
Annali di Matematica Pura ed Applicata (1923 -)
https://doi.org/10.1007/s10231-025-01567-y

The system of translates and the special affine Fourier
transform

Md Hasan Ali Biswas1 · Frank Filbir2 · Radha Ramakrishnan1

Received: 21 July 2024 / Accepted: 12 March 2025
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer
Nature 2025

Abstract
The translation operator T A associated with the special affine Fourier transform (SAFT)FA

is introduced from harmonic analysis point of view. The analogues of Wendel’s theorem,
Wiener theorem, Wiener-Tauberian theorem and Bernstein type inequality in the context of
the SAFT are established. The shift invariant space VA associated with the special affine
Fourier transform is introduced and studied along with sampling problems.
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1 Introduction and background

The special affine Fourier transform (SAFT) was first considered by S. Abe and J. T. Sheridan
in [1] for the study of certain operations on optical wave functions. The SAFT is formally
defined as

FA f (ω) = 1√
2π |b|

∫
R

f (t)e
i
2b (at2+2pt−2ωt+dω2+2(bq−dp)ω)dt, ω ∈ R, (1.1)

where A stands for the set {a, b, c, d, p, q} of real parameters which satisfy the relation
ad − bc = 1, b �= 0. The integral transform (1.1) is related to the special affine linear
transform of the phase space (

t ′
ω′

)
=

(
a b
c d

) (
t
ω

)
+

(
p
q

)
. (1.2)
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Due to the conditions on the parameters a, b, c, d the matrix in (1.2) belongs to the special
linear group SL(2,R) and the affine transform (1.2) is therefore given by elements from the
inhomogeneous linear group

ISL(2,R) =
{(

M v

0 1

)
: M ∈ SL(2,R), v ∈ R

2
}

.

This justifies the name special affine Fourier transform for (1.1). The action of the group
SL(2,R) on the time frequency plane and the relation to quadratic Fourier transforms is well
studied. We will not go into the details here but refer to the book [13].

A number of important transforms are special cases of the SAFT. For example, A =
{0, 1,−1, 0, 0, 0} gives the ordinary Fourier transform and A = {0,−1, 1, 0, 0, 0} its inverse.
The parameter set A = {cos θ, sin θ,− sin θ, cos θ, 0, 0} gives the fractional Fourier trans-
form, and A = {1, λ, 0, 1, 0, 0} produces the Fresnel transform.

In optics, certain one parameter subgroups of the ISL(2,R) are of special interest. Among
them are the fractional Fourier transform, the Fresnel transform (also called free space propa-
gation in this context), the hyperbolic transform A = {cosh θ, sinh θ, sinh θ, cosh θ, 0, 0}, the
lens transform A = {1, 0, λ, 1, 0, 0}, and themagnification transform A={eβ,0,0,e−β, 0, 0}.
The latter two cases need a careful analysis for the limit case b → 0 which we will not con-
sider in this paper. We will not try to expound the various connections to optics further but
refer to [17] for more details.

In this paper, we consider (1.1) from the point of view of applied harmonic analysis and
take it as a signal transform of a (suitable) function. We are mainly interested in studying the
principal shift invariant spaces and sampling theorems related to the SAFT. In the classical
case, the principal shift invariant space generated by φ ∈ L2(R) is defined as V (φ) =
span{Tkφ = φ(· − k) : k ∈ Z}. The classical Fourier transform (A = {0, 1,−1, 0, 0, 0}
in (1.1)) plays a crucial role for the analysis of such spaces. The crucial point is that the
ordinary translation and the classical Fourier transform are intimately related. This is due to
the identity eiω(t−x) = eiωt e−iωx which gives, as a consequence the convolution theorem,
the relation between translation, modulation, Fourier transform etc. These theorems are used
over and over again in Fourier analysis and in the study of shift invariant spaces in particular.
It is completely obvious that the ordinary translation does not interact nicely with the SAFT
(resp. its complex exponential kernel). Hence working with the SAFT, a new concept of
a translation is needed. This generalized translation should be linked to the SAFT in an
analogous manner as the ordinary translation is linked to the classical Fourier transform. If
this is the case, then it seems reasonable to expect that the central theorems (convolution
theorem etc.) hold in a similar manner. An idea for the construction of such generalized
translation comes from the observation that in the classical setting we have

Tx f (t) = F−1(e−iωxF f )(t).

In this paper, we define a new translation operator T A
x , which serves our purpose in the case

of SAFT.
Considering the SAFT as a general integral transform and using the notion of the gen-

eralized translation operator and convolution as in [19], the authors in [31] introduced the
concepts of the translation operator and convolution in connection with the SAFT. However,
the concept of the translation operator is not very explicit in this setup. In [29], the authors
introduced the notion of convolution using chirp modulation operator and obtained a convo-
lution theorem in the context of the SAFT. In this paper, we introduce A-translation operator
in connection with the SAFT and obtain a convolution theorem using it. Here, we point out
that our notion of convolution and the one in [29] are the same.
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Due to the lack of an explicit generalized translation operator, the consequences of this con-
cept with respect to harmonic analysis were not explored. In this paper, we shall demonstrate
that the generalized translation is the suitable concept to obtain analogues of fundamental
theorems such as Wendel’s theorem for multipliers, Wiener theorem and Wiener-Tauberian
theorem in connection with the closed ideals of translation invariant spaces in the context
of the SAFT. For a study of multipliers and Wendel’s theorem for the Fourier transform we
refer to [21], for Wiener theorem and Wiener-Tauberian theorem we refer to [14] and [25].
The novelty of this approach is that apart from these theorems, one can look into the study of
multiplier theory, including Hörmander multiplier theorem in the SAFT domain. Moreover,
one can define an appropriate modulation operator in connection with the SAFT, which can
be used to define corresponding new modulation spaces. This in turn, motivates to study
multiplier results for the new modulation spaces. (See [9] in this connection.)

Using the new translation operator T A
x the A-shift invariant spaces are defined as VA(φ) =

span{T A
k φ : k ∈ Z} for an appropriate function φ ∈ L2(R). When φ belongs to the Wiener

amalgam space W (C0, �
1)(R) the space VA(φ) turns out to be a reproducing kernel Hilbert

space. In the theory of shift-invariant spaces, it is interesting to obtain necessary and sufficient
conditions on φ such that the system of translates {Tkφ : k ∈ Z} forms a frame sequence,
Riesz sequence or an orthonormal system. For a proof of these characterizations, see Theorem
9.2.5 in [12]. In this paper, we give characterization theorems for the system of A-translates
{T A

k φ : k ∈ Z} to be a frame sequence, orthonormal system or a Riesz sequence. If the
system of translates is a frame, then an important question is about the nature of the dual
frame elements. We show that in our setting, the elements of the dual frame of system of
A-translates are also A-translates of a single function.

In the final part of the paper we study the sampling in A-shift invariant spaces. A fun-
damental problem in sampling theory is to find, for a certain class of functions, appropriate
conditions on a countable sampling set X = {x j ∈ R : j ∈ J } under which a given function
f ∈ V can be reconstructed uniquely and stably from the samples { f (x j ) : j ∈ J }. We
refer to the work of Butzer and Stens [10] for a review on sampling theory and its history.
When V is the classical principal shift invariant space with a single generator V (φ) or multi-
generators V (φ1, φ2, ..., φr ), φ, φ1, φ2, ...φr ∈ L2(R), there is a huge literature available on
several interesting problems connected with sampling theory starting from the fundamental
Shannon sampling theorem.We cite only a few references in this connection for the reader to
get familiarity with this subject matter. (See [2–5, 11, 15, 16, 20, 22, 23, 27, 28, 30, 32]). In
[6, 7] Bhandari and Zayed have defined chirp-modulated shift invariant spaces in connection
with fractional Fourier transform, SAFT respectively and studied sampling problems in it.

In this paper, similar to Theorem 4.2 of [3] and Theorem 2.1 of [26], we obtain equivalent
conditions for a set X = {x j : j ∈ Z} to be a stable set of sampling for VA(φ) in terms of the
operatorU whereUjk = T A

k φ(x j ), the reproducing kernel and the Zak transform ZA, which
we introduce here.We also obtain a sufficient condition for the set of integers to be a stable set
of sampling for VA(φ). In the study of non uniform sampling and average sampling, Bernstein
type inequalities play an important role. In this paper we obtain an analogue of Bernstein type
inequality for VA(φ). However, we do not intend to study non-uniform sampling and average
sampling in this paper. We focus on uniform sampling. In particular, when Z turns out to be a
stable set of sampling, we obtain a reconstruction formula and hence a sampling theorem in
the sense of L2 convergence for certain A-shift invariant spaces VA(φ). Further, under some
additional hypotheses on φ, we obtain a sampling formula in the sense of L2 convergence,
poitwise convergence and uniform convergence. As corollaries we obtain Shannon sampling
theorem in the SAFT domain and sampling theorem for the A-shift invariant space generated
by second order B-spline.
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We organize our paper as follows. In Sect. 2, we define A-convolution of a measure
and a function and chirp modulation Csμ of a measure μ. Using this and the function

ρA(x) = e
i
2b (ax2+2px), we obtain a relation between classical translation and A-translation.

We prove an analogue of Wendel’s theorem for the SAFT. In Sect. 3, we study closed ideals
in the Banach algebra (L1(R), 
A). We obtain analogues of Wiener theorem and Wiener-
Tauberian theorem in the context of the SAFT. In Sect. 4, we study A-shift invariant spaces
and their theoretical aspects. Section5 as well as Sect. 6 are devoted to sampling theorems
in A-shift invariant spaces. Finally in Sect. 7, we present a local reconstruction method for
sampling in A-shift invariant spaces.

Now we shall provide the necessary terminology and background for this paper.
Let 0 �= H be a separable Hilbert space.

Definition 1.1 A sequence { fk : k ∈ N} of elements in H is a frame for H if there exist
m, M > 0 such that

m‖ f ‖2 ≤
∞∑
k=1

|〈 f , fk〉|2 ≤ M‖ f ‖2, f ∈ H.

The numbers m, M are called frame bounds. If we have the right hand side inequality for
a sequence in H, then that sequence is called a Bessel sequence.

Definition 1.2 Let { fk : k ∈ N} be a Bessel sequence in H, then the synthesis operator
T : �2 → H is defined by

T ({ck}) =
∞∑
k=1

ck fk, {ck} ∈ �2.

The adjoint of T is given by T ∗( f ) = {〈 f , fk〉}, f ∈ H, called the analysis operator.
Composing T and T ∗ we obtain the frame operator

S : H → H, S( f ) =
∞∑
k=1

〈 f , fk〉 fk .

The operator S is invertible. Further if { fk : k ∈ N} is a frame for H, then {S−1 fk : k ∈ N}
is also a frame for H and it is called the canonical dual frame of the frame { fk : k ∈ N}.
Definition 1.3 A sequence { fk : k ∈ N} in H is said to be a Riesz basis if there exist a
bounded invertible operator T on H and an orthonormal basis {uk : k ∈ N} of H such that
fk = Tuk, ∀ k ∈ N. The sequence { fk : k ∈ N} is called a Riesz sequence if it is a Riesz
basis for its closed linear span.

Equivalently { fk : k ∈ N} is a Riesz sequence if there exist m, M > 0 such that

m‖c‖2 ≤ ‖
∞∑
k=1

ck fk‖2 ≤ M‖c‖2, for every finite sequence {ck}.

Definition 1.4 Let { fk : k ∈ N} be a Riesz basis forH. The dual Riesz basis of { fk : k ∈ N}
is the unique sequence {gk : k ∈ N} in H satisfying

f =
∞∑
k=1

〈 f , gk〉 fk, ∀ f ∈ H.

The dual Riesz basis is often called as the biorthogonal Riesz basis.
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Definition 1.5 TheGramian associated with the Bessel sequence { fk : k ∈ N} is an operator
on �2 whose jkth entry in the matrix representation with respect to the canonical orthonormal
basis is 〈 fk, f j 〉.

It is well known that a sequence { fk : k ∈ N} is a Riesz sequence if there exist m, M > 0
such that its Gramian G satisfies the following inequalities:

m‖c‖2 ≤
∑
k∈N

|〈Gck, ck〉|2 ≤ M‖c‖2, ∀ c = {ck} ∈ �2.

Definition 1.6 A closed subspace V in L2(R) is said to be a shift invariant space if f ∈ V ⇒
Tk f ∈ V , ∀k ∈ Z, f ∈ V , where Tk f (t) = f (t − k).

In particular, for φ ∈ L2(R), V (φ) = span{Tkφ : k ∈ Z} is called the principal shift
invariant space.

We refer to [12], for a study of frames, Riesz basis and shift invariant spaces.

Definition 1.7 A set X = {xk ∈ R : k ∈ Z} is said to be a stable set of sampling for a closed
subspace V of L2(R) if there exist constants 0 < m ≤ M < ∞ such that

m‖ f ‖2 ≤
∑
k∈Z

| f (xk)|2 ≤ M‖ f ‖2,

for every f ∈ V .

Definition 1.8 TheWiener amalgam space W (C0, �
p)(R), 1 ≤ p < ∞ is defined as

W (C0, �
p)(R) = { f ∈ C(R) :

∑
k∈Z

maxx∈[0,1]| f (x + k)|p < ∞}.

2 The new translation

In this section, we introduce A-translation operator in connection with the SAFT. Using
A-translation operator, we define A-convolution of a regular Borel measure and a function.
Further, we obtain an analogue of Wendel’s theorem. Towards this end, first we extend the
definition of SAFT to the space of all regular Borel measures.

Definition 2.1 Let f ∈ L1(R). Then the special affine Fourier transform is defined as

FA f (ω) = 1√
2π |b|

∫
R

f (t)e
i
2b (at2+2pt−2tω+dω2+2(bq−dp)ω)dt, ω ∈ R, (2.1)

where A stands for the set of six parameters {a, b, c, d, p, q} ⊂ R with ad − bc = 1 and
b �= 0.

With the help of the following auxiliary functions

ηA(ω) = e
i
2b

(
dω2+2(bq−dp)ω

)
, (2.2)

ρA(t) = e
i
2b (at2+2pt), (2.3)

the SAFT can be expressed as

FA f (ω) = ηA(ω)√|b| (ρA f ) ̂ (ω/b), (2.4)
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where f̂ denotes the Fourier transform of f . Since |ηA(ω)| = 1 = |ρA(t)| for all t, ω ∈ R,
we immediately see from (2.4) that FA f ∈ C0(R) with ‖FA f ‖∞ ≤ (2π |b|)−1/2 ‖ f ‖1.
Moreover, (2.4) also shows thatFA can be extended to L2(R) and defines a unitary operator
on that space. In particular,

‖FA f ‖2 = ‖ f ‖2.
The inverse of FA on L2(R) can also be easily determined using (2.4)

F−1
A f (t) = ρA(t)√

2π |b|
∫
R

f (ω)ηA(ω) eiωt/bdω.

Finally, (2.4) also provides an extension of the SAFT to M(R), the space of all complex
valued bounded regular Borel measures on R, equipped with the total variation norm. For
μ ∈ M(R), we have

FAμ(ω) = 1√
2π |b|

∫
R

e
i
2b (at2+2pt−2tω+dω2+2(bq−dp)ω)dμ(t), ω ∈ R,

with FAμ ∈ Cb(R) and ‖FAμ‖∞ ≤ (2π |b|)−1/2‖μ‖M(R).
We now introduce the generalized translation operator associated with SAFT. In order to

do so, we fix the following notation

Tx f (t) = f (t − x). (2.5)

Mω f (t) = eiωt f (t). (2.6)

Definition 2.2 Let x ∈ R and f : R → R be a function. Then A-translation of f by x ,
denoted by T A

x f , is defined as

T A
x f (t) = TxM−ax/b f (t) = e−i ab x(t−x) f (t − x), t ∈ R.

It is easy to see that T A
x is norm preserving in all spaces L p(R), 1 ≤ p ≤ ∞ or C0(R).

We can relate our new translation and the classical translation in the following way, using
ρA and the chirp modulation operator Ca/b, where

Cs f (t) = ei
s
2 t

2
f (t). (2.7)

Ca/bT
A
x f = ei

a
2b x

2
Tx (Ca/b f ) (2.8)

ρAT
A
x f = ρA(x)Tx (ρA f ). (2.9)

In fact,

Ca/bT
A
x f (t) = ei

a
2b t

2
e−i ab x(t−x) f (t − x) = ei

a
2b x

2
ei

a
2b (t−x)2 f (t − x) = ei

a
2b x

2
Tx (Ca/b f )(t).

Similarly, one can show (2.9).
Now, we collect the properties of T A

x .

Proposition 2.3 We have the following

(i) T A
x T A

y = e−i ab xyT A
x+y, x, y ∈ R.

(ii) (T A
x )∗ = e−i ab x

2
T A−x , x ∈ R.

(iii) Let χω(t) = ρA(t) eiωt/b. Then T A
x χω(t) = χω(x) χω(t).

(iv) Let f ∈ L1(R). Then

FA(T A
x f )(ω) = ρA(x)e−i xw/bFA f (ω), x, ω ∈ R. (2.10)
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Proof The proof is straightforward. ��
It is interesting to note that the map x �→ Tx is a group representation, whereas from

Proposition 2.3 (i) it follows that x �→ T A
x is just a projective representation in general,

which shows that the new translation is fundamentally different from the classical translation.
Proposition 2.3 (iii) is what is known in harmonic analysis as a product formula. The relation
(2.10) extends to functions f ∈ L2(R) as well. For those functions we have in particular

T A
x f = F−1

A (ρA(x)e−i x ·/bFA f ), (2.11)

where the equality holds in the sense of L2(R) functions.

Definition 2.4 Let μ ∈ M(R) and s ∈ R, then Csμ is defined by d(Csμ)(x) = e
i
2 sx

2
dμ(x).

Clearly, Csμ ∈ M(R). Similarly, we can define ρAμ as d(ρAμ)(x) = ρA(x)dμ(x).
Using the A-translation, we define the A-convolution of μ ∈ M(R) and f ∈ L1(R) as

(μ
A f )(t) = 1√
2π |b|

∫
R

T A
s f (t) dμ(s). (2.12)

The integral in (2.12) can also be viewed as a vector-valued integral as follows.

μ
A f = 1√
2π |b|

∫
R

T A
s f dμ(s), (2.13)

where the right hand side is a Bochner integral. The convergence of the integral follows from∫
R

‖T A
s f ‖1dμ(s) = ‖ f ‖1μ(R) < ∞.

Now we give a relation between classical convolution and A-convolution of a measure and
a function. Consider

(μ
A f )(x) = 1√
2π |b|

∫
R

T A
s f (x)dμ(s)

= 1√
2π |b|

∫
R

ei
a
2b s

2
C−1
a/bTsCa/b f (x)dμ(s)

= e−i a
2b x

2

√
2π |b|

∫
R

TsCa/b f (x)e
i a
2b s

2
dμ(s)

= e−i a
2b x

2

√
2π |b|

∫
R

TsCa/b f (x)d(Ca/bμ)(s)

= e−i a
2b x

2

√|b| (Ca/bμ
Ca/b f )(x),

using (2.8), which in turn implies that

Ca/b(μ
A f ) = 1√|b| (Ca/bμ
Ca/b f ). (2.14)

Further, using (2.9), one can show that

ρA(μ
A f ) = 1√|b| (ρAμ)
(ρA f ). (2.15)

The convolution theorem for the SAFT reads as follows.
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Proposition 2.5 Let μ ∈ M(R) and f ∈ L1(R). Then

FA(μ
A f )(ω) = ηA(ω)FAμ(ω)FA f (ω). (2.16)

Proof The proof is straightforward using the operator ρA. ��
In particular, if μ = g dt, for some g ∈ L1(R) then

FA(g
A f )(ω) = ηA(ω)FAg(ω)FA f (ω).

See [7] for more details.
The concept of chirp modulation was used in [7] to define a chirp convolution and to

get sampling theorems. Although the A-translation is somehow included implicitly in the
definition of the chirp convolution, it has not been used to its full extent in [7] and hence the
harmonic analysis of the special affine Fourier transform has not been developed. However
we want to make use of our new translation from harmonic analysis point of view. Towards
this end we first prove an analogue of Wendel’s theorem for the SAFT.

Theorem 2.6 (Wendel) Let T : L1(R) → L1(R) be a bounded linear operator. Then the
following statements are equivalent.

(i) T T A
s = T A

s T , for all s ∈ R.
(ii) T ( f 
Ag) = T f 
Ag = f 
ATg, for all f , g ∈ L1(R).

(iii) There exists a unique μ ∈ M(R) such that T f = μ
A f .
(iv) There exists a unique μ ∈ M(R) such that

FA(T f )(ω) = ηA(ω)FAμ(ω)FA f (ω).

(v) There exists a unique φ ∈ L∞(R) such that FA(T f )(ω) = φ(ω)FA f (ω).

Proof Let EρA f (t) = ρA(t) f (t) and define T̃ : L1(R) → L1(R) by T̃ = EρA T EρA . Then
using (2.9) we get

T T A
x = T EρA EρA T

A
x =ρA(x) T EρA Tx EρA = ρA(x) EρA T̃ Tx EρA ,

which shows that T T A
x = T A

x T iff T̃ Tx = Tx T̃ . Similarly we can show that T ( f 
Ag) =
T f 
Ag iff T̃ ( f 
g) = T̃ f 
g, and T f = μ
A f iff T̃ f = 1√|b| (EρAμ)
 f . The equivalence
of (i),(ii), and (iii) now follows fromWendel’s theorem in the classical case. That (iii) implies
(iv) and (iv) implies (v) is obvious. To show that (i) follows from (v), let f ∈ L1(R). For
s ∈ R we have

FA(T T A
s f )(ω) = φ(ω)FA(T A

s f )(ω) = φ(ω) ρA(ω) e−i sω/b FA f (ω)

= ρA(ω) e−i sω/b FA(T f )(ω) = FA(T A
s T f )(ω).

��
We end this section by establishing an analogue of the Poisson summation formula for the

SAFT and the corresponding A-translation. From now on, we use the following notation.

I := [−|b|π, |b|π ] .

Theorem 2.7 Let f ∈ L1(R) ∩ L2(R). Then the following formula holds.
√
2π |b|

∑
k∈Z

T A−2kbπ f (t)e−2iabk2π2 =
∑
n∈Z

ηA(n + p)FA f (n + p)e− i
2b (at2−2nt), t ∈ R.

We refer to [7] for the proof.
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3 Closed ideals in (L1(R), �A)

We have seen that

Ca/b( f 
Ag) = 1√|b| (Ca/b f 
Ca/bg).

Thus it is easy to see that ‖g
A f ‖1 ≤ (2π |b|)−1/2‖g‖1 ‖ f ‖1, from which it follows that
(L1(R), 
A) is a commutative Banach algebra. In this section, we aim to study the closed
ideals in (L1(R), 
A). Towards this end, first we show that

(
L1(R), 
A

)
possesses a bounded

approximate identity as in the classical case (L1(R), 
).

Theorem 3.1 The Banach algebra (L1(R), 
A) possesses a bounded approximate identity.

Proof Let {gα} be a bounded approximate identity in (L1(R), 
) and define uα = √|b| ρA gα .
Then using (2.15), we get

‖ f 
Auα − f ‖1 = ‖ρA( f 
Auα) − ρA f ‖1 =
∥∥∥ 1√|b|

(
(ρA f )
(ρAuα)

) − ρA f
∥∥∥
1

= ‖(ρA f )
gα − ρA f ‖1 → 0

as α → ∞. Hence {uα} is a bounded approximate identity for (L1(R), 
A). ��
Now, we aim to study A-translation invariant closed ideals in (L1(R), 
A). First we prove
the following theorem in this context.

Theorem 3.2 Let J be a closed subspace of L1(R). Then J is an ideal in (L1(R), 
A) if and
only if it is invariant under A-translations.

Proof Let J be an ideal in (L1(R), 
A). Let {uα} be an approximate identity in (L1(R), 
A).
Then for f ∈ J and x ∈ R, we have

T A
x f = lim

α→∞ T A
x (uα
A f ) = lim

α→∞ T A
x uα
A f ,

using Theorem 2.6. Since T A
x uα
A f ∈ J , for all α and J is closed, T A

x f ∈ J .
Conversely, assume that J is invariant under A-translations. Let f ∈ J , g ∈ L1(R). Then

viewing f 
Ag as a Bochner integral as in (2.13), we can conclude that f 
Ag ∈ J . ��
Proposition 3.3 The collection {g ∈ L1(R) : FA(g) has compact support} is dense in
L1(R).

Proof We know that {g ∈ L1(R) : ĝ has compact support} is dense in L1(R). Thus, for
f ∈ L1(R), there exists g ∈ L1(R) such that ĝ has compact support and ‖Ca/b f − g‖ < ε.
This implies that

‖ f − C−a/bg‖ = ‖Ca/b f − Ca/bC−a/bg‖ < ε.

Further, FA(C−a/bg) has compact support as ĝ has compact support and

FA(C−a/bg)(ω) = ηA(ω)√|b| ĝ(
ω − p

b
),

which completes the proof. ��

123



Md. H. A. Biswas et al.

Lemma 3.4 (Lemma 4.59 in [14]) Let f ∈ L1(R) and ω0 ∈ R. Then for every ε > 0, there
exists h ∈ L1(R) with ‖h‖1 < ε such that

( f + h) ̂ (ω) = f̂ (ω0),

for every ω in some neighbourhood of ω0.

Now we are in a position to state and prove an analogue Wiener’s theorem in connection
with the SAFT.

Theorem 3.5 Let J be a closed A-translation invariant subspace of L1(R) such that Z(J ) =
∅, where Z(J ) := {ω ∈ R : FA f (ω) = 0, for all f ∈ J }. Then J = L1(R).

Proof In view of Proposition 3.3, it is enough to show that f ∈ J for all f ∈ L1(R) such
thatFA f has compact support. Let f ∈ L1(R) be such thatFA f has compact support. Let
K = supp(FA f ).
Step 1: In this step we show that for each ω0 ∈ R, there exists F ∈ J such that FA f (ω) =
FAF(ω) in a neighbourhood of ω0. Since Z(J ) = ∅, we can choose g ∈ J such that

ηA(ω0)FAg(ω0) = 1. Then using Lemma 3.4, there exists h ∈ L1(R)with ‖h‖1 <
(2π |b|)1/2

2
and

(Ca/bg) ̂ (
ω − p

b
) + (Ca/bh) ̂ (

ω − p

b
) = (Ca/bg) ̂ (

ω0 − p

b
),

in a neighbourhood of ω0. This implies that

FAg(ω) + FAh(ω) = ηA(ω)

ηA(ω0)
FAg(ω0) = ηA(ω), (3.1)

in a neighbourhood of ω0. Let hn = h
Ah
A · · · 
Ah (n-times). Then using the fact that
(L1(R), 
A) is a Banach algebra, we can show that the series f + ∑

n∈N f 
Ahn converges
in L1(R). Let k = f + ∑

n∈N f 
Ahn . Then using convolution theorem, we obtain

FAk(ω) = FA f (ω) +
∑
n∈N

ηA(ω)nFA f (ω)
(
FAh(ω)

)n = FA f (ω)
1

1 − ηA(ω)FAh(ω)

= FA f (ω)

ηA(ω)FAg(ω)
,

in a neighbourhood of ω0, using (3.1). The second equality in the above equation follows
from the fact that |FAh(ω)| ≤ 1

(2π |b|)1/2 ‖h‖1 < 1
2 . Thus

FA f (ω) = ηA(ω)FAg(ω)FAk(ω) = FA(g
Ak)(ω),

in a neighbourhood of ω0. As g
Ak ∈ J , by Theorem 3.2, our claim is established.
Step 2: In this step we show that f ∈ J . Appealing to Step 1, for each ω ∈ R, choose gω ∈ J
such that FA f = FAgω in a neighbourhood Uω of ω. Using compactness of K , we get
U1, U2, · · ·Un and g1, g2, · · · gn ∈ J such that K ⊂ ∪n

i=1Ui and FA f = FAgi on Ui .
Now choose open Wω such that

{ω} ⊂ Wω ⊂ Wω ⊂ Ui .

Again using the compactness of K , there existWω1 , Wω2 , · · · ,Wωm such that K ⊂ ∪m
i=1Wωi

and Wωi ⊂ Uωi , where ωi ∈ Uωi ∈ {U1, U2, · · · ,Un}. Take h1, h2, · · · , hm ∈ L1(R) such
that

ηA(ω)FAh j (ω) = 1 on Wω j and supp(FAh j ) ⊂ Uω j .
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Then �m
j=1(1 − ηA(ω)FAh j (ω)) = 0 on K . This implies that

FA f (ω) = FA f (ω)[1 − �m
j=1(1 − ηA(ω)FAh j (ω))].

This can be rewritten as f = ∑
f 
AHi , where Hi being one of the h j ’s or their convolutions,

and supp(FAHi ) ⊂ Uωi , for some i . But

FA( f 
AHi )(ω) = ηA(ω)FA f (ω)FAHi (ω) = ηA(ω)FAgi (ω)FAHi (ω) = FA(gi
AHi )(ω).

As gi
AHi ∈ J , f ∈ J . This completes the proof. ��
Corollary 3.6 Let f ∈ L1(R). Then the closed linear span of A-translates of f is L1(R) if
and only if FA f never vanishes.

Proof Let J be the closed linear span of A-translates of f . Let FA f (ω) �= 0 for all ω ∈ R.
Since J is a closed A-translation invariant subspace, appealing to Wiener’s theorem, we get
J = L1(R).
Conversely, assume that J = L1(R). Suppose FA f (ω0) = 0 for some ω0 ∈ R. Then
FAh(ω0) = 0 for all h ∈ span{T A

x f : x ∈ R}. Since span{T A
x f : x ∈ R} is dense in L1(R)

and ‖FAh‖∞ ≤ (2π |b|)−1/2‖ f ‖1, we can conclude that FAh(ω0) = 0, for all h ∈ L1(R),
which is an impossibility. Hence the result follows. ��

Now, we shall state the analogue of Wiener’s theorem for L2(R) functions.

Theorem 3.7 Let f ∈ L2(R). Then the closed linear span of A-translates of f is L2(R) if
and only if FA f (ω) �= 0 a.e.

Proof Let M = span{T A
x f : x ∈ R}. Then g ∈ M⊥ if and only if 〈T A

x f , g〉 = 0, for all
x ∈ R. For x ∈ R, consider

〈T A
x f , g〉 = 〈FA(T A

x f ),FAg〉 =
∫
R

ρA(x)e−i xb ωFA f (ω)FAg(ω)dω

= √
2πρA(x)

(
(FA f )(FAg)

) ̂ (
x

b
).

Thus 〈T A
x f , g〉 = 0 for all x ∈ R is equivalent to

(FA f (ω)FAg(ω))̂ (x) = 0, for all x ∈ R,

which is same asFA f (ω)FAg(ω) = 0, a.e. ω ∈ R. This shows that M⊥ = {0} if and only
if FA f (ω) �= 0 a.e. ω ∈ R. ��

Example 3.8 Let φ(x) = C−a/bg(x), where g(x) = e− x2
2 . Then using FA(φ)(ω) =

ηA(ω)√
2π |b| (Ca/bφ) ̂ (

ω−p
b ), it follows that

FA(φ)(ω) = 1√|b|g(
ω − p

b
) �= 0, for all ω ∈ R.

Thus span{T A
x φ : x ∈ R} is dense in L1(R) as well as in L2(R).

We conclude this section by establishing an analogue ofWiener-Tauberian theorem.Recall
that My denotes the modulation operator which is defined in (2.6).
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Theorem 3.9 (Wiener-Tauberian) Let φ ∈ L∞(R), h ∈ L1(R) be such that FAh(ω) �= 0,
for all ω ∈ R and

lim
x→±∞Ca/b(h
Aφ)(x) = mFA(M− p

b
h)(0).

Then

lim
x→±∞Ca/b( f 
Aφ)(x) = mFA(M− p

b
f )(0),

for all f ∈ L1(R).

Proof Since, 0 �= FAh(ω) = ηA(ω)√|b| (Ca/bh) ̂ (
ω−p
b ), for all ω ∈ R. (Ca/bh) ̂ (ω) �= 0, for

all ω ∈ R. Further,

Ca/b(h
Aφ)(x) = 1√|b| (Ca/bh
Ca/bφ)(x).

Furthermore,

FA f (0) = 1√|b| (Ca/b f ) ̂ (− p

b
) = 1√|b|T p

b
(Ca/b f ) ̂ (0) = 1√|b| (M p

b
Ca/b f ) ̂ (0)

= 1√|b| (Ca/bM p
b
f ) ̂ (0),

using CsMy = MyCs . Thus

FA(M− p
b f )(0) = 1√|b| (Ca/b f )(0). (3.2)

Hence

lim
x→±∞(Ca/bh
Ca/bφ)(x) = m(Ca/bh) ̂ (0),

using given hypothesis. Now using the classical Wiener-Tauberian theorem, we get

lim
x→±∞( f 
Ca/bφ)(x) = m f̂ (0), for all f ∈ L1(R).

This implies that

lim
x→±∞(Ca/b f 
Ca/bφ)(x) = m(Ca/b f ) ̂ (0), for all f ∈ L1(R).

This in turn implies that

lim
x→±∞Ca/b( f 
Aφ)(x) = mFA(M− p

b
f )(0), for all f ∈ L1(R),

using (3.2). ��
Asa special case,we state the following analogue of theWiener-Tauberian theoremassociated
with the fractional Fourier transform.

Corollary 3.10 Let φ ∈ L∞(R), h ∈ L1(R) be such that Fθh(ω) �= 0, for all ω ∈ R and

lim
x→±∞Cθ (h
θφ)(x) = mFθh(0).

Then

lim
x→±∞Cθ ( f 
θφ)(x) = mFθ f (0),

for all f ∈ L1(R).
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4 A-shift invariant spaces

In this section, we aim to study shift invariant spaces associated with the SAFT, called A-
shift invariant spaces, in detail. Recall that the A-shift invariant space is defined by VA(φ) =
span{T A

k φ : k ∈ Z} for φ ∈ L2(R). First, we obtain the following result whose proof is
similar to that of Theorem 2 in [2] in the classical case.

Theorem 4.1 Let φ ∈ W (C0, �
1)(R) be such that {T A

k φ : k ∈ Z} forms a Riesz basis for
VA(φ). Then

(i) VA(φ) ⊆ W (C0, �
2)(R).

(ii) If X = {xk : k ∈ Z} is separated, then there is M > 0 such that
( ∑
k∈Z

| f (xk)|2
)1/2 ≤ M‖ f ‖, ∀ f ∈ VA(φ).

Corollary 4.2 Let φ ∈ W (C0, �
1)(R) be such that {T A

k φ : k ∈ Z} forms a Riesz basis for
VA(φ). Then VA(φ) is a reproducing kernel Hilbert space with the reproducing kernel

K (x, y) =
∑
k∈Z

ei
a
b k(x−y)φ(x − k)S−1φ(y − k),

where S is the frame operator for {T A
k φ : k ∈ Z}.

Proof Let x ∈ R be fixed. Then, taking X = {x + k : k ∈ Z} in the previous theorem we
get M > 0 such that | f (x)| ≤ M‖ f ‖, for every f ∈ VA(φ), which shows that VA(φ) is a

RKHS. The reproducing kernel for VA(φ) is K (x, y) = ∑
k∈Z T A

k φ(x)T A
k S−1φ(y). Now,

using the definition of T A
k our assertion follows. ��

Theorem 4.3 If {T A
k φ : k ∈ Z} is a frame sequence, for φ ∈ L2(R), then the members of its

canonical dual frame also are A-translates of a single function.

Proof Let S be the frame operator for {T A
k φ : k ∈ Z}. First we prove that ST A

k = T A
k S, ∀ k ∈

Z. Let f ∈ VA(φ). Then for k ∈ Z, we have

ST A
k f =

∑
k′∈Z

〈T A
k f , T A

k′ φ〉T A
k′ φ

=
∑
k′∈Z

〈 f , (T A
k )∗T A

k′ φ〉T A
k′ φ

=
∑
k′∈Z

〈 f , e−i ab k
2
T A−kT

A
k′ φ〉T A

k′ φ

=
∑
k′∈Z

〈 f , T A
k′−kφ〉e−i ab k(k

′−k)T A
k′ φ

=
∑
�∈Z

〈 f , T A
� φ〉T A

k T A
� φ

= T A
k S f .

Since S is invertible, T A
k f = S−1T A

k S f and we have for every h ∈ VA(φ),

T A
k S−1h = S−1T A

k SS−1h = S−1T A
k h.
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Thus, if {T A
k φ : k ∈ Z} is a frame forVA(φ), then the canonical dual frame {S−1T A

k φ : k ∈ Z}
is given by {T A

k S−1φ : k ∈ Z}.Takingψ = S−1φ, we conclude that the canonical dual frame
is also of the form {T A

k ψ : k ∈ Z}. ��
Remark 4.4 If we assume that the system {T A

k φ : k ∈ Z} is a Riesz basis for VA(φ), then
{T A

k S−1φ : k ∈ Z} is the dual Riesz basis of {T A
k φ : k ∈ Z}.

Now we obtain a characterization for the system of A-translates {T A
k φ : k ∈ Z} to be a frame

sequence in terms of the weight function wφ(ω) := ∑
k∈Z |FAφ(ω + 2kbπ)|2.

Theorem 4.5 Let φ ∈ L2(R). Then the system of A-translates {T A
k φ : k ∈ Z} is a frame

sequence with bounds m, M > 0 if and only if

m

2π |b|χEφ ≤
∑
k∈Z

|FAφ(ω + 2kbπ)|2 ≤ M

2π |b|χEφ , ω ∈ I , (4.1)

where Eφ = {ω ∈ R : wφ(ω) �= 0} and I = [−|b|π, |b|π].
Proof Let {T A

k φ : k ∈ Z} be a frame sequence with bounds m, M > 0. Then

m‖ f ‖2 ≤
∑
k∈Z

|〈 f , T A
k φ〉|2 ≤ M‖ f ‖2, for all f ∈ VA(φ). (4.2)

Let F be a finite subset of Z. Let f = ∑
k∈F ckT A

k φ ∈ VA(φ). Then FA f (ω) =
r(ω)FAφ(ω), where r(ω) = ∑

k∈F ckρA(k)e− i
b kω. Thus

‖ f ‖2 = 〈 f , f 〉 = 〈FA f ,FA f 〉 =
∫
R

|r(ω)|2|FAφ|2dω =
∫
I
|r(ω)|2wφ(ω)dω. (4.3)

Similarly,

〈 f , T A
k φ〉 =

∫
R

FA f (ω)FA(T A
k φ)(ω)dω =

∫
R

r(ω)|FAφ(ω)|2ρA(k)e
i
b kωdω

=
∫
I
r(ω)ρA(k)wφ(ω)e

i
b kωdω = √

2π |b|(r(ω)wφ(ω)
) ̂ (k),

where f̂ (k) = ∫
I f (x)ρA(k)e

i
b kxdx . Hence

∑
k∈Z

|〈 f , T A
k φ〉|2 = 2π |b|

∑
k∈Z

|(r(ω)wφ(ω)
) ̂ (k)|2 = 2π |b|

∫
I
|r(ω)wφ(ω)|2dω. (4.4)

Now, using (4.2), we get

m
∫
I
|r(ω)|2wφ(ω)dω ≤ 2π |b|

∫
I
|r(ω)|2(wφ(ω)

)2
dω ≤ M

∫
I
|r(ω)|2wφ(ω)dω,

for every |b|-periodic trigonometric polynomial r . This implies that

m

2π |b|wφ(ω) ≤ wφ(ω)2 ≤ M

2π |b|wφ(ω),

a. e. ω ∈ I , from which (4.1) follows.
Conversely, assume that (4.1) holds. Then using (4.3), (4.4), we can show that (4.2) holds

for all f ∈ span{T A
k φ : k ∈ Z}. Since span{T A

k φ : k ∈ Z} is dense in VA(φ), the proof
follows. ��
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In a similar way, we can obtain the characterizations for the system {T A
k φ : k ∈ Z} to be a

Riesz sequence or an orthonormal system. We state the results without proof. The interested
readers can see the proof form [18] and from [7].

Theorem 4.6 Let φ ∈ L2(R). Then the collection {T A
k φ : k ∈ Z} is a Riesz basis for VA(φ)

if and only if there are m, M > 0 such that

m ≤
∑
k∈Z

|FAφ(ω + 2kbπ)|2 ≤ M, (4.5)

for almost all ω ∈ I .

Remark 4.7 Appealing to (2.4), it follows thatS(R), the Schwartz space of rapidly decreasing
functions on R, is invariant under FA. See also [9]. As a consequence, it is easy to see that
the inequalities on the right-hand side of (4.2) and (4.5) hold for any φ ∈ S(R). In other
words, for any φ ∈ S(R), the system {T A

k φ : k ∈ Z} turns out to be a Bessel sequence.

Theorem 4.8 Let φ ∈ L2(R). Then the collection {T A
k φ : k ∈ Z} is an orthonormal system

in L2(R) if and only if ∑
k∈Z

|FAφ(ω + 2kbπ)|2 = 1

2π |b| , (4.6)

for almost all ω ∈ I .

5 Sampling in A-shift invariant spaces

In order to get an equivalent condition for the stable set of sampling in terms of the Zak
transform, we first introduce A-Zak transform.

Definition 5.1 The A-Zak transform ZA f of a function f ∈ L2(R) is a function on R
2,

defined as

ZA f (t, ω) = ηA(ω)√
2π |b|

∑
k∈Z

T A
k f (t)e− i

2b (ak2−2kω+2pk), t, ω ∈ R.

One can simplify the right hand side and get

ZA f (t, ω) = ηA(ω)√
2π |b|

∑
k∈Z

f (t − k)e
i
2b (ak2−2akt+2kω−2pk), for t, ω ∈ R.

Remark 5.2 In particular, if we take A = {0, 1,−1, 0, 0, 0}, then A-Zak transform reduces
to the classical Zak transform.

Theorem 5.3 The A-Zak transform is an isometry between the spaces L2(R) and L2
([0, 1]×

I
)
.

See [7] for the proof.
Define an operator T : L2(I ) → VA(φ) by

T F(x) =
∑
k∈Z

〈F, Ek〉T A−kφ(x), F ∈ L2(I ),

where Ek(t) = ηA(t)√
2π |b|e

i
2b (ak2−2pk+2kt). Clearly {Ek : k ∈ Z} is an orthonormal basis for

L2(I ).
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Suppose {T A
k φ : k ∈ Z} is a Riesz sequence. Then there are constants m, M > 0 such

that

m

(∑
k∈Z

|〈F, Ek〉|2
)1/2

≤ ‖
∑
k∈Z

〈F, Ek〉T A−kφ‖L2(R) ≤ M

(∑
k∈Z

|〈F, Ek〉|2
)1/2

,

for all F ∈ L2(I ). Since {Ek : k ∈ Z} is an orthonormal basis for L2(I ) and F ∈ L2(I ), the
above inequality reduces to

m‖F‖L2(I ) ≤ ‖T F‖L2(R) ≤ M‖F‖L2(I ), ∀ F ∈ L2(I ).

This shows that T is bounded above and bounded below. By Riesz-Fischer theorem T is
onto. Hence T is invertible. Moreover, we have

T F(x) =
∑
k∈Z

〈F, Ek〉T A−kφ(x) =
〈
F,

ηA(·)√
2π |b|

∑
k∈Z

e
i
2b (ak2−2pk+2k·)T A−kφ(x)

〉
= 〈F,ZAφ(x, ·)〉.

(5.1)

Now, we are in a position to prove equivalent conditions for a set to be a stable set of
sampling for a shift invariant space VA(φ).

Theorem 5.4 Assume that VA(φ) is a reproducing kernel Hilbert space, for φ ∈ L2(R),
such that {T A

k φ : k ∈ Z} forms a Riesz basis for VA(φ). Then the following statements are
equivalent.

(i) The set X = {x j : j ∈ Z} is a stable set of sampling for VA(φ).

(ii) There are constants m, M > 0 such that

m‖d‖2
�2(Z)

≤ ‖Ud‖2
�2(Z)

≤ M‖d‖2
�2(Z)

, ∀ d ∈ �2(Z),

where the operator U = (Uj,k) is defined by

U j,k = T A
k φ(x j ) = e−i ab k(x j−k)φ(x j − k).

(iii) The set of all reproducing kernels {Kx j : j ∈ Z} for VA(φ) is a frame for VA(φ).
(iv) The set {ZAφ(x j , ·) : j ∈ Z} is a frame for L2(I ).

Proof The proof is similar to the classical case. However, in order to make the paper self-
contained, we give the outline of the proof. (i) ⇔ (ii): If f ∈ VA(φ) then there is d = {dk} ∈
�2(Z) such that f (x) = ∑

k∈Z dkT A
k φ(x), and hence f (x j ) = ∑

k∈Z dkT A
k φ(x j ) = (Ud) j .

Since {T A
k φ : k ∈ Z} is a Riesz basis for VA(φ), the following statements are equivalent.

(a) There are constants m, M > 0 such that for every f ∈ VA(φ)

m‖ f ‖2 ≤
∑
j∈Z

| f (x j )|2 ≤ M‖ f ‖2. (5.2)

(b) There are constants m′, M ′ > 0 such that for d ∈ �2(Z)

m′‖d‖2 ≤ ‖Ud‖2 ≤ M ′‖d‖2. (5.3)

In fact, if (5.2) holds, then

m‖ f ‖2 ≤ ‖Ud‖2 ≤ M‖ f ‖2.
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Now by using the fact that {T A
k φ : k ∈ Z} is a Riesz sequence, there exist m′′, M ′′ > 0

such that m′′‖d‖2 ≤ ‖ f ‖2 ≤ M ′′‖d‖2. Thus (5.3) follows from (5.2) with m′ = mm′′ and
M ′ = MM ′′. Similarly, one can prove (5.3) using (5.2).

(i)⇔ (iii): Recall that f (x j ) = 〈 f , Kx j 〉.
(iii)⇔ (iv): Using (5.1) we obtain∑

j∈Z
| f (x j )|2 =

∑
j∈Z

|〈 f , Kx j 〉|2 =
∑
j∈Z

|〈F,ZAφ(x j , ·)〉|2,

here T F = f . Since T is invertible, we get the equivalence of (iii) and (iv). ��
Let φ ∈ W (C0, �

1)(R). Then we define the function φ
†
A on the interval I , by

φ
†
A(ω) =

∑
n∈Z

φ(n)ρA(n)e− i
b nω.

From the definition of the A-Zak transform we obtain ZAφ(0, ω) = ηA(ω)√
2π |b|φ

†
A(ω).

Theorem 5.5 Let φ ∈ W (C0, �
1)(R). Then the operator U : �2(Z) → �2(Z) defined by

U j,k = T A
k φ( j) satisfies the inequalities

‖φ†
A‖20 ‖d‖2 ≤ ‖Ud‖2 ≤ ‖φ†

A‖2∞ ‖d‖2, ∀ d ∈ �2(Z),

where ‖φ†
A‖0 = inf x∈I |φ†

A(x)|, ‖φ†
A‖∞ = supx∈I |φ†

A(x)|.
Proof Let d = {dn} ∈ �2(Z). Then

(Ud)n =
∑
m∈Z

Un,mdm =
∑
m∈Z

e− i
b am(n−m)φ(n − m)dm .

Since { 1√
2π |b|ρA(n)e− i

b nω : n ∈ Z} is an orthonormal basis for L2(I ), we have

2π |b| ‖Ud‖2 =
∫
I
|
∑
n∈Z

(Ud)nρA(n)e− i
b nω|2dω

=
∫
I
|
∑
n∈Z

∑
m∈Z

e− i
b am(n−m)φ(n − m)dmρA(n)e− i

b nω|2dω

=
∫
I
|
∑
n∈Z

∑
m∈Z

ρA(n − m)φ(n − m)dmρA(m)e− i
b nω|2dω

=
∫
I
|
∑
n∈Z

∑
m∈Z

ρA(n)φ(n)dmρA(m)e− i
b (m+n)ω|2dω

=
∫
I
|φ†

A(ω)|2|
∑
m∈Z

dmρA(m)e− i
b mω|2dω.

This implies

‖φ†
A‖20

2π |b|
∫
I
|
∑
m∈Z

dmρA(m)e− i
b mω|2dω ≤ ‖Ud‖2

≤ ‖φ†
A‖2∞

2π |b|
∫
I
|
∑
m∈Z

dmρA(m)e− i
b mω|2dω
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or equivalently ‖φ†
A‖20

∑
m∈Z |dm |2 ≤ ‖Ud‖2 ≤ ‖φ†

A‖2∞
∑

m∈Z |dm |2, from which the result
follows. ��

As a consequence we obtain the following

Corollary 5.6 Let φ ∈ W (C0, �
1)(R) be such that {T A

k φ : k ∈ Z} forms a Riesz basis for

VA(φ) and φ
†
A(x) �= 0 for all x ∈ I . Then Z is a stable set of sampling for VA(φ).

Proof Since φ
†
A(x) �= 0 for all x ∈ I , it follows from Theorem 5.5 that U is bounded above

and below. Then the assertion follows from Theorem 5.4. ��

We end this section by proving Bernstein type inequality for VA(φ). Let A denote the
class of continuously differentiable functions φ such that

(i) |φ(x)| ≤ M1|x |−0.5−ε and |φ′(x)| ≤ M2|x |−0.5−ε , for sufficiently large x , for some
M1, M2, ε > 0.

(ii) ess supω∈I
∑

k∈Z(
ω+2kbπ−p

b )2|FAφ(ω + 2kbπ)|2 < ∞.

Theorem 5.7 Let φ ∈ A be such that {T A
k φ : k ∈ Z} is a Riesz basis for VA(φ). Then B f (x)

satisfies the following Bernstein type inequality.

‖B f ‖2 ≤ M‖ f ‖2, for all f ∈ VA(φ),

where B f (x) = f ′(x) + iax
b f (x) and

M = ess supω∈I

∑
k∈Z(

ω+2kbπ−p
b )2|FAφ(ω + 2kbπ)|2∑

k∈Z |FAφ(ω + 2kbπ)|2 .

Proof Let f (x) = ∑
k∈Z ckT A

k φ(x).
Then f ′(x) = ∑

k∈Z ckT A
k φ′(x)−∑

k∈Z iak
b ckT A

k φ(x). Sinceφ ∈ A, the above equalities
hold pointwise. Thus

B f (x) = f ′(x) + iax

b
f (x)

=
∑
k∈Z

ckT
A
k φ′(x) −

∑
k∈Z

iak

b
ckT

A
k φ(x) + iax

b

∑
k∈Z

ckT
A
k φ(x)

=
∑
k∈Z

ck
( d

dx
(T A

k φ(x)) + iax

b
T A
k φ(x)

)

=
∑
k∈Z

ck BT
A
k φ(x).
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Further, FA f (ω) = r(ω)FAφ(ω), where r(ω) = ∑
k∈Z ckρA(k)e− i

b kω. Now, using
FA(B f )(ω) = i ω−p

b FA f (ω) (see Proposition 3.5 in [9]), we obtain

‖B f ‖2 = ‖FA(B f )‖2 = ‖FA(
∑
k∈Z

ck B(T A
k φ))‖2

=
∫
R

|
∑
k∈Z

ckFA(BT A
k φ)(ω)|2dω

=
∫
R

|
∑
k∈Z

ck
i(ω − p)

b
FA(T A

k φ)(ω)|2dω

=
∫
R

|
∑
k∈Z

ckρA(k)e− i
b kω

ω − p

b
FAφ(ω)|2dω

=
∫
R

|r(ω)|2(ω − p

b
)2|FAφ(ω)|2dω

=
∫
I
|r(ω)|2

∑
k∈Z

(
ω + 2kbπ − p

b
)2|FAφ(ω + 2kbπ)|2dω

≤ M
∫
I
|r(ω)|2

∑
k∈Z

|FAφ(ω + 2kbπ)|2dω

= M
∫
R

|r(ω)|2|FAφ(ω)|2dω = M‖ f ‖2,

proving our assertion. ��

6 Sampling theorems

In this section, our aim is to obtain reconstruction formulae for the functions belonging to
certain VA(φ) from integer samples. We prove sampling formulae with L2 convergence as
well as uniform convergence. As a corollary, we obtain the result proved in [7], namely
Shannon sampling theorem for the functions which are bandlimited in the SAFT domain.

Theorem 6.1 Let φ ∈ W (C0, �
1)(R) be such that {T A

k φ : k ∈ Z} forms a Riesz basis for
VA(φ). Then the following statements are equivalent.

(i) There is a function S ∈ VA(φ) such that

f (t) =
∑
n∈Z

f (n)T A
n S(t), for all f ∈ VA(φ), (6.1)

where the series on the right hand side converges unconditionally in L2(R) and pointwise
for all t ∈ R.

(ii) 1/φ†
A ∈ L2(I ).

Proof Assume that there is a S ∈ VA(φ) such that (6.1) holds. Then φ = ∑
n∈Z φ(n)T A

n S.
Taking SAFT on both sides we obtain

FAφ =
∑
n∈Z

φ(n)FA(T A
n S) = φ

†
AFAS. (6.2)
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We now show that �
†
A(ω) �= 0, for a.e. ω ∈ R. If it were not true, then there would exists

a set of positive measure � ⊂ R such that �†
A(ω) = 0, ω ∈ �. Then FAφ(ω) = 0, ω ∈ �,

using (6.2). Since, �†
A is 2π |b|-periodic,

FAφ(ω + 2kbπ) = 0, ω ∈ �, k ∈ Z,

which contradicts the fact that {T A
k φ : k ∈ Z} is a Riesz sequence, in view of Theorem 4.6.

Thus we can rewrite (6.2), as FAS = FAφ/φ
†
A. Further,

∫
R

|S(t)|2dt =
∫
R

|FAS(ω)|2dω =
∫
R

|FAφ(ω)

φ
†
A(ω)

|2dω

=
∫
I

∑
k∈Z |FAφ(ω + 2kbπ)|2

|φ†
A(ω)|2 dω

≥ ‖GA
φ ‖0

∫
I

1

|φ†
A(ω)|2 dω,

where ‖GA
φ ‖0 = infω∈I

∑
k∈Z |FAφ(ω + 2kbπ)|2. Since {T A

k φ : k ∈ Z} forms a Riesz

sequence, ‖GA
φ ‖0 > 0. Consequently, 1/φ†

A ∈ L2(I ).

Conversely, assume that 1/φ†
A ∈ L2(I ). Since { 1√

2π |b|ρA(n)e− i
b nω : n ∈ Z} forms an

orthonormal basis for L2(I ), there is a sequence {cn} ∈ �2(Z) such that

1

φ
†
A(ω)

=
∑
n∈Z

cnρA(n)e− i
b nω.

Let F(ω) = FAφ(ω)/φ
†
A(ω). Then

∫
R

|F(ω)|2dω =
∫
R

|FAφ(ω)

φ
†
A(ω)

|2dω =
∫
I

∑
k∈Z |FAφ(ω + 2kbπ)|2

|φ†
A|2 dω

≤ ‖GA
φ ‖∞‖1/φ†

A‖2L2(I ),

where ‖GA
φ ‖∞ = supω∈I

∑
k∈Z |FAφ(ω + 2kbπ)|2. Since {T A

k φ : k ∈ Z} is a Riesz

sequence, ‖GA
φ ‖∞ < ∞. Hence F ∈ L2(R). Then there is exactly one S ∈ L2(R) such that

FAS = F . From the definition of φ
†
A we get

FAS = FAφ
∑
k∈Z

ckρA(k)e− i
b k· =

∑
k∈Z

ckFA(T A
k φ),

which shows that S = ∑
k∈Z ckT A

k φ and hence S ∈ VA(φ). Now let f ∈ VA(φ) with
representation f = ∑

k∈Z akT A
k φ. Since, φ ∈ W (C0, �

1)(R), it follows from Corollary 4.2
that VA(φ) is a reproducing kernel Hilbert space. Thus f (t) = ∑

k∈Z akT A
k φ(t), for all
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t ∈ R. Hence, taking SAFT on both the sides, we obtain

FA f =
∑
k∈Z

akFA(T A
k φ)

=
∑
k∈Z

akρA(k)e− i
b k·FAφ

= FASφ
†
A

∑
k∈Z

akρA(k)e− i
b k·

= FAS
∑
�∈Z

φ(�)ρA(�)e− i
b �· ∑

k∈Z
akρA(k)e− i

b k·

= FAS
∑
�∈Z

∑
k∈Z

akφ(�)ρA(k)ρA(�)e− i
b (�+k)·

= FAS
∑
n∈Z

∑
k∈Z

akφ(n − k)ρA(k)ρA(n − k)e− i
b n·

= FAS
∑
n∈Z

∑
k∈Z

akφ(n − k)e− i
b k(n−k)ρA(n)e− i

b n·

= FAS
∑
n∈Z

( ∑
k∈Z

akT
A
k φ(n)

)
ρA(n)e− i

b n·

=
∑
n∈Z

f (n)FA(T A
n S). (6.3)

The last equality finally gives f = ∑
n∈Z f (n)T A

n S,with convergence in the sense of L2(R).
Now, using the fact that VA(φ) is a reproducing kernel Hilbert space, we get that the series
in (6.1) convergence pointwise as well. Since, φ ∈ W (C0, �

1)(R), the series defining �
†
A is

unconditionally convergent. Then proceeding as in (6.3), one can show that the series on the
right hand side of (6.1) converges unconditionally in L2(R). ��

In Theorem 6.1 we obtained a sampling formula for functions belonging to A-shift invari-
ant spaces with L2 convergence. Now, our aim is to obtain another version of a sampling
theoremwhere we obtain both L2 convergence and pointwise convergence of the correspond-
ing reconstruction formula. Towards this end, we prove the following

Lemma 6.2 Let φ ∈ L2(R). Then the following statements are equivalent.

(i) For any {ck} ∈ �2(Z), the series of functions
∑

k∈Z ckT A
k φ(t) converges pointwise to a

continuous function.
(ii) φ ∈ C(R) and supt∈R

∑
k∈Z |φ(t − k)|2 < ∞.

Proof Since |T A
k φ(t)| = |Tkφ(t)| = |φ(t − k)|, the proof follows as in Lemma 1 in [32]. ��

For a sequence {ck}, we define

FA({ck})(ω) = 1√
2π |b|

∑
k∈Z

c[k]e i
2b (ak2+2pk−2ωk).

For two sequences {ck} and {dk}, we define

({ck} ∗A {dk})[n] = 1√
2π |b|

∑
k∈Z

c[k]T A
k d[n].
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Using the fact that { 1√
2π |b|e

i
2b (ak2+2pk−2ωk) : k ∈ Z}, is an orthonormal basis for L2(I ), we

get
‖FA{ck}‖2 =

∑
k∈Z

|c[k]|2.

Further, one can show that

FA{{ck} ∗A {dk}}(ω) = FA({ck})(ω)FA({dk})(ω).

Thus ∫
I
|FA({ck})(ω)|2|FA({dk})(ω)|2dω = 1√

2π |b|
∑
n∈Z

|
∑
k∈Z

c[k]T A
k d[n]|2 (6.4)

Theorem 6.3 Let {T A
k φ : k ∈ Z} be a frame for VA(φ). Then the following are equivalent.

(i) The series
∑

k∈Z ckT A
k φ(t) converges pointwise to a continuous function for any {ck} ∈

�2(Z) and there exists a frame {T A
k ψ : k ∈ Z} for VA(φ) such that

f (t) =
∑
k∈Z

f (k)T A
k ψ(t), for all f ∈ VA(φ), (6.5)

where the series on the right hand side converges unconditionally in L2(R) and uniformly
on R.

(ii) φ ∈ C(R),
∑

k∈Z |φ(t − k)|2 is bounded on R and

mχEφ (ω) ≤ |φ†
A(ω)| ≤ MχEφ (ω), (6.6)

for some m, M > 0, where Eφ := {ω ∈ R : wφ(ω) �= 0}, wφ(ω) := ∑
k∈Z |FAφ(ω +

2kbπ)|2.
Proof In order to show that (i) implies (ii), it is enough to show that (6.6) holds. Taking
f = φ in (6.5), we get

φ(t) =
∑
k∈Z

φ(k)T A
k ψ(t).

Taking SAFT on both sides we obtain FAφ(ω) = φ
†
A(ω)FAψ(ω). This implies that

wφ(ω) = |φ†
A(ω)|2wψ(ω), from which it follows that Eφ ⊂ Eψ . Since {T A

k φ : k ∈ Z}
and {T A

k ψ : k ∈ Z} are frame sequences, there exist m, M > 0 such that

m ≤ |φ†
A(ω)| ≤ M, a.e. ω ∈ Eφ,

using Theorem 4.5.We now show that φ†
A(ω) = 0 a.e. on I \Eφ . To see this, take c(ω) = 1−

χEφ (ω). Then c(ω) = ∑
k∈Z ckρA(k)e− i

b kω, for some {ck} ∈ �2(Z). Since c(ω)FAφ(ω) =
0, taking inverse SAFT, we obtain

∑
k∈Z ckT A

k φ(t) = 0, for all t ∈ R. In particular,

{{ck} ∗A {φ(k)}}[n] = 1√
2π |b|

∑
k∈Z

ckT
A
k φ(n) = 0.

Thus using (6.4), we get

0 =
∑
n∈Z

|
∑
k∈Z

ckT
A
k φ(n)|2 =

∫
I
|FA{ck}(ω)|2|FA{φ(n)}(ω)|2dω =

∫
I\Eφ

|φ†
A(ω)|2dω,
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which proves our claim.
Conversely assume that (ii) holds. Let

FAψ(ω) =
{ 1

φ
†
A(ω)

FAφ(ω) ω ∈ Eφ

0, ω /∈ Eφ.

Then {T A
k ψ : k ∈ Z} is a frame sequence by appealing to Theorem 4.5. Since 1

φ
†
A

∈ L2(I ), it

can be easily seen that ψ ∈ VA(φ). With the similar reasoning, we can say that φ ∈ VA(ψ).
Thus VA(φ) = VA(ψ). Now define,

FAψ̃(ω) =
⎧⎨
⎩

φ
†
A(ω)

wφ(ω)
FAφ(ω), ω ∈ Eφ

0, ω /∈ Eφ.

We show that {T A
k ψ̃ : k ∈ Z} is the canonical dual of {T A

k ψ : k ∈ Z}. Let S be the frame
operator associated with the frame {T A

k ψ : k ∈ Z}. Since S commutes with T A
k , for all k, it

is enough to show that Sψ̃ = ψ . Consider

FA(Sψ̃) =
∑
k∈Z

〈ψ̃, T A
k ψ〉FA(T A

k ψ)

=
∑
k∈Z

ρA(k)e− i
b k·(FAψ)〈FAψ̃,FA(T A

k ψ)〉

= (FAψ)
∑
k∈Z

ρA(k)e− i
b k·

∫
R

FAψ̃(η)FA(T A
k ψ)(η)dη

= (FAψ)
∑
k∈Z

ρA(k)e− i
b k·

∫
R

FAψ̃(η)ρA(k)e
i
b kηFAψ(η)dη

= (FAψ)
1

2π |b|
∑
k∈Z

e− i
b k·

∫
Eφ

e
i
b kη

|FAφ(η)|2
wφ(η)

dη

= (FAψ)
1

2π |b|
∑
k∈Z

e− i
b k·

∫
I
χEφ (η)e

i
b kηdη

= (FAψ)χEφ = FAψ,

which proves our claim. Let f ∈ VA(φ). Then FA f (ω) = r(ω)FAφ(ω), where r(ω) =∑
k∈Z ckρA(k)e− i

b kω, for some {ck} ∈ �2(Z). For k ∈ Z, consider

〈 f , T A
k ψ̃〉 =

∫
R

FA f (ω)FA(T A
k ψ̃)(ω)dω

= 1

2π |b|
∫
Eφ

r(ω)|FAφ(ω)|2 φ
†
A(ω)

wφ(ω)
ρA(k)e

i
b kωdω

= 1

2π |b|
∫
I
r(ω)φ

†
A(ω)ρA(k)e

i
b kωdω

=
∫
I
FA{ck}(ω)FA{φ(n)}(ω)ρA(k)e

i
b kωdω

=
∫
I
FA{{ck} ∗A {φ(n)}}(ω)ρA(k)e

i
b kωdω

= √
2π |b|{{ck} ∗A {φ(n)}} = f (k).
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Hence
f (t) =

∑
k∈Z

〈 f , T A
k ψ̃〉T A

k ψ(t) =
∑
k∈Z

f (k)T A
k (ψ)(t). (6.7)

Now, the unconditional L2(R) convergence follows from Theorem 5.1.6 in [12]. Further,
the pointwise convergence follows from Lemma 6.2 and the given hypothesis. Furthermore,
observe that { f (k)}= {〈 f , T A

k ψ̃〉} ∈ �2(Z). Thus, in order to show the uniform convergence
in (6.7), it is enough to show that

∑
k∈Z

|T A
k ψ(t)|2 =

∑
k∈Z

|ψ(t − k)|2 ≤ M < ∞, for all t ∈ R,

for some M > 0. Since ψ ∈ VA(φ), FAψ(ω) = r(ω)FAφ(ω), where r(ω) =∑
k∈Z ckρA(k)e− i

b kω, for some {ck} ∈ �2(Z). Thus wψ(ω) = |r(ω)|2wφ(ω). Since
{T A

k φ : k ∈ Z} and {T A
k ψ : k ∈ Z} are frames for VA(φ), r is bounded on Eφ . This

implies that r̃(ω) = r(ω)χEφ (ω) is bounded on I . Let r̃(ω) = ∑
k∈Z c̃kρA(k)e− i

b kω, for
some {c̃k} ∈ �2(Z). Since r(ω)FAφ(ω) = r̃(ω)FAφ(ω), ψ(t) = ∑

k∈Z c̃kT A
k φ(t). Thus

∑
n∈Z

|ψ(t − n)|2 =
∑
n∈Z

|
∑
k∈Z

c̃kT
A
k φ(t − n)|2

= 1

2π |b|
∫
I
|r̃(ω)|2|

∑
n∈Z

φ(t − n)ρA(n)e− i
b nω|2dω

≤ ‖r̃(ω)‖∞
∑
n∈Z

|φ(t − n)|2,

proving our assertion. ��
As a consequence of Theorem 6.1, we obtain a SAFT version of the Shannon sampling

theorem by taking φ = C−a/bsinc , where sinc(x) =
{

sin πx
πx , if x �= 0

1, if x = 0
. We also write down

the sampling theorem when φ is taken to be the second order symmetric B-spline.

Corollary 6.4 Let φ = sinc and ψ = C−a/bφ. Then for every f ∈ VA(ψ), we have the
following representation

f (t) =
∑
k∈Z

f (k)ei
a
2b (k2−t2)sinc(t − k), t ∈ R, (6.8)

where the above series converges unconditionally in L2(R) and uniformly on R.

Proof We have

FAψ(ω) = ηA(ω)√
2π |b|

∫
R

C−a/bφ(t)e
i
2b (at2+2pt−2ωt)dt

= ηA(ω)√|b| φ̂

(
ω − p

b

)

= ηA(ω)√
2π |b|χ[−π,π ]

(
ω − p

b

)

= ηA(ω)√
2π |b|χI+p(ω),
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from which it follows that
∑

k∈Z |FAψ(ω + 2kbπ)|2 = 1
2π |b| for almost all ω ∈ I , and this

implies that {T A
k ψ : k ∈ Z} is an orthonormal basis for the space VA(ψ). Moreover, we have

ψ
†
A(ω) = ∑

k∈Z C−a/bsinc(k)ρA(k)e− i
b kω = 1. Consequently, 1/ψ†

A = 1. So by Theorem
6.1 we have FAS(ω) = FAψ(ω), which implies that S = ψ. Hence for f ∈ VA(ψ) we
have

f (t) =
∑
k∈Z

f (k)T A
k ψ(t) =

∑
k∈Z

f (k)e−i ab k(t−k)ei
a
2b (t−k)2sinc(t − k)

=
∑
k∈Z

f (k)e−i a
2b (t2−k2)sinc(t − k).

��
Corollary 6.5 Let φ = sinc. Let ψ = C−a/bφ. Then VA(ψ) = BA

I+p, where BA
I+p = { f ∈

L2(R) : suppFA( f ) ⊆ I + p}.
Proof It is clear from Corollary 6.4 that VA(ψ) ⊆ BA

I+p . Now we shall show that BA
I+p is a

closed subspace of L2(R) and the orthogonal complement of VA(ψ) in BA
I+p is zero, which

will prove our assertion. As we haveFA(C−a/b f )(ω) = ηA(ω)√|b| f̂ (ω−p
b ), f �→ C−a/b f is an

isometry from B[−π,π ](:= { f ∈ L2(R) : supp f̂ ⊂ [−π, π]}) onto BA
I+p . Therefore BA

I+p

is a closed subspace of L2(R). In Corollary 6.4 we have seen that {T A
k ψ : k ∈ Z} is an

orthonormal basis for VA(ψ). Consider f ∈ BA
I+p such that 〈 f , T A

k ψ〉 = 0, ∀ k ∈ Z. Now
we shall show that f = 0. For all k ∈ Z we have

0 = 〈 f , T A
k ψ〉 = 〈FA( f ),FA(T A

k ψ)〉
=

∫
I+p

FA( f )(ω)ρA(k)e
i
b kωFA(ψ)(ω)dω

= ρA(k)√
2π |b|

∫
I+p

FA( f )(ω)ηA(ω)e
i
b kωdω.

Using the fact that { 1√
2π |b|e

− i
b kω : k ∈ Z} is an orthonormal basis for L2(I + p), we get

FA( f )(ω)ηA(ω) = 0 for a.e. ω ∈ I + p, which in turn implies that ‖ f ‖2 = ‖FA( f )‖2 = 0,
proving our assertion. ��

As a consequence of Corollary 6.4, Corollary 6.5 can be restated as a SAFT version of
the Shannon sampling theorem.

Corollary 6.6 Let f ∈ L2(R) be such that the supp(FA f ) ⊆ I + p. Then the following
sampling formula holds

f (t) =
∑
k∈Z

f (k)ei
a
2b (k2−t2)sinc(t − k), t ∈ R,

where the above series converges unconditionally in L2(R) and uniformly on R.

Corollary 6.7 Let φ = χ[0,1]
χ[0,1]. Then for every f ∈ VA(φ), we have the following
reconstruction formula

f (t) =
∑
n∈Z

f (n)T A
n φ(t), t ∈ R,

where the above series converges unconditionally in L2(R) and uniformly on R.
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Proof Let G be the Gramian associated with the sequence {T A
k φ : k ∈ Z}. Then G j,k =

〈T A
k φ, T A

j φ〉 is a tridiagonal operator with all the diagonal elements, di = 1. The elements
above the diagonal are given by

u j =
{

b2

a2
ei

a
b j (e−i ab ( 2iba − 1) − (1 + 2ib

a )), a �= 0

1/6 a = 0,
and the elements below the diagonal are given by

l j =
{

− b2

a2
e−i ab j (ei

a
b ( 2iba + 1) + (1 − 2ib

a )), a �= 0

1/6 a = 0.

Notice that for a = 0, G is strictly diagonally dominant and hence invertible, for a �= 0

|u j |, |l j | are dominated by 4b3

a3

√
a2

4b2
+ 1. Now let a

2b = r with |r | ≥ 1.2, then G is strictly

diagonally dominant and hence invertible. In other words, {T A
k φ : k ∈ Z} forms a Riesz

basis for VA(φ). Further φ
†
A = 1 on I , from which the required assertion follows. ��

7 A local reconstructionmethod

As in the case of classical shift invariant space we can obtain a local reconstruction method
for functions belonging to VA(φ) with continuous generators satisfying polynomial decay
from their samples. We state the results without the proof as the proofs follow similar lines.
We refer to the works [23, 24].

Proposition 7.1 Let φ be a complex valued continuous function on R satisfying φ(x) =
o(|x |−ρ) (ρ > 1). Assume that {T A

k φ : k ∈ Z} is a Riesz basis for VA(φ). Let f ∈ VA(φ)

and [a′, b′] be an interval in R. Then for a given ε > 0 there exist a positive integer M and
a sequence c f = {ck} ∈ �2(Z) such that

| f (x) − gr (x)| < ‖c f ‖�2(Z)

ε

N
ρ
2
,

for all N ≥ M, for all x ∈ [a′, b′] and gr (x) = ∑
k∈[a′−N+1,b′+N−1] ckT A

k φ(x). In other
words, f |[a′,b′] can be reconstructed locally with a finite number of coefficients ck .

Theorem 7.2 Fix ρ ≥ 2. Let φ be a complex valued continuous function on R satisfy-
ing φ(x) = o(|x |−ρ). Assume that {T A

k φ : k ∈ Z} is a Riesz basis for VA(φ). Let
f ∈ VA(φ), [a′, b′] be an interval in R and ε > 0. Let M be a positive integer obtained
in Proposition 7.1. Consider those points x j in the sample set X such that x j ∈ [a′, b′]. Let
(2M + b′ − a′ − 1) ≤ #X ≤ Mρ , where #X denotes the number of points in X. Define
U j,k = T A

k φ(x j ), 1 ≤ j ≤ #X , k ∈ [a′ − M + 1, b′ + M − 1] ∩ Z. Then there exist
gr ∈ VA(φ) such that

‖ f |X − gr |X‖ ≤ ε(1 + ‖U‖ ‖U †‖) + O(ε2),

where U † is the pseudoinverse of U.

Remark 7.3 The implementation of the local reconstruction method using Mathematica can
be found in the thesis [8]. There are experimental confirmations of the theoretical results
obtained in this section. Here we omit the details.
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