
Received: 19 December 2024 Revised: 26 February 2025 Accepted: 13March 2025

DOI: 10.1002/alz.70170

R E S E A RCH ART I C L E

Multimodal spatial gradients to explain regional susceptibility
to fibrillar tau in Alzheimer’s disease

Ying Luan1,2 Lukai Zheng2 Jannis Denecke2 Amir Dehsarvi2

Sebastian N. Roemer-Cassiano2 AnnaDewenter2 Anna Steward2

Sergey Shcherbinin3 DianaOtero Svaldi3 Vikas Kotari3 Ixavier AlonzoHiggins3

Michael J. Pontecorvo3 Carolina Valentim2 Julia A. Schnabel4,5,6

Francesco Paolo Casale4 Martin Dyrba7 Stefan Teipel7,8 Nicolai Franzmeier2,9,10

Michael Ewers2 for the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

1Department of Radiology, Zhongda Hospital, School ofMedicine, Southeast University, Nanjing, China

2Institute for Stroke andDementia Research (ISD), University Hospital, LudwigMaximilian University (LMU), Munich, Germany

3Eli Lilly and Company, Indianapolis, Indiana, USA

4Institute ofMachine Learning in Biomedical Imaging, HelmholtzMunich, Neuherberg, Germany

5TUMSchool of Computation, Information and Technology & TUM Institute for Advanced Study, Technical University ofMunich, Munich, Germany

6School of Biomedical Engineering and Imaging Sciences, King’s College London, Strand, London, UK

7German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany

8Department of PsychosomaticMedicine, Rostock UniversityMedical Center, Rostock, Germany

9Munich Cluster for SystemsNeurology (SyNergy), Munich, Germany

10Department of Psychiatry andNeurochemistry, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden

Correspondence

Michael Ewers and Ying Luan, Institute for

Stroke andDementia Research (ISD),

University Hospital, LudwigMaximilian

University (LMU), Feodor-Lynen-Street 17,

Munich, 81377, Germany.

Email: Michael.ewers@med.uni-muenchen.de

and yingluan@seu.edu.cn

Funding information

National Natural Science Foundation of China,

Grant/Award Number: 82202131;

Bundesministerium für Bildung und Forschung,

Grant/Award Number: 01KU2203; National

Institutes of Health, Grant/Award Number:

U01 AG024904; Department of Defense,

Grant/Award Number:W81XWH-12-2-0012;

National Institute on Aging; National Institute

of Biomedical Imaging, and Bioengineering

Abstract

INTRODUCTION: In Alzheimer’s disease (AD), fibrillar tau gradually progresses from

initial seed to larger brain area. However, those brain properties underlying the region-

dependent susceptibility to tau accumulation remain unclear.

METHODS: We constructed multimodal spatial gradients to characterize molecular

properties and connectomic architecture. A predictive model for regional tau depo-

sition was developed by integrating embeddings in the principal gradients of global

connectome gradients with gene expression, neurotransmitters, myelin, and amyloid-

beta. The model was trained on amyloid-beta–positive participants from Alzheimer’s

Disease Neuroimaging Initiative (ADNI) and externally validated in independent

datasets.

RESULTS: The combination of gradients explained up to 77.7% of cross-sectional and

77.3% of longitudinal inter-regional variance of tau deposition. Gene set enrichment
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analysis of a major gene expression gradient points to synaptic transmission to confer

increased susceptibility to tau.

DISCUSSION: Our findings reveal a spatially heterogeneous molecular landscape

shaping regional susceptibility to tau deposition, presenting a powerful system-level

explanatorymodel of tau pathology in AD.

KEYWORDS

Alzheimer’s disease, functional connectivity, gene expression, multimodal gradients, predictive
model, neurotransmitters, tau positron emission tomography

Highlights

∙ Spatial gradients of fundamental molecular brain properties associated with tau

pathology.

∙ The explanatory power showed high consistency across studies.

∙ Genetic analyses suggested that synapse expression plays a vital role in tau

accumulation.

1 BACKGROUND

Alzheimer’s disease (AD) is the leading cause of dementia in individ-

uals over 65 years.1 Hallmark pathologies include the deposition of

the amyloid-beta (Aβ) plaques and fibrillar-tau tangles in the brain.

In particular, fibrillar tau is closely associated with neuronal loss and

cognitive decline2 and, thus, constitutes a key driver of dementia

symptoms inAD. Fibrillar tau gradually accumulates in thebrain, occur-

ring first preferentially in the medial temporal lobe, before spreading

to neocortical areas, with sensorimotor cortices remaining relatively

spared until late stages.3–5 However, those factors that underlie a

region-specific gradual progression of tau pathology in AD have not

beenwell understood todate, presentingan important researchgap for

two reasons: First, we need better explanatory models of tau progres-

sion toward individualized prediction of disease progression. Second,

the identification of brain features that contribute to the regional sus-

ceptibility to tau pathology paves the way to identify novel treatment

targets to halt the progression of tau in the brain. Therefore, an urgent

need remains for developing comprehensive models to understand

how local tissue properties and global brain architecture drive regional

progression of tau pathology in AD.

Great progress has been made during recent years in modelling tau

patterns as a function of the brain’s connectome.6 Findings from mul-

timodal imaging matching tau-deposition to networks of connected

brain regions suggest that fibrillar tau is preferentially increased in

those brain regions that are closely connected to “epicenters” in which

fibrillar tau pathology emerges early in the disease.7–9 These obser-

vations suggest that tau progresses from initial seed regions of tau to

other brain regions along functional and structural connections, poten-

tially arising from trans-synaptic transmission and spreading along

axonal connections observed in neuronal culture and in vivo mouse

models.5,10,11 However, recent findings from longitudinal modelling

studies suggest that in addition to connectivity-dependent spread

of tau, the rate of local tau production is an important factor in

driving regional tau accumulation.12 Consequently, a recent frame-

work for modelling tau progression calls for the need to integrate

regional susceptibility factors and connectivity to explain regional

tau patterns.13 Along these lines, recent studies employing transcrip-

tomic gene expression maps from the human brain demonstrated that

regional expression of MAPT and AD-risk genes are associated with

regional tau deposition in AD,14–16 and contributes to explain regional

tau–positron emission tomography (tau-PET) deposition levels.17,18

However, a systematic evaluation of combined local molecular tissue

properties and connectivity to uncover factors that shape regional

vulnerability to tau deposition in AD remains to be conducted. The

availability of brain maps charting the rich tissue texture composed

of features such as transcriptomic gene expression,19 neurotransmit-

ter systems,20 glucose consumption, and myelination21,22 provides

an unprecedented opportunity to investigate the susceptibility to

pathologies in aging and disease.23–25 Here, we computed spatial gra-

dients of the brain’s molecular and connectomic architecture,26 and

employed gradient distance from epicenter of tau to explain regional

differences in the susceptibility to tau deposition. We used gene set

enrichment analysis applied to the most important gene expression

gradients to identify biological pathways associated with tau depo-

sition. We thus aimed to enhance the explanatory power of local

tau deposition and to discover pathways that are conducive to tau

deposition.
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2 METHODS

2.1 Participants

2.1.1 Alzheimer’s disease neuroimaging initiative
(ADNI)

ADNI is an observational multicenter study on the investigation of

biomarker and cognitive changes in Alzheimer’s disease,27 where

the data are freely available to researchers (http://adni.loni.usc.edu/).

We included 351 participants with abnormal global amyloid-PET

binding (Aβ+), including 153 cognitively normal (CN), 128 partici-

pants with mild cognitive impairment (MCI), and 70 AD dementia

patients fromADNI (recruitment wave 3) based on availability of base-

line T1-weighted MRI, 18F-florbetapir (AV-45) or 18F-florbetaben

amyloid-PET, andat least one18F-flortaucipir (AV-1451) tau-PET scan.

The T1-weighted MRI, amyloid-PET, and the first flortaucipir image

were obtained within the same study visit. Apart from these sam-

ples with tau-PET scans, we included two additional samples from

ADNI for the computation of gradient images to be used later for

the prediction of tau-PET regional values (see section “Calculation

of multimodal gradient distance” below), comprising 18F-florbetapir

amyloid-PET scans from an additional 467 Aβ+ subjects and 18F-

fluorodeoxyglucose (FDG)-PET images from 211 CN Aβ- subjects.
The clinical diagnostic criteria in ADNI were described previously.28

The Aβ status (Aβ+) was quantitatively determined according to

pre-established cutoff values for abnormal global amyloid-PET accu-

mulation (Aβ+, florbetapir PET standardized uptake value ratio

[SUVR] > 1.11, or global florbetaben PET SUVR > 1.08 as deter-

mined by the ADNI PET core group; for details see https://tinyurl.com/

3jjn7mu7 and https://tinyurl.com/5yfe9rny).

2.1.2 Anti-amyloid treatment in asymptomatic
Alzheimer’s study (A4)

As an independent validation sample, 392 Aβ+ CN subjects who com-

pleted 18F-florbetapir PET and 18F-flortaucipir PET were included

from the baseline assessment in the A4 study, which is a com-

pleted clinical trial on the effect of the anti-amyloid investigational

drug solanezumab against cognitive decline in Aβ+ cognitively nor-

mal elderly individuals.29 Aβ+ was defined as global florbetapir PET

SUVR> 1.15.30 The SUVR of 1.10–1.15was considered to be Aβ+ only

when a visual reading of images was also considered to be positive by a

two-reader consensus determination.30

2.1.3 The Avid 18F-AV1451-A05 study (A05)

We includeda total of 148Aβ+ subjectswithMCIorADdementia from

an observational clinical trial “18F-AV1451-A05” (henceforth referred

to “A05”; NCT0201650).31,32 The sample comprised 83 MCI Aβ+ and

65ADdementiaAβ+ patients (for the clinical diagnostic criteria see).32

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed relevant liter-

atures by searching in PubMed. The current study builds

on prior studies relating the human connectome or gene

expression to spatial patterns of tau deposition patterns

in Alzheimer’s disease (AD). However, a comprehensive

mapping of diverse regional brain properties and con-

nectomics to explain tau pathology has been lacking so

far.

2. Interpretation: A multimodal cross-validated gradient-

based model was developed that could substantially

increase explained variance in regional tau–positron

emission tomography (tau-PET) accumulation in AD. The

results suggest a disease-stage dependent contribution

of different brain properties to regional susceptibility of

tau pathology that is shaped by a complex molecular and

connectomic landscape.

3. Future directions: Further studies are needed to trans-

late the predictive model combining multimodal proper-

ties into clinical applications to better understand the

heterogeneity of AD at the individual level and advance

personalizedmedicine.

TheAβ statuswas determined based on visual rating of florbetapir PET

images by two experienced readers.31,32 The study was approved by

the centers’ institutional reviewboards. All subjects or their authorized

representatives provided signed informed consent.

All studies were conducted in accordance with the Declaration of

Helsinki and the International Conference on Harmonization (ICH)

good clinical practice (GCP) guideline. Ethical approval was obtained,

and written informed consent was completed by all participants prior

to participation.

2.2 Study design

As shown in Figure 1A. The 351 Aβ+ subjects from ADNI were ran-

domly split, with 70% of the subjects as a training sample (n= 246) and

30% of the subjects as a test sample (n= 105). There was no significant

difference in age, sex, years of education, apolipoprotein E (APOE) ε4
status, or clinical classification (CN,MCI, or ADdementia) between the

training and test samples. The training sample was used for predictor

selection and model training, while the ADNI test sample, and the A4

and A05 data were used for validation. All analyses were performed

by stratifying based on clinical diagnosis. For cross-sectional analyses,

CN Aβ+ and MCI/dementia Aβ+ subjects in the ADNI training sample

were used separately for parameter estimation resulting in disease

stage specific models, and CN Aβ+ subjects of A4 and MCI/dementia

Aβ+ subjects of A05 samples were used for external validation,
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F IGURE 1 Flow-chart of the analysis pipeline. (A) Subjects fromADNIwere randomly split into a training sample (n= 246) and a test sample (n
= 105). In the ADNI training sample, stepwise linear regression was performed to select those predictors which significantly contribute to
prediction. For the final model, the coefficients of the predictors were averaged across folds and applied to the non-seen validation samples
including ADNI-test, A4, and A05 to assess the prediction performance. (B) Calculation of epicenter-based gradient distance. Tau epicenters were
defined as top 10%ROIs showing highest tau-PET levels in the ADNI training sample. For each gradient, the epicenter-based gradient distance was
computed as the average absolute difference of the gradient values between tau epicenter ROIs and each ROI across the brain. ADNI, Alzheimer’s
Disease Neuroimaging Initiative; ROI, region of interest.
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respectively. Longitudinal tau-PET data in both training and validation

data sets were available in a subset of MCI Aβ+ subjects, including 58

subjects from the pooledADNI dataset (training sample) and in 46MCI

Aβ+ fromA05 (external validation sample).

2.3 Multimodal neuroimages

2.3.1 MRI and PET acquisition

For the ADNI data set, all MR images were acquired on 3T MRI scan-

ners according to a standardized protocol with a three-dimensional

(3D) T1-weighted MPRAGE sequence with 1-mm isotropic voxel size

(http://adni.loni.usc.edu/wp-content/uploads/2017/07/ADNI3-MRI-

protocols.pdf). Tau-PET was recorded 75–105 min (six 5-min time

blocks) after injection of the 18F-flortaucipir tracer. The tau-PET

images were realigned and averaged into a single image for each sub-

ject (see http://adni.loni.usc.edu/methods/pet-analysis-method/pet-

analysis/#pet-pre-processing-container). Amyloid-PET scans were

acquired during 4 × 5 min frames measured 50–70 min post injection

of the 18F-florbetapir tracer, or 90–110 min post injection of 18F-

florbetaben tracer. The partially preprocessed amyloid-PET images

with standard orientation, voxel size, and resolution were downloaded

from the ADNI data bank (http://adni.loni.usc.edu/methods/pet-

analysismethod/pet-analysis/). FDG-PET data were acquired dur-

ing 6 × 5 min frames started 30 min post injection. The partially

preprocessed images with standard orientation, voxel size, and res-

olution were downloaded (http://adni.loni.usc.edu/methods/pet-

analysismethod/pet-analysis/). For the A4 study, 3D T1 weighted

images were acquired on 3T scanners across clinical sites. Tau-PET

was acquired using the 18F-flortaucipir tracer. Amyloid-PET scans

were acquired 50 min after injection of 10 mCi of the 18F-florbetapir

tracer. For the A05 study, structural 3D T1-weighted MRI images

were acquired across clinical sites. 18F-flortaucipir PET images were

acquired 80-100 min after tracer injection (in four 5-min frames)

and averaged into subject-level single images. Twomin long frames of

amyloid-PET scans were acquired for 10 min, beginning 50 min after

injection of 370MBq of the 18F-florbetapir tracer.

2.3.2 MRI and PET processing

All images were screened for artifacts before preprocessing, and pro-

cessing was conducted independently for each sample (i.e., ADNI

vs. A4). T1-weighted structural MRI scans were bias-corrected, seg-

mented, and non-linearly warped to Montreal Neurological Institute

(MNI) space using the CAT12 toolbox (https://neuro-jena.github.io/

cat12-help/). Dynamically acquired PET images were realigned and

averaged to obtain single images, which were rigidly registered to

the T1-weighted MRI scan. Reference regions (i.e., eroded cerebral

whitematter for flortaucipir, whole cerebellum for florbetapir, pons for

FDG-PET)33,34 and the cortical Schaefer atlas including 200 regions

of interest (ROIs) were warped from MNI to T1-native space, using

the CAT12-derived non-linear normalization parameters. The Schae-

fer atlas was masked with subject-specific gray matter and applied to

PET data to determine SUVRs for each region of the 200 ROIs.35 ROI

harmonization was performed for PET data from ADNI using the neu-

roCombat toolbox to remove potential effect of site and scanner.36

ROI-to-ROI pairwise Spearman correlations across subjectswere com-

puted each for amyloid-PET (n = 467 Aβ+ subjects from ADNI) and

FDG-PET (n = 211 CN Aβ- subjects from ADNI), resulting in a single

200 × 200 matrix each for the amyloid-PET and FDG-PET modality

for the computation of gradient maps as described below in the sec-

tion of “Calculation ofmultimodal gradient distance”. For theA05data set,

all MR and PET images were preprocessed in Avid Radiopharmaceuti-

cals as describedpreviously.31,32 Briefly, structural T1weighted images

underwent tissue segmentation and spatial normalization to standard

MNI space using the SPM8 algorithm. Tau-PET images were co-

registered to individual T1-weighted images and spatially normalized

toMNI spacewith FMRIB’sNonlinear ImageRegistrationTool (FNIRT).

SUVR values were calculated by intensity normalization with infe-

rior cerebellar gray as the reference region. ROI-level tau-PET values

were subsequently extracted based on the 200 cortical-ROI-Schaefer

atlas.

2.3.3 Functional connectivity

To generate a functional network connectivity template, we down-

loaded the minimally preprocessed 3T resting-state fMRI images

from 1000 subjects of the Human Connectome Project (HCP, http://

www.humanconnectomeproject.org/). As described previously,7 all

fMRI data further underwent the following preprocessing procedures:

detrending, band-pass filtering (0.01–0.08 Hz), despiking, and motion

scrubbing (i.e., the volumes with framewise displacement exceeding

0.5 mm together with one preceding and two subsequent volumes

were replaced with zero-padded volumes). The mean timeseries were

extracted for each ROI from Schaefer 200-ROI fMRI atlas by averag-

ing the signal across the voxels within each ROI. Fisher-z transformed

Pearson-moment correlations between the fMRI BOLD time series

between each pair of the ROIswere calculated to generate a functional

connectivity matrix for each subject. To obtain a single, represen-

tative connectivity template (200 × 200 ROIs), the group average

connectivity matrix across the 1000HCP subjects was computed.

2.3.4 Gene expression

Whole-brain gene expression maps of a total of 18,686 genes were

downloaded (http://www.meduniwien.ac.at/neuroimaging/mRNA.

html), where themRNA levels of each genewere interpolated through-

out the brain cortex in MNI space as described previously.37 In brief,

the microarray data obtained from the Allen Human Brain Atlas

(AHBA)38 underwent the following processing: (1) spatial registration

to MNI space; (2) inter-hemispheric registration; (3) two-step probe

selection based on correlation with each other (Pearson r > 0.3) and
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spatial variability of the variogram modelling; (4) averaging across

probes; (5)mean-centering normalization across donors; (6) prediction

of mRNA levels at voxel level by fitting a variogram model. This ren-

dered spatial brainmaps for each gene inMNImaps. Subsequently, ROI

values of gene expression were obtained by superimposing the 200

ROI Schaefer atlas,35 which is also in MNI space, onto each of 18,686

gene expression maps to obtain ROI values. To assess the spatial

correspondence of regions’ gene expression with that of the average

tau-PET uptake in patients with AD, we averaged the 200 Schaefer-

ROI tau-PET values across patients in the ADNI training sample,

rendering group-average tau-PET ROI values that spatially matched

those of the gene expression maps. Next, we computed Spearman

correlations between the 200 tau-PET ROI values and the spatially

corresponding ROI values of each gene expression map, rendering a

distribution of in total 18,686 correlation coefficients. We defined the

5% of correlation coefficients at the lower and higher extreme ends of

the distribution of correlation coefficients as those that show a close

association between regional gene expression and tau-PET values. The

thus selected genes with correlation coefficients in the top 5% of the

were retained, and a ROI-to-ROI pairwise Spearman correlation of

mRNA expression across those tau-correlated genes were computed

to obtain a gene expression similarity matrix.

2.3.5 Neurotransmitter receptors and transporter

A total of 19 receptors and transporters group-averaged PET images

were obtained from healthy participants from previous PET tracer

studies. The associated receptor or transporter, tracer, sample size,

age, and reference region can be found in Table S1. More details

of each study were described previously.20 These receptors and

transporters include serotonin (5-HT1A, 5-HT1B, 5-HT2A, 5-HT4, 5-

HT6, 5-HTT), acetylcholine (α4β2, M1, VAChT), dopamine (D1, D2,

DAT), norepinephrine (NAT), glutamate (mGluR5), histamine(H3), opi-

oid (MOR), γ-aminobutyric acid (GABAA), and cannabinoid (CB1).
20 All

PET images that had been spatially normalized to the MNI space were

downloaded from https://github.com/netneurolab/hansen_receptors.

For those receptors and transporters with more than one mean image

of same tracer (i.e., 5-HT1B, D2, mGluR5, and VAChT), combined den-

sities were calculated as weighted averages. ROI-level values of each

PET modality were extracted for each of the 200-Schaefer-atlas ROIs

and z-scored. ROI-to-ROI pairwise Spearman correlation matrices

were computed across neurotransmitter PET scans.

2.3.6 Assessment of cortical myelin water fraction
(MWF)

As described previously,22 cortical myelination was measured based

on a normative MWF atlas obtained from myelin water imaging of 30

healthy individuals (mean age 25 years).21 The regional mean MWF

was extracted within each of the 200 Schaefer-atlas ROIs.

2.4 Calculation of multimodal gradient distance

The concept of spatial “gradient” in the current study refers to the

changes in large-scale spatial similarities of brain properties. For exam-

ple, brain regions candifferwith respect to the expressionof genes, and

the gradient describes the gradual change in the similarity of the gene

expression between brain regions. Note that the spatial gradient can

be distributed across multiple brain regions, where brain regions dis-

tant apart from each other can show high similarity which gradually

changes when moving to other brain regions, thus forming a large-

scale spatial gradient. The given brain property is maximally different

at opposite ends of the gradient, for example, functional connectiv-

ity of the default mode network regions is located at one end of the

gradient and opposes that of unimodal brain regions on the opposite

end.39 Gradient analysis captures the spatial axis alongwhich such sim-

ilarities change,40 and has been applied to multiple brain properties

such as gene expression, neurotransmitter distribution, cytoarchitec-

ture, etc.20,41–43 (for review, see26). We generated multimodal gradi-

ent maps for all the correlation matrices of functional connectivity,

gene expression, amyloid-PET, FDG-PET, neurotransmitter PET using

BrainSpace toolbox (http://brainspace.readthedocs.io/),40 as shown in

Figure S1. Briefly, the input correlation matrix was thresholded at

the sparsity of 10%, and a cosine similarity matrix was computed. To

reduce dimensionality, a non-linear diffusion embedding algorithmwas

employed, allowing for measuring the gradual ordering of a specific

feature within a lower-dimensional manifold space.39 The BrainSpace

default setting of the amount of 10 gradients was kept. In order to

compute gradient-based distance to the tau-epicenter, we adopted our

previously developed approach of connectivity-based distance to tau

epicenters.7 Tau epicenterswere defined as top 10%ROIs that showed

the highest tau-PET levels among 200 cortical ROIs (i.e., n = 20). For

each gradient, tau epicenters at baseline were projected onto gradi-

ent maps. The epicenter-based gradient distance was computed as the

average absolute difference of the gradient values between tau epi-

center ROIs and each ROI across the brain,44 yielding epicenter-based

gradient distance (Figure 1B). The gradient distance values were con-

verted to their reciprocals and then used as the predictors for the

predictive model. For the prediction of annual change rate of tau-PET

values, the reciprocals of gradient distancewere additionally weighted

by the baseline regional tau-PET values.

2.5 Gene ontology (GO) enrichment analysis and
protein-protein interaction (PPI) network

Next, we aimed to explore the potential biological substrates of the

gene expression gradients which were predictive of tau accumula-

tion. In a first step, we determined which of the genes were highly

expressed on a given gene-expression gradient that was found to be

closely associated with tau-PET. To this end, we performed a spa-

tial correlation using Spearman correlation between the ROI values

of the gene expression gradient and the spatially corresponding ROI
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values of gene expression of a given single gene. This was done for

each single gene that ranked within the top 5% of genes showing a

high spatial correlation (i.e., 934 of 18,686 genes, for more details see

“Gene expression” section). To account for the spatial autocorrelation,

the significance was determined by comparing the empirical spatial

similarity (i.e. Spearman rho value) against the null distribution of rho

values derived from 1000 spatial permutations (“spin test”) according

toVasa’smethod45 using theNeuromaps toolbox,46 where1000surro-

gate maps of the gene expression gradient map were generated while

maintaining the spatial autocorrelation. Only genes demonstrating sig-

nificant correlations (pspin < 0.05, false discovery rate [FDR] corrected)

were retained for subsequent GO enrichment analysis and the PPI

network. The GO analysis was performed using the clusterProfiler

package implemented in R. The significant GO terms were identified

by p < 0.05 corrected by FDR. The data for creating the PPI network

were retrieved from the STRING database (http://string-db.org) with a

high confidence of 0.7. The construction and visualization of the net-

work was performed by Cytoscape 3.3.0. Top 10 nodes with maximal

degree centrality were visualized.

2.6 Statistical analyses

Within each sample, baseline demographics were compared between

groups using analyses of variance (ANOVAs) or t-test for continuous

and chi-squared tests for categorical variables.

2.6.1 Predictor selection with stepwise linear
regression

In order to select those predictors that significantly contribute to the

prediction of tau-PET levels, a stepwise linear regression was applied.

Within the ADNI training sample, all 51 predictors (i.e., 5 imaging

modalities x 10 gradients + 1 myelin MRI template) were iteratively

entered into the linear regression model. The sequence of input was

determined by the coefficients of spatial correlation between individ-

ual predictor and group-average tau-PETmap in ADNI training sample.

Inorder toaccount for similaritydue to spatial autocorrelation,wecon-

ducted spatial-autocorrelation-preserving permutation tests, where

the corrected p-value (pspin) was determined based on the null distribu-

tion of R2 resulting from 1000 spatial permutations. Those predictors

that showed a significant improvement of variance explained by the

model (pspin < 0.05) remained in themodel.

2.6.2 Group-level training strategy and
cross-validation

For prediction at group level, we trained the models in the ADNI train-

ing sampleusing five-fold cross-validation topredict the spatial pattern

of thegroup-averaged tau-PET levels, and in separateanalyses–annual

change rates of tau-PET. To determine longitudinal tau-PET change,

we employed linear regression models of tau-PET levels against time

from baseline to derive the slopes for each subject. The ADNI train-

ing sample was randomly divided into five folds of equal sample size.

For each of the five folds, one test fold was held out, and the remain-

ing folds were pooled as training data. The process was repeated for

200 iterations. For each iteration, selected features were fit in a linear

regressionmodel. The averageparameters across1000 iterationswere

used to establish a final linear regression model. The predictive per-

formance of the final model was separately tested in the pooled ADNI

training sample, and external samples.

2.6.3 Subject-level prediction

We assessed prediction model performance at the subject level for

cross-sectional tau-PET levels and longitudinal tau-PET change rate.

For each subject, the epicenter was individually identified on the

subject-level tau-PET scan (rather than the group-averaged tau-PET

scan), and the gradient distances to epicenters were computed. The

distribution of model performance metric (R2 values) was reported as

the means together with the 95% confidence intervals (CIs) across all

subjects in each dataset.

The cross-sectional analyses were separately replicated in females

andmales to evaluate the effect of sex on the results.

3 RESULTS

3.1 Sample characteristics

Baseline demographics and clinical characteristics of the Aβ+ partici-

pants stratified by status of the presence of cognitive impairment (MCI

and AD dementia) are shown in Table 1. The ROI-wise group-average

tau-PET SUVRs and rates of change rendered on the brain surface are

shown inFigure2, including thebaseline tauepicenterswhichprimarily

covered bilateral inferior temporal cortex.

3.2 Spatial gradients to explain group-level
tau-PET deposition

Next, we performed stepwise linear regression with spatial-

autocorrelation-preserving permutation to select the gradient maps

among the different modalities (gene expression, neurotransmitter,

functional connectivity, amyloid-PET, FDG PET, myelin image) that

significantly contribute to the prediction of group-average tau-PET

levels in CN Aβ+ and symptomatic Aβ+ participants (MCI/dementia).

In order to obtain a final predictive model, the coefficients of each

selected predictors were estimated and averaged across 1000 cross-

validation folds. Epicenters of tau were identified based on the ranking

of ROIs of tau-PET images averaged within each group. In CN Aβ+
participants, eight predictors consisting of gradients of neurotrans-

mitter, functional connectivity, gene expression, and levels of myelin

 15525279, 2025, 5, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.70170 by H

elm
holtz Z

entrum
 M

uenchen D
eutsches Forschungszentrum

, W
iley O

nline L
ibrary on [12/05/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://string-db.org


8 of 17 LUAN ET AL.

TABLE 1 Sample characteristic.

ADNI

CNAβ+
(n= 153)

MCI Aβ+
(n= 128)

Dementia Aβ+
(n= 70) p-value

Age (M/SD) 72.26 (6.68) 72.52 (6.99) 74.32 (7.89) 0.117

Sex (f/m) 93/60 57/71 29/41 0.005

Education (M/SD) 16.58 (2.35) 16.05 (2.55) 15.60 (2.49) 0.016

ApoE ε4 status(pos/neg) 74/75 71/42 45/21 <0.001

Mean tau-PET follow-up

time in years (M/SD)a
1.67 (0.79)

A4/A05

A4 CNAβ+
(n= 388)

A05MCI Aβ+
(n= 83)

A05Dementia

Aβ+ (n= 65)

Age (M/SD) 72.08 (4.79) 73.62 (9.22) 74.43 (9.61) 0.597b

Sex (f/m) 221/167 36/47 35/30 0.271b

Education (M/SD) 16.15 (2.85) 15.63 (2.19) 15.77 (2.19) 0.705b

ApoE4 status(pos/neg) 219/162 42/40 41/22 0.133b

Mean tau-PET follow-up

time in years (M/SD)a
1.17 (0.38)

Abbreviation: Aβ, amyloid-beta; ADNI, Alzheimer’sDiseaseNeuroimaging Initiative; ApoE ε4, apolipoprotein E ε4;CN, cognitively normal;MCI,mild cognitive

impairment; PET, positron emission tomography;
aSubsample of 58MCI Aβ+ in ADNI, and 46MCI Aβ+ in A05with follow-up tau-PET available.
bGroup comparisons betweenMCI Aβ+ and dementia Aβ+ in A05 sample.

contributed to the prediction of tau-PET levels (Figure 3A, Table S2).

The model combining these gradients explained 76.8% (pspin < 0.001)

of the regional tau-PET in the ADNI training sample (n = 107), 72.1%

(pspin < 0.001) in the unseen ADNI validation sample (n = 46), and

67.6% (pspin < 0.001) in the independently recruited sample of the A4

study (n= 392, Figure 3B).

In MCI/dementia Aβ+ participants, 9 predictors consisting of gra-

dients of functional connectivity, neurotransmitter, gene expression,

amyloid-PET, FDG-PET, and myelin contributed to the prediction of

tau-PET levels (Figure 4A, Table S2). The combined model explained

77.4% (pspin < 0.001) in the ADNI training sample (n = 139), 77.7%

(pspin < 0.001) in the ADNI validation sample (n = 59), and 73.0%

(pspin < 0.001) in the A05 study (n= 148) (Figure 4B).

The spatial coverage of each of the predictive gradient images

with regard to large-scale functional networks is shown in Figures 3C

and 4C. Visual inspection shows that each gradient shows a unique

distinct spatial distribution, suggesting that the different modali-

ties contribute in a region-specific manner to the tau susceptibility.

A substantial proportion of gradients contribute to regional tau-

susceptibility across both asymptomatic and symptomatic phases of

AD, where a neurotransmitter gradient spanning the limbic versus

fronto-parietal-control network space (G2) and the functional con-

nectivity gradients anchored in the motor network (G1). In contrast,

gradients of amyloid deposition (G1) were predictive only in the symp-

tomatic phase, suggesting a later involvement of amyloid in underlying

spreading of tau-pathology.

The predictors contributing to the prediction of tau-PET levels esti-

mated separately in females and males were largely consistent with

those in pooled sample (Figures S2A and S3C). The models explained

71.4%–80.6% variance of the regional tau-PET in females and males

across different diagnostic groups and samples (Figures S2B and S3D).

3.3 Multimodal gradient distance-based
prediction of subject-level tau-PET levels

Next, we tested whether the group-derived predictive model can

explain the individual heterogeneity of tau-PET accumulation across

subjects. To this end, we defined for each subject the individual tau epi-

centers and calculated the gradient distance to individual epicenters,

then tested the prediction performance of the group-derivedmodel for

subject-level tau-PET SUVRs. The predictive model explained on aver-

age 37.4% (95%CI: 30.2%–44.5%), 29.3% (95%CI: 20.6%–38.0%), and

37.0% (95% CI: 33.3%–40.7%) variance of tau-PET levels in CN Aβ+
participants fromADNI training, ADNI test andA4 sample respectively

(Figure 5A). While in MCI/dementia Aβ+ participants, the predictive

model increased the proportion of explained variance in ADNI training

(mean R2: 40.3%; 95% CI: 33.6%–47.1%), ADNI test (mean R2: 40.0%;

95% CI: 29.6%–50.5%), and A05 sample (mean R2: 41.4%; 95% CI:

34.7%–48.1%, Figure 5B). The sex-specific models explained on aver-

age32.9%–41.7%variance of individual tau-PET levels across different

diagnostic groups and samples (Figure S4).
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LUAN ET AL. 9 of 17

F IGURE 2 Group-average and annual change rate of tau-PET SUVRs. Averagemaps of tau-PET SUVRs are shown as continuous values in CN
Aβ+ participants, andMCI and dementia Aβ+ participants in ADNI training (A), ADNI test (B), A4 (C), and A05 (D) samples. Averagemaps of
baseline tau-PET SUVRs and annual change rate of tau-PET SUVRs are shown as continuous values inMCI Aβ+ participants in ADNI (e) and A05
(f). Tau epicenters at baseline were shown in outlined white. Aβ, amyloid-beta; ADNI, Alzheimer’s Disease Neuroimaging Initiative; CN, cognitively
normal; MCI, mild cognitive impairment; PET, positron emission tomography; SUVR, standardized uptake value ratio.

3.4 Multimodal gradient distance-based
prediction of group-level tau-PET annual change
rates

Lastly, we extended the same approach to longitudinal tau-PET data.

Results showed nine predictors consisting of gradients of neuro-

transmitter, gene expression, FDG-PET, amyloid-PET, and functional

connectivity made significant contributions to the prediction of tau-

PET annual change rates (Figure 6A, Table S3). The predictive model

explained 77.3% and 48.1% variance of tau-PET annual change rates in

MCI Aβ+ participants fromADNI and – for validation—the A05 sample

(Figure 6B,C).

3.5 Gene set enrichment analyses and PPI

Finally, we investigated which biological pathways are associated with

the gene expression gradients that were found to contribute to the

explanation of tau-PET deposition. For gene expression gradient G2

that was associated with early tau deposition in CN Aβ+ individuals,
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10 of 17 LUAN ET AL.

F IGURE 3 Contributions of multimodal gradient distances to group-mean tau-PET levels. (A) Rank-ordered average coefficients from
cross-validation of features selected by stepwise linear regression for predicting group-average tau-PET levels in CNAβ+. (B) Scatterplots show
the association between predicted group-average tau-PET levels against the observed group-average tau-PET levels in CNAβ+ participants in
ADNI training, ADNI test, and A4 sample. The pspin stands for the p values corrected by spatial-autocorrelation-preserving permutation tests. (C)
Surface renderings show the spatial pattern of selected features. The radar charts show the distribution of mean gradient values in each canonical
functional network. Aβ, amyloid-beta; ADNI, Alzheimer’s Disease Neuroimaging Initiative; CN, cognitively normal; PET, positron emission
tomography.

GO analysis showed that biological pathways strongly converged

on synaptic function (Figure 7A–C). PPI analysis suggested that the

genes highly expressed in G2were associated with synaptic processes,

including genes encoding post-synaptic density proteins (i.e., DLG4),

pre-synaptic proteins (i.e., SYN1, SYN2, SYT1, STX1A & RIMS1),

NMDA receptors (i.e., GRIN2B), growth factor (i.e., brain-derived

neurotrophic factor [BDNF]), or neurexin/neuroligin (i.e., NRXN2 &

NLGN1, Figure 7D).

4 DISCUSSION

In the current study, we demonstrated that a combination of large-

scale connectomics and local brain properties explains a large portion

of the regional variability in tau-PET. We reveal that a combination of

select gradients of predominantly functional connectivity, neurotrans-

mitter, and gene expression were associated with regional levels of tau

deposition at the group and subject-level. Furthermore, our findings

from gene-set enrichment analyses suggested that genes involved in

synapse expression may play a vital role in the accumulation of fibril-

lar tau, supporting the view that the synapse is a potential target for

disease modifying treatment in AD.47 Overall, we present a powerful

explanatory model, taking advantage of already existing multimodal

imaging maps of brain properties, rendering the approach accessible

and cost-effective.

Through the analysis of multimodal gradients, we introduce a uni-

form approach that allows the integration of different brain properties

toexplain regional tau levels bothat thegroup level and individual level.

We build upon previous connectome-based findings of higher tau in

those brain regions that are closely connected to tau-epicenters,7,48

suggesting that interregional connections provide a pathway for tau to

progress during the course of AD.13 Our findings extend those results

on epicenter-based connectivity, showing that tau progresses along

large-scale gradients of the brain’s connectome. In both asymptomatic

and symptomatic Aβ+ groups, the top gradients with the largest

effects size ran along major axis from the limbic network to the dorsal
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LUAN ET AL. 11 of 17

F IGURE 4 Contributions of multimodal gradient distances to group-mean tau-PET levels. (A) Rank-ordered average coefficients from
cross-validation of features selected by stepwise linear regression for predicting group-average tau-PET levels inMCI/dementia Aβ+. (B)
Scatterplots show the association between predicted group-average tau-PET levels against the observed group-average tau-PET levels in
MCI/dementia Aβ+ participants in ADNI training, ADNI test, and A05 sample. The pspin stands for the p values corrected by
spatial-autocorrelation-preserving permutation tests. (C) Surface renderings show the spatial pattern of selected features. The radar charts show
the distribution of mean gradient values in each canonical functional network. Aβ, amyloid-beta; ADNI, Alzheimer’s Disease Neuroimaging
Initiative; MCI, mild cognitive impairment; PET, positron emission tomography.

attention and cognitive control networks (neurotransmitter G2,

Figures 3C and 4C), motor and ventral attention network (FC G1,

Figures 3C and 4C), or the default mode, dorsal attention and cog-

nitive control networks (gene G5, Figures 3C and 4C). Along these

gradients, closer distances from the tau epicenter in the limbic net-

work to the posterior default mode network and the orbitofrontal

networks were associated with higher susceptibility to tau deposi-

tion. These findings are consistent with the observation of higher tau

deposition in temporo-parietal and orbitofrontal brain regions in the

symptomatic phase of AD as reported in histochemical brain autopsy

and or tau-PET studies.49,50 Of note, the top predictive functional con-

nectivity gradient (FCG1) resembled the previously reported principal

connectome gradient distinguishing between unimodal brain areas in

the human brain,39,51 suggesting that a reproducible principle gradi-

ent of the brain’s functional connectome related to susceptibility to tau

deposition in AD.

In addition to these major gradients which were associated with

regional tau deposition both in asymptomatic and symptomatic Aβ+,
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12 of 17 LUAN ET AL.

F IGURE 5 Performances of gradient distance-based prediction of subject-level tau-PET SUVRs. Violin plots show the distribution of R2 values
for prediction of subject-level tau-PET SUVRs using the group-derivedmultimodal gradient distance-based predictivemodel in CNAβ+
participants (A) in ADNI training, ADNI test and A4 sample, andMCI/dementia Aβ+ participants (B) in ADNI training, ADNI test and A05 sample.
Aβ, amyloid-beta; ADNI, Alzheimer’s Disease Neuroimaging Initiative; CN, cognitively normal; MCI, mild cognitive impairment; PET, positron
emission tomography; SUVR. standardized uptake value ratio.

we also observed disease-stage dependent associations: the gradient

of amyloid deposition exhibited explanatory value exclusively in the

symptomatic phase of AD, that is, MCI/dementia Aß+ subjects, where

the extreme poles of the gradients were situated in the visual cor-

tex versus prefrontal cortex (amyloid G1, Figure 4C). Previous studies

suggest that cortical amyloid deposition is pivotal for tau deposition

to progress from the medial temporal lobe to higher cortical brain

areas in the symptomatic phase of AD,52,53 whereas tau deposition

was confined to themedial temporal lobe in the asymptomatic phase.54

Therefore, gradients of amyloid deposition may play a role in the pro-

gression of tau deposition in more advanced rather than early disease

stages of ADwhen tau is mostly limited to themedial temporal lobe.

To further understand which biological pathways may underlie the

regional susceptibility to tau pathology, we conducted a gene set

enrichment analysis based on the gradients of gene expression associ-

ated with tau-PET. Among the top gene-expression gradients (G2 and

G5), the GO analysis yielded a significant biological pathway analy-

sis for G2 but not G5. The G2 gradient was anchored in the limbic

network, which opposed the motor network at the other end of the

gradient, for which a gene enrichment that strongly converged onto

synaptic pathways was observed. Trans-synaptic spreading of tau fib-

rils has been previously postulated as a major pathomechanism for the

spreading of tau pathology in the brain, where not only normal tau but

also misfolded tau proteins are released in vesicles via exocytosis and

taken up via endocytosis at post-synaptic distal neuron,55,56 and thus

could potentially contribute to the spreading of fibrillar tau between

neurons.57 Because tau is released in an activity-dependent manner,58

increased neuronal excitation may be associated with increased tau

deposition.59,60 Therefore, altered synapse function couldbe an impor-

tant pathomechanism in increased susceptibility to tau spreading. Our

PPI analysis points to key genes such as DLG4 that encode post-

synaptic density protein 95 and cluster involving presynaptic vesicle

exocytosis and are altered in the AD brain.61,62 Other key genes of the

protein network such as those from the neuroxin/neuregulin (NRXN2

and NLGN1) are cell-adhesion molecules expressed in pre- or postsy-

naptic terminals and regulate synaptic transmission.63 InAD, neurexins

and neuregulins interact at synapses with Aβ oligomers,64 and gluta-

matergic neurons show hyperexcitability and increased neuronal firing

in response to Aβ,65 which in turn could lead to increased tau trans-

missionwithin neuronal circuits.66,67 The proteins including synapsin 1

and synapsin 2 (SYN 1, SYN 2), synaptotagmin 1 (SYT1), and synapto-

taxin 1A (STX1A) are all synaptic proteins involved in the endocytosis

of synaptic vesicles or synaptogenesis, that is, keymechanisms thought

to underlie the trans-synaptic transmission of tau fibrils.55,58,68 For

tau, previous studies showed that optogenetic stimulation of neuronal

activity enhanced the release of tau and was associated with higher

tau pathology in vivo,60 suggesting that fibrillar tau may spread in a

neural activity-dependent manner. At the synaptic level, the synap-

tic vesicle release is regulated by proteins such as synapsin in an

activity dependent manner,69 and neurotrophic factors such as BDNF

potentiates synaptic vesicle trafficking in interaction with synapsin.70

A polymorphism in the BDNF gene including the Val66Met haplotype,

has been associated with increased levels of pathologic tau in patients

with autosomal-dominant AD,71 but the exact mechanism of neuronal

hyperactivation on mediation such a BDNF effect on core AD patholo-

gies remains be clarified.72,73 In summary, synaptic processes may play

a crucial pathomechanistic role in the spreading of tau pathology in

AD.55

Overall, our results suggest that amultifold of brain propertiesmod-

ulate the susceptibility to tau pathology, where the combination of
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LUAN ET AL. 13 of 17

F IGURE 6 Contributions of multimodal gradient distances to group-mean tau-PET annual change rates and prediction performances. (a)
Rank-ordered average coefficients from cross-validation of features selected by stepwise linear regression for predicting group-average tau-PET
annual change rates inMCI Aβ+ participants fromADNI. The scatterplots show the association between predicted group-average tau-PET levels
against the observed group-average tau-PET levels inMCI Aβ+ participants in ADNI (B) and A05 (C). The pspin stands for the p values corrected by
spatial-autocorrelation-preserving permutation tests. (C) Surface renderings show the spatial pattern of selected features. The radar charts show
the distribution of mean gradient values in each canonical functional network. Aβ, amyloid-beta; ADNI, Alzheimer’s Disease Neuroimaging
Initiative; MCI, mild cognitive impairment; PET, positron emission tomography.
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14 of 17 LUAN ET AL.

F IGURE 7 Gene expression profiles associated with gene expression gradient 2. Bubble plots show results of GO analyses for biological
process (A), cellular component (B), andmolecular function (C). The dots represent the GO terms corrected for multiple comparisons
(FDR-corrected at p< 0.05). Gene count means the number of genes in that pathway. (D) Protein-protein interaction network shows the top 10
hub genes identified with amaximal centrality generated by Cytoscape. FDR, false discovery rate; GO, gene ontology.

different gradient images provide a powerful model to explain regional

susceptibility to taupathology.Our approachhas several strengths as it

can be applied basedon apriorimaps of brain properties and thus is not

dependent on multimodal imaging in each patient in order to predict

longitudinal tauwhenapplied at the individual level.Weused extensive

cross-validation in independently recruited samples to guard against

overfitting and to test the reproducibility of our findings. For the inter-

pretation of our results, several caveats however, also need to be taken

into account. First, we present a model that can be used to explain

and predict regional differences in tau pathology rather than demon-

strate a causative relationship, which need to be interrogated in future

experimental studies. Second, previous studies described subtypes of

AD which may show differences spatial trajectories of brain alter-

ations including tau pathology in AD.9 However, rather than focusing

on subtypes, which so far lack a consensus definition,74 our approach

of defining epicenters of tau pathology as a point of reference allows

the flexible adaption at the individual level, that may capture interindi-

vidual variability without requiring the classification of subjects into

subtypes. It is important to address in future studies those factors that

drive inter-individual differences in regional tau deposition. Further-

more, we acknowledge that molecular brain properties such as gene

expression may change as part of normal aging, and thus should have

ideally been obtained in elderly individuals to explain regional suscep-

tibility to tau pathology. Yet, the assessment of such multimodal brain

properties in elderly subjects was beyond the scope of the current

study. Lastly, we like to point out that factors of diversity includ-

ing sex-specific and ethnic background may be potential modifiers.

The templates of brain features such as gene expression employed

here however, did not lend themselves to investigate such systematic

effects but require larger sample sizes to detect any potential mod-

ifying effects. However, the current results provide high explanatory

values across multiple samples which demonstrate the utility of the

currentmethod touncover brain signatures that underlie susceptibility

to tau pathology.
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