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Large language models (LLMs) are increasingly used in applications where
they interact with humans and other agents. We propose to use behavioural

game theory to study LLMs’ cooperation and coordination behaviour.

Here we let different LLMs play finitely repeated 2 x 2 games with each other,
with human-like strategies, and actual human players. Our results show
that LLMs perform particularly well at self-interested games such as the
iterated Prisoner’s Dilemma family. However, they behave suboptimally in
games that require coordination, such as the Battle of the Sexes. We verify
that these behavioural signatures are stable across robustness checks. We
also show how GPT-4’s behaviour can be modulated by providing additional
information about its opponent and by using a ‘social chain-of-thought’
strategy. This also leads to better scores and more successful coordination
wheninteracting with human players. These results enrich our under-
standing of LLMs’ social behaviour and pave the way for abehavioural game
theory for machines.

Large language models (LLMs) are deep learning models with billions of
parameters trained on huge corpora of text'. While they can generate
text that human evaluators struggle to distinguish from text written
by other humans*, they have also shown other, emerging abilities’.
They can, for example, solve analogical reasoning tasks®, program web
applications’, use tools to solve multiple tasks® or adapt their strategies
purely in-context’. Because of these abilities and their increasing popu-
larity, LLMs are already transforming our daily lives as they permeate
into many applications'’. This means that LLMs will interact withus and
other agents—LLMs or otherwise—frequently and repeatedly. How do
LLMs behave in these repeated social interactions?

Measuring how people behave in repeated interactions, for
example, how they cooperate" and coordinate, is the subject of a
subfield of behavioural economics called behavioural game theory®.
While traditional game theory assumes that people’s strategic deci-
sions are rational, selfish and focused on utility maximization'",
behavioural game theory has shown that human agents deviate
from these principles and, therefore, examines how their decisions
are shaped by social preferences, social utility and other psycho-
logical factors™. Thus, behavioural game theory lends itself well to

studying the repeated interactions of diverse agents'®

artificial agents®.

In this Article, we analyse LLMs’ behavioural patterns by letting
them play finitely repeated games with full information and against
other LLMs, simple, human-like strategies and actual human players.
Finitely repeated games have been engineered to understand how
agentsshould and do behave ininteractions over many iterations. We
focus ontwo-player gameswithtwo discrete actions, thatis, 2 x 2games
(seeFig.1for an overview).

Analysing LLMs’ performance across families of games, we find
that they performwellingames that value pure self-interest, especially
those fromthe Prisoner’s Dilemma family. However, they underperform
in games that involve coordination. Based on this finding, we further
focus ongamestaken from these families and, in particular, onthe cur-
rently largest LLM: GPT-4 (ref. 20). In the canonical Prisoner’s Dilemma,
which assesses how agents cooperate and defect, we find that GPT-4
retaliates repeatedly, even after having experienced only one defection.
Because this can indeed be the equilibrium individual-level strategy,
GPT-4isgood at these gamesbecauseitis particularly unforgiving and
selfish. However, in the Battle of the Sexes, which assesses how agents
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/‘Player 1 i J

You are playing a game repeatedly with Football
another player. In this game, you can
choose between Option J and Option F. You
will play 10 rounds in total with the same
player. The rules of the game are as
follows:

7

J
Football

S

If you choose Option J and the other player
chooses Option J, then you win 10 points 1
and the other player wins 7 points. -«
If you choose Option J and the other player
chooses Option F, then you win O points and
the other player wins O points.

If you choose Option F and the other player 2
chooses Option J, then you win O points and
the other player wins O points.

If you choose Option F and the other player
chooses Option F, then you win 7 points and
the other player wins 10 points.

F
Ballet

In round 1, you chose Option J and the 3
other player chose Option F. Thus, you won <
0 points and the other player won O points.

You are currently playing round 2.
Q: Which Option do you choose, Option J or
Option F?

A: Option J

—

Fig.1|Playing repeated games in an example game of Battle of the Sexes.
Instep1, the pay-off matrix is turned into textual game rules. In step 2, the game
rules, the current game history and the query are concatenated and passed to

F Player 2
Ballet You are playing a game repeatedly with
another player. In this game, you can
0 choose between Option J and Option F. You
will play 10 rounds in total with the same
player. The rules of the game are as
follows:

If you choose Option J and the other player
chooses Option J, then you win 7 points and
the other player wins 10 points.

If you choose Option J and the other player
chooses Option F, then you win O points and
the other player wins O points.

If you choose Option F and the other player
chooses Option J, then you win O points and
the other player wins O points.

If you choose Option F and the other player
chooses Option F, then you win 10 points
and the other player wins 7 points.

In round 1, you chose Option F and the
other player chose Option J. Thus, you won
0 points and the other player won O points.

F You are currently playing round 2.
Q: Which Option do you choose, Option J or
Option F?
A: Option F

LLMs as prompts. Instep 3, in each round, the history for each player is
updated with the answers and scores of both players. Steps 2 and 3 are repeated
for ten rounds.

trade off between their own and their partners’ preferences, we find
that GPT-4 does not manage to coordinate with simple, human-like
agents that alternate between options over trials. Thus, GPT-4 is bad
at these games because it is uncoordinated. We also verify that these
behaviours are not due to an inability to predict the other player’s
actions, and persist across several robustness checks and changes to
the pay-off matrices. We point to two ways in which these behaviours
can be changed. GPT-4 can be made to act more forgivingly by point-
ing out that the other player can make mistakes. Moreover, GPT-4 gets
better at coordinating with the other player whenitis first asked to pre-
dict their actions before choosing an actionitself, an approach we term
social chain-of-thought (SCoT) prompting. Finally, we let GPT-4 with
and without SCoT-prompting play the canonical Prisoner’s Dilemma
and the Battle of the Sexes with human players. We find that SCoT
prompting leads to more successful coordination and joint coopera-
tion between participants and LLMs and makes participants believe
more frequently that the other player is human.

Results

Using GPT-4, text-davinci-002, text-davinci-003, Claude 2 and Llama 2
70B, we evaluate arange of 2 x 2 games. For the analysis of two particu-
lar games, we let all the LLMs and human-like strategies play against
each other. We focus on LLMs’ behaviour in cooperation and coordi-
nation games.

Analysing behaviour across families of games

We start out our experiments by letting the three LLMs play games
from different families with each other. We focus on all known types of
2 x 2games from the families of win-win, biased, second-best, cyclic
and unfair games as well as all games from the Prisoner’s Dilemma
family”**. We show example pay-off matrices for each type of game
inFig. 2.

We let all LLMs play with every other LLM, including themselves,
for all games repeatedly over ten rounds and with all LLMs as either
player 1or player 2. This leads to 1,224 games in total: 324 win-win,
63 Prisoner’s Dilemma, 171 unfair, 162 cyclic, 396 biased and 108
second-best games. Win-win games result in mutually beneficial
outcomes for both players; Prisoner’s Dilemma involves a conflict
between individual and collective actions; unfair games have skewed
outcomes favouring one player; cyclic games feature outcomes where
preferences rotate; biased games have inherent advantages for one

Second best Unfair
1 4 4 3
1 2 2 1
3 2 1 2
3 4 3 4
Biased PD family
4 2 4 3
3 2 1 3
1 8 2 1
1 4 2 4
Cyclic Win-win
3 4 1 4
3 1 1 4
2 1 1 2
2 4 1 2

Fig. 2| Canonical forms of pay-off matrices for each game family. PD, Prisoner’s
Dilemma.

player; and second-best games involve suboptimal outcomes where
no player achieves their ideal result. The sample size for each game
family differs due to the specific characteristics and properties that
define each family. Some families have more members due to a wider
range of configurations that fit their criteria, while others have fewer
games because their structural requirements are more restrictive. For
example, the Prisoner’s Dilemma family is constrained by a structure
where both players have a dominant strategy to defect, leading to a
suboptimal equilibrium. Meanwhile, win-win games can have multiple
equilibria, which provides more flexibility.
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Table 1| Performance of all models on six families of
2x2 games

Gamefamily Llama2 Claude2 davinci-002 davinci-003 GPT-4
Second best  0.486 0.735 0.473 0.692 0.763
Biased 0.632 0.794 0.629 0.761 0.798
Cyclic 0.634 0.749 0.638 0.793 0.806
Unfair 0.64 0.812 0.683 0.833 0.836
PD family 0.731 0.838 0.807 0.841 0.871

Win-win 0.915 0.878 0.988 0.972 0.992
Overall 0.697 0.814 0.730 0.839 0.854

Model score divided by maximum score achievable under ideal conditions. The best-
performing model is marked in bold. PD, Prisoner’s Dilemma.

To analyse the different LLMs’ performance, we calculated, for
each game, their achieved score divided by the total score that could
have been achieved under ideal conditions, that is, if both players
had played such that the player we are analysing would have gained
the maximum possible outcomes on every round. The results of this
simulation are shown across all game types in Table 1. We can see that
allmodels performreasonably well. Moreover, we observe that larger
LLMsgenerally outperformsmaller LLMs. Inparticular, GPT-4 performs
best overall, outperforming Claude 2 (¢(287) =3.34, P< 0.001, Cohen’s
d=0.20, 95% confidence interval (CI) 0.08-0.31, Bayes factor (BF)
14.8), davinci-003 (£(287) = 6.29, P< 0.001,d = 0.37,95% C1 0.25-0.49,
BF >100), davinici-002 (¢£(287) = 8.45, P< 0.001,d = 0.70, 95% C1 0.52-
0.89, BF >100) and Llama 2 (£(287) =7.27, P< 0.001, d = 0.43, 95% Cl
0.31-0.43, BF >100).

We canuse these results to take aglimpse at the strengths of the dif-
ferent LLMs. That LLMs are generally performing best inwin-win games
is not surprising, given that there is always an obvious best choice in
such games. Whatis, however, surprising is that they also perform well
inthe Prisoner’s Dilemma family of games, which is known to be chal-
lenging for human players?*. We can also use these results to look at
the weaknesses of the different LLMs. Seemingly, allthe LLMs perform
worse insituations in which what is the best choice is not aligned with
their own preferences. Because humans commonly solve such games
via the formation of conventions, we will look at a canonical game of
convention formation, the Battle of the Sexes, in more detail below.

Cooperation and coordination games

In this section, we analyse the interesting edge cases where the LLMs
performed relatively welland poorly in the previous section. Todo so,
we take a detailed look at LLMs’ behaviour in the canonical Prisoner’s
Dilemma and the Battle of the Sexes.

Prisoner’s Dilemma. We have seen that LLMs perform well in games
that contain elements of competition and defection. In these games,
aplayer can cooperate with or betray their partner. When played over
multiple interactions, these games are an ideal testbed to assess how
LLMs retaliate after bad interactions.

In the canonical Prisoner’s Dilemma, two agents can choose to
work together, thatis, cooperate, for average mutual benefit, or betray
eachother, thatis, defect, for their own benefit and safety. In our pay-off
matrix, we adhere to the general condition of a Prisoner’s Dilemma
game in which the pay-off relationships dictate that mutual coopera-
tion is greater than mutual defection whereas defection remains the
dominant strategy for both players:

Cooperate Defect
(0,10) (0))]
(CN))

Cooperate  (8,8)

Defect (10,0)

Crucially, the set-up of the game is such that a rationally acting
agent would always prefer to defect in the single-shot version of the
game aswell asinour case of finitely iterated games with knowledge of
the number of trials, despite the promise of theoretically joint higher
pay-offs when cooperating. This is because player 1 always runs the
risk that player 2 defects, leading to catastrophiclosses for player 1but
better outcomes for player 2. When the game is played infinitely,
however, or withanunknown number of trials, agents can theoretically
profit by using more dynamic, semi-cooperative strategies*.

As before, we let GPT-4, text-davinci-003, text-davinci-002,
Claude 2 and Llama 2 play against each other. In addition, we intro-
duce three simplistic strategies. Two of these strategies are simple
singleton players, who either always cooperate or defect. Finally, we
alsointroduce an agent who defectsin the first round but cooperates
inall of the following rounds. Weintroduced this agent to assess if the
different LLMs would start cooperating with this agent again, signal-
ling the potential of building trust.

Figure 3 shows the results of all pairwise interactions. GPT-4 plays
generally better thanall other agents (¢(153.4) =3.91,P< 0.001,d = 0.33,
95% C10.10-0.55, BF 7.1). Crucially, GPT-4 never cooperates again when
playing with an agent that defects once but then cooperates on every
round thereafter. Thus, GPT-4 seems to be rather unforgiving in this
set-up. Its strength in these families of games thus seems to generally
stem from the fact that it does not cooperate with agents but mostly
justchoosesto defect, especially after the other agent defected once.

Robustness checks. To make sure that the observed unforgivingness was
not due to the particular prompt used, we run several versions of the
game as robustness checks, randomizing the order of the presented
options, relabelling the choice options and changing the presented util-
itiestoberepresented by either points, dollars or coins (Fig.4). We also
repeated our analysis with two different cover stories, added explicit
end goals to our prompt, ran games with longer playing horizons and
described numerical outcomes with text (also see Supplementary
Fig.3). Theresults of these simulations showed that the reluctance to
forgive was not due to any particular characteristics of the prompts.
A crucial questionwas if GPT-4 did not understand that the other agent
wanted to cooperate again orif it could understand the pattern but just
did notactaccordingly. We, therefore, run another version of the game,
where we told GPT-4 explicitly that the other agent would defect once
but otherwise cooperate. This resulted in GPT-4 choosing to defect
throughout all rounds, thereby maximizing its own points.

Prompting techniques to improve observed behaviour. One problem
ofthese investigationsin the Prisoner’s Dilemmais that defecting can
under specific circumstances be seen as the optimal, utility-maximizing
and equilibrium option even in a repeated version, especially if one
knows that the other player will always choose to cooperate and when
the number of interactions is known. Thus, we run more simulations
to assess if there could be a scenario in which GPT-4 starts to forgive
and cooperates again, maximizing the joint benefit instead of its own.

We took inspiration from the literature on human forgiveness in
the Prisoner’s Dilemma and implemented a version of the task in the
vein of ref. 11. Specifically, ref. 11 showed that telling participants that
other players sometimes make mistakes makes people more likely to
forgive and cooperate again after another player’s defection (albeit
ininfinitely played games). Indeed, this can be favourable to them in
terms of pay-offs. We observed similar behaviourin GPT-4 asit started
cooperating again.

Battle of the Sexes. In our large-scale analysis, we saw that the dif-
ferent LLMs did not perform well in games that required coordina-
tion between different players. In humans, it has frequently been
found that coordination problems can be solved by the formation of
conventions®?,
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Fig.3 | Overview of the Prisoner’s Dilemma. a, Heat maps showing the player 1 defection rate in each combination of players and the scores accrued by player1in
eachgame. b, Example gameplays between GPT-4 and an agent that defects once and then cooperates, and between GPT-4 and text-davinci-003. These games are also

highlighted inred in the heat maps.
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Fig. 4 |Prompt variations. Left: GPT-4’s performance for different prompt
variations in the Prisoner’s Dilemma game against a false defector agent. The
probability of joint cooperation is <0.1for all combinations except for two using
coins as utility outcomes. Right: GPT-4’s performance for different prompt
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Battle of the Sexes

variations in the BoS game against an alternating agent. GPT-4 always chooses
its preferred option, resulting in successful coordination rates of only 0.5 across
all combinations. For each variation, two random letters that occur with similar
frequency in English are given as the choice options.

A coordination game is a type of simultaneous game in which a
player will earn a higher pay-off when they select the same course of
action as another player. Usually, these games do not contain a pure
conflict, thatis, completely opposinginterests, but may containslightly
diverging rewards. Coordination games can often be solved via multi-
ple pure strategies, or mixed, Nash equilibria in which players choose
(randomly) matching strategies. Here, to probe how LLMs balance
coordination and self-interest, we look at a coordination game that
contains conflicting interests.

We study agame that is archaically referred to as the Battle of the
Sexes, a game from the family of biased games. Assume that a couple
wants to decide what to do together. Both will increase their utility by
spending time together. However, while the wife might prefer to watch
afootball game, the husband might prefer to go to the ballet. Because
the couple wants to spend time together, they will derive no utility by
doing an activity separately. If they go to the ballet together, orto a
football game, one person will derive some utility by being with the

other personbut will derive less utility from the activity itself than the
other person. The corresponding pay-off matrixis

Football Ballet
10,7) (0,0).
(0,0) (7,10)

Football ?2)

Ballet

Asbefore, the playing agents are all three versions of GPT, Claude 2
and Llama2aswell asthree more simplistic strategies. For the simplistic
strategies, we implemented two agents who always choose just one
option. Because LLMs most ofteninteract with humans, we additionally
implemented astrategy that mirrored acommon pattern exhibited by
human playersinthe battle of the sexes. Specifically, humans have been
shown to often converge to turn-taking behaviour in the Battle of the
Sexes”%; this means that players alternate between jointly picking
the better option for one player and picking the option for the other
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Fig. 5| Overview of the Battle of the Sexes. a, Heat maps showing rates of
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GPT-4 SCoT that represents a GPT-4 model prompted using the SCoT method
to first predict the opponent’s move before making its own move by reasoning
about its prediction (right). Both games are also highlighted in blue in the
heat maps.

player. While not a straightforward equilibrium, this behaviour has
beenshown to offer an efficient solution to the coordination problem
involved and to lead to high joint welfare®.

Figure 5 shows the results of all interactions. As before, GPT-4
plays generally better than all other agents (£(128.28) = 2.83,
P=0.005,d=0.28,95% C10.07-0.50, BF 3.56). Yet, while GPT-4 plays
well against other agents who choose only one option, such as an
agent always choosing football, it does not play well with agents
who frequently choose their non-preferred option. For example,
when playing against text-davinci-003, which tends to frequently
choose its own preferred option, GPT-4 chooses its own preferred
option repeatedly but also occasionally gives in and chooses the
other option. Crucially, GPT-4 performs poorly when playing withan
alternating pattern (where, for courtesy, we let agents start with the
option that the other player preferred). This is because GPT-4 seem-
ingly does not adjustits choices to the other player but instead keeps
choosingits preferred option. GPT-4, therefore, fails to coordinate
with asimple, human-like agent, an instance of a behavioural flaw.

Robustness checks. To make sure that this observed behavioural flaw
was not due to the particular prompt used, we also rerun several ver-
sions of the game, where we randomize the order of the presented
options, relabelled the choice options and changed the presented
utilities to be represented by either points, dollars or coins as shown
inFig. 4. Wealsorepeated our analysis with two different cover stories,
in which we told GPT-4 that it was taking part in a cooking competi-
tion or working on a collaborative project keeping the underlying
problem structure (pay-offs and the interaction dynamics) identical
(Supplementary Fig. 3). The results of these simulations showed that
the inability to alternate was not due to any particular characteristics
ofthe used prompts. To make sure that the observed behavioural flaw
was not due to the particular pay-off matrix used, we also rerun several

versions of the game, where we modified the pay-off matrix gradu-
ally from preferring football to preferring ballet (or, in our case, the
abstract F and J). The results of these simulations showed that GPT-4
didnotalternate for any of these games but simply changedits constant
response to the option thatit preferred for any particular game. Thus,
the inability to alternate was not due to the particular pay-off matrix
we used (Supplementary Section A.5).

Prediction scenarios. Despite these robustness checks, another crucial
question remains: Does GPT-4 simply not understand the alternating
pattern or can it understand the pattern but is unable to act accord-
ingly? To answer this question, we run two additional simulations. In
the first simulation, GPT-4 was again framed as a player in the game
itself. However, we now additionally askit to predict the other player’s
next move according to previous rounds. In this simulation, GPT-4
started predicting the alternating pattern correctly from round 5
onwards (Fig. 6).

In the second simulation, instead of having GPT-4 be framed
as a player itself, we simply prompted it with a game between two
(‘external’) players and asked it to predict one player’s next move
according to the previous rounds. For the shown history, we used the
interactionbetween GPT-4 and the alternating strategy. In this simula-
tion, GPT-4 started predicting the alternating pattern correctly even
earlier, from round 3 onwards. Thus, GPT-4 seemingly could predict
the alternating patterns but instead just did not act in accordance
with theresulting convention. Similar divergences in abilities between
social and non-social representations of the same situation have been
observed in autistic children®.

SCoT prompting. Finally, we wanted to see if GPT-4’s ability to predict
the other player’s choices could be used to improve its own actions.
Thisideais closely related to how people’s reasoningin repeated games
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Prediction scenario 1
You are playing a game repeatedly with another player...
Q: Which option do you predict the other player will choose,

option J or option F?

A: Option J
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Prediction scenario 2

Two players are playing a game repeatedly with another player...

Q: Which option do you predict Player 2 will choose, option J or
option F?

A: Option J
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Fig. 6 | Prediction scenarios in the Battle of the Sexes. Top: GPT-4 is a player of
the game and predicts the other player’s move. Bottom: GPT-4 is amere observer
ofagame between player 1and player 2 and predicts player 2’'s move.

and tasks about other agents’ beliefs can be improved®. For example,
computer-aided simulations toimprove the social reasoning abilities
of autistic children normally include questions to imagine different
actions and outcomes®. This has been successfully used to improve
people’s decision-making more generally. It is also in line with the
general finding that chain-of-thought prompting improves LLM’s
performance, even in tasks measuring theory of mind (ToM)**. Thus,
weimplemented a version of this reasoning through actions by asking
LLMstoimagine the possible actions and their outcomes before making
a decision. We termed this approach SCoT prompting. Applying this
method improved GPT-4’s behaviour, and it started to alternate from
round 5onwards (Fig. 5).

Human experiments

Given the behavioural signatures observed in GPT-4’s responses in
the different games, we were interested in how actual human subjects
would behave when playing with such agents. To test this, we conducted
an experiment in which 195 participants played both the Battle of the
Sexes and the Prisoner’s Dilemma against LLMs. Because the SCoT
prompting turned out to be a most reliable modification of LLMs’
behaviour, we applied this prompting method only in our behavioural
experiments with humans.

Participants were told that they would play either against ahuman
player or an artificial agents for ten repeated rounds for each game
and, after each game, had to guess whether they had played against a
human or not. Which game they played first was assigned randomly.
While all subjects, infact, played only against LLMs, one group played
against the base version of GPT-4, while another group played against
aversion of GPT-4 that first predicted the other agent’s move and the
acted accordingly, that is, SCoT prompting. Importantly, each par-
ticipant played only two games, and the prompting was reset between
games to ensure any change in LLM behaviour was not influenced by

priorinteractions within the experiment. If assigned to the base version
initially, participants played both games with this model, and likewise
for the socially prompted version. An overview of the experimental
design is shown in Fig. 7a. Participants were recruited from Prolific
and debriefed fully after the experiment. We were interested in how
people played against LLMs in general as well as if GPT-4’s behaviour
couldbeimproved viaSCoT prompting. Finally, we also asked partici-
pants whether they thought they had played with another human or
anartificial agent after each game.

While participants’ average score was significantly higher for the
SCoT-prompted condition compared with the condition without fur-
ther prompting (thatis, base) in the Battle of the Sexes (mixed-effects
regression results: §=0.74, t(193) = 3.49, P< 0.001, 95% C1 0.32-1.15,
BF 80.6), no such difference was observed in the Prisoner’s Dilemma
(8=0.10, £(193) = 0.47, P= 0.64, 95% C1 -0.31 to 0.51, BF 0.2). Look-
ing at the behaviour of both players, we found that SCoT prompting
increased successful coordination (that is, both players picking the
same option) inthe Battle of the Sexes (8= 0.33,z=3.59, P < 0.001, 95%
C10.15-0.51,BF 13.4), whileitalso slightly increased joint cooperation
(thatis, both players cooperating) in the Prisoner’s Dilemma (8 = 0.24,
z=2.54,P=0.01,95% C1 0.05-0.42, BF 6.5). In general, participants
were more likely to think that the prompted model was another human
player as compared with the unprompted base GPT-4 model (8 = 0.54,
z=8.31, P<0.001, 95% C1 0.05-0.42, BF 17.6). Additional analysis on
participants’ temporal behaviour in both games can be found in the
Supplementary Information.

In summary, SCoT prompting canincrease GPT-4’s coordination
and cooperationbehaviour without changing scores inscenarios where
self-interest is important for good behaviour, that is, the Prisoner’s
Dilemma, but leading toincreased performance in coordination prob-
lems, that is, the Battle of the Sexes.

Discussion

LLMs are among the most quickly adopted technologies ever, interact-
ing with millions of consumers within weeks'. Understandingin amore
principled manner how these systems interact with us, and with each
other, isthus of urgent concern. Here, our proposal is simple: Just like
behavioural game theorists use tightly controlled and theoretically
well-understood games to understand human interactions, we use
these games to study the interactions of LLMs.

We thereby understand our work as both a proof of concept of the
utility of this approach and an examination of the individual failures
and successes of socially interacting LLMs. Our large-scale analysis of
all 2 x 2 games highlights that the most recent LLMs indeed are able
to perform well on a wide range of game-theoretic tasks as measured
by their ownindividual reward, particularly when they do not have to
explicitly coordinate with others. This adds to awide-ranging literature
showcasing emergent phenomena in LLMs* %, However, we also show
that LLMs’ behaviouris suboptimalin coordination games, even when
faced with simple strategies.

To tease apart the behavioural signatures of these LLMs, we
zoomed in on two of the most canonical games in game theory: the
Prisoner’s Dilemma and the Battle of the Sexes. In the Prisoner’s
Dilemma, we show that GPT-4 plays mostly unforgivingly. Starting
with full cooperation, it permanently shifts to defection after a single
negative interaction with the other agent, evenifthe other agent later
cooperates. While noting that GPT-4’s continual defectionisindeed the
equilibrium policy in this finitely played game, such behaviour comes
at the cost of the two agents’ joint pay-off. We see a similar tendency
in GPT-4’s behaviour in the Battle of the Sexes, where it has a strong
tendency to stubbornly stick with its own preferred alternative. In
contrasttothePrisoner’s Dilemma, this behaviouris suboptimal, even
ontheindividuallevel.

Current generations of LLMs are generally assumed, and trained,
tobebenevolent assistants to humans®. Despite many successesin this
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Fig. 7| Human experiments. a, The design of human experiments (N =195, 89
females, mean age 26.72, s.d. 4.19). Each participant gets randomly assigned
either the base or the SCoT-prompted version of the LLM at the start and plays
both games repeatedly for ten rounds against this agent. b, Results of the Battle
ofthe Sexes game showing participants’ average scores by condition (mixed-
effects regression results: = 0.74, t(193) = 3.49, P < 0.001, 95% C1 0.32-1.15, BF
80.6). ¢, Results of the Prisoner’s Dilemma game showing participants’ average
scores by condition (8= 0.10, £(193) = 0.47, P= 0.64, 95% Cls —0.31 to 0.51, BF 0.2).

Opposing LLM

Opposing LLM

d, The average proportion of participants guessing that they have played against
another human by condition. Error bars represent the 95% Cls of the mean
(8=0.54,2z=8.31,P<0.001,95% C1 0.05-0.42, BF 17.6). e, Participants’ successful
coordination rates by condition in the Battle of the Sexes game (8= 0.33,z=3.59,
P<0.001,95%Cl10.15-0.51, BF 13.4). f, Participants’ mutual cooperation rates

by conditionin the Prisoner’s Dilemma game (8= 0.24,z=2.54, P=0.01,95% CI
0.05-0.42, BF 6.5).

direction, the fact that we here show how they play iterated games in
such a selfish and uncoordinated manner sheds light on the fact that
there is still substantial ground to cover for LLMs to become truly
social and well-aligned machines®. Their lack of appropriate responses
vis-a-vis even simple strategies in coordination games also speaks to
the recent debate around ToM in LLMs**° by highlighting a potential
failure mode.

Our extensive robustness checks demonstrate how these behav-
ioural signatures are not functions of individual prompts but reflect
broader patterns of LLM behaviour. Our intervention pointing out
the fallibility of the playing partner—which leads to increased coop-
eration—adds to a literature that points to the malleability of LLM
socialbehaviour in tasks to prompts*>*.. Thisisimportantaswe try to
understand what makes LLMs better, and more pleasant, interactive
partners. Further experiments on GPT-4’s final round behaviour have
shown thatit did not adjust its behaviour in the last round of games or
when faced with varying probabilities of continuation, unlike human
players who often increase cooperation when future interactions are
likely*>**, This suggests that GPT-4 may lack mechanisms for backward
induction and long-term strategic planning, primarily focusing on
immediate context due to its training on next-token prediction**.
Consequently, GPT-4 tends to default to defection in uncertain situ-
ations, contrasting with human tendencies to anticipate and adjust
based on future outcomes®**,

We additionally observed that prompting GPT-4 to make pre-
dictions about the other player before making its own decisions can
alleviate behavioural flaws and the oversight of even simple strate-
gies. This represents a more explicit way to force an LLM to engage
in ToM and shares much overlap with non-SCoT reasoning®**¢. Just
like chain-of-thought prompting is now implemented as a default in
some LLMs to improve (non-social) reasoning performance, our work

suggests implementing a similar social cognition prompt to improve
human-LLM interaction.

In our exploration of abehavioural game theory of machines, we
acknowledge several limitations. First, despite covering many fami-
lies of games, our investigation is constrained to simple 2 x 2 games.
However, we note that our analysis substantially goes beyond current
investigations that have often investigated only one game, and done
sousingsingle-shot rather thaniterated instances of these games. For
example, ouriterated approach shares more overlap with the moreiter-
ated nature of human-LLM conversations. We also note that we mainly
study finite games where agents share knowledge about the duration
oftheinteraction. Thisisin contrast to so-called indefinite games that
have either unknown, probabilistic or no endpoints at all. In these
games, both optimal prescriptions and empirical behaviour can differ
significantly from the finite case, warranting further investigation.

We believe that more complicated games will shed even more
light ongame-theoretic machine behaviourinthe future. For example,
games with more continuous choices like the trust game*” might eluci-
date how LLMs dynamically develop (mis-)trust. Games with more than
two agents, like public goods or tragedy of the commons type games*®,
could probe how ‘societies’ of LLMs behave, and how LLMs cooperate
orexploit each other.

Giventhesocial nature of the tasks studied here, further empirical
work is needed to fully understand human-LLM interactions across
all paradigms. In our study, we conducted human experiments in two
of the games, specifically, the Battle of the Sexes and the Prisoner’s
Dilemma, and attempted to probe human-like behaviours such as
turn-taking in Battle of the Sexes or prompting for forgiveness in the
Prisoner’s Dilemma. However, these empirical investigations were lim-
ited to these two games. By extending human studies to the remaining
games, additional dynamics may emerge. Furthermore, asking LLMs
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to self-report their strategies in these games and correlating these
explanations with their actions could provide valuable insights into
their actual decision-making processes.

Ourresults highlight the broaderimportance of abehavioural sci-
ence for machines*’ ">, We believe that these methods will continue to
be useful for elucidating the many facets of LLM cognition, particularly
as these models become more complex, multimodal and embedded
in physical systems.

Related work

Asalgorithms becomeincreasingly more able and their decision making
processes impenetrable, the behavioural sciences offer new tools to
make inferences just from behavioural observations***°. Behavioural
tasks have, therefore, been used in several benchmarks'*>,

Whether and how algorithms can make inferences about other
agents, machines and otherwise, is one stream of research that borrows
heavily from the behavioural sciences® ¢, Of particular interest to the
social interactions most LLMs are embedded in is an ability to reason
about the beliefs, desires and intentions of other agents, or a ToM*".
ToMunderliesawiderange of interactive phenomena, frombenevolent
teaching’® to malevolent deception®®*’, and is thought to be the key to
many social phenomenain humaninteractions®®°.,

Whether LLMs possess a ToM has been debated. For example, it
hasbeen argued that GPT-3.5 performs well on a number of canonical
ToM tasks®. Others have contested this view, arguing that such good
performanceis merely afunction of the specific prompts*%. Yet, other
research has shown that chain-of-thought reasoning improves LLMs’
ToM ability**. Moreover, the currently largest LLM, GPT-4, manages to
perform well in ToM tasks, including in the variants in which GPT-3.5
previously struggled®. Thus, GPT-4’s behaviour will be of particular
interestin our experiments.

Games taken from game theory present anideal testbed to inves-
tigate interactive behaviour in a controlled environment®, and LLMs’
behaviour has been probed in such tasks®. For example, ref. 40 let
GPT-3 participate in the dictator game, and ref. 41 used the same
approach for the ultimatum game. Both show how the models’ behav-
iouris malleable to different prompts, for example, making them more
or less self-interested. However, all these games rely on single-shot
interactions over fewer games and do not use iterated games.

Our study builds upon recent advancements in the field, which
have shifted the focus from solely assessing the performance of LLMs
to comparing them with humanbehaviours. Previous research efforts
have explored various approaches to analyse LLMs, such as using
cognitive psychology tools*** and even adopting a computational
psychiatry perspective™.

Finally, the theory behind interacting agents is important for
many machine learning applications in general®® and, in particular, in
adversarial settings®®, where one agent tries to trick the other agent
into thinking thatagenerated outputis good. Understanding prosocial
dynamicsin multiagent systems® and fostering cooperation in them®®
is essential for developing robust and trustworthy artificial intelligence
systems that can navigate complex social environments®’.

Methods

To investigate how human subjects would behave when playing with
LLM agents, we studied their interactions intwo of the games we used:
Prisoner’s Dilemma and the Battle of the Sexes. We also investigated if
participants could detect and behave differently when playing against
differentagents. Participants (N =195, 89 females, meanage 26.72,s.d.
4.19) were recruited through Prolific’®, an online platform that allows
researchers to access a diverse and reliable pool of participants. No
statistical methods were used to predetermine sample sizes, but our
samplesizes are similar to those reported in previous publications” .
The participants were required to be fluent speakers of English with
minimum approval rates of 0.95 and 1, and a minimal number of

previous submissions of 10 that have not participated in our experi-
mentbefore. All participants provided informed consent before inclu-
sioninthe study. Experiments were performedinaccordance with the
relevant guidelines and regulations approved by the ethics committee
ofthe University of Tiibingen (protocol no. 701/2020BO). Participants
received a £3 base payment plus a bonus of up to £2 depending on
performance (1 cent for each point received during the games) for
their participation. The average compensation was £11.41 per hour.
Participants were fully debriefed after the experiment. Data of 21 play-
erswho failed to make around’s choice between the two options within
agiven time frame (20 s) were excluded.

Inthe sections that follow, we first detail the experimental set-up
for LLM-LLM interactions, which serves asacomparative baseline for
our study. We then present details from the human participant study
outlined above.

LLM-LLM interactions

We study LLMs’ behaviour in finitely repeated games with full infor-
mation taken from the economics literature. We focus on two-player
games with discrete choices between two options to simplify the anal-
yses of emergent behaviours. We let two LLMs interact via prompt
chaining, that is, all integration of evidence and learning about past
interactions happens asin-context learning*’*. The games are submit-
ted to LLMs as prompts in which the respective game, including the
choice options, is described. At the same time, we submit the same
game asa prompt toanother LLM. We obtain generated tokens t from
both LLMs by sampling from

K
punle®) =TT pum (fklcip), ,CEIP), t, ... -tk_1)~ 3)
k=1

After feeding the prompt to the LLM, our methodology is as fol-
lows. The LLM prediction of the first token following the context is
d=p, m(t;/c?) and the Ntokens for the possible answers of the multiple
choice question are o = {o,-}f’:1 which in this case are J and F. The pre-
dicted optionis then given by

6 = argmax(¢;),with¢; = d[¢;,i=1...N, 4)

which are the predicted probabilities of the language model. Once both
LLMs have made their choices, which we track as a completion of the
given text, we update the prompts with the history of pastinteractions
as concatenated text and then submit the new prompt to both models
for the nextround. These interactions continue for ten rounds in total
forevery game.Inasingle round, m(x;, x,) is the pay-off for player 1when
x;and x, arethe strategies chosen by both players. Inrepeated games,
the pay-offs are often considered as discounted sums of the pay-offs
in each game stage, using a discount factor 6. If the game is repeated
ntimes, the pay-off U, for player iis

U; = i(X10,X0) + 6 X (X1, Xp1) + 62 X 10 )
(12, X22) + ... + 6L x T1;(X1(n—1)> X2(n—1))-

Each term represents the discounted pay-off at each stage of the
repeated game, from the first game (¢ = 0) to the nth game (t=n-1).
Inour experiments, we keep 6 =1. To avoid influences of the particular
framing of the scenarios, we provide only barebones descriptions of
the pay-off matrices (see example in Fig. 1). To avoid contamination
through particular choice names or the used framing, we use the neu-
tral options F and ] throughout®.

Games considered. We firstinvestigate 144 different 2 x 2games where
each player has two options, and their individual reward is a function
of their joint decision. These games can be categorized into six distinct
families—win-win, Prisoner’s Dilemma family, unfair, cyclic, biased
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and second-best—each with unique characteristics and outcomes.
A win-win game is a special case of a non-zero-sum game that produces
a mutually beneficial outcome for both players provided that they
choose their corresponding best option. They encourage cooperation,
leading to outcomes where both parties benefit. In brief, in games
from the Prisoner’s Dilemma family, two agents can choose to work
together, thatis, cooperate, for average mutual benefit, or betray each
other, that is, defect, for their own benefit. The typical outcome is a
Nash equilibrium that is suboptimal for both players compared with
apossible Pareto-superior outcome. In an unfair game, one player can
always win when playing properly, leading to highly unequal outcomes.
Cyclicgames are characterized by the absence of dominant strategies
and equilibria. In these games, players can cycle through patterns
of choices without settling into a stable outcome. Biased games are
games where agents get higher points for choosing the same option
but where the preferred option differs between the two players. One
formofabiased gameis the Battle of the Sexes, where players need to
coordinate to choose the same option. Finally, second-best games are
games where both agents fare better if they jointly choose the option
that has the second-best utility. In many of these games, strategic swaps
in pay-offs can alter the game dynamics, potentially converting them
into different types of game. For two additional games, Prisoner’s
Dilemmaand Battle of the Sexes, we also let LLMs play against simple,
hand-coded strategies to understand their behaviour in more detail.

LLMs considered. In this work, we evaluate five LLMs. For all of our
tasks, we used the public OpenAl APl with the GPT-4, text-davinci-003
and text-davinci-002 models, which are available viathe completions
endpoint, MetaAl's Llama 2 70B chat model, which has 70 billion param-
eters and is optimized for dialogue use cases, and the Anthropic API
model Claude 2 to runour simulations. Experiments with other popular
open-source models MosaicPretrainedTransformer (MPT), Falcon and
different versions of Llama 2 (namely MPT-7B, MPT-30B, Falcon-7b,
Falcon-40b, Llama27B and Llama213B) haverevealed that these mod-
els did not performwell at the given tasks, choosing the first presented
optionmore than 95% of the time independent of which option this s.
Therefore, we chose not toinclude themin our main experiments. For
allmodels, we set the temperature parameters to 0 and only ask for one
token answer to indicate which option an agent would like to choose.
All other parameters are kept as default values.

Playing 6 families of 2 x 2 games task design. While 2 x 2 games
can appear simple, they present some of the most powerful ways to
probe diverse sets of interactions, from pure competition to mixed
motives and cooperation, which can further be classified into canoni-
cal subfamilies outlined elegantly by ref. 22. Here, to cover the wide
range of possible interactions, we study the behaviours of GPT-4,
text-davinci-003, text-davinci-002, Claude 2 and Llama 2 across these
canonical families. We let all five engines play all variants of games from
within the six families.

Cooperation and coordination task design. We then analyse two
games, Prisoner’s Dilemma and Battle of the Sexes, in more detail
because they represent interesting edge cases where the LLMs per-
formed exceptionally well, and relatively poorly. We hone in particu-
larly on GPT-4’s behaviour because of recent debates around its ability
for ToM, that is, whether it is able to hold beliefs about other agents’
intentions and goals, a crucial ability to successfully navigate repeated
interactions®*. For the two additional games, we also let LLMs play
against simple, hand-coded strategies to further understand their
behaviour. These simple strategies are designed to assess how LLMs
behave when playing with more human-like players.

Statistical tests. Allreported tests are two-sided. We also report Bayes
factors quantifying the likelihood of the data under H, relative to the

likelihood of the data under H,. We calculate the default two-sided
Bayesian t-test using aJeffreys-Zellner-Siow prior withiits scale set to
V272, following”. For parametric tests, the data distribution was
assumed tobe normal, but this was not formally tested. We report effect
sizes as either Cohen’s d or standardized regression estimates, includ-
ing their 95% Cls.

Human-LLM interactions

The following sections provide additional details on the design and
conduct of the human participant study, including compensation,
demographics, prompting and the cover stories.

Design. Experiments were presented to participants using acombi-
nation of HTML, JavaScript and CSS with custom code. After a pres-
entation of the instructions including screenshots from the actual
gameplay, participants were required to complete acomprehension
questionnaire. Only upon responding correctly to all questions
could they proceed to the main part of the experiment. Participants
played both the Prisoner’s Dilemma and the Battle of the Sexes, with
the order counter-balanced between subjects. Participants were
instructed that they would play two games with ten rounds each with
different players. The participants’interface (Supplementary Fig. 4)
was designed to provide clear and actionable information about the
current game. After each game, participants were asked to indicate
if they thought they had just played with another human player or
an artificial agent.

Prompts and human instructions. The cover story used for inter-
actions with both LLMs and human participants was content-wise
identical, including the rules of the game and the history of previous
interactions, to ensure consistent framing across conditions (see
Supplementary A.1for the detailed prompt progression). However,
the presentation was adapted to suit each audience. For human par-
ticipants, visual cues and concise text were prioritized to create a
more engaging experience (Supplementary Fig. 4).

Ending and debriefing. Participants were informed that their oppo-
nent could either be another human participant or an artificial agent.
Inreality, all participants were paired with either aSCoT-prompted or
an unprompted version of GPT-4 for the entirety of the experiment,
that is, across both games. After completing the study, participants
were debriefed that the purpose of the study was to explore how to
make LLMs more human-like and that, in both games, they had played
against different versions of an artificial agent.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All participant and model simulation data from the experiments are
available via GitHub at https://github.com/eliaka/repeatedgames.

Code availability

The code underlying this study, prompt variations and model
simulations is available via GitHub at https://github.com/eliaka/
repeatedgames.
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Human research participants
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Reporting on sex and gender Sex and gender were not relevant in study design. The study was distributed evenly to male and female participants. Sex and
gender was determined based on participant demographics on the Prolific platform.

Population characteristics N=195, 89 females, mean age=26.72, SD=4.19.

Recruitment Participants were recruited from Prolific and were required to be fluent speakers of English. The study may exhibit self-
selection bias since participants voluntarily joined via Prolific and were limited to fluent English speakers, potentially reducing
generalisability to non-English speaking populations. However, the behavioral games used are based on universal decision-
making principles. The use of English speakers was due to language proficiency, not a theoretical limitation.
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Study description Quantitative study. We let large language models play finitely repeated games with each other, with human-like strategies and
human players using two-player, two-action games from behavioural economics.

Research sample Our sample consisted of participants (N=195, mean age=26.72, SD=4.19.) recruited via Prolific, with gender counterbalanced, all
required to be fluent in English. While not fully representative of the general population due to self-selection and language criteria,
this sample was chosen to ensure clear communication and reliable engagement with the behavioral game theory tasks.
Additionally, the study featured five language models: OpenAl's GPT-4, text-davinci-003, text-davinci-002, Meta Al's Llama 2 70B
Chat, and Anthropic's Claude 2. All models played 2x2 games against each other and hand-coded human-like strategies, with GPT-4
acting as the LLM opponent in the human participant study.

Sampling strategy Participants were recruited via Prolific using a convenience sampling approach, with stratification to ensure gender counterbalancing.
The sample size of N=195 was chosen based on comparable behavioral game theory studies in the literature. Participants played
both the Prisoner's Dilemma and the Battle of the Sexes, with the order counterbalanced between subjects. Models were chosen so
that they adequately represent current SOTA models (large and small, open source and closed source).

Data collection The open-source models were evaluated on a Slurm-based cluster with a single A100. For proprietary models, we used the public
APls. Human participant data was collected on Prolific. Data collection code is available on GitHub (github.com/eliaka/
repeatedgames). The researcher was not blinded to experimental conditions. In the model experiments, the language models played
the games autonomously. In the human study, the design did not require reciprocal interaction with the researcher and it compared
two model conditions (prompted vs. baseline). All participants were fully debriefed after the experiment.

Timing The experiments on Prolific took place between 17/06/2024 and 21/06/2024.
Data exclusions We excluded data of 21 players who failed to make a round's choice between the 2 options within a given time frame (20 seconds).
Non-participation 14 participants did not complete the study; two of them having internet connection issues, one quoting technical problems and the

rest without explicit reasoning.

Randomization Participants were randomly allocated into groups.
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