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Genetics of circulating proteins in newborn
babies at high risk of type 1 diabetes

Mauro Tutino1,18, Nancy Yiu-Lin Yu 1,18, Konstantinos Hatzikotoulas 1,
Young-Chan Park1, Peter Kreitmaier1,2,3, Georgia Katsoula1,2,3, Reinhard Berner4,
Kristina Casteels 5,6, Helena Elding Larsson 7,8, Olga Kordonouri9,
Mariusz Ołtarzewski10, Agnieszka Szypowska11, Raffael Ott12, Andreas Weiss12,
Christiane Winkler12,13, Jose Zapardiel-Gonzalo 12, Agnese Petrera14,
Stefanie M. Hauck 14, Ezio Bonifacio 15,16, Anette-Gabriele Ziegler12,13,17,19 &
Eleftheria Zeggini 1,3,19

Type 1 diabetes is a chronic, autoimmune disease characterized by the
destruction of insulin-producing β-cells in the pancreas. Early detection can
facilitate timely intervention, potentially delaying or preventing disease onset.
Circulating proteins reflect dysregulated biological processes and offer
insights into early disease mechanisms. Here, we construct a genome-wide
pQTL map of 1985 proteins in 695 newborn babies (median age 2 days) at
increased genetic risk of developing Type 1 diabetes. We identify 535 pQTLs
(352 cis-pQTLs, 183 trans-pQTLs), 62 of which characteristic of newborns. We
show colocalization of pQTLs for CTRB1, APOBR, IL7R, CPA1, and PNLIPRP1
with Type 1 diabetes GWAS signals, and Mendelian randomization causally
implicates each of these five proteins in the aetiology of Type 1 diabetes. Our
study illustrates the utility of newborn molecular profiles for discovering
potential drug targets for childhood diseases of significant concern.

T1D is a chronic autoimmune disease often diagnosed during child-
hood and adolescence. The incidence of the disease is increasing and
having T1D is associatedwith a reduction in quality of life, a shorter life
span, and cost-intensive treatment1,2. Therapies and strategies to pre-
vent T1D are, therefore, needed.

Advances in genomics and proteomics present new opportunities
to better understand disease mechanisms and develop preventive
therapies. Both Olink and SomaScan technologies have been
employed to measure plasma protein levels in tens of thousands of
individuals. By integrating genotype data available for the same
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individuals, hundreds of genetic variants have been linked to both
protein levels (protein quantitative trait loci - pQTL) and complex
diseases3–5. These findings are important since they provide a genetic
anchor to explorepotential causal relationships betweenprotein levels
anddisease risk. Amajor limitation of proteogenomic studies to date is
their focus on adult cohorts. Consequently, the applicability of adult
pQTL findings to earlier life stages, such as infancy, remains unproven.
Moreover, these population-based studies might have missed disease
specific signals.

Coupling genetics with circulating blood proteomics at birth has
the potential of identifying stable and infancy-specific pQTLs. In
return this might identify early life biomarkers and uncover
mechanistic insights of T1D. The Global Platform for the Prevention
of Autoimmune Diabetes (GPPAD) has been established to screen for
neonates at increased risk of developing T1D6, and enrol them in
clinical trials for early intervention strategies. Here, we have estab-
lished a protocol for quantifying the levels of circulating proteins
from dried blood spots in 695 newborn babies (N. females = 346;
49.78%) enrolled in the GPPAD POInT trial7 to identify post-natal
proteomic signatures at birth and investigate their association with
T1D. Imputed genotype data were also available for the same new-
borns. By generating pQTL profiles and combining thesewith genetic
colocalization and causal inference analyses, we aimed to identify
key pathways and proteins involved in T1D. The insights gained from
this research could serve as a solid foundation for developing ther-
apeutic targets or repurposing existing drugs to prevent or treat T1D.

Results
Newborn blood pQTL map
Protein levels were measured from dried blood spots with the Olink
Explore panel. After quality control, 1985 proteins were retained for
further analyses. First, we performed genome-wide association ana-
lysis (Supplementary Data 1) and identified 535 pQTLs targeting 467

unique proteins (471 Olink assays) at the genome-wide significance
threshold of 5 × 10−8 (Fig. 1 and Supplementary Fig. 1). Of these, 352
pQTLs are in cis, i.e. located within 1MB of the transcription start site
of the targeted protein-expressing gene, and 183 are trans-pQTL
signals (Fig. 1). The cis signals were in close proximity to the tran-
scription start site of the protein encoding genes, with an average
distance of 40 kb. Olink includes a set of 5 proteins measured on
multiple assays, which can be used for quality control. For 2 out of 5
of these proteins (LMOD1 and IDO1), we identified cis-pQTL signals
which were statistically significant for all three independent assay
measurements that passed quality control, suggesting good repro-
ducibility of the results.

We identified 2 cis-pQTL signals where the same SNP was also a
trans-pQTL for a different protein. The cis lead variants for CTRB1
(rs72802342) and ASRGL1 (rs72923263) were found to be associated
in trans with the protein levels of CPA1 and PNLIPRP1, and RNF5,
respectively. The IL12B cis lead variant (rs6556411) was associated
with 2 different Olink IDs, one specific to IL12B and one targeting
both IL12A and IL12B, suggesting that both signals are likely due to a
IL12B cis-pQTL. For 23 proteins, more than one independent cis signal
was identified, suggesting complex regulatory mechanisms of these
protein levels. We replicated pleiotropic loci such as ABO5, which we
found to be associated with the levels of 5 different proteins in trans.
We also identified a highly pleiotropic locus on the chromosome 17q,
associated with the levels of 17 different proteins across 12 chro-
mosomes, involving immune related genes such as the TNF Alpha
Induced Protein 2 (TNFAIP2) and the TNF Superfamily Member 10
(TNFSF10).

We compared our pQTL findings with a total of 46 pQTL
studies carried out in adults (Supplementary Data 2), including
the latest UK Biobank (UKBB) genome-wide plasma pQTL study
based on 54,306 individuals4, and a cis-focused proteogenomic
analysis of 1180 individuals3, both of which used the same Olink
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Fig. 1 | Genome-wide pQTL signals. Scatterplot of significant pQTL (p < 5 x 10−8) variant location against the position of the protein coding gene’s transcription start site.
Each dot represents an independent variant. The black point outline identifies pQTLs not previously reported by any of the 46 studies used to define novelty.
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panel as the current study. We find that, for the most part, the
newborn pQTLs are recapitulated in adult pQTL studies, while 12%
appear to be specific to newborn blood samples and/or to chil-
dren with an elevated risk of developing T1D. Of the 535 SNP-
protein pairs, 473 (88%) were previously detected in adults. Of
the 62 pQTLs that have not been previously reported, 4 are cis-
pQTLs, while 58 are in trans. The 4 newly-reported cis-pQTLs
include the Islet Cell Autoantigen 1 (ICA1; pQTL lead SNP:
rs7785777), a potential minor T1D autoantigen, AKT Serine/
Threonine Kinase 2 (AKT2; pQTL lead SNP: rs4530264), which is
involved in insulin signalling8, HRas Proto-Oncogene, GTPase
(HRAS; pQTL lead SNP: rs2061586) and Mitochondrial Ribosomal
Protein L28 (MRPL28; pQTL lead SNP: rs3859153). We then
investigated if the genes encoding the proteins targeted by the 62
novel pQTL signals were overrepresented in specific pathways.
We found a significant enrichment for the KEGG Insulin signalling
pathway that was specific for the novel pQTLs (q-value = 0.007,
Supplementary Data 3 and Supplementary Fig. 2), and which
included two of the novel cis-pQTL signals (HRAS and AKT2). The
replicated signals were enriched for Sphingolipid metabolism,
Metabolic pathways and the Viral protein interaction with cyto-
kine and cytokine receptor pathway (Supplementary Data 3 and
Supplementary Fig. 2).

Comparison of newborn pQTLs with adult pQTL and eQTL
datasets
The Olink platform uses an affinity assay, which can be affected by
protein-coding variants. This can result in genetic associations identi-
fied by a change in antibody affinity rather than protein levels. Since
gene expression would be less affected by missense variants, and it
would not be expected to share the same directionality if the pQTL
signal was due to antibody affinity, we queried the GTEx and eQTLGen
eQTL databases. We found that all four novel cis-pQTLs have been
previously associated to the gene expression levels of the genes
encoding the pQTL-targeted proteins. Three pQTLs have been identi-
fied as eQTLs in GTEx (MRPL28, AKT2 and HRAS) and all four have
been reported as eQTLs by eQTLGen, all with the same direction of
effect. Next, wequeried a recent studywhich performedpQTL analysis
for protein levels measured with both Olink and SomaScan, and which
also calculated the correlation of protein measurements between the
two technologies from matching samples4. In general, replicated and
novel pQTL signals showed similar correlation coefficients between
the protein levels measured by the two technologies, with a median
spearman coefficient of 0.45 and 0.40, respectively. For the novel cis-
pQTL signals, 2 out of 4 proteins are measured by both technologies.
AKT2, which is targeted by 3 different SomaScanprobes, showed good
correlation between Olink measurement and SomaScan measurement
from all 3 probes, ranging from0.45 to 0.76. However, HRAS showed a
very low correlation of 0.03.

We then evaluated if the novel associations showed anydifference
in minor allele frequency (MAF) between populations and did not find
any substantial difference, with aMAF correlation between the studies
of 0.99. The novel associations followed the expected relationship
between MAF and effect size with no observable difference compared
to previously identified pQTLs (Supplementary Fig. 3). We also found
high correlation between our study and UKBB effect sizes, with a
Pearson correlation of betas of 0.77 (Supplementary Fig. 4). We then
queried the full UKBB-pQTL to determine if the novel associations in
our study could be identified in the UKBB but did not reach their pQTL
genome-wide threshold. We found that, out of 62 novel pQTLs,
16 showed some evidence of association in the UKBB with the same
direction of effect. This included 1 of the 4 cis signals, targeting
MRPL28, which had a p-value of 6.5 × 10−7 in the UKBB.

Finally, since the proteins targeted by novel pQTLs were over-
represented in the insulin signalling pathway, we tested if the

protein-SNP pairs identified by our study can be identified as pQTLs in
a subset of UKBB participants with self-reported T1D. Out of 53,060
Olink samples, 61 had matching genotype data and self-reported T1D.
We replicated 3 trans-pQTL results in the T1D subset with the
same direction of effect (p-value < 0.05; Supplementary Data 4).
None of these were nominally significant in the full UKBB dataset
(p-value > 0.05).

The replicated signals targeted proteins which can be biologi-
cally linked to type 1 diabetes, such as the Serine Palmitoyl-
transferase Long Chain Base Subunit 1 (SPTLC1), a protein involved
in the sphingolipid metabolism. For SPTLC1, a previous study found
a SNP in the cis-SPTLC1 locus associated with T-helper cell propor-
tions in a T1D cohort9. A second protein, the IQ Motif Containing
GTPase Activating Protein 2 (IQGAP2), has no clear link to T1D from
the literature but the targeting SNP (rs112344603) sits 300 kb from
the insulin gene promoter. For the third trans signal, targeting the
WAP, Kazal, immunoglobulin, Kunitz, and NTR domain–containing
protein 2 (WFIKKN2), a loss-of-function variant affecting WFIKKN2
circulating protein levels has been associated with HOMA-IR
levels10.

Colocalization and causal inference with T1D signals
Next, we performed statistical colocalization analysis between
pQTLs (both cis and trans signals) and established T1DGWAS signals
from the largest meta-analysis to date11 (Supplementary
Data 5 and 6). Colocalization analysis was performed using the R
package Coloc, an established Bayesian method that uses the full
summary statistics from the pQTL and GWAS studies, centred
around the GWAS lead variant (+/−1 Mb), to calculate the poster
probability of the two signals sharing the same causal variant in the
locus. We found evidence of a shared causal T1D risk variant with
pQTLs for 5 proteins: CTRB1 (PP4 99.7%), CPA1 (PP4 99.7%; trans-
pQTL), PNLIPRP1 (PP4 99.6%; trans-pQTL), APOBR (PP4 92.1%), and
IL7R (PP4 68.8%) (Fig. 2). The cis signal for CTRB1 and the trans
signals for PNLIPRP1 and CPA1 shared the same lead variant,
rs72802342, and the same colocalization signal with T1D.

The protein levels of CTRB1 and IL7R have been previously shown
to highly correlate between SomaScan and Olink measurements, with
Spearman coefficients of 0.78 and 0.73, respectively. In addition, for
these proteins, the same Olink pQTL signal was identified using
SomaScan in adult blood. Altogether, these observations strengthen
the validity of our results and reduce the likelihood that the observed
signals are solely due to epitope-modifying SNPs. APOBR was not
measured by SomaScan.

We then tested for causality of the genetically-regulated, coloca-
lizing protein levels on T1D through Mendelian randomization (MR)
analysis. For two-sample Mendelian randomization, the instrumental
variables (SNPs) are required to be associated with the exposure (i.e.
protein levels). The top independent pQTL for both cis- and trans-
pQTL SNPs identified by GCTA-COJO were therefore used as instru-
mental variables (IVs) - for each protein, only the lead SNP was used as
instrumental variable (Wald ratio). The strength of the association
between the IVs and the exposure was further assessed with the
F-statistic. All the IVs had an F-statistic >15 and were retained in the
analysis. For the outcome, the same T1D GWAS summary statistics
utilised for the Coloc analysis were also used for MR. The two-sample
MR analysis confirmed that the genetically-predicted protein levels of
all Coloc-identified proteins are potentially causally associated with
T1D (adjusted p-value < 0.05). The colocalization and MR results sug-
gest a potential link between circulating protein levels at birth and the
development of T1D later in life (Table 1). However, it is important to
note that the MR analysis relied on a single instrumental variable,
which limits the robustness of the causal inference due to the inability
to fully test for pleiotropy or validate the assumptions underlying the
analysis.
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Discussion
Here, we have generated a blood pQTL map in newborns at increased
risk of developing T1D. We found very good concordance with adult
pQTL studies, and identified 62 novel pQTLs enriched for the insulin
signalling pathway. A small proportion of these (25.8%)were nominally
significant in the full UKBB Olink pQTL data, while 3 were significant
only in the UKBB subset with self-reported T1D. We identified a novel
cis-pQTL signal for the ICA1 protein that could not be replicated in
UKBBparticipantswithT1D. Theprotein is alsocurrentlynotmeasured
by SomaLogic assays. Expression of ICA1 has been previously asso-
ciated with T1D in regulatory T-cells12 and the expressed protein has
also been detected in pancreatic islet cells13, suggesting a complex
multi-tissue effect. Whether the novel associations, that could not be
identified by biobank-scale studies in adults, are due to increased risk
of T1D in absenceof the condition, or to newborns, or a combinationof
the two, will require future replication.

We identified three T1D-colocalizing pQTLs potentially causally
associatedwith disease aetiology. The colocalizing proteins are related
to pancreatic function and insulin signalling. Our findings demonstrate
that genetic variants are linked to both protein levels and disease well
before the onset of symptoms, such as at birth. This suggests that the
direction of effect is likely SNP → protein → T1D, since a reverse tem-
poral association would not be possible with the only exception being
if an early pathology is already present at birth. Altogether, these

results raise the possibility of early protein biomarker identification,
which can potentially be used to refine the genetic risk score used to
enrol babies in the current study. Due to the young age of the children
enrolled in the POInT clinical trial, we currently have limited data on
the number of children who have developed T1D. Future work will
involve analyzing autoimmunity outcome data after a longer follow-up
period, to help identify biomarkers relevant to T1D development and
intervention efficacy.

The cis-pQTL associated with Chymotrypsinogen B1 (CTRB1)
resides 18,026 bp upstream of the canonical CTRB1 transcription start
site (TSS), and 6187bp upstream of the canonical Chymotrypsinogen
B2 (CTRB2) TSS. In our study, rs72802342 was a cis-pQTL for CTRB1,
and a trans-pQTL for Pancreatic Carboxypeptidase A (CPA1) and for
Pancreatic Lipase Related Protein 1 (PNLIPRP1). Evidence for
rs72802342 as a cis-pQTL forCTRB1, and as a trans-pQTL for CPA14 and
PNLIPRP114, has been reported in previous studies in adults (Supple-
mentary Data 1), with the effect allele A being associated with lower
levels of proteins in blood. The rs72802342A allele, which is associated
with increased risk of T1D, has alsobeen associatedwith decreased risk
of type 2 diabetes (T2D)15. CTRB1, CPA1 and PNLIPRP1 are all pancreatic
enzymes, in agreement with previous associations of rs72802342 with
pancreatic traits such as pancreatic volume16 and pancreatic ductal
adenocarcinoma17, and with its colocalization with an accessible
chromatin region in the pancreatic acinar cells and islets11,18. The locus

Table 1 | Mendelian randomization results for T1D colocalized signals

Protein SNP Beta SE p-value Adjusted p-value

CTRB1 16:75234872_rs72802342_A_C −0.17 0.02 3.3E-19 1.7E-18

APOBR 16:28507644_rs180743_G_C 0.11 0.01 1.7E-14 8.6E-14

IL7R 5:35874575_rs6897932_T_C 0.18 0.04 3.4E-07 1.7E-06

CPA1 16:75234872_rs72802342_A_C −0.32 0.04 3.3E-19 1.7E-18

PNLIPRP1 16:75234872_rs72802342_A_C −0.41 0.05 3.3E-19 1.7E-18

Results of the two-sample MR analysis using the lead pQTL as instrumental variable, protein levels as exposure and T1D (GWASCatalog accession number GCST90014023) as outcome. The effect
size (beta) represents theT1D riskper one standarddeviationof thegenetically predictedprotein levels. Bonferroni adjustmentwasused to correct thep-values.SNP singlenucleotidepolymorphism,
SE standard error
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bottom panels show T1D GWAS p-values for the same regions for the colocalizing
regions. Two independent T1D signals reside in the cis-region near the APOBR
transcription start site, with lead variants rs34835 and rs231972. Each T1D signal (in

the +/− 1Mb window) was conditioned against the other using GCTA-COJO. The
summary statistics from the conditional analysis were then used for colocalization.
Only rs34835, conditioned on rs231972, showed evidence of colocalization and the
corresponding PP4 is reported in the figure.
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has also been previously associated with alternative splicing of
CTRB219. A previous MR study analysing adult serum protein pQTLs
also identified CTRB1 as a biomarker associated with T1D20. Here, we
provide evidence for this causal association at birth.

The genetic variant (rs180743) associated with the levels of Apo-
lipoprotein B48 receptor (APOBR), a macrophage receptor that binds
to dietary triglyceride-rich lipoproteins, has been previously asso-
ciated with Insulin-like growth factor-1 (IGF-1)21. IGF-1 levels have been
found to be reduced in T1D children and shown to increase following
insulin therapy22,23.

Previous studies have shown that IL-7 and IL7R play a crucial
role in the generation of self-reactive T cells in autoimmune
diseases24. The IL7R variant rs6897932 has been shown to affect
splicing25. The spliced-transcript, lacking exon 6, is preferentially
released in soluble form, sIL7R, with a concomitant reduction of
transmembrane IL7 receptor. The increase of the exon-skipping
isoform, and the resulting increase in sIL7R levels, have been asso-
ciated with increased risk of T1D26,27. IL7R variants have also been
associated with blood cell counts, including eosinophil, lympho-
cyte, basophil, and neutrophils28,29. PheWAS associations of the IL7R
pQTL rs6897932 include further immune-related conditions, such
as asthma and allergic diseases30, pollinosis and atopic dermatitis31,
and multiple sclerosis25, suggesting a pleiotropic effect of the
identified pQTL signal. A previous study using SomaScan32 also
identified an IL7R pQTL signal (rs6451229), in weak LD with our lead
variant rs6897932 (R2 = 0.28), as strongly colocalizing with T1D
GWAS signal from a GWAS with a smaller sample size (n = 18,856).
For the same individuals (n = 485), the Olink-based IL7R pQTL sig-
nal, in perfect LD with rs6897932 (R2 = 1) showed a much weaker
colocalization probability (PP4 = 16%) compared to the one repor-
ted here (PP4 = 68.8%). This is likely the result of the increased
sample size of both the GWAS (from 18,856 to 520,580 study par-
ticipants) and pQTL (43% increase) studies used in the current
study, which allowed us to identity a signal replicated using a
separate technology, although at a less stringent threshold that the
conventional 80%.

The study has several limitations. First, the identification of a
causal association of protein levels with T1D is based on statistical
analysis and it is constrained by the limited number of instrumental
variables. Further work is required to experimentally confirm the
involvement of these proteins in the development of T1D. Addi-
tionally, the directionality of the MR results should be interpreted
with caution, since blood is likely not the effector tissue for the
identified pancreatic enzyme proteins and the direction of the pQTL
may vary across different tissues. Given that all newborns in the
study had an increased risk of developing T1D, associations specific
to healthy-newborns may have been overlooked. Post-translational
modifications and epitope-modifying variants may affect the bind-
ing of the Olink antibodies, making it difficult to distinguish these
effects from true pQTL signals. However, despite this technical
limitation, the relatively high correlation with protein levels mea-
sured with SomaScan, and the fact that the pQTLs have also been
previously identified as eQTLs, suggests that the majority of the
findings are unlikely to arise from such technical artefacts. For the
previously unreported signals, while we provide orthogonal evi-
dence suggesting that many exhibit an association with the same
direction of effect in publicly available eQTL and pQTL datasets, this
does not constitute direct replication. The limited availability of
dried blood spot samples from newborns, combined with the
challenges of optimizing the Olink assays for this material, made it
infeasible to further replicate the findings in a newborn cohort.
Additionally, the small sample size of the UKBB T1D cohort pre-
vented us from determining whether the novel pQTLs are asso-
ciated specifically with newborns, an increased risk of T1D in
absence of the condition, or both. Future studies validating the

identified pQTLs in newborns with and without an elevated risk of
T1D will be essential to fully understand the genetic regulation of
these proteins.

In conclusion, we demonstrate the feasibility and utility of
applying high-throughput proteomics on dried blood spots of new-
borns to identify potentially causal links between circulating proteins
at birth andbiological regulatorymechanisms relevant to autoimmune
outcomes. Multi-omics molecular profiles from dried blood spots
could be used to screen children for debilitating diseases and allow for
early intervention as well as prevention of disease.

Methods
Ethics
The study (GPPAD dried blood spot omics to predict health and
autoimmunity outcomes in children) was approved by the ethical
committee of the Technical University Munich (Nr. 517/21 S).
Consent to donate samples to the GPPAD-biobank was obtained
for 770 children, for whom dried blood spots (DBS) samples for
DNA extraction, protein measurements, as well as clinical follow-
up data were available. The informed consent was obtained in
accordance with country-specific guidelines and ethical review
board requirements, providing written and verbal information
explaining the objectives of the GPPAD study. The work has been
carried out in accordance to the criteria set by the Declaration of
Helsinki.

GPPAD Cohort and study samples
Detailed descriptions of the GPPAD cohort recruitment and selection
criteria have been described in previous publications6,33. Briefly,
GPPAD consists of a clinical network of seven clinical trial centres from
five countries: Germany, UK, Poland, Belgium, and Sweden. Children
with elevated risks for T1D, detected byHLA typing, SNP-based genetic
risk score, and first-degree family history of T1D, were screened and
recruited from these centres. 1050 childrenwere enrolled in the POInT
trial (a randomized double-blind placebo-controlled prevention trial
for T1D)7.

Genotype analysis and QC
Genotypes of individuals were measured with Illumina Infinium Global
Screening Array-24 (GSA) chips. The calling was done using GenCall by
Illumina, and the genotypes were mapped to GRCh37/hg19 using online
tools from [http://www.well.ox.ac.uk/~wrayner/strand/index.html].
SampleQCand variantQCwere carried out. In thefirst pre-filtering step,
samples and variants with a call rate <90% were excluded. Plink 1.9 was
used to perform the QC steps34. In the sample QC stage, samples were
filtered based on call rates (excluded if <95%), heterozygosity rates,
performed using two MAFs, MAF> 1% and MAF< 1% (samples excluded
if heterozygosity in either category > 3 standard deviations), dubious
sex status (samples excluded if there were discrepancies between
annotated sex vs. genotypic sex, or if chromosome X heterozygosity
between 0.2 and 0.8), identity by descent (IBD) (samples excluded if
PI_HAT>0.9). To determine ethnicity outliers, the sample genotypes
were overlapped with genotypes from the 1000 Genomes Project
([http://internationalgenome.org])35. Only SNPs that were found in both
datasets were used. Multidimensional scaling was performed using
plink. Ethnicity outliers were excluded based on visual examination of
the first 2 dimensions. For variant QC, exclusion criteria include SNP call
rates <98%, and Hardy Weinberg p-value (pHWE) < 1 × 10−4. Prior to
imputation, variants with strand, position and allele frequency differ-
ences were compared to the HRC panel using the script from [http://
www.well.ox.ac.uk/~wrayner/tools/]; v4.2.7. Imputation was performed
using Sanger Imputation Service ([https://www.sanger.ac.uk/tool/
sanger-imputation-service/]).

Eagle2 v2.4wasused to phase the genotypes36. PBWTwas used for
imputation, with the Haplotype Reference Consortium as reference
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panel37,38. Post-imputation checks were performed using ic v1.10.0
([http://www.well.ox.ac.uk/~wrayner/tools/Post-Imputation.html]).
Variants with MAF <0.05, pHWE <1 × 10−4, and INFO score <30% were
removed. The final imputed dataset contained 5,370,094 variants and
695 samples.

Sample extraction from dried-blood-spots (DBS)
Blood samples were withdrawn from infant heel-prick or umbilical
cordon and collected on Ahlstrom Munksjö TFN filter papers. From
each blood spot (DBS), two 3mm ø punches are generated by using
the PerkinElmer DBS Puncher equipped with the Software Wallac DBS
Puncher and a Punch Head 3.2mm. The punches were collected in a
separate wells of a low-binding 96-well plate (96-well PCR plate full
skirt), and subsequently transferred into a low-binding Eppendorf tube
for extraction. Each punchwas extractedwith 25 µl of extraction buffer
(1X PBS +0.05% TWEEN20 + protease inhibitor cocktail tablets from
Roche) for 1 h at room temperature. Eluates were stored at −80 °Cuntil
usage. Samples were fully randomized in the plates according to
gender, study center and storage temperature (−80 °C, −20 °C, RT).
The samples were measured using the Olink Explore 3072 panel
(Cardiometabolic I and II, Inflammation I and II, Oncology I and II, and
Neurology I and II).

Olink QC
The Olink technology utilises a Proximity Extension Assay in which a
pair of protein-targeting antibodies are tagged with unique com-
plementary oligonucleotide probes. Once bound to the target protein,
the probes can hybridize to allow DNA amplification. The amplified
signal is finally read using next-generation sequencing.

The samples of 770 children from the GPPAD POINT trial were
processed by the Helmholtz Munich proteomics core facility. Reports
were generated with data for 2941 proteins from the Olink Explore
assay which comprises eight panels targeting inflammation (Inflam-
mation I and II), oncology (Oncology I and II), cardiometabolic (Car-
diometabolic I and II) and neurological (Neurology I and II) proteins.
Average intra-assay variation was 8%, and average inter-assay variation
(between-run) was 20%. The NPX values, which is a log2 arbitrary scale
unit, were intensity normalized by Olink39. For the QC, proteins label-
led as a hook protein (a protein whose normalized value has a non-
linear relationship with protein quantity in the assay; n = 286) or a
bimodal protein (a protein with bimodal rather than normal distribu-
tion; n = 3) were removed. Olink internal quality control was used to
further remove poor quality samples and proteins by using the Sam-
ple_QC and Assay_QC status. Samples with <500 counts or that deviate
from the median value of the Incubation- and Amplification Controls
(spiked into each sample) by > +/−0.3 NPX receive a sample warning
status. The median value of the negative control triplicates is also
required to be within 5 standard deviations of a predefined value set
for each assay or itwould receive anassaywarning status. Sampleswith
>10% of warning statuses across assays (by either Sample_QC or
Assay_QC) were removed (n = 44). Proteins with >5% of samples with
the warning status were also removed (n = 668). Samples with anno-
tated sex that did not match its genotype sex were removed. Samples
without corresponding genotypes were removed. The final protein
dataset used for data analysis contained 1985 proteins and 695 sam-
ples (N. females = 346).

Power curves
The R package PowerEQTL v0.3.4 was used to generate power curves
as a function of minor allele frequency (MAF; Supplementary Fig. 5).
For the calculation, the sample size was set to 695 and the significance
threshold to 5 × 10−8. Since the protein levels were inverse normal
transformed, the outcome standard deviation was set to 1. PowerEQTL
was also used to estimate the minimum detectable beta for which we
had a power of 50% and 80% as a function of MAF. The so calculated

curves were then overlayed to the true data which closely followed the
power lines. A data point that, for a given MAF, show an absolute beta
estimate much smaller than the estimated minimum detectable beta
from the power curves would be an indication of likely false positive.

pQTL
The single-point-analysis-pipeline version 0.0.2 (dev branch) [https://
github.com/hmgu-itg/single-point-analysis-pipeline/tree/dev] was
used to perform protein quantitative trait locus association (pQTL)
analysis between genotypes and circulating protein levels. Covariates
including sex, birth year, plate, mean protein expression per sample,
and the top 10 genotype PCs were regressed out with R’s lm function.
The residuals were then z-score transformed and used as traits to test
for associations with genotypes.

GCTA version 1.93.2 beta was used to perform mixed linear
model association (MLMA)40. The GRM function in GCTA was
used to estimate genetic relationships between individuals.
Plink 1.9 was used to clump the output of GCTA results. GCTA-
COJO, an approximate conditional and joint stepwise model
selection analysis was then used to calculate independent SNV
at each associated locus for each protein. cis-pQTLs were
defined as variants that lie within 1 Mb upstream or downstream
of transcription start site according to the canonical gene’s
transcription start site using Biomart v.2.50.3 Ensembl hg19
annotation41. trans-pQTLs were defined as all variants lying
outside of the cis-pQTL regions. A genome-wide threshold of
5 × 10−8 was used to define the threshold for the pQTLs42.

Assessment of newborn pQTLs in adult cohorts
To assess if the identified newborn-pQTLs have been previously
reported in adults, we built a database of previously reported signals at
genome-wide significance (5 × 10−8) from 46 genome-wide pQTL stu-
dies (Supplementary Data 2) as previously described42. Briefly, we
collected and pooled the summary statistics of 46 studies that mea-
sured the levels of circulating proteins also present in our panel. For
each of the study, we collected information such as author, PMID, size
of discovery cohort, peak coordinates, UniProt ID, alleles, allele fre-
quencies, effect sizes and direction, mapped gene, p-value, and
cis/trans status. Missing information was manually curated. When
required, the genomic coordinates of both the SNP and the protein-
encoding gene’s transcription start site were lifted over using the lift-
Over function from the R package rtracklayer. The database for further
updated to include a recent study which looked at 2936 unique
proteins3, and the latest UKBB pQTL data based on Olink Explore 3072
panel4, the same panel used in the current study. First, we determined
if the pQTL proteins were previously studied by matching either their
protein or gene names. We then looked for the overlap of the lead
pQTL SNP in the database with a +/− 1Mb window around the pQTL
signals reported in the current study. A pQTL was declared novel if no
genome-wide significant pQTL overlapped the window for a matched
protein.

ClusterProfiler43 v4.12.0 was used to test for enrichment of the
pQTL-targeted proteins in the KEGG pathways. The 1985 proteins used
in the pQTL analysis were used as background. A Benjamini–Hochberg
corrected p-value < 0.05 was considered significant.

Comparison to adult proteogenomic data
Affinity-based assay measurements could be affected by protein-
structure-altering variantswhichwould result in a false cis-pQTL signal.
To determine whether the identified pQTL-targeted proteins are
similarly detected across technologies, we retrieved the Olink-
SomaScan protein level correlation coefficients from the Eldjarn, Fer-
kingstad and Lund et al. supplementary materials4, which calculated
the correlation of protein measurements between the two technolo-
gies using matching samples. For the 4, novel, cis-pQTL signals, we
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queried GTEx44 and eQTLGen45 to determine if the pQTL SNPs have
been previously detected as eQTL for the gene encoding the pQTL-
targeted proteins with the same direction of effect following reference
allele matching.

We also downloaded the full UKBB pQTL summary statistics,
made available by Sun, Chiou, Traylor et al.5, through Synapse (project
ID syn51364943 [https://www.synapse.org/Synapse:syn51364943/wiki/
622119]) using the synapser R package. For each OlinkID-SNP pair, the
chromosome, position, effect size, effect allele, minor allele frequency
and p-value information were extracted. Pearson correlation was used
to calculate the correlation coefficients between betas andMAFs in the
UKBB and newborn datasets. The full UKBB pQTL summary statistics
were examined to determine whether previously unreported pQTLs
showed evidence of association in the UKBB while not reaching their
study significance threshold.

To assess if the novel associations could be identified in adult
individuals with T1D, we accessed genotype (version 3) and Olink
(release 9) data for 61 UKBB study participants with self-reported type
1 diabetes. For the Olink dataset, only time point 0 was used. For the
matching OlinkID-SNP pair, we used linear regression in R to calculate
the genotype associationwith inverse normal transformedNPX values.
Sex, age, mean NPX and time between sample collection (field 3166)
and data generation were used as covariates.

Colocalization
To see if the circulating blood protein levels in newborn blood and
T1D have shared causal variants, colocalization was performed
between protein QTL summary statistics and T1D GWAS results.
Summary statistics from the most recent T1D GWAS were down-
loaded from the NHGRI-EBI GWAS catalogue (accession number
GCST90014023)11. Regions ± 1MB of 136 independent T1D GWAS sig-
nals were used to check for overlap with 535 pQTLs of this study. The
Coloc.fast function from [https://github.com/tobyjohnson/gtx/blob/
526120435bb3e29c39fc71604eee03a371ec3753/R/coloc.R] was used
for the analysis. The colocalization of the signal in the locus was
defined as a posterior probability of sharing the same causal variant at
(PP4) > 80%. A PP4 > 60% was also considered as probable for coloca-
lization. As 2 reported T1D risk variants were in the ± 1MB region of the
start site of APOBR, we conditioned each T1D signal (in the +/− 1Mb
window) against the other using GCTA-COJO. The summary statistics
from the conditional analysis were then used for colocalization.

Mendelian randomization
The R package TwoSampleMR v.0.5.646 was used to perform Mende-
lian randomization as a complementary step for the proteins whose
pQTL signals colocalized with T1D GWAS signals. Since only the lead
pQTL for each cis or trans signal for each of the proteins was used as
instrument, the Wald ratio test was performed. For the outcome data,
the utilisedT1DGWAS study (accession numberGCST90014023) is the
result of inverse-variance weighted meta-analysis of 9 European
cohorts. The meta-analysis has a combined sample size of 18,942
patients with T1D and 501,638 controls. The reported summary sta-
tistics are in the log-odds scale and represent the unit increase/
decrease risk of having T1D. The lead pQTL variants from the COJO
conditional analysis (p-value < 5 × 10−8) were used as instrumental
variables (Table 1). Betas and standard errors were available for all the
instrumental variables from the T1D summary statistics (Supplemen-
tary Data 7). The F-statistic, defined as beta2/se2, was used to determine
the strength of the association between IVs and the exposure. All the
tested IVs had an F-statistic >15 (SupplementaryData 7). The effect size
of the Wald ratio test represents the T1D risk per one standard devia-
tion of the genetically predicted protein levels. P-values were adjusted
for multiple testing correction using the Bonferroni method and a
corrected p-value < 0.05 was considered significant. The STROBE-MR
checklist is available as Supplementary Data 8.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The type 1 diabetes GWAS summary statistics used for colocalization
analysis can be obtained from the GWAS catalog using the accession
number GCST90014023.The summary statistics for the significant
pQTLs, and the results from colocalization are provided in the sup-
plementary Data. The full pQTL summary statistics are available for
download from the Type 1 Diabetes Knowledge Portal [https://t1d.
hugeamp.org/] under the following links: Cardiometabolic:https://api.
kpndataregistry.org/api/d/36XKce Cardiometabolic II: https://api.
kpndataregistry.org/api/d/Anm8En Inflammation: https://api.kpndata
registry.org/api/d/KH5gTM Inflammation: II https://api.kpndataregis
try.org/api/d/9U8Q82 Neurology: https://api.kpndataregistry.org/api/
d/FVm5B8Neurology: II https://api.kpndataregistry.org/api/d/GASY1U
Oncology: https://api.kpndataregistry.org/api/d/FBJuLa Oncology: II
https://api.kpndataregistry.org/api/d/4JZc7C.
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