
METABOLOMICS

Metabolomic markers reveal novel pathways
of ageing and early development in human
populations
Cristina Menni,1 Gabriella Kastenmüller,2 Ann Kristin Petersen,3 Jordana T Bell,1 Maria Psatha,1

Pei-Chien Tsai,1 Christian Gieger,3 Holger Schulz,4 Idil Erte,1 Sally John,5 M Julia Brosnan,6

Scott G Wilson,1,7,8 Loukia Tsaprouni,9 Ee Mun Lim,7,8 Bronwyn Stuckey,7,8 Panos Deloukas,9

Robert Mohney,10 Karsten Suhre,2,11 Tim D Spector1 and Ana M Valdes1,12*

1Department of Twin Research & Genetic Epidemiology, King’s College London, London, UK, 2Institute of Bioinformatics and
Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany, 3Institute of Genetic Epidemiology, Helmholtz Zentrum
München, Neuherberg, Germany, 4Institute of Epidemiology I, Helmholtz Zentrum München, Neuherberg, Germany, 5Pfizer
Research Laboratories, Groton, CT, USA, 6Worldwide R&D, Pfizer Inc., Cambridge, MA, USA, 7School of Medicine and
Pharmacology, University of Western Australia, Crawley, WA, Australia, 8Department of Endocrinology and Diabetes, Sir Charles
Gairdner Hospital, Nedlands, WA, Australia, 9Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK, 10Metabolon Inc.,
617 Davis Drive, Durham, NC 27713, USA; 11Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar,
Education City, Qatar Foundation, Doha, State of Qatar and 12Academic Rheumatology, University of Nottingham, Nottingham City
Hospital, Nottingham, UK

*Corresponding author. Department of Twin Research & Genetic Epidemiology, King’s College London; St Thomas Hospital, London
SE1 7EH, UK. E -mail: ana.valdes@kcl.ac.uk

Accepted 25 April 2013

Background Human ageing is a complex, multifactorial process and early devel-
opmental factors affect health outcomes in old age.

Methods Metabolomic profiling on fasting blood was carried out in 6055
individuals from the UK. Stepwise regression was performed to
identify a panel of independent metabolites which could be used
as a surrogate for age. We also investigated the association with
birthweight overall and within identical discordant twins and with
genome-wide methylation levels.

Results We identified a panel of 22 metabolites which combined are strongly
correlated with age (R2

¼ 59%) and with age-related clinical traits in-
dependently of age. One particular metabolite, C-glycosyl tryptophan
(C-glyTrp), correlated strongly with age (beta¼ 0.03, SE¼ 0.001,
P¼ 7.0� 10�157) and lung function (FEV1 beta¼�0.04, SE¼ 0.008,
P¼ 1.8� 10�8 adjusted for age and confounders) and was replicated
in an independent population (n¼ 887). C-glyTrp was also associated
with bone mineral density (beta¼�0.01, SE¼ 0.002, P¼ 1.9� 10�6)
and birthweight (beta¼�0.06, SE¼ 0.01, P¼ 2.5� 10�9). The differ-
ence in C-glyTrp levels explained 9.4% of the variance in the difference
in birthweight between monozygotic twins. An epigenome-wide as-
sociation study in 172 individuals identified three CpG-sites, asso-
ciated with levels of C-glyTrp (P < 2� 10�6). We replicated one CpG
site in the promoter of the WDR85 gene in an independent sample of
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350 individuals (beta¼�0.20, SE¼ 0.04, P¼ 2.9� 10�8). WDR85 is a
regulator of translation elongation factor 2, essential for protein syn-
thesis in eukaryotes.

Conclusions Our data illustrate how metabolomic profiling linked with epigen-
etic studies can identify some key molecular mechanisms poten-
tially determined in early development that produce long-term
physiological changes influencing human health and ageing.

Keywords Ageing, metabolomics, epigenetics, twin studies, developmental ori-
gins of health and disease, birthweight

Introduction
Human ageing is a multifactorial process influenced by
genetic, lifestyle and environmental factors. Genetic
variation explains only �20–25% of the variability of
human survival to the mid 80s,1,2 implying the exist-
ence of molecular changes over time which must relate
to environmental, epigenetic and lifestyle factors.

Several markers for the ageing process, such as
telomere length and circulating levels of dehydroe-
piandrosterone sulphate (DHEAS), have been identi-
fied previously.3,4 Peripheral blood leukocyte telomere
length has been shown to be a systemic marker for
biological ageing.5 DHEAS is a major but poorly
understood circulating steroid in human blood,
whose levels are known to strongly correlate with age.

The biochemistry of ageing is complex, with
biologically significant changes occurring in many dif-
ferent types of molecules.6 Metabolomics is a novel
technology which aims to profile all low-molecular-
weight metabolites that are present in biological
samples which can investigate the molecular changes
seen with ageing. Recently, a study on ageing in 2162
normal individuals with a wide age range (32–81
years) using a panel of 163 metabolites showed that
metabolic profiles are strongly correlated with age.7

A small study of 269 individuals using a broader
metabolomic platform also reported correlations with
age for 51 metabolites (P < 0.05 and false discovery
rate Q < 0.15).8

In this study we assess, using a non-targeted meta-
bolomic platform, the extent to which metabolomic
profiles are correlated with chronological age and
ageing-related traits in a large twin population
(n¼ 6055). We further examine the role of specific
metabolites on a likely developmental determinant
of healthy ageing (i.e. birthweight) and investigate
the potential pathways involved by using epigen-
ome-wide association study (EWAS) data.

Methods
A flow chart of the study rationale is presented in
Supplementary Figure 1, available as Supplementary
data at IJE online.

Discovery cohort
Study subjects were twins enrolled in the TwinsUK
registry, a national register of adult twins.9 In this
study we analysed data from 6055 twins with meta-
bolomic profiling available.

The replication cohort
consisted of individuals from the follow-up study
KORA F4 (Cooperative Health Research in the
Region of Augsburg) drawn from the general popula-
tion of the region of Augsburg, Germany.10 In total,
887 individuals with fasting serum metabolomic
profiles available using the Metabolon platform and
measures of FEV1 were analysed.

Phenotype definition
Data were included on body mass index (BMI, body
weight in kilograms divided by height in square
metres), forced expiratory volume in 1 s (FEV1),
forced expiratory vital capacity (FVC), hip bone mineral
density (BMD), systolic and diastolic blood pressure
(SDP and DBP, total and HDL cholesterol, albumin,
leukocyte telomere length and dehydroepiandrosterone
sulfate (DHEAS). For details on phenotype measure-
ments see Supplementary Appendix 1, available as
Supplementary data at IJE online.

Metabolomics measurements
Non-targeted mass spec-based metabolomic profiling
was performed on 1052 fasting serum samples and
5003 fasting plasma samples from participants in
the TwinsUK study, using the Metabolon platform,
as described previously.11,12 Full details and quality
control are included in the supplementary data as
Supplementary Texts 2 and 3, available at IJE
online. In all, 280 known metabolites were measured
in the 1052 serum samples, and 281 known and 175
unknown metabolites were measured in the 5003
plasma samples.

Statistical analysis
Statistical analysis was carried out using Stata
version 11.
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Step 1. Identify metabolites associated with
chronological age
For each metabolite, we calculated the residuals by
running linear regression adjusting for sex, BMI and
batch effect. Linear regressions for each metabolite
residuals accounting for familial relatedness using
random intercept linear regression were carried out:

E Xij

� �
¼ �0 þ �ijageij þ �j þ "ij ð1Þ

where Xij is the metabolite residual of twin j from pair
i; zj is the family-specific error component which
represents the omitted family characteristics or
unobserved heterogeneity. We accounted for multiple
testing using Bonferroni correction (P¼ 0.05/280
metabolite residuals).

Step 2. Identify a metabolite panel of independent
metabolites associated with chronological age
Although the hypothesis underlying our work is that
metabolite levels change with age, in order to inves-
tigate which compounds are correlated independently
of each other with age we carried out a stepwise
linear regression, with age as the dependent variable.
This was performed on all the metabolite residuals
identified in Step 1, to look for a panel of indepen-
dent metabolites which could be used as a surrogate
for age. We use as cutoff being removed from the
model 0.0000001. Adjusting for serum/plasma did
not change the results.

Step 3. Test for association with mortality
A Cox regression model was used to estimate the
proportional hazards ratio for mortality as a function
of the linear combination of 22 metabolites. The vari-
able derived in Figure 1 was used as the independent
variable and death was the outcome variable (mean
follow-up time 7.33 years, SD 4.46).

Step 4. Assess whether the metabolite panel associated
with chronological age is also associated with known
age-related traits
We tested for association with age-related traits:
telomere length, SBP, DBP, FEV1, FVC, BMD,
DHEAS, total and HDL cholesterol and albumin, com-
paring the model:

E ageing� relatedtraitij

� �
¼ �0 þ �ichronological ageij

þ �j þ "ij

ð2Þ

with the model:

E ageing� relatedtraitij

� �

¼ �0 þ �ichronological ageij

þ � jmetabolite1þ ::::þ �jmetabolite22

þ �j þ "ij

ð3Þ

where zj is the family-specific error component.

We calculated the coefficient of determination R2

and the Akaike information criterion (AIC) to com-
pare the proportion of variance explained by models
(2) and (3) and to assess which of the models better
fitted the data.

Step 5. Replication in the KORA sample of C-glyTrp
Linear regressions between C-glyTrp and age and
FEV1 were performed. Both analyses were adjusted
for sex and BMI. Linear regression for FEV1 was
also adjusted for age and height. Meta-analyses of
the combined discovery and validation results were
conducted using inverse-variance fixed-effects meta-
analysis.

Step 6. Heritability of C-glyTrp in TwinsUK
We estimated heritability using structural equation
modelling to separate the observed phenotypic var-
iance into three latent sources of variation: additive
genetic variance (A), shared/common environmental
variance (C), and non-shared/unique environmental
variance (E).

Step 7. Discordant twin analysis
We selected 86 monozygotic twins with a minimum
difference in birthweight of 750 g (which corresponds
to 2SD of the average difference between twins-mean
difference at 1060 g, SD difference 320 g). A linear
regression was performed on the difference in circu-
lating levels of C-glyTrp and the difference in
birthweight.

Step 8. Epigenetic study of C-glyTrp in TwinsUK
DNA methylation levels were obtained using the 27k
Illumina CpG methylation probe array in 172 female
twins aged 32 to 80 years, randomly selected from the

Figure 1 Metabolite profile measures and age.
The metabolite profile measure was calculated for each
study participant using the coefficients from the stepwise
regression on age of the 22 metabolites in Table 1.
The mean and standard error of this variable was then
computed for 5 years of age intervals in the study sample
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discovery cohort. QC measures were applied, as pre-
viously described13 and 24 641 autosomal probes
passed quality control. We tested for association
between whole-blood DNA methylation patterns and
C-glyTrp, adjusting for age, sex, BMI, metabolomic
batch, methylation chip, sample position on methyla-
tion chip and family relatedness. Adjusting for zygos-
ity did not change the results.

We followed up the association between C-glyTrp
metabolite levels with DNA methylation levels at
three probes in an independent sample of 350 indivi-
duals from the TwinsUK cohort. DNA methylation
levels in the follow-up sample were obtained using
the Illumina Infinium 450k array.14 We meta-analysed
results across the discovery (n¼ 172) and replication
(n¼ 350) samples using inverse-variance fixed-effect
meta-analysis. Probes in both the discovery and replica-
tion samples were standardized to have mean zero and
variance 1.

Results
A total of 6055 individuals aged 17–85 years from the
TwinsUK cohort were included in the analysis of 280
blood metabolites. The demographic characteristics of
the study population are presented in Supplementary
Table S1 (available as Supplementary data at IJE
online).

Age was found to correlate with 165 metabolites
after accounting for multiple testing (P < 1.8� 10�4),
family relatedness, sex and body mass index
(BMI) (see Supplementary Table S2, available as
Supplementary data at IJE online). The majority of
these metabolites were related to lipid pathways
(73) and amino acid pathways (49). There were also
11 carbohydrates, 9 xenobiotics, 7 nucleotides, 6 inter-
mediates in the energy pathway, 6 cofactors and vita-
mins and 4 peptides.

After a stepwise linear regression including these
165 metabolites, we identified a panel of 22 indepen-
dent metabolites associated with age (Table 1),
achieving an R2

¼ 59%. The majority of metabolites
were lipids (nine) and amino acids (seven) plus two
intermediates in the energy pathway, two xenobiotics,
one carbohydrate and one nucleotide. Many of the
identified correlations between age and compounds
have been previously described in the literature such
as that with steroids,15 creatinine16 and citrulline.17

This serves as a proof of principle for the other meta-
bolites identified here.

For each study participant we then added the 22
metabolites using the regression coefficient, and cre-
ated a metabolite-derived age variable. Plotting this
variable in 5-year age groups shows a clear linear
relationship with age (Figure 1). The value of this
combination of 22 metabolites as surrogate measure
of chronological age is confirmed by testing their rela-
tionship to mortality using data on 188 death events
over an average follow-up time of 7.4 years. The

variable created in Figure 1 results in a Cox propor-
tional hazards ratio for death HR¼ 1.08 (95% CI
1.06-1.09, P < 1� 10�26) per ‘metabolic age’ year. An
important question is whether these metabolites con-
tribute additional information to existing age-related
traits. We ran linear regressions on age and the 22
independently associated metabolite residuals, adjust-
ing for each of them in turn (see Supplementary
Tables S3 and S4, available as Supplementary data
at IJE online). All metabolites remained associated
(P < 1� 10�7) with age when adjusting for telomere
length and all but two (both steroids) when adjusting
for DHEAS.

Given the strong association with age, we hypothe-
sized that these age-correlated 22 metabolites may be
predictors of age-related traits after adjustment for
chronological age. We considered the following
traits: telomere length, systolic and diastolic blood
pressure, two measures of lung function (FEV1

and FVC, BMD, DHEAS, total and HDL cholesterol
and albumin, all of which have been previously
reported to be strongly associated with age.18–21

These 22 metabolites are not, after adjusting for age,
all equally associated with the various ageing related
traits (Supplementary Tables 5–10, available as
Supplementary data at IJE online), but adding all
22 metabolites to the model E [(ageing-related
traitij)¼ b0þ bichronological ageijþ zjþ eij] increased
the proportion of explained variance for each
ageing-related trait. In particular, it added 2% to the
total variance explained for FEV1 and FVC, 2.5% for
BMD, 4% for both SBP and DBP and for albumin, 5%
for telomere length, 26.6% for DHEAS, 23.7% for HDL
cholesterol and 46.33% for total cholesterol. The
model including the 22 metabolites had in all cases
the best fit (a lower AIC), indicating that the panel
reflects the process of biological ageing after adjust-
ment for chronological age.

From the main analysis (Table 1), the association with
the level of C-glyTrp is of particular interest as it has not
previously been reported to be an age-related metabolite
and may point to novel molecular pathways involved in
ageing. On its own C-glyTrp is correlated with age
(beta¼ 0.03, SE¼ 0.001, P¼ 7.0 � 10�157), and age-
related traits such as lung function (FEV1

beta¼�0.04, SE¼ 0.008, P¼ 1.8� 10�8 adjusted for
age and confounders) and BMD (beta¼�0.01,
SE¼ 0.002, P¼ 1.9� 10�6). Moreover it is strongly
and independently correlated with chronological age
after adjusting for the presence of the other 21 meta-
bolites (beta¼ 2.47, SE¼ 0.24, P¼ 1.3� 10�23) and
with FEV1 (beta¼�0.05, SE¼ 0.01, P¼ 2.9� 10�5),
BMD (beta¼�0.02, SE¼ 0.003, P¼ 4.8� 10�9)
(Table 1), albumin (beta¼�0.39, SE¼ 0.09, P¼ 1.6�
10�5) (Supplementary Table S5, available as
Supplementary data at IJE online), total cholesterol
(beta¼ -0.11, SE¼ 0.03, P¼ 2.7� 10�5) and HDL cho-
lesterol (beta¼�0.06, SE¼ 0.01, P¼ 7.8� 10�5)
(Supplementary Table S6, available as Supplementary
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data at IJE online), FVC (beta¼�0.04, SE¼ 0.01,
P¼ 6.5� 10�3) (Supplementary Table S7, available as
Supplementary data at IJE online), SBP (beta¼�0.74,
SE¼ 0.39, P¼ 5.50� 10�2) and DBP (beta¼�0.86,
SE¼ 0.27, P¼ 1.4� 10�3) (Supplementary Table S8,
available as Supplementary data at IJE online).

As this metabolite is potentially a novel marker of
ageing, we replicated the association in an independent
population (KORA n¼ 887, Germany). Supplementary
Table S11 (available as Supplementary data at IJE
online) shows the demographic characteristics of the
replication cohort. C-glyTrp is associated with chrono-
logical age in KORA (beta¼ 0.004, SE¼ 0.001,
P¼ 4.14� 10�8) and it is associated on meta-analysis
(beta¼ 0.012, SE¼ 0.001, P¼ 2.29� 10�101). It is also
associated with FEV1 in the KORA cohort
(beta¼�0.037, SE¼ 0.019, P¼ 4.87� 10�2) and asso-
ciated on meta-analysis (fixed effects: beta¼�0.04,
SE¼ 0.01, P¼ 2.43� 10�9) (see Table 2).

Given its consistent association in two independent
cohorts, we further explored its biology.

Serum levels of 2-(a-mannopyranosyl)-L-tryptophan
have been shown to be a more accurate measure of
renal function than serum creatinine concentration,
and renal function can be compared in subjects inde-
pendently of age and muscle mass when 2-(a-manno-
pyranosyl)-L-tryptophan concentration is measured.22

In the discovery cohort we find that levels of C-glyTrp
are correlated with those of serum creatinine (squared
correlation coefficient R2

¼ 0.17, P < 0.0001).
Tryptophan metabolism has already been indicated

as a pathway affected by ageing in a metabolomic
study of murine livers,23 but the association we see
is strongest with glycosylated tryptophan, C-glyTrp.

We assessed possible genetic variants associated
with levels of this metabolite by looking at previously
published genome-wide association scan data from
both the KORA and the TwinsUK cohorts.24

However, we failed to find any genome-wide signifi-
cant genetic associations with this metabolite24 and,
despite reasonable statistical power, we did not find
any association with chaperone proteins or glycosyla-
tion-related protein encoding genes which would be
the obvious genetic determinants.

Taking advantage of the twin nature of our data we
ran a heritability analysis25 (1319 MZ pairs, 1256 DZ
pairs) and found that the levels of this metabolite
have a heritability (h2) of 28%, meaning that 72% of

the variance in its levels is not defined by a common
genetic component. Thus, levels of this marker could
be to a large extent environmentally or epigenetically
mediated.

It has been postulated that the health outcomes
during ageing can be determined during early devel-
opment.26 The epidemiological observations that low
birthweight is associated with increased rates of cor-
onary heart disease, stroke, type 2 diabetes adiposity,
the metabolic syndrome and osteoporosis in adult
life26 have been extensively replicated.

We hypothesized that C-glyTrp might be related also
to early development. This metabolite is also strongly
associated with lower weight at birth in our twin
population (beta¼�0.06, SE¼ 0.01, P¼ 2.5� 10�9),
and birthweight explained 0.88% (R2

¼ 0.0088) of
the variance in adult levels of C-glyTrp, suggesting
that levels of this metabolite may reflect reduced
growth and/or accelerated ageing in adult life.

In twins there is considerable variation and on aver-
age a birthweight difference of �290 g27 within a
pair. Interestingly, having selected 85 monozygotic
twins (i.e. genetically identical) highly discordant for
weight at birth (750 g, 2SD of the average difference
between twins), we find a correlation (R2

¼ 0.094,
P < 0.004) between the difference in the levels of
C-glyTrp (adjusted for confounders) and the differ-
ence in the weight at birth between twins (Figure
2). These data give further support to a non-genetic
contribution to the levels of C-glyTrp which appear to
be influenced by early development.

Given the low heritability with this marker and the
association of C-glyTrp with birthweight differences,
we hypothesized that it may be epigenetically
mediated. We compared metabolite levels at
C-glyTrp with genome-wide DNA methylation profiles
from the Illumina HumanMethylation27 DNA
Analysis BeadChip assay in 172 individuals from the
discovery cohort.13 The analyses were adjusted for
age, sex, BMI, metabolomic batch, methylation chip,
sample position on methylation chip and family
relatedness. We found 3CpG-sites (cg12757143,
cg20367961, cg25999867) at which DNA methylation
levels were associated with levels of C-glyTrp with
P < 2� 10�6 (see Table 3).

We followed up the association between DNA
methylation levels at the three probes with C-glyTrp
metabolite levels in a replication sample of 350

Table 2 Meta-analysis results for C-glyTrp with chronological age and FEV1; beta, SE and P-values are reported also for the
discovery and replication cohorts. All analyses are adjusted for sex, BMI, batch effect and family relatedness. FEV1 is also
adjusted for chronological age and heighta

Phenotype
Discovery Replication Fixed effect

beta SE P beta SE P beta SE P

Chronological age 0.03 0.001 7.0� 10�157 0.004 0.001 4.14� 10�8 0.012 0.001 2.29� 10�101

FEV1 �0.04 0.008 1.80� 10�8
�0.037 0.019 4.87� 10�2

�0.04 0.01 2.43� 10�9

aThe betas, SEs and P-values are not adjusted for the presence of other metabolites.
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additional individuals from the TwinsUK cohort. In
two of the three probes the direction of association
in both the discovery and the replication sets was the
same, and for one of the probes (cg12757143) the

significance level after adjustment for potential con-
founders achieved Bonferroni significance
(P < 1.3� 10�7) (Table 3).

Probe cg12757143 maps to the promoter of the
WDR85 gene in chromosome 9. WDR85 is a WD
repeat-containing protein that plays a role in the
first step of diphthamide biosynthesis.28 The transla-
tion elongation factor 2 in eukaryotes (eEF-2) con-
tains a unique post-translationally modified histidine
residue, termed diphthamide, which serves as the
only target for diphtheria toxin and Pseudomonas
aeruginosa exotoxin A.

Diphtheria toxin and exotoxin A inhibit host trans-
lation through ADP ribosylation of eEF2 and cause
cell death by inducing apoptosis.29 ADP ribosylation
occurs on diphthamide, a post-translationally modi-
fied histidine uniquely present in EF2 and conserved
among all eukaryotes.28 Importantly the diphthamide
modification on eEF2 has recently been shown to be
essential for mRNA translation and embryonic devel-
opment in mice.30

Therefore we find that epigenetic regulation at a
gene implicated in the regulation of eEF2 which is
key for cell cycle and embryonic development is
associated with circulating levels of C-glyTrp. This is
consistent with the strong association between
C-glyTrp and birthweight and suggests that the rela-
tionship between this metabolite and ageing may be
related to apoptotic pathways. One of the other two
probes whose association was not replicated mapped
to the EDN2 gene which encodes for endothelin.
Plasma levels of endothelin are increased in end-
stage renal disease and have been implicated in
renal inflammation and hypertension.31 The second
probe mapped to GLB1L3 encoding b-galactosidase-
1-like protein 3 which has been implicated in age-re-
lated retinal degeneration.32

Discussion
In this study we report a panel of 22 biochemical
metabolites which combined are strongly correlated
with chronological age in humans (R2

¼ 59%).
Importantly this panel can also account for some of
the variation in ageing-related clinical traits measured
as lung function and bone mineral density even after
adjusting for chronological age.

Figure 2 (A) Correlation between the difference in levels
of C-glyTrp and the difference in birthweight in 85 mono-
zygotic twins discordant for birthweight (minimum differ-
ence 750 g) (B) Relationship between C-glyTrp levels and
weight at birth in the 20 most discordant monozygotic twin
pairs. The twin in the pair with the highest birthweight is
shown in dark circles, the one with lower birthweigh in
white circles. Each twin pair is connected by a line

Table 3 Association between three methylation probes and C-glyTrp levels in combined discovery and replication samples
(total n¼ 522)

Probe Chr Positiona Nearest gene

Discovery Replication Meta-analysis

beta SE beta SE beta SE P

cg12757143 9 140473704 WDR85 �0.25 0.06 �0.18 0.04 �0.20 0.04 2.9� 10�8

cg20367961 1 41950237 EDN2 �0.23 0.06 0.04 0.05 �0.08 0.04 4.7� 10�2

cg25999867 11 134145940 GLB1L3 �0.21 0.05 �0.02 0.03 �0.06 0.03 3.0� 10�2

aBase pair position on genome build 37.
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Because of its novelty, we focused on one specific
ageing-related metabolite, C-glyTrp. This metabolite
has already been proposed as a particularly useful
marker for normal renal function regardless of the
age and muscle mass of the subjects.22

In our twin population, we found a strong relation-
ship between C-glyTrp and birthweight, a well-known
developmental determinant of health status in mid
life and old age, suggesting that its levels may be
influenced by early human development. However,
other factors related to birthweight could also influ-
ence levels of C-glyTrp and the data shown here do
not demonstrate causality. The difference in birth-
weight explained 9.4% of the variance in the differ-
ence of C-glyTrp between genetically identical twins
in a pair. The correlation between this metabolite and
methylation at the promoter of WDR85, involved in
regulating diphthamide synthesis, a key process for
RNA translation, cell cycle and embryonic develop-
ment, further suggests a role for this compound in
both ageing and early development.

We note some study limitations. First, there is a
female predominance in our study sample (93% of
the study sample are women). Second, birthweight
is the only early life measure collected in the
TwinsUK cohort and we could not test other early
life measures which may have strengthened our
data. Finally, we have been unable to access an inde-
pendent population with combined birthweight and
metabolomic data on which to replicate this result.
Nonetheless, this result appears to be robust as the
metabolite levels are not only strongly associated in
independent individuals from the cohort, but are also
replicated in within-pair differences in discordant
identical twin pairs.

Conclusions
Observational and experimental evidence increasingly
supports a relation between growth and development
during foetal and infant life and health in later years,
termed the developmental origins of health and dis-
ease (DOHaD).26 The data from the present study
provide specific molecular insights for this hypothesis.
The results illustrate how metabolomic profiling
joined by epigenetic studies may help to identify
novel molecular mechanisms implicated in subtle
early life influences which produce long-term physio-
logical changes that influence human health.

Supplementary Data
Supplementary data are available at IJE online.
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KEY MESSAGES

� Using metabolomic profiling we have identified a specific metabolite, highly correlated with age and
ageing traits, such as lung function and bone mineral density.

� This metabolite, a glycosylated amino acid, is strongly associated with birthweight, a developmental
determinant of healthy ageing.
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� This glycosylated amino acid is also associated with methylation levels at a probe that maps to the
promoter of a regulator of translation elongation factor 2.

� The findings provide molecular mechanisms for the developmental origins of adult disease hypothesis
and highlight the importance of epigenetic factors in this process.
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