to the nuclei suspensions. For library preparation, samples 
were either loaded into separate lanes on the Chromium 
Next GEM Chip G (PN-1000120, 10× Genomics) for 
each population (targeting a recovery of 5000 nuclei per 
population) or mixed prior to loading, with proportions of 
70% NeuN + and 30% NeuN − nuclei (targeting a recovery 
of 5000 or 7000 nuclei). Subsequent cDNA synthesis and 
library preparation were conducted in accordance with the 
manufacturer’s instructions, utilizing the Single Index Kit 
T Set A (PN-1000213, 10× Genomics). Quality control and 
quantification steps within the protocol were performed 
using the Agilent High Sensitivity DNA Kit (5067–4626, 
Agilent Technologies) and the KAPA Library Quantification 

https://www.protocols.io/view/isolation-of-nuclei-from-adult-human-brain-tissue-eq2lyd1nqlx9/v2
https://www.protocols.io/view/isolation-of-nuclei-from-adult-human-brain-tissue-eq2lyd1nqlx9/v2
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Kit (2700098952, Roche) to ensure the accuracy and 
reliability of the prepared libraries.

Illumina sequencing

Pooled libraries were prepared by combining up to 19 
samples for a target nucleus recovery of 5000 or up to 16 
samples for a target recovery of 7000 nuclei. Sequencing was 
conducted on a NovaSeq S6000 platform using an S4–200 
(v1.5) flow cell with eight lanes, employing a 28–8–0–91 
read configuration. The sequencing was carried out at the 
National Genomics Infrastructure in Stockholm, Sweden.

sn‑RNA‑seq data analysis

Pre‑processing

Raw single-nuclei RNA sequencing (sn-RNA-seq) data were 
processed into count matrices using CellRanger (v3.0.0, 
10 × Genomics). The sequencing reads were aligned to the 
hg38 genome (GRCh38.p5; NCBI:GCA_000001405.20), 
incorporating both intronic and exonic sequences during 
the alignment process.

Quality control

To identify potential doublets, we used Scrublet [84] for 
each sample individually, conducting 100 iterations with 
automated threshold detection, default parameters, and a 
fixed random seed. Nuclei identified as doublets in more 
than 10% of the Scrublet runs were excluded. Quality 
control based on the distribution of unique molecular 
identifiers (UMIs) and unique genes detected per nucleus 
was then performed. Nuclei with fewer than 500 UMIs 
or 1200 genes were removed, as were those with more 
than 250,000 UMIs, over 15,000 genes, or exceeding 
10% mitochondrial content. For the remaining nuclei, we 
modeled the logarithmic relationship between the number 
of unique genes and UMIs as a second-degree polynomial 
function. Nuclei exhibiting significant deviations from the 
polynomial fit—defined as a difference greater than 2000 
between log-transformed gene counts and the predicted 
value based on UMI counts—were classified as outliers 
and excluded. In addition, nuclei expressing high levels 
of marker genes corresponding to multiple cell types were 
removed. To assess this, a cell type score was calculated for 
each subtype (Oligodendrocytes, Microglia, OPCs, Neurons, 
Astrocytes, Vascular cells) for each nucleus, based on the 
mean expression of canonical marker genes. The score 
distributions were evaluated across the dataset, revealing 
bimodal patterns in all cases. These distributions were 
modeled as Gaussian mixtures, and a threshold was set at the 
mean of the lower Gaussian distribution plus four standard 

deviations. Nuclei exceeding the threshold for multiple cell 
types were classified as doublets and excluded. To further 
reduce contamination from neighboring regions, such as the 
claustrum or amygdala, nuclei expressing regional marker 
genes (NEUROD2, TMEM155, CARTPT, SLC17A7) were 
removed, with markers derived from the Allen Brain Atlas 
[32]. The number of nuclei excluded at each stage of this 
filtering process is summarized in Supplementary Fig. 1.

Oligodendrocytes detection

Count matrices were analyzed using Scanpy [82] to 
facilitate clustering and cell type annotation, with a focus on 
identifying oligodendroglia. Principal component analysis 
(PCA) was performed, and a neighborhood graph was 
computed using the first 30 principal components (PCs). 
Clustering was conducted using the Louvain algorithm at a 
resolution of 0.2. The resulting clusters were annotated as 
either glial cells or neurons based on the expression profiles 
of canonical marker genes:

Astrocytes —AQP4, ADGRV1
Microglia—CSF1R, FYB1
Oligodendrocytes—MBP, MOG, MAG
OPCs—PTPRZ1, PDGFRA, VCAN
Vascular cells—EBF1, ABCB1, ABCA9
Neurons—MEG3
Oligodendrocytes and OPCs were selected, and genes 

were filtered based on their expression per cell. Genes 
detected in less than three cells were removed (1389 genes).

Oligodendroglia lineage classification

Oligodendroglia nuclei were projected onto the first 15 
PCs calculated on their 10% of most variable genes and 
re-clustered using the Louvain algorithm. Harmony [43] 
algorithm was used to remove the batch effect and integrate 
the data. The function scanpy.tl.rank_genes_groups from 
Scanpy [82] was used to perform a differential expression 
analysis between the clusters through a Wilcoxon rank-sum 
test. Marker genes were selected manually from the top 
ranked genes (log fold change > 0.5 and p value < 0.05) to 
characterize and name each of the oligodendroglia clusters 
as a different oligodendroglia subclass. Markers for each 
subpopulation are represented in Supplementary Table 2.

Hierarchical analysis

Hierarchical clustering of the identified subpopulations was 
performed using the scanpy.tl.dendrogram function from 
the Scanpy [82] package. The clustering was based on the 
Pearson correlation method to measure similarity between 
subpopulations, and the complete linkage method was 
applied to define the cluster structure. This approach allowed 
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for the visualization of relationships between subpopulations 
based on their transcriptomic profiles.

Compositional analysis

The differences in cellular proportion composition between 
conditions and brain regions were analyzed using the 
single-cell compositional data analysis (scCODA), a 
Bayesian model specifically designed to analyze changes 
in compositional data, particularly from single-nuclei RNA 
sequencing experiments. This method accounts for the 
inherent dependencies in compositional data, providing 
more accurate insights compared to both compositional 
and non-compositional alternatives. scCODA has been 
demonstrated to outperform other approaches in this domain, 
as described by Büttner et al. [14].

Module analysis

To identify specific gene modules associated with 
oligodendroglia subpopulations, particularly those linked 
to OPALIN expression, we applied Hotspot [20] to our 
subsetted dataset. Hotspot detects gene modules by 
leveraging co-expression patterns and analyzing single-
nuclei transcriptomic data, enabling the identification 
of functionally related gene clusters. We used default 
parameters but restricted our analysis to the top 10,000 
highly variable genes to focus on the most relevant features 
of the dataset.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was performed using 
the Python package GSEApy (version 1.0.4). Pathways 
were considered significantly enriched if they exhibited a 
Normalized Enrichment Score (NES) greater than 0.5 and 
a false discovery rate (FDR) q-value below 0.05, to account 
for multiple hypothesis testing. The analysis was conducted 
using Gene Ontology (GO), Kyoto Encyclopedia of Genes 
and Genomes (KEGG), and Reactome databases as reference 
sets for pathway annotation and functional enrichment.

GSEA superpathways

GSEA results from all comparisons were processed 
in Python to generate superpathways and summarize 
enrichment patterns. Redundant pathways across contrasts 
were merged, with summary metrics including mean NES, 
average FDR, and gene coverage calculated for each. To 
evaluate pathway similarity, we adapted the code from 
https://​github.​com/​ayush​noori/​brain​storm/​blob/​master/​
R/​pathw​ay-​clust​ering-​funct​ions.R in Python, calculating 
Jaccard indices based on gene set overlaps, and hierarchical 

clustering (average linkage, threshold = 0.8) was applied 
to group similar pathways. Each cluster (except for the top 
10 with the highest and lowest NES, which were annotated 
manually) was annotated with mean values for statistics 
columns and gene and pathways content. To generate 
informative labels, we applied KeyBERT (initialized with 
allenai-specter) for unsupervised keyword extraction. 
Pathway names were used as input, and the top two ranked 
n-gram phrases (1–3 words) were selected as superpathway 
descriptors.

Correlation analysis (PDAO‑1/PDAO‑2/MOLA ratio vs MBP)

To estimate correlations between subpopulations altered 
in PD (PDAO-1/PDAO-2/MOLA) and MBP values, we 
subsetted the data for samples showing values for all the 
variables (number of cells related to each subpopulation 
and MBP intensity). To be more precise, we calculated 
the percentage of cells in each sample related to PDAO-1/
PDAO-2/MOL-A subpopulations and we only retained 
samples with more than five cells associated with a 
subpopulation. Finally, we used spearman correlation 
test with the following rationale: (PDAO-1 or PDAO-2 
percentages per sample)/MOL-A and MBP intensity.

Trajectory analysis

Trajectory analysis was conducted using two complementary 
methods. First, StaVia [68] was applied to integrate 
spatial and temporal data for mapping oligodendroglia 
differentiation. This method utilizes higher order random 
walks to trace lineage pathways and identify intermediate 
states. We executed the function run_VIA with default 
settings, modifying only the knn parameter to 15 for 
consistency across analyses. The second method, Slingshot 
[69], aligns single-cell data by identifying developmental 
lineages and connecting clusters to predict differentiation 
trajectories, effectively modeling the continuous maturation 
of oligodendroglia. Slingshot was also run with default 
parameters.

Factor analysis

To investigate the genes associated with the differentiation 
process, we employed factor analysis using the scikit-learn 
Python package. Factor analysis is a statistical method 
that models observed variables as linear combinations of 
potential underlying latent variables, known as factors. This 
technique aims to identify latent structures that explain the 
observed variability in the dataset while minimizing noise.

In this study, factor analysis was applied to pseudotime-
marked gene expression data to uncover the primary 
latent factors driving gene expression changes during 

https://github.com/ayushnoori/brainstorm/blob/master/R/pathway-clustering-functions.R
https://github.com/ayushnoori/brainstorm/blob/master/R/pathway-clustering-functions.R
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differentiation. The input data were normalized and scaled 
prior to analysis to ensure consistency and comparability 
across genes. By leveraging factor analysis, we identified 
key gene sets that contribute to distinct phases of the 
differentiation trajectory.

Communication analysis

With the aim of understanding the kind of communications 
and the quanti ty of them in oligodendroglia 
subpopulations, we used CellChat [37]. This method 
identifies ligand–receptor interactions across different 
subpopulations, constructing communication networks that 
reveal key signaling pathways involved in oligodendrocytes 
development. This analysis was developed in R, and we 
subsetted some populations, limiting the number of cells to 
10,000 (comprising 5000 Control and 5000 PD randomly 
selected) in the case the number of cells of the subpopulation 
exceeded this number.

Immunohistochemistry with peroxidase‑DAB 
method

Eight-µm-thick formalin-fixed paraffin-embedded sections 
from the striatum (contralateral to samples used for 
sn-RNA-seq and spatial transcriptomics) at the level of 
the nucleus accumbens were immunostained in a Leica 
BOND RX fully automated research stainer using the 
BOND kit (Leica Biosystems, DS9800). Primary antibodies 
and concentrations were as follows: mouse anti-α-syn 
clone LB509 (Thermo Fisher Scientific Cat# 18–0215, 
RRID:AB_2925241, 1:200), mouse anti-myelin basic 
protein (MBP) amino acids 129–138 clone 1 (Millipore 
Cat# MAB382, RRID:AB_94971, 1:250), and rabbit anti-
tyrosine hydroxylase (TH) polyclonal (Cell Signaling 
Technology Cat# 2792, RRID:AB_2303165, 1:100). The 
immunohistochemistry protocol included bake and dewax 
steps, a 20-min-long heat-induced epitope retrieval (with 
ER2 solution for α-syn and with ER1 solution for MBP 
and TH), and hematoxylin counterstaining. Sections were 
coverslipped with Permount mounting media and whole-
slide images were obtained under the 40 × objective 
(numerical aperture 0.95, resolution 0.17 µm/pixel) of an 
Olympus VS120 virtual slide scanner (Olympus, Tokyo, 
Japan).

Immunohistochemistry images analysis 
and quantification

All slide images were processed and analyzed using 
QuPath (version 0.4.3). Quantitative analysis focused on 
detecting intensity features related to MBP, as well as 
identifying the density of TH-positive projections from the 

SNpc to the dorsal striatum and α-synuclein aggregations 
(Lewy bodies/neurites, LBs/LNs). For each image, 
random regions of interest (ROIs) were selected within 
the putamen and caudate nucleus. TH-positive projections 
and α-synuclein aggregation detection was performed 
independently using QuPath’s pixel classifier tool. Five 
representative samples were chosen, and within each 
sample, the classifier was trained using 25 TH-positive 
and α-syn-positive annotations and 25 TH-negative or 
α-syn-negative annotations, resulting in a total of 125 
TH-positive and 125 TH-negative annotations, and 125 
α-syn-positive and 125 α-syn-negative annotations for 
classification.

The data obtained from MBP intensity measurements, 
TH projections quantification, and α-syn aggregate 
quantifications were further analyzed using the SciPy [78] 
Python library. A two-sample t test was applied to determine 
the T and p values for each brain region and condition. 
For MBP analysis, the mean of diaminobenzidine (DAB) 
intensity per pixel within the selected ROIs was used as 
the metric for quantification. TH differences were assessed 
by comparing the percentage of positive TH annotations, 
calculated as the area of TH-positive measurements, divided 
by the total area analyzed (µm2). Similarly, α-syn differences 
were quantified based on the proportion of α-syn-positive 
regions relative to the total area (mm2) examined in 
Pu or CN, respectively. In addition, Spearman’s rank 
correlation analysis was performed to explore relationships 
between various feature pairs across different regions and 
experimental conditions.

Spatial transcriptomics (Xenium)

Spatial transcriptomics platform

Spatial transcriptomic analyses were conducted using the 
Xenium high-plex in situ platform (10 × Genomics), which 
facilitates subcellular-resolution characterization of RNA 
within tissue sections, similarly as previously done in Garma 
et al. [28].

Gene panel design

The Xenium technology employs oligonucleotide probes 
designed to quantify the expression of genes in a predefined 
panel. For this study, a gene panel comprising 266 genes 
from the Xenium Human Brain Gene Expression Panel 
was utilized. An additional 100 genes were selected based 
on our sn-RNA-seq dataset, generating a custom gene 
panel (Xenium Custom Gene Expression Panel 51–100 
(Z3DREH), PN-1000561, 10× Genomics).



Acta Neuropathologica          (2025) 149:46 	 Page 7 of 24     46 

Experimental workflow

Tissue blocks from human subjects (N = 4; including Pu and 
CN) were retrieved from − 80 ℃ storage and transferred on 
dry ice to a cryostat (CryoStar NX70, Thermo Scientific). 
Samples were mounted on the specimen holder using 
Tissue Tek O.C.T. Compound (4583, Sakura) and allowed 
to acclimate to − 20 ℃ within the cryostat chamber for 
5 min. Tissue sections of 10 μm thickness were obtained 
and placed directly within the imaging region of precooled 
Xenium slides (12 × 24 mm, PN-3000941, 10× Genomics). 
Adherence of the sections to the slides was facilitated by 
briefly warming the reverse side of the slides with gentle 
pressure, followed by immediate refreezing on the cryobar. 
Tissue-mounted slides were retained in the cryostat during 
the sectioning process and subsequently stored at − 80 ℃. 
Downstream processing, including probe hybridization, 
ligation, and rolling circle amplification, was conducted 
at the in situ Sequencing Infrastructure Unit (Science for 
Life Laboratory, Stockholm), following the manufacturer’s 
protocol (CG000582 Rev E, 10× Genomics). Background 
fluorescence was minimized via chemical quenching. Tissue 
sections were imaged using the Xenium Analyser instrument 
(10× Genomics), which also facilitated signal decoding and 
data acquisition.

Oligodendroglia identification

Xenium experiments provide spatial positions of all decoded 
reads. Therefore, the first step in processing these datasets 
is to segment individual cells and identify its composition. 
In this study, cells from Xenium experiments were defined 
based on default nuclear Xenium segmentation. This 
conservative approach minimizes the possibilities of 
missegmentation, as illustrated by Marco Salas et al. [45]. 
Segmented cells were then preprocessed using Scanpy to 
identify oligodendroglia. Essentially, pre-processing of the 
spatial dataset involved filtering out low-quality cells. Cells 
with fewer than 40 total counts or fewer than 10 detected 
genes were excluded. The data were then normalized, log-
transformed, and subjected to neighbor graph construction 
using Scanpy’s pre-processing pipeline. A UMAP 
embedding was generated to visualize clusters, and Leiden 
clustering was applied with a resolution of 0.8 to identify 
distinct cell populations.

Oligodendroglia clusters (clusters 0, 3, and 9) were 
identified based on the expression of known oligodendro-
glia marker gene expression (MBP, OLIG1, OLIG2, PDG-
FRA, among others). The selected clusters were subsetted 
into a new AnnData object for further analysis. Marker 
gene expression was visualized spatially using matplot-
lib and scanpy to confirm the presence and distribution of 
oligodendrocytes.

Oligodendroglia cell type assignment

Cell type deconvolution was performed using the 
cell2location [42] package, which infers the spatial 
distribution of cell types by integrating sc-RNA-seq data as 
a reference. First, the single-cell reference dataset, generated 
in this study, was preprocessed to define a knowledge base of 
oligodendroglia cell type-specific gene expression profiles. 
Genes were filtered to retain those expressed in at least 
five cells, representing at least 3% of the total dataset, and 
exceeding a mean expression cutoff of 1.12. The spatial 
dataset, including only predefined oligodendroglia cells, was 
filtered to retain genes that overlapped with the single-cell 
reference. Cell2location’s setup function was used to prepare 
the spatial AnnData object for model training, specifying the 
sample batch as a key parameter. A regression model was 
trained on the reference data to estimate cell-type-specific 
mean expression levels. The spatial data were then analyzed 
using the cell2location model, which was trained for 3000 
epochs with a detection alpha parameter of 200 and batch 
size of 10,000. Posterior distributions of cell abundances 
were exported to generate quantitative summaries of cell 
type probabilities for each spatial location. The q50 quantile 
(median) cell type abundances were visualized and further 
analyzed to identify the dominant cell types in each spatial 
coordinate. For oligodendrocytes, additional analysis of 
spatial localization and confidence intervals was performed 
using the posterior distributions.

Neighborhood enrichment analysis

To assess the neighborhood enrichment of oligodendrocytes, 
spatial interaction networks were constructed for each 
sample in the dataset. The AnnData object containing 
oligodendroglia profiled with Xenium was first subsetted 
by sample, and spatial neighbors were computed using 
Squidpy’s [53] spatial_neighbors function with a radius of 
124 um. This process was repeated for all samples, and the 
resulting AnnData objects were concatenated into a unified 
dataset.

Neighborhood enrichment was calculated using Squid-
py’s nhood_enrichment function, with the cell type annota-
tion, defined using cell2location, as the cluster key. This 
analysis computes z-scores representing the degree of 
enrichment or depletion of specific cell types in the neigh-
borhoods of other cell types. Visualization of neighborhood 
enrichment was performed using a heatmap with a diverging 
colormap (coolwarm), highlighting significant positive and 
negative interactions. Parameters such as color scale limits 
(vmax = 200, vmiN = -200) and figure size were adjusted to 
optimize clarity and interpretability. Overall, this method 
provides insights into the spatial interactions and organiza-
tion of oligodendrocytes in their local tissue environment, 
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enabling a deeper understanding of their roles in tissue archi-
tecture and function.

Module identification using hotspot

We used Hotspot [20] to identify gene expression modules 
in oligodendroglia profiles derived from Xenium spatial 
transcriptomics data. Hotspot identifies informative genes 
and gene modules based on how gene variation aligns with 
cell similarity metrics. Informative genes show expression 
patterns concordant with local cell similarity. In summary, 
we initialized Hotspot with the following parameters:

•	 Layer key: ‘raw’ for raw expression values.
•	 Model: Negative binomial (danb).
•	 Latent obsm key: ‘X_pca’.
•	 UMI counts key: Total UMI counts per cell.

A k-nearest neighbors (kNN) graph (20 neighbors, 
unweighted) was created to compute gene autocorrelations. 
Genes with FDR < 0.05 were selected as significant. Local 
correlations for these genes were computed using parallel 
processing. Gene modules were defined using a minimum 
threshold of five genes, with core genes meeting an FDR 
threshold of 0.05. Module scores for each cell were 
calculated and stored. Differences in module scores between 
PD and control groups were analyzed using the Wilcoxon 
rank-sum test. Violin plots visualized score distributions, 
with test statistics and p values annotated.

Niche identification using NicheCompass

NicheCompass [8] was used to identify cellular domains by 
integrating spatial transcriptomics data across all samples. 
A latent graph embedding was computed using a graph 
convolutional network (GCN) model with categorical 
covariates such as replicates. NicheCompass was run for 
400 epochs with regularization to optimize ligand-receptor-
based niche identification. Clustering was performed on 
the latent embeddings using the Leiden algorithm with a 
resolution of 0.2. After clustering, niches with fewer than 
200 cells were filtered out, leaving three robust niches, 
that could be annotated as white matter (WM), gray matter 
(GM), and vascular niches based on their expression and 
cellular composition. These niches were characterized by 
their communication program activity, spatial localization, 
and enriched gene targets.

Statistical analysis

Statistical analyses were conducted using Python-based 
computational tools. Differential expression analysis was 
performed using the Wilcoxon rank-sum test, with marker 

genes selected based on a log fold change > 0.5 and p 
value < 0.05. Hierarchical clustering of subpopulations was 
conducted to assess similarity based on Pearson correla-
tion. Cellular compositional differences between conditions 
and brain regions were analyzed using a Bayesian model 
designed for sn-RNA-seq data. GSEA statistical significance 
was assessed using permutation-based methods (a Kolmogo-
rov–Smirnov-like statistic), which compares the observed 
enrichment of genes in a gene set against a random distri-
bution. Spearman’s rank correlation was used to examine 
relationships between specific features, such as the percent-
ages of PDAO-1 or PDAO-2 and MOL-A/MBP intensity. 
Two-sample t tests were used to compare MBP intensity, 
TH-positive dots, and α-syn-positive areas across conditions 
and brain regions, generating T and p values.

Sample sizes were determined based on prior studies 
and experimental feasibility. Detailed statistical results and 
methodologies are presented in the figures and legends.

Results

The human dorsal striatum shows great diversity 
of oligodendroglia and specific associated 
subclasses for PD

To elucidate the genetic networks and underlying molecular 
changes in OLs lineage cells within the context of PD in 
the dorsal striatum, we isolated and sequenced individual 
nuclei from freshly preserved human brain tissue samples 
obtained from CN and Pu of N = 27 controls and N = 36 PD 
donors. By employing sn-RNA-seq through a well-estab-
lished workflow (Fig. 1a), we obtained 200,000 individual 
nuclei associated with OLs lineage cells (Fig. 1c). Notably, 
this dataset represents the most extensive compilation of 
human OLs lineage cell transcriptomic information from 
the dorsal striatum available to date. Control and PD groups 
were matched by age but not by sex due to the higher preva-
lence of PD in men (Fig. 1c). The average number of cells 
per donor and striatum (including CN and Pu) was approxi-
mately 3000 (Fig. 1c). To characterize and confirm the loss 
of dopaminergic neuron projections and the presence of 
LBs/LNs in PD samples, we performed immunohistochemi-
cal analysis for tyrosine hydroxylase (TH) and α-synuclein 
(α-syn) in the contralateral CN and Pu of MADRC con-
trol (N = 10 (α-syn), N = 8 (TH)) and PD (N = 8 (α-syn and 
TH)) donors, (Fig. 1b, Supplementary Fig. 2), for whom 
formalin-fixed paraffin-embedded sections were available. 
The analysis of immunoreactivity revealed a significant 
reduction in TH immunoreactivity (Control = 1.66 ± 0.58 
(SEM) versus PD = 0.21 ± 0.05 (SEM), p = 0.027, t = 2.47) 
and a marked increase in α-syn immunoreactivity (Con-
trol = 0.004 ± 0.0017 versus PD = 0.01 ± 0.002, p = 0.035, 
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t = 2.31) specifically in the Pu of PD patients (Fig. 1b, Sup-
plementary Fig. 2), reflecting the expected loss of TH-pos-
itive dopaminergic neuron projections and the aggregation 
of α-syn in LB/LNs in PD, respectively.

PD‑associated clusters show specific 
transcriptomic signatures including stress‑reactive 
and immunological responses

After implementing a robust quality control process (Sup-
plementary Fig. 1), we conducted an initial clustering to 
identify four main classes: oligodendrocyte progenitor 
cells (OPCs) expressed VCAN as marker gene; commit-
ted OPCs (COPs) expressed GPR17 as marker gene; and 
mature oligodendrocytes (MOL) were identified by the 
expression of MBP, and further subdivided based on the 
expression levels of OPALIN or SLC5A11 marker genes 
(Fig. 2b). These classes were represented in both control 
and PD as well as in CN and Pu (Fig. 2a, b, Supplemen-
tary Fig. 3). Subsequently, cell classes were sub-clustered 
identifying 15 distinct subpopulations. Due to their clear 
enrichment in PD, we annotated some of these as PD-asso-
ciated (PDA) (Fig. 2b, d). OPCs displayed four subclasses: 
OPCs-A (expressing the gene markers VCAN/GPC6/SGCZ), 
PDAOPCs (VCAN/MT3/CD81), OPCs-C (VCAN/SEMA3E/
GRIA4), and OPCs-D (VCAN/ST18). MOLs expressing 
OPALIN comprised five subpopulations: MOL-A (LAMA2/
KIF6), MOL-B (FTH1/CRYAB/DMD), PDAO-1 (DBNDD2/
FTL/HSPA1A), PDAO-2 (CTNNA2/ARHGAP24), and 
MOL-F (LURAP1L-AS1, LINC00609, LINC01608). Within 
the SLC5A11+ population, distinctions were made between 
PDAO-3 (ACTN2/MT-ND3) and MOL-G (LINC01505, PLE-
KHG1, SLC25A29) (Fig. 2b, c). The identified subpopula-
tions represent a continuum; therefore, they do not corre-
spond to distinct OL subtypes, but rather reflect different 
states within a specific subpopulation, exemplified by either 
different stages of differentiation or activity specialization. 
This is particularly evident in MOLs, where most subpopula-
tions share common markers, with their key distinction lying 
in their gene expression levels rather than in the presence 
or absence of specific markers. These findings suggest that 
transcriptomic variability within MOLs is mainly driven by 
different functional states rather than by the emergence of 
discrete cell types.

After identifying distinct subpopulations within the 
OLs lineage, we characterized each by differential gene 
expression analysis (Fig. 2c, Supplementary Table 2). Of 
note, the disease-specific clusters (PDAOPCs, PDAO-1, 
PDAO-2, and PDAO-3) exhibited upregulated expression 
of heat shock proteins (HSP) families 70 and 90, including 
HSPA1A, HSPB1, HSP90AB1, HSPA1B, HSPA8, 
HSP90AA1, and HSPA5, as well as CRYAB and DNAJ family 
members. Thus, the elevated levels of these chaperone genes 

in PDAO-1 and PDAO-2 subpopulations underscore an 
enhanced cellular response to stress and their involvement 
in protein folding and proteostasis processes within the OLs 
lineage (Fig. 2c).

To assess the potential disease and region specificity of 
these subclasses, we conducted a compositional proportion 
analysis using scCODA. In Pu, PD samples exhibited modest 
increases in PDAO-1 (+ 5.6%), PDAO-2 (+ 1.5%), PDAO-3 
(+ 3.0%), and PDAOPCs (+ 2.3%), alongside a reduction in 
MOL-A (− 9.1%) and MOL-F (− 3.7%) (Fig. 2d). Notably, 
these PD-induced alterations were only significant in Pu, 
although the same tendency was observed in CN (Fig. 2d). 
Thus, in the striatum, particularly in the Pu, a subset of 
OLs exhibit a prominent stress response in PD (Fig. 2d). 
Furthermore, to control for potential sex-related effects, 
we performed a similar compositional proportion analysis 
stratified by sex and found no significant differences between 
males and females in any of the identified subpopulations, 
suggesting that the observed changes are independent of sex 
(Supplementary Fig. 4).

We next focused on OPALIN+ MOLs as they showed to 
be the most affected class with three altered populations in 
PD (Fig. 2b, d). To confirm the gene markers associated 
with the OPALIN+ subpopulations, including PDAO-1 and 
PDAO-2, and identify gene co-expression patterns and cel-
lular programs associated with those gene markers, we per-
formed Hotspot analysis. This analysis revealed several gene 
modules, of which Modules 4 (genes KCNIP4, RBFOX1) 
and 5 (MDGA2, CNTN1, LUZP2, FRY, GRIK2) were asso-
ciated with immature OLs-A (immOL-A) and immature 
OLs-B (immOL-B), respectively. Interestingly, Modules 
10 and 14, increased in MOL-A, included mitochondrial 
genes and genes regulating projection development (GRID2, 
ZFPM2), respectively. PDAO-1 showed increased expres-
sion of Modules 1 and 2, which were associated with HSP 
genes (CRYAB, FTH1, FTL, HSPA1A, HSPA1B, HSPH1), 
while PDAO-2 was linked to Modules 6 and 13, which are 
enriched in response to cytokines and antigen processing and 
presentation (ETV5, QDPR, ARHGAP24, CTNNA2) (Sup-
plementary Fig. 5).

Disrupted myelination and key pathways 
in parkinson’s disease‑associated oligodendrocyte 
subpopulations

In light of the significant changes observed within the mature 
OLs associated with PD (included in the OPALIN + and 
SLC5A11 + subclasses), we conducted a GSEA on the most 
affected subpopulations, employing established databases 
such as GO, KEGG, and Reactome, to better understand the 
functional pathways implicated in PD. Our analysis focused 
on four key comparisons based on the compositional and 
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Fig. 1   Experimental design and quantitative analysis of TH and 
α-synuclein in the Putamen. Schematic overview of the experimen-
tal design (a). Immunohistochemical analysis of tyrosine hydroxylase 
(TH) and α-synuclein (α-syn) in the putamen. Box plots illustrate 
the distribution of marker expression in control and Parkinson’s dis-
ease (PD) conditions. Statistical significance was determined using 
two-sided t tests, with significance indicated with an asterisk (TH 
analysis: p = 0.027, t = 2.47; α-syn analysis: p = 0.03, t = 2.39). Scales 
are set at 100 μm for low power images and at 20 μm for insets (b). 
Quantitative analysis of sequenced nuclei for OLs and OPCs, catego-
rized by condition, sex, and region, along with the age distribution 
frequencies of the subjects (c) 

◂

dendrogram analyses: MOL-A vs PDAO-1 and 2, PDAO-3 
vs MOL-F, and PDAOPCs vs OPCs-A, based on OPALIN, 
SLC5A11, and PDGFRA expression levels. To integrate 
the pathway information across conditions, identified path-
ways were grouped into superpathways based on their gene 
composition similarity (Fig. 3a, b). This approach enabled a 
broader understanding of the biological processes that define 
each cellular state or subpopulation.

Overall, PDA subpopulations were primarily associated 
with mitochondrial activity and proteostasis, encompassing 
functions such as translation, ribosome biogenesis, protein 
folding, stress responses, and metabolic regulation (Fig. 3b, 
Supplementary Table  3). These were accompanied by 
signatures of apoptosis and immune-related pathways. In 
contrast, enriched control subpopulations were associated 
with superpathways involved in neural development, 
including regulation of neurogenesis, synapse assembly, 
dendritic morphogenesis, and signaling mechanisms related 
to ion transport, cell adhesion, and cellular differentiation 
within the nervous system (Fig. 3b).

Within this general framework, distinct functional 
specializations emerged across specific comparisons. 
For instance, PDAO-1 exhibited an upregulation of 
cellular stress and immune responses, particularly those 
involving protein modification, cell cycle control, and pro-
inflammatory signaling (Supplementary Table 3). PDAO-
2, by contrast, was marked by enhanced innate immune 
signaling and apoptotic pathways mediated by DAP12 and 
interferon responses (Supplementary Table 3). Meanwhile, 
MOL-A demonstrated a unique molecular profile involving 
glycosphingolipid metabolism, TRP channel signaling, 
transcriptional regulation, and specialized functions like 
myelination and ciliary transport (Supplementary Table 3).

PDAO-3 revealed a metabolic profile, including pathways 
for steroid and lipid biosynthesis, intracellular and organelle-
specific processes, signaling networks, and stress-related 
transcriptional regulation (Supplementary Table  3). 
In parallel, MOL-F was characterized by upregulation 
in nucleotide metabolism, cholesterol biosynthesis, 
calcium signaling, and gene expression pathways linked 
to MET–PTK2 and TAZ signaling axes (Supplementary 
Table 3).

Lastly, the dysregulated PDAOPCs presented an 
enrichment in adaptive immune signaling, antigen receptor 
regulation, and DNA repair mechanisms, pointing to roles 
in host defense, autoimmunity, and immune tolerance 
(Supplementary Table 3). In contrast, the healthy OPC-A 
subpopulation showed increased activity in signaling 
regulation, transcriptional control, vesicle transport, ion 
homeostasis, synaptic function, and structural remodeling 
within the neuronal system (Supplementary Table 3).

Furthermore, to assess the impact of PD on myelin 
quantity, we conducted a quantitative immunohistochem-
istry analysis using the MBP marker, which is indicative 
of myelination levels (Fig.  3c). The results revealed a 
decrease in MBP immunoreactivity within the Pu in PD vs 
control donors (control = 0.21 ± 0.01, PD = 0.17 ± 0.009, p 
value = 0.047, t = 2.11) (Fig. 3d). In addition, to further elu-
cidate the relationship between MBP immunoreactivity in 
the Pu and the relative abundance of OLs subpopulations, 
we conducted a correlation analysis between MBP immu-
noreactive signal and the ratios of PDAO-1 and PDAO-2 to 
MOL-A, reflecting the aforementioned shifts in cell popu-
lation proportions in PD. We observed a significant nega-
tive correlation, indicating that as the ratio of PDAO-1/
MOL-A (r = -0.56, p value = 0.02) and/or PDAO-2/MOL-A 
(r = − 0.51, p value = 0.02) increases (suggesting a shift of 
MOL-A to PDAO-1 and/or PDAO-2), MBP levels decrease 
(Fig. 3e, f).

Trajectory inference reveals disrupted 
oligodendrocyte differentiation pathways 
in Parkinson’s disease

To understand the normal differentiation process and iden-
tify deviations from normality associated with PDAOs clus-
ters in PD, we conducted trajectory inference analyses using 
the VIA and Slingshot algorithms. To infer the normal dif-
ferentiation pathway, we considered all OL clusters except 
PDAOs, with samples from both conditions and regions. 
The differentiation process we identified is as follows: pre-
cursor cells, specifically OPCs-A, represent the original 
state and undergo differentiation into OPCs-C. These then 
further mature into COPs and immOL-B. Subsequent dif-
ferentiation toward MOLs progresses through MOL-A and 
MOL-B populations, which are implicated in the initiation 
of myelination, as evidenced by the expression of Laminin-2 
(LAMA2) and other cell adhesion molecules (CAMs). As 
differentiation advances, the MOL-F population emerges, 
characterized by the expression of genes associated with 
cholesterol metabolism, a process critical for the myelin 
sheath wrapping characteristic of mature oligodendrocytes 
(Fig. 4a). Intriguingly, we identified a previously unreported 
branch in the differentiation trajectory (Supplementary 
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Fig. 2   Quantitative analysis of oligodendrocytes and OPCs subpopu-
lations. UMAPs display the uniform distribution of cells from each 
region and condition across all subpopulations (a). UMAP repre-
senting principal oligodendrocyte (OL) and oligodendrocyte pro-
genitor cells (OPC) classes: OPCs, COPs, MOLs-OPALIN + , MOLs-
SLC5A11 + (b, Top Left). UMAP visualization depicting OLs and 
OPCs subpopulations, with distribution within subclasses based on 
transcriptomic similarity (b, Bottom Left), as illustrated in the den-
drogram (b, Right). Stacked violin plots representing marker expres-
sion profiles for each subpopulation (c). Bar plots showing the per-
centages of each subpopulation, calculated based on the total number 
of nuclei in each condition (d). Asterisks (*) indicate significantly 
altered populations based on scCODA p value of confidence (< 0.2)

◂

Fig. 6): OPC-D transitions through immOL-C to immOL-A, 
ultimately converging toward MOL-A/MOL-F. Moreover, 
immOL-C is also linked to MOL-E, suggesting a potential 
alternative pathway facilitating direct differentiation and 
maturation processes (Fig. 4a).

When analyzing all the clusters, including those PDAOs, 
and samples from both conditions and regions, we observed 
deviations in this normal differentiation trajectory. PDA 
clusters appeared to originate from specific healthy popula-
tions, exhibiting altered differentiation pathways in the dis-
eased striatum. Specifically, PDAO-1 likely emerged directly 
from MOL-A in PD striatum, reflecting a disruption in the 
normal differentiation pathway of MOL-A to MOL-B and 
MOL-F. PDAO-2 showed a more ambiguous origin, poten-
tially involving disruptions at the MOL-A and/or immOL-B 
differentiation stages, indicative of a complex pathological 
process (Fig. 4c). In the case of PDAO-3, it appeared to 
arise from perturbations in MOL-F, suggesting PD-associ-
ated alterations in this late-stage differentiation population. 
Finally, the same applied to PDAOPCs, which originated 
from OPCs-A, highlighting disruptions in the earliest stages 
of OL lineage differentiation.

To further investigate the molecular mechanisms 
underlying these differentiation pathways, we applied 
factor analysis to pseudotime-ordered gene expression data, 
which enabled us to identify distinct genetic signatures 
underpinning the differentiation trajectories (Fig.  4c, 
Supplementary Table 4), highlighting potential molecular 
mechanisms involved in disease-associated alterations. 
Factor analysis revealed specific genetic signatures involved 
in the transitions observed in normal differentiation, 
including genes critical for myelination, cholesterol 
metabolism, and cell adhesion (LAMA4, LAMA2, MOBP, 
ERBB4). When applied to pathological trajectories, factor 
analysis highlighted specific gene dysregulations associated 
with PDA clusters, providing insights into molecular 
mechanisms disrupted by disease (Fig. 4c). These findings 
underscore the role of aberrant gene regulation in driving 
pathological deviations from normal OL differentiation.

Altered intercellular interactions 
and neurotransmitter signatures in Parkinson’s 
disease‑associated oligodendrocyte subclasses

We further aimed to examine potential intercellular commu-
nication among the identified subpopulations and to deter-
mine whether communication patterns differ between con-
trol and PD striatum. With CellChat, we evaluated outgoing 
and incoming signaling dynamics based on the expression 
of known ligand–receptor pairs across subpopulations. Our 
results revealed significant disruptions in communication 
patterns within PD-associated clusters. Specifically, the anal-
ysis demonstrated a marked reduction in the expression of 
extracellular matrix (ECM) and adhesion molecules genes, 
such as NCAM, CADM, Laminin, and CDH1, in PDAO-1 
compared to MOL-A, the latter exhibiting the highest 
expression levels of these molecules within the OPALIN+ 
class (Fig. 5a, b). These findings suggest a weakening of 
adhesion and ECM-mediated signaling in PDAOs subpopu-
lations. Indeed, there was a sharp decline in outgoing sig-
nals linked to myelination, particularly those associated with 
Laminin (LAMA2), in both PDAO-1 and PDAO-2. Further-
more, critical cell adhesion molecules (e.g., NCAM, CADM, 
and CDH1) were nearly absent in PDAO-1, highlighting 
substantial deficits in the ability of this cluster to engage in 
adhesion-based communication, likely contributing to the 
broader dysregulation of cellular networks in PD (Fig. 5b).

In contrast, cholesterol-related molecules, particularly 
within the SLC5A11+ class, were elevated in these 
subpopulations (PDAO-3, MOL-G), aligning with the 
distinct biological profile of these populations demonstrated 
with hierarchical clustering, annotation, and GSEA analyses. 
Notably, the PDAOPCs subpopulation exhibited the lowest 
levels of general communication molecules among precursor 
cells, further suggesting disrupted intercellular interactions 
in early-stage OL precursors in PD (Fig. 5b).

Another striking finding from the CellChat analysis 
was the distinct upregulation of glutamate-related 
signaling molecules in OPC subpopulations, particularly 
in PDAOPCs. This observation prompted a deeper 
investigation into neurotransmitter signaling profiles across 
OL subpopulations (Fig. 5c). While the most pronounced 
differences were observed between OPCs and MOLs, key 
neurotransmitter-associated genes were also found to be 
differentially expressed in PD-specific clusters. For instance, 
CHRNA10 and GABRG1 were highly expressed in PDAO-
2, while GABRR2 was significantly upregulated in both 
PDAO-1 and PDAO-2. These findings point to a distinct 
alteration in neurotransmitter signaling in PD-associated 
OLs, likely contributing to their functional deficits.
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Fig. 3   Gene Set Enrichment Analysis and MBP expression in PD-
associated oligodendrocytes subpopulations. Each panel displays 
Normalized Enrichment Scores (NES) for clusters/superpathways 
derived from GSEA results, grouped by the cell type in which they 
are upregulated and based on the comparison they are related to 
(PDAO-1 vs MOL-A, PDAO-2 vs MOL-A, PDAO-3 vs MOL-F, 
PDAOPCs vs OPCs-A). Dot plots within each facet represent NES 
values per cluster for that specific cell type. Superpathways were fil-
tered based on an FDR < 0.05 and an absolute NES value > 0.5 (a). 
Heatmap illustrates the distribution of NES values obtained from 
GSEA superpathways across the studied subpopulations for the top 
20 clusters, including the 10 most positively and 10 most negatively 
enriched clusters based on NES magnitude. Rows represent GSEA-
derived superpathways, while columns correspond to subpopulations 
of interest. Each cell reflects the NES for a given superpathway-cell 
type combination, with the color gradient indicating the level of 
enrichment (b). Immunohistochemical analysis of MBP in the Pu 
region under control and PD conditions. Scales are set at 100  μm 
for the low power images and at 20 μm for their insets (c). Boxplots 
illustrating the distribution of MBP expression in control and PD 
conditions. p value = 0.047, t = 2.11 (d). Scatter plot depicting the 
correlation between the ratio of PDAO-1 to MOL-A cells and MBP 
expression. r = − 0.56, p value = 0.02 (e). Scatter plot showing the 
correlation between the ratio of PDAO-2 to MOL-A cells and MBP 
expression. r = − 0.51, p value = 0.02 (f)

◂

Spatial mapping reveals oligodendrocyte 
subpopulations and myelin‑related alterations 
in Parkinson’s disease

To validate the cell populations identified through 
sn-RNA-seq and further analyze other tissue-related 
variables, we employed spatial transcriptomics. This 
technique preserves the spatial organization of gene 
expression within the tissue, enabling the direct 
mapping of sn-RNA-seq-defined cell populations to their 
native anatomical contexts. By integrating these high-
dimensional data modalities, we evaluated the robustness 
and biological relevance of sn-RNA-seq-derived clusters, 
ensuring that the identified populations are spatially 
resolved and assessing whether they localize to distinct 
striatal regions or whether they correspond to distinct 
functional domains within the same region.

Through spatial transcriptomics, we profiled 435,157 
oligodendroglia cells. Using the cell2location model, we 
transferred sn-RNA-seq annotations to cells identified as 
OLs or OPCs in the spatial dataset (Fig. 6a). Analysis of 
the 366 profiled genes enabled the identification of all sn-
RNA-seq-derived subpopulations within the OL lineage 
across both CN and Pu in the spatial transcriptomic dataset 
(Fig. 6a).

A noteworthy observation was the spatial distribution 
of these subpopulations within the tissue. Neighborhood 
enrichment analysis identified four main co-localizing 
subpopulations: PDAO-1, PDAO-3, MOL-F, and MOL-G 
(Fig. 6b). PDAO-3, MOL-F, and MOL-G were charac-
terized by their maintenance of a myelin-related profile 

and appeared to be predominantly located within the WM 
tracts that cross through the striatum (Fig. 6c).

To better understand the molecular changes specific to 
PD, we conducted a Hotspot analysis to identify distinct 
gene expression modules that show significant variance 
between control and PD donors. This analysis highlighted 
two key modules with notable differences: heat shock 
protein response (HSPR) and myelination. Specifically, we 
observed a significant upregulation of the HSPR module 
in PD, accompanied by a marked downregulation of the 
myelination module, pointing to opposing trends in these 
two pathways (Fig. 6d, e).

The HSPR module, associated with cellular stress 
responses, exhibited strong correlations among genes 
encoding heat shock proteins, including HSPA1A, 
DNAJA1, HSP90AB1, and CRYAB. This module showed 
elevated activity in PD, suggesting an amplified cellular 
stress response in affected cells. Importantly, the activity 
of the HSPR module in PD was strongly correlated 
with the transcriptional signatures of PDAOs, further 
reinforcing the robustness of this finding (Fig. 6d, e).

In contrast, the myelination module, which encompasses 
genes critical for myelin formation and maintenance, 
such as MAG, MOBP, and CNTN2, was significantly 
downregulated in PD, suggesting an impairment of 
myelination processes. The reduced co-expression among 
genes in this module further underscore the disruption of 
myelin-related pathways in PD (Fig. 6d, e).

Interestingly, the activity of the HSPR and myelination 
modules appeared to be inversely related. In PD samples, 
the increased activity of the HSPR module coincided with a 
decrease in the myelination module, suggesting a potential 
trade-off between cellular stress response mechanisms and 
the maintenance of myelin. This interplay likely reflects a 
previously unrecognized critical aspect of PD pathophysiol-
ogy, where OL energy and/or machinery resources are likely 
diverted to manage stress, compromising other vital pro-
cesses like myelination (Fig. 6d).

Discussion

PD is a complex neurodegenerative disorder with no cure 
and unknown trigger in the vast majority of sporadic cases. 
Understanding the different key alterations with cell type 
specificity is crucial to develop treatments that can halt 
the progression of the disease. Traditionally, PD has been 
associated with dopaminergic neuron degeneration and 
Lewy bodies. Recently, oligodendroglia has emerged as a 
potential critical cell type in this disease [1, 13, 18, 64], 
but its involvement has not been investigated in depth. 
Characterizing the diversity of OLs and their precursors, as 
well as how they are affected in one of the most impacted 
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Fig. 4   Pseudotime analysis of oligodendrocyte differentiation and 
divergent trajectories in PD. Pseudotime UMAP generated via Sta-
Via analysis, excluding the expanded populations associated with PD. 
Arrows depict the progression of the differentiation trajectory, which 
proceeds from oligodendrocyte progenitor cells (OPCs) through 
COPs/OPCs-D, followed by immature oligodendrocytes (immOLs), 
and culminating in the transition from MOL-A to MOL-G (a, Left). 
Heatmap illustrating the expression of key genes involved in this 
differentiation process (a, Right). UMAP visualizations of differen-
tiation trajectories in PD-associated clusters. Pseudotime analysis 
highlights a convergence point at MOL-A, from which the differen-
tiation diverges into PDAO-1 and PDAO-2 clusters (b). Schematic 
representation of genes associated with differentiation pathways, trac-
ing potential origins and pathways leading to the development of PD-
associated clusters (c)

◂

brain regions in PD (the dorsal striatum), is essential for 
uncovering the mechanisms underlying oligodendroglia 
dysfunction and its contribution to neurodegeneration.

In this work, we have built the largest dataset, to our 
knowledge, of sn-RNA-seq from CN and Pu samples from 
PD and control donors, and applied one of the most recent 
and sensitive spatial transcriptomics approaches to delineate 
the main transcriptomic changes of oligodendroglia with 
their neuroanatomical correlation in this neurodegenerative 
disorder.

The complexity of OLs and OPCs has only recently been 
elucidated in specific brain regions [3, 35, 46, 74, 88]. In our 
study, we analyzed more than 200 K nuclei from CN and 
Pu of 63 donors, identifying 4 main classes and 15 distinct 
subclasses. The main classes (OPCs, COPs, OPALIN+ 
MOLs and SCL5A11+) were previously described [3, 46, 
54, 62, 64, 74, 88].

Among our subclasses, MOL-A and G (Int0 and Int3 
in Sadick et al. [62]), and immOL-B (Int4 in Sadick et al. 
[62] and FRY population in Smajic et al. [64]) have been 
previously identified. Importantly, our large study enabled 
the identification of novel subclasses, including OPCs-C, 
OPCs-D, MOL-F, and immOL-A and C, as well as those 
associated with the disease, such as PDAOPCs and PDAO-1, 
PDAO-2, and PDAO-3. While MOL-B and PDAO-2 showed 
similarities with previous described populations, they have 
a distinct transcriptomic profile (Supplementary Table 5): 
PDAO-2 share similarities with the disease-associated OLs 
(DAOs) identified in MS by Falcão et al. [24], including 
pathways involved in antigen processing and presentation 
via major histocompatibility complex class I and II (MHC-I 
and -II), and immune OLs (imOLs) from Jäkel et al. [35] 
(related to OPC1 in Falcão et al. [24]) sharing ARHGAP24 
and CTNNA2 among others. Thus, although DAOs have been 
observed in neurodegenerative diseases like MS (Falcão 
et al. [24]) and AD (Jäkel et al. [35]), the transcriptomic 
profile of PDAO-2 demonstrates unique characteristics 
(Supplementary Table 5), suggesting a disease-specific role 
in PD.

Alterations in HSPs have been associated with micro-
glia in the midbrain in PD [64] and with specific signatures 
of OLs in PD [25, 64], but their role with OLs population 
specificity has not been previously described. The elevated 
expression of HSP-related genes, including HSPA1A, 
HSPB1, and HSP90AB1, along with increased chaperone-
associated transcripts, highlights a potential role in stress 
adaptation and prevention of protein aggregation [76]. 
Intriguingly, α-syn aggregation in OLs is the neuropatho-
logical hallmark of multiple system atrophy (MSA) but is 
not a feature of PD. Trajectory inference analysis indicates 
that PDAO-1 likely derives from the MOL-A lineage and it 
exhibits significant impairments in myelination-related pro-
cesses compared to MOL-A, demonstrating a maladaptive 
response in OLs during PD progression. This includes down-
regulation of genes involved in myelin assembly—such as 
actin cytoskeleton components and adhesion molecules like 
laminins and cadherins as demonstrated with CellChat—and 
reduced neuronal communication, potentially contributing 
to the striatal WM alterations observed in PD. Although 
demyelination or remyelination failure are not established 
PD hallmarks, few works have pointed in that direction [10, 
87] and support our findings.

PDAO-2, a distinct OL subpopulation, displays an 
immunological profile, including increased expression 
of neurotransmitter receptors (GABRG1, GABRR2) and 
immune-related genes (HLA-C, HLA-A). This aligns with 
findings that OLs can acquire immune-like functions 
in neurodegeneration, including antigen presentation 
and cytokine release [24, 35]. In PD, OL may influence 
microglia and astrocyte activity, contributing to the chronic 
neuroinflammatory environment [22, 49, 50]. Furthermore, 
reduced express ion of  myel inat ion-associa ted 
communication molecules like Laminin [39] and Opalin 
[26] in PDAO-2 may indicate a shift from a supportive role 
in myelination toward an immunomodulatory function, 
as reported in other disorders like MS and AD [38, 86]. 
Thus, PDAO-2 may represent a dysfunctional OLs state 
that contributes to myelin loss and neuroinflammation in 
PD progression.

The negative correlation between MBP expression 
and the proportion of PDAO-1 and PDAO-2 underscores 
the critical role of OLs dysfunction in demyelination 
and neurodegeneration across neurological disorders, 
including PD [10, 17, 19, 27, 51, 87]. The increase of 
these subpopulations, alongside decreased MBP levels, 
suggests a shift in OL function away from myelination 
toward stress and immune responses, impairing their 
capacity to maintain and repair myelin and exacerbating 
neurodegeneration.

Two additional PD-associated subclasses, PDAO-3 
and PDAOPCs, were identified. PDAO-3, a mature OL 
population, exhibits transcriptomic alterations indicative of 



	 Acta Neuropathologica          (2025) 149:46    46   Page 18 of 24



Acta Neuropathologica          (2025) 149:46 	 Page 19 of 24     46 

Fig. 5   Disrupted intercellular communication and neurotransmitter 
signatures in PD-associated oligodendrocytes. Bar plots illustrating 
the outgoing and incoming communication strengths for each sub-
population, as determined by ligand-receptor interaction analysis (a). 
Relative signaling pathway strengths are depicted for each subpopula-
tion, highlighting distinct communication profiles (b). Heatmap dis-
playing the expression levels of neurotransmitter-associated markers 
identified in at least 50 cells within any given population, showcasing 
distinct molecular signatures across subpopulations (c) 

◂

dual roles in stress adaptation and impaired myelination. 
GSEA indicates upregulation of autophagy, sphingolipid 
metabolism, and cytokine signaling, concurrent with 
downregulation of processes like cell projection organization 
and integrin signaling. Spatial transcriptomics further 
demonstrates the enrichment of PDAO-3 in striatal WM 
tracts, underscoring its potential role in the myelin deficits 
observed in PD [33, 56], and supporting the increased 
expression of cholesterol-related molecules identified in this 
subpopulation through CellChat analysis.

PDAOPCs, a subset of OPCs, exhibit heightened activ-
ity in pathways related to mitochondrial function and 
mitophagy, coupled with enhanced antigen presentation 
capabilities, indicating an adaptive response to cellular 
stress and metabolic demands in the PD microenvironment. 
However, the reduced expression of intercellular commu-
nication molecules suggests a compromise in PDAOPCs 
ability to mature into myelinating OLs, likely contributing 
to the myelin alterations observed within Pu of PD patients. 
In addition, PDAOPCs exhibit a distinct glutamate-related 
signaling profile, implicating them in altered neurotrans-
mitter dynamics and interactions with neuronal circuits in 
PD. Together, these features point to PDAOPCs as an early, 
vulnerable oligodendroglia population whose dysfunction 
propagates broader myelin and connectivity deficits in PD.

Overall, the transcriptomic changes were more prominent 
in Pu than CN, as illustrated by changes in OL composition, 
which is consistent with the more severe reduction in TH 
and MBP immunoreactivity in Pu versus CN, as well as 
increased α-synuclein aggregations. These findings align 
with the spatio-temporal progression of the nigrostriatal 
pathway degeneration in PD [11, 60]. Pu is critically 
involved in motor control and well-established to be 
affected in PD [10, 17, 66], further supporting our findings 
and reinforcing Pu involvement in disease pathology and 
its critical role in motor control. However, it remains 
unclear whether the observed changes in OLs represent a 
primary pathogenic process in PD or arise secondarily due 
to the degeneration of dopaminergic projections. Given the 
selective vulnerability of dopamine terminals in Pu and 
the accumulation of α-synuclein, it is plausible that the 
myelinated fibers within this region undergo secondary 
degeneration, triggering the transcriptional reprogramming 

observed in OL subpopulations, with changes in GABA 
receptor expression serving as an example of how 
alterations in neurotransmitter levels might influence these 
processes. Conversely, experimental evidence demonstrates 
that α-synuclein can transfer from neurons to OLs [59], 
and α-synuclein inclusions were detected in OLs of PD 
patients [2, 79], indicating a potential primary role for 
oligodendroglial in PD pathology and reinforcing the 
presence of enriched pathways related to protein misfolding 
and proteostasis. The interplay between OL alterations, 
dopaminergic neuronal loss, and α-synuclein dynamics 
remains unresolved; however, our data point to WM 
dysfunction as a potentially underrecognized component of 
PD-related pathology in the basal ganglia.

Importantly, determining whether the affected fibers 
belong to the striatopallidal (indirect pathway) or 
striatonigral (direct pathway) projections is crucial, as 
each pathway plays a distinct and opposing role in motor 
regulation. Further experiments and approaches are needed 
to determine this. Such information could clarify which 
component of the basal ganglia circuitry is primarily 
disrupted in PD in Pu, as recent studies have identified 
the striatopallidal route as a critical component of the 
basal ganglia circuitry for motor control [44], suggesting 
that OL-associated dysfunction within this pathway could 
exacerbate motor deficits. Moreover, aberrant GABAergic 
signaling from MSNs along these fibers may impact OL 
function by altering their maturation, impairing myelination, 
or inducing immune-like phenotypes (as in the case of 
PDAO-2), particularly in regions where OL–GABA 
interactions are spatially enriched.

Our results add to a  growing body of evidence 
underscoring the critical interplay between glial 
and neuronal dysfunction in PD and suggest that 
oligodendroglial pathology may be a promising target 
for therapeutic intervention aimed at slowing or halting 
disease progression. Our transcriptomic analysis 
emerged two candidate therapeutic targets: RHO GTPase 
signaling and oxidative stress pathways, both of which are 
dysregulated in PDA OL subpopulations. Among agents 
modulating the RHO pathway, Fasudil, a ROCK inhibitor, 
is being tested in clinical trials for PD (NCT05931575) 
[83] and has exhibited both neuroprotective and 
remyelinating properties in MS [81, 83]. Moreover, 
Catalpol has shown neuroprotective efficacy in MPTP-
induced PD models [80] attributed to its capacity to 
reduce oxidative stress and promote OL regeneration 
and remyelination [70, 80]. Furthermore, Fingolimod, an 
FDA-approved therapy against MS [63], has been shown 
to exert both neuroprotective and remyelinating effects 
by enhancing OL survival and function in PD-related 
models such as those induced by rotenone and 6-OHDA 
[58, 89]. Lastly, since PD is twice as common in men 
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Fig. 6   Spatial transcriptomics reveals region-specific oligodendro-
cyte distribution and molecular signatures in PD. UMAP illustrating 
oligodendrocyte populations profiled through spatial transcriptomics, 
corresponding to the populations identified via sn-RNA-seq (a, Left). 
Spatial distribution of oligodendrocyte subpopulations across CN and 
Pu (a, Right). Heatmap depicting neighborhood enrichment patterns 
for all identified subpopulations, highlighting spatial co-localization 
(b). Spatial localization of oligodendrocyte subpopulations within the 
gray matter (GM) and white matter (WM) areas (c). These regions 
were categorized based on marker expression (c, Top). Bar plots illus-
trate the distribution of oligodendroglia subpopulations across both 
GM and WM (c, Bottom). Heatmap represents the distribution of 
module 2 (heat shock protein response, HSPR) and module 3 (myeli-
nation), demonstrating a negative correlation between these modules 
(d). Violin plots showing an increased expression of HSPR module in 
PD (e)

◂

than in women, estrogen-based therapies have been 
investigated and, although the underlying mechanisms 
remain incompletely understood, they have shown 
neuroprotective effects in PD models [61, 67]. Notably, in 
a cuprizone-induced demyelination model, treatment with 
17 β-estradiol was found to prevent both demyelination 
and OL loss [73], supporting its potential to mitigate OL 
dysfunction in PD as well.

Collectively, these findings highlight the need to unravel 
the mechanisms underlying OLs dysfunction in PD, as such 
insights are crucial for guiding the development of therapies 
that protect myelin and promote neuronal health. Moreover, 
the role of PDA populations in exacerbating neurodegenera-
tion through the disruption of essential glial–neuronal inter-
actions underscores their critical contribution to the dysfunc-
tion of the basal ganglia circuit that characterizes PD.

Conclusion

Our study provides a comprehensive characterization of 
oligodendroglia heterogeneity in the dorsal striatum of Par-
kinson’s disease, highlighting distinct disease-associated 
subtypes with impaired myelination and immune-like prop-
erties. The emergence of these dysfunctional states suggests 
that OLs are not merely bystanders but active contributors 
to PD pathology. We hypothesize that a maladaptive oligo-
dendroglia response—characterized by disrupted matura-
tion, immune activation, and myelin instability—exacerbates 
neurodegeneration and impairs basal ganglia function. Tar-
geting these pathogenic OLs states may offer novel thera-
peutic strategies to protect myelin integrity and slow disease 
progression.
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