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ARTICLE

Bayesian causal graphical model for joint
Mendelian randomization analysis
of multiple exposures and outcomes

Verena Zuber,1,2,3,* Toinét Cronjé,4 Na Cai,5,6,7 Dipender Gill,1 and Leonardo Bottolo8,9,*
Summary
Current Mendelian randomization (MR) methods do not reflect complex relationships among multiple exposures and outcomes as is

typical for real-life applications. We introduce MrDAG, a Bayesian causal graphical model for summary-level MR analysis to detect de-

pendency relations within the exposures, the outcomes, and between them to improve causal effects estimation. MrDAG combines

three causal inference strategies. It uses genetic variation as instrumental variables to account for unobserved confounders. It performs

structure learning to detect and orientate the direction of the dependencies within the exposures and the outcomes. Finally, interven-

tional calculus is employed to derive principled causal effect estimates. In MrDAG the directionality of the causal effects between the

exposures and the outcomes is assumed known, i.e., the exposures can only be potential causes of the outcomes, and no reverse causa-

tion is allowed. In the simulation study, MrDAG outperforms recently proposed one-outcome-at-a-time and multi-response multi-var-

iable Bayesian MRmethods as well as causal graphical models under the constraint on edges’ orientation from the exposures to the out-

comes. MrDAGwasmotivated to unravel how lifestyle and behavioral exposures impact mental health. It highlights first, education and

second, smoking as effective points of intervention given their important downstream effects onmental health. It also enables the iden-

tification of a novel path between smoking and the genetic liability to schizophrenia and cognition, demonstrating the complex path-

ways toward mental health. These insights would have been impossible to delineate without modeling the paths between multiple ex-

posures and outcomes at once.
Introduction

Genetic evidence is increasingly used to infer causal rela-

tionships between human traits in Mendelian randomiza-

tion (MR) analysis. The standard MR paradigm, one expo-

sure and one outcome, can be biased by unmeasured

pleiotropy. It occurs when the genetic variants used as in-

struments in the MR analysis act via separate pathways to

the exposure under investigation. Extensions to consider

multiple exposures1 along withmulti-response2 of standard

MR allow to model pleiotropy, acting via any of the expo-

sures or any of the outcomes or both, respectively.

These and similar methods suffer an important limita-

tion, since they are not designed to account for the depen-

dency relations within the exposures and the outcomes to

enhance the detection of causal effects between them and

improve their accuracy. As we show in our motivating data

application on mental health phenotypes, it is a common

problem in practical applications that the effect of an

exposure on an outcome can be confounded or (partially

or completely) mediated by another exposure3 ormediated

by another outcome, or both. However, this structure is

latent and not known and consequently needs to be

learned from the data.
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The first attempt to provide a solution to this problem is

a Bayesian network algorithm presented by Howey et al.4

Based on individual-level data, they apply a score-based

method to determine the dependency structure among

the variables (genetic variants and traits) under the

constraint of directionality between the genetic variants

used as instrumental variables (IVs) (called genetic an-

chors) and the traits. This is the only assumption regarding

the directionality, so their method can be used in a ‘‘bidi-

rectional’’ or ‘‘reciprocal’’ fashion to determine the direc-

tion of causation between two traits. However, unobserved

confounding that operates between traits that are not

directly linked with the genetic anchors might bias the re-

sults. Moreover, the directed acyclic graph (DAG) that they

identify might not be unique, since other DAGs can hold

the same conditional independencies and, thus, the same

score. A similar approach for individual-level data is

proposed in Badsha and Fu5 with a constraint-based

method to detect the dependency relations among the var-

iables. Besides the problem of unobserved confounders,

since the data could be of mixed type (discrete and contin-

uous variables), the specification of a unique type of condi-

tional independence test for the entire dataset is also

problematic.
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Other solutions to this problem have been proposed

recently from the same lab.6–10 They are bidirectional

MR models that consider the problem of invalid and

weak IVs with inference performed by using a frequentist

approach. Some of these methods have been developed

for individual-level data,8,10 while others work with sum-

mary-level statistics6,7,9 Lin et al.6,7,9 present a two-step

approach that first utilizes bidirectional MR on every

pair of traits to construct a total effect causal graph and

then applies network deconvolution to the estimated

(total) causal network to estimate the direct causal effect

graph between two traits conditionally on the mediating

effects of other traits in the graph. In the first step, the

MRcML method11 for invalid IV screening is used to infer

both causal directions. In the second step, a graph decon-

volution algorithm12 is employed on perturbed data-

sets13 to perform accurate inference in finite samples

and mitigate the effect of weak instruments. However,

to construct the network of direct effects, Lin et al.6

rely on a critical assumption regarding the spectral radius

for network deconvolution that might be violated in

practice. Moreover, the total effects are decomposed

into the direct effects of all possible trait pairs, including

the non-significant ones. This might lead to the ‘‘dilu-

tion’’ of the causal effect size of significant trait pairs.

Chen et al.7 present one- and two-sample summary-level

approaches for causal network inference based on struc-

ture equation modeling that accounts for the possible

presence of some invalid IVs and consider the possibility

of bidirectional relationships between traits. In the two-

sample approach, the methodology requires complete

sample overlap of the exposures (for instance, when mo-

lecular traits from the same study are considered), but

limits its applicability to more general cases of exposures

derived from cohorts of different sizes. In addition, it

does not incorporate underlying graph uncertainty, and

causal graphical model selection is performed by thresh-

olding adjusted p values. Li et al.8 solve the problem of

identifiability of Gaussian DAGs for individual-level

and Zilinskas et al.9 for summary-level data, respectively.

They distinguish between the primary variables (traits)

and intervention variables (genetic variants). To make

their model identifiable, they assume (among others)

that any intervention variables, called instruments,

cannot intervene on multiple primary variables (exclu-

sion restriction) and that each primary variable is inter-

vened by at least one instrument. However, their exclu-

sion-restriction definition does not include unobserved

confounders differently from a similar condition for valid

IVs in MR. This limitation has been removed in Chen

et al.10 for Gaussian individual-level data.

Here, we contribute to the solution of this problem by

taking a different ‘‘unidirectional’’ approach. We propose

the MrDAG model, an MR method with essential graphs

(EGs) learning and causal effects estimation. MrDAG uses

summary-level genetic associations from genome-wide as-

sociation studies (GWASs) to learn how inter-related expo-
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sures affect multiple outcomes which, in turn, are inter-

connected in a complex fashion. The estimated

relationships within the exposures and the outcomes are

then used for the estimation of the direct causal effects.

MrDAG combines three causal inference strategies, the first

of which is the MR paradigm, which uses genetic variation

as IVs14,15 to ensure unconfoundedness. As such, the direc-

tionality of the causal effects between the exposures and

the outcomes is assumed known, in the sense that expo-

sures can only be potential causes of the outcomes and

no reverse causation from the outcomes to the exposures

is allowed. This reflects a hypothesis-driven research ques-

tion that aims at understanding how certain exposures

affect a set of related outcomes, and it is a plausible

assumption when only the designed exposures are modifi-

able, i.e., an intervention can be carried out. The second

strategy is structure learning,16 i.e., graphical models selec-

tion to define the graphs that best describe the dependency

structure in a given dataset, thus accounting for graph un-

certainty, under the constraint on edges’ orientation from

the exposures to the outcomes. The third strategy is inter-

ventional calculus to derive principled causal effects esti-

mates17 given the identified graphical models, thus shrink-

ing to zero the causal effects of unimportant dependency

relations.

Our motivating real data application considers the

impact of six common modifiable lifestyle and behavioral

exposures on seven mental health phenotypes. Mental

health describes patterns of cognitive, emotional, and

behavioral dysregulations that limit daily functioning

and cause distress. One in eight individuals suffers

from one or more mental health phenotypes worldwide,

most commonly anxiety-, attention-deficit hyperacti-

vity-, autism-spectrum-, bipolar-, eating-, personality-, or

schizophrenia-related diseases.18 Collectively, they

contribute to more than 15% of total years lived with

disability.19 Clinically, mental health phenotypes are

notoriously difficult to disentangle and diagnose due to

the lack of objective biological biomarkers and distinct

disease impressions.20 No symptom can be uniquely

ascribed to one disease, and each disease comprises expe-

riencing a group of inter-related traits. In research, this

complexity is reinforced by the multi-faceted mecha-

nisms that cause and sustain mental health.20,21 In addi-

tion to genetic liability, numerous behavioral and lifestyle

factors such as alcohol consumption, smoking, sleep hy-

giene, physical activity, and education contribute to the

risk of developing a mental health trait.21,22 Notably,

these factors are also affected by existing disease and treat-

ment.23 It is essential to appreciate these complexities

when attempting to identify underlying mechanisms of

mental health. While MR studies have been effective in

circumventing some of the limitations of traditional

epidemiology such as environmental confounding and

reverse causation, MR remains largely unable to fully

disentangle the interplay between traits that cause or

result from mental health.24
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A B Figure 1. Results of standard and multi-
variable MR (MVMR) methods regarding
how lifestyle and behavioral exposures
impact mental health outcomes
(A) Total causal effects estimated by stan-
dard MR25 of one exposure and one
outcome at a time at 5% Benjamini-
Hochberg (BH) false discovery rate
(FDR)29 across all exposures and outcomes.
(B) Direct causal effects estimated by a
Bayesian MVMR method (MR-BMA)1 after
adjusting for multiple testing30 at 5% BH
FDR across all exposures and outcomes.
To illustrate these ideas, Figure 1 shows the estimated to-

tal causal effects obtained by standard MR of one exposure

and one outcome at a time25 and the direct effects from a

multi-variable Bayesian MRmodel (MVMR)1 that accounts

for the other exposures considered in the real data applica-

tion. Irrespective of the method, three lifestyle and behav-

ioral exposures seem important when considering the

number of associated mental health phenotypes and the

size of the causal effects: lifetime smoking index (SM), ed-

ucation (in years) (EDU), and leisure screen time (LST).

There are a few differences between the two MR methods,

in particular the role of the genetically predicted level of

SM and LST on cognition (COG). However, these methods

do not consider the dependency relations that might exist

between lifestyle and behavioral exposures and have been

already reported in MR literature, for instance, between

EDU and SM and EDU and LST (EDU has a positive effect

on reducing SM and LST26,27). Similarly, they do notmodel

the relationships that might be present and have been de-

tected among mental health phenotypes. For instance,

bipolar disorder (BD) and anorexia nervosa (AN) might

be consequences of genetic liability to major depressive

disorder (MDD).28

In this study we show that, if these dependencies

within multiple related exposures and multiple related

outcomes are not considered, the results are severely

biased by falsely detected causal effects (despite false dis-

covery rate [FDR] control) and inflated effect sizes (see

Tables S2 and S3). In contrast, by estimating the relation-

ships within modifiable lifestyle and behavioral exposures

and within mental health phenotypes, MrDAG provides

more interpretable results regarding the direct and indi-

rect, i.e., partially or completely meditated, effects of

each exposure on the outcomes with fewer false positives

and false negatives, and thus informs precise strategies for

the prevention and therapeutic intervention of mental

health (see the results of real data application obtained

by the proposed MrDAG model in Figure 7). A detailed

discussion of these results is provided in ‘‘real data appli-

cation: the impact of lifestyle and behavioral traits on

mental health.’’
The America
Methods

Causal inferential strategies in MrDAG
MrDAG combines three causal inference strategies.

First, MR has pioneered the ability to use genetic data as IVs to

derive causal statements from observational data despite the pres-

ence of unobserved confounders.31,32

Second, in its standard formulation of one exposure and one

outcome, the conditional dependencies between the outcome Y,

the exposure X, the IV G, and the unobserved confounder U are

all given as well as their graphical representation.15 When multi-

ple exposures X1 and multiple outcomes Y2 are considered along

with multiple IVs G, (partial) correlation between X and condi-

tional dependencies between Y are included in the models to

perform the selection of important exposures whose causal effects

can be shared or are distinct across the responses. However, no de-

pendency relations within the exposures and the outcomes are

estimated by these methods, although, in practical applications,

the effect of an exposure on an outcome can be confounded or

(partially or completely) mediated by another exposure or medi-

ated by another outcome, or both (see Figures 2A and 2B for an

illustration).

In real data applications, complex dependency relations be-

tween the traits are generally not known in advance and they

need to be learned from the data. To detect them, we rely on

EGs and structure learning. Graphical models aremulti-variate dis-

tributions associated with a graph and are very effective for encod-

ing conditional dependencies33 between random variables. They

are represented in a graph as nodes (vertices), while edges denote

conditional dependence relationships between the corresponding

random variables. A DAG is a directed graph, where each edge has

an orientation with no directed cycles. Structure learning is a

model selection problem16 to estimate the graph (or competing

graphs) that best describes the dependency structure in a given da-

taset. However, without identifiability conditions,8–10,34 it is not

possible to estimate uniquely the underlying DAG, since its condi-

tional independencies can be associated with several alternative

DAGs. The set of DAGs that hold the same conditional indepen-

dencies is known as Markov equivalent class (MEC), and the best

that can be done from observational data is to estimate this class

(or competing classes). Moreover, all DAGs with the same condi-

tional independencies can be represented by an EG.35 Thus, this

study aims to illustrate how to perform EG learning (and thus

the exploration of distinct DAGs in the identified EGs whose
n Journal of Human Genetics 112, 1173–1198, May 1, 2025 1175
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Figure 2. Representation of the proposed multiple exposures and multiple outcomes Mendelian randomization model and causal
effects estimation where reverse causation is not allowed

(A) (Middle) Multi-variable Mendelian randomization for multiple responses with G ¼ ðG1;.;GnÞu: genetic variants (black) or instru-

mental variables (IVs);X ¼ ðX1;X2;X3Þu: exposures (blue);Y ¼ ðY1;Y2;Y3Þu: responses (orange); U: unobserved confounder(s) (gray).
True (unconfounded by U) exposure-outcome dependency relations are depicted in the middle panel. (Bottom) True fork structure
within the exposures with X3 regarded as the common cause of X1 and X2. (Top) True chain structure within the outcomes, where
Y1 affects Y3 through Y2.
(B) Directed acyclic graph (DAG) obtained by combining the panels in (A).
(C) Estimation of the causal effect under intervention inX1 on Y2, highlighted in blue and orange, respectively. The representation ofX1

has changed to emphasize that, under intervention, it is no longer a random variable. Intervention affects only the conditional distri-
bution ofX1, i.e.,X1jðX3;G;UÞ, and it leaves unaltered all the others. After removing the effect of Y1 bymarginalization (see Appendix A),
it would be sufficient to condition onX3;G, andU (graphically, the directed edges toX1 fromX3;G, andU are removed) to guarantee that
the association betweenX1 and Y2 is purely causative (see Figure S1). However, since U is unobserved, the estimation of the causal effects
cannot be obtained only by conditioning.
(D) Genetically predicted exposures bX� ¼ ðbX�

1;
bX�
2;
bX�
3Þ

u
and outcomes bY � ¼ ðbY �

1;
bY �
2;
bY �
3Þ

u
depend only onG, which are chosen to be

associated with X and not with Y . Graphically, no directed edges to bX� and bY � from U are pictured. True (unconfounded by U) depen-
dency relations between the traits in the original (individual-level) data shown in (B) are obtained by using bX� and bY �.
(E) Adjacencymatrix describing theMarkov properties of the DAG involving the genetically predicted exposures and outcomes (the vari-
ables in the x axis are dependent on the variables in the y axis) that are function of the IVs and the inverse-variance weighting (IVW)

(depicted with an asterisk) summary-level statistics bB�
X ¼ ðbb�

X1
; bb�

X2
; bb�

X3
Þu and bB�

Y ¼ ðbb�
Y1
; bb�

Y2
; bb�

Y3
Þu. Neither reverse causation (top-

right submatrix) nor phenotypic traits feedback loops (main diagonal) are allowed. Color code: black, directed edge between variables;
white, no causal relationship between variables; black-white strips, directed edge not allowed (feedback loop and reverse causation be-
tween exposures and outcomes).
importance will be apparent in the next paragraph) that best fit

the data under the constraint on the orientation of the edges,

known as partial ordering,36 from the exposures to the outcomes

implied by the MR paradigm.

Third, along with the identification of the exposure-outcome re-

lations as well as the dependency patterns within the exposures

and the outcomes, we are also interested in causal effects estima-

tion under intervention.17 Intervention has to be interpreted as

a manipulation of an exposure to be forced to take a particular

value (‘‘doing’’) in contrast to the natural value that can be

observed (‘‘seeing’’).37 This objective is possible, since graphical

models based on DAGs are suited for causal reasoning based on

the notion of interventional distribution17 (see Appendix A for de-

tails). An intervention on the exposures can be made explicit by a

suitable modification of the multi-variate distribution associated

with the DAG, under the assumption that the intervention does
1176 The American Journal of Human Genetics 112, 1173–1198, Ma
not affect any other variable in the joint distribution besides the

conditional distribution of the exposure under intervention.38

DAGs in which it is possible to perform an intervention on any

arbitrary node are called causal DAGs.37 After intervention, it is

possible to use graphical rules to convert the conditioning on ‘‘do-

ing’’ (intervention) into conditioning on ‘‘seeing’’ (observation),

derive the interventional distribution, and finally estimate causal

effects.17 Figure 2C presents an example of the intervention on

an exposure and the estimation of the causal effect on an

outcome.

In the formulation described above, all confounders should be

measurable to perform structure learning and causal effects esti-

mation (causal sufficiency assumption39). This condition is

(explicitly or implicitly) assumed4,5,8,9 and is usually not met in

real data applications where, instead, unobserved confounders

are ubiquitous and affect exposures and responses at the same
y 1, 2025



time. To solve this problem, we demonstrate (see Appendix A) and

show in an extensive simulation study (see Results) that, under

partial ordering, we can estimate the dependency structure that

exists between the traits in the original (individual-level) data un-

confounded by U by using their genetically predicted values. Since

the genetically predicted traits depend only on the selected IVs,

the confounders do not mask the true dependency relations

required in causal effects estimation. See Figure 2D, where the

graphical model estimated by using genetically predicted expo-

sures and outcomes approximates the corresponding graph in

the individual-level data not affected by U. Our proposed

approach shares similarities with methods based on the genetic

correlation and developed to analyze the joint genetic architecture

of complex traits,40 where the genetically predicted exposures and

outcomes can be seen as the estimated genetic components of the

traits. We use this analogy to show the unconfoundedness of the

estimated dependency structure that exists between the traits.

Finally, for a given DAG in the identified EGs, the genetically pre-

dicted values of the exposures and the outcomes are used to derive

the causal effect estimator that complies with Pearl’s back-door cri-

terion,17 which indicates the variables that must be added to the

regression equation to eliminate what is known as ‘‘omitted vari-

able bias.’’

The MrDAG model can be summarized as follows:�
gu bB�

Yg
u bB�

X

�u � Nqþp

��
guB�

Yg
uB�

X

�u
;S��; (Equation 1)

where g are the IVs after pruning or clumping, bB�
Y and bB�

X are the

inverse-variance weighted (IVW)41 estimated genetic associations

with the outcomes and the exposures, bY � ¼ gu bB�
Y and bX� ¼

gu bB�
X are the genetically predicted values of the outcomes and ex-

posures based on the IVs (see Figure 2D), which are normally

distributed for large sample sizes, and S� is the covariance matrix

that can be partitioned into S�
YY ;S

�
XX, and S�

XY , the genetic covari-

ances within the outcomes, the exposures, and between them.

Note that the genetically predicted values of the outcomes and ex-

posures do not need to be available/calculated, since the proposed

causal graphical model uses as input data the sufficient statistic for

S�, which is a function of the summary-level data and the linkage

disequilibrium (LD) structure between the genetic variants

selected as IVs. Thus, the only additional information that is

required from individual-level data is the LD matrix V. However,

this information is not necessary when independent genetic vari-

ants are considered after pruning or clumping, as we have done in

the simulation study and the real data application, and, thus,V ¼
In (see Appendix A).

By using a summary-level MR design, the MrDAG model allows

us to find a solution to the two problems highlighted before. First,

we perform structure learning under partial ordering by using

U� ¼ S��1

to learn the unconfounded dependency relations

within the exposures, the outcomes, and between them and to un-

derstand the genetic paths that link exposures and outcomes. Sec-

ond, we estimate the causal effects of the intervention on the ex-

posures as a function of trait-specific elements of the genetic

associations bB�
Y and bB�

X informed by distinct DAGs in the identi-

fied EGs, unconfounded by any measured and unmeasured pleio-

tropic effects42 within the exposures and the outcomes, respec-

tively, and any unobserved confounder.

Finally, the uncertainty regarding which EGs best describe the

data is fully accounted for in the Bayesian implementation of the

proposed model (see Appendix A). Posterior inference allows us

to rank the identified graphical models according to their impor-

tance and to obtain causal effects by Bayesian model averaging,
The America
which shows advantages compared to frequentist approaches.43

Sparsity to detect important causal effects is obtained by specifying

the a priori number of edges (or its probability) in the graphical

model, which is easier to elicit than Lasso-type penalization on

the space of causal effects used in frequentist approaches.44
Selection of instrumental variables
MrDAG uses the same instrument selection procedure employed

in MVMR.1 A genetic variant is considered a valid instrument for

MVMR when three core conditions hold.3 (IV1) Independence:

the variant is independent of all confounders of each of the expo-

sure-outcome associations. (IV2) Relevance: the variant must not

be conditional independent of each exposure given the other ex-

posures. (IV3) Exclusion restriction: The variant is independent

of the outcome conditional on the exposures and confounders.

We revise these core conditions for multiple exposures and extend

them for multiple outcomes in the Appendix A. In practice, only

IV2 can be computationally evaluated from the available data.

Tests for weak IV bias that arises because some genetic variants

are weakly associated, with some exposures conditional on the

other exposures are available.45 A recent solution to mitigate the

effects of weak IVs in MVMR is presented in Wu et al.46

There is an important distinction between IV selection in

MVMR, as used by MrDAG, and bidirectional MR. Let us consider

two traits A and B. In bidirectional MR, two MR analyses are con-

ducted, one for trait A on trait B and vice versa. First, specific IVs

are selected for trait A and the first MR model is fit. Another set

of specific IVs is then selected for trait B, and the secondMRmodel

tests the opposite effects direction. In contrast, in MVMR, IVs are

chosen to be the union of genome-wide significant genetic

variants for any exposure. By combining MVMR IV selection

approach with EG learning, MrDAG can infer the bidirectionality

of the relationships within exposures based on U�
XX ¼ S��1

XX

without repeated IV selection and subsequent analyses.

A similar comment can be made for the estimation of the bidirec-

tionality of the relationships within the outcomes based on

U�
YY ¼ ðS�

YY � S�
YXS

��1

XXS
�
XYÞ

�1
(see Appendix A). The depen-

dencies within the outcomes can be interpreted as an indication

of a violation of condition IV3, i.e., pleiotropy not explained by

the estimated causal effects from the exposures to the outcomes.2

The detected relationships within the exposures also suggest the

existence of pleiotropy, which, in the proposed framework, com-

prises confounding, mediation and independent pleiotropic path-

ways.3 In this study, measured pleiotropy is accounted for via any

of the exposures included in the model.3 Unmeasured pleiotropy,

in contrast, is accounted for when an unmeasured pathway im-

pacts more than one outcome jointly and introduces unidirec-

tional and/or bidirectional effects among the genetic associations

of the outcomes.2

WhileMrDAG can account for the impact of these pleiotropic ef-

fects, other direct effects of some IVs on the outcomes might exist

and bias the results. Indeed, another unmeasured pleiotropymight

be present in which some genetic variants are directly associated

with a single outcome at a time and not via the exposures. To deal

with this scenario, a possible extension of MrDAG model in Equa-

tion 1 is in analogywithMR-Egger forMVMR,42 where an intercept

is added.However, the InSIDEassumptionmust be imposed, and its

violation can cause further bias.47 Instead of extending theMrDAG

model in this direction, an alternative strategy is to check whether

any of the genetic variants used as IVs do not follow the proposed

model. This is equivalent to detecting outliers as proposed for
n Journal of Human Genetics 112, 1173–1198, May 1, 2025 1177
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Figure 3. Schematic illustration of different dependency structures simulated between the traits at the individual-level data and the
parameters employed in the simulation study
Directed edges indicate dependency relations, while undirected edges denote partial correlations. Dashed lines depict the true (uncon-
founded by U) dependency structure within the exposures and the outcomes, while solid lines indicate true causal effects between them.
Parameters jY and jX indicate the simulated effects of the unobserved confounder U on the exposures and the outcomes, respectively,
and BX ¼ ðbX1

;bX2
;bX3

Þ are the simulated genetic effects on the exposures. For simplicity, they are shown only on the left panel. Q ¼
ðq1;1; q1;2; q2;3Þ are the simulated causal effects from the exposures to the outcomes, while GX ¼ ðgX

3;1;g
X
3;2Þ and GY ¼ ðgY

1;2;g
Y
2;3Þ are

the mediation parameters within the exposures and the outcomes, respectively, where the subscripts denote their directionality.
When partial correlations are simulated within the exposures, bidirectional effects are depicted with double subscripts, i.e., GX ¼
ðgX

1;2==2;1;g
X
2;3==3;2Þ.

(A) Simulated scenario ‘‘UndGX-MedY ,’’ where an undirected graph (‘‘UndGX’’) encodes the dependency pattern within X and, within
the responses, an outcome ðY3Þ is completedmediated (‘‘MedY ’’) by another response ðY2Þ, which, in turn, is affected by a different expo-
sure ðX1Þ. Although there is another partial mediation between X1 and Y3 through X2, this mediation happens within X, so it does not
affect the definition of complete mediation within Y .
(B) Simulated scenario ‘‘DAGX-MedY ,’’ where a topologically ordered DAG within the exposures (‘‘DAGX’’) is simulated. Specifically, in
the example depicted, a fork structure is simulated, i.e., X3 affects both X1 and X2. A complete mediation is still considered within the
responses.
(C) Simulated scenario ‘‘UndGX-DAGY .’’ Here, the dependency structure between the individual-level responses is obtained by simu-
lating a topologically ordered DAG (‘‘DAGY ’’). Specifically, a chain structure is considered, i.e., Y1 affects Y2, which, in turn, affects
Y3, whereas an undirected graph encodes the dependency pattern within X.
(D) Simulated scenario ‘‘DAGX-DAGY ,’’ where two topologically ordered DAGs are simulated within the exposures (fork structure) and
outcomes (chain structure), respectively.
univariable48 andmulti-variableMRmodels3 to identify specific IVs

that might be invalid due to a direct unmeasured pleiotropic

pathway impacting one outcome at a time. This approach, called

conditional predictive ordinate (CPO), has already been pursued

in a Bayesian multi-response MR model2 and is also included in

MrDAG. Details are presented in the Appendix A.

Overall, only the direction from exposures to outcomes is fixed

inMrDAG, and no reverse causation is allowed, reflecting the stan-

dard MR paradigm. Thus, one of the key design decisions for

MrDAG is which variables are considered exposures and, conse-

quently, which instruments are selected for these exposures.
Results

Simulation study

We compare MrDAG in a comprehensive simulation study

where four different in silico scenarios have been generated

on individual-level data for N ¼ 100;000 individuals with

NY ¼ NX ¼ 50;000. The simulated datasets include n ¼
100 independent genetic variants G, an unobserved

confounder U, 15 exposures X, and 5 outcomes Y . All ex-

posures X were measured on the same individuals in the

first sample and have complete overlap, and all outcomes

Y were measured on the same individuals in the second

sample independent of the first sample. In all simulations,

the unconfounded dependency relations between the

traits are simulated at the individual level, while the algo-
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rithms use as input data the corresponding IVW sum-

mary-level statistics.

The four simulation scenarios are built by combining

two different strategies we used to simulate the depen-

dency patterns within the exposures and the responses.

(1) ‘‘UndGX-MedY .’’ A sparse undirected graphical

model (‘‘UndGX’’) encodes the dependency pattern

within the exposures X ¼ ðX1;.;X15Þ. Regarding
the responses Y ¼ ðY1; .; Y5Þ, one outcome is

completed mediated by another one (‘‘MedY ’’).

This simulated scenario aims to assess the ability

of MrDAG to detect the most common type of rela-

tionship within the exposures assumed in MVMR

methods.1,3,49 For a visual representation of this sce-

nario, see Figure 3A.

(2) ‘‘DAGX-MedY .’’ The dependency relations within

the exposures are more complex than in scenario

(1), since a topologically ordered DAG within the

exposures (‘‘DAGX’’) is simulated.50 A complete

mediation is still considered within the responses.

This second scenario is illustrated in Figure 3B.

(3) ‘‘UndGX-DAGY .’’ Here, a more complex depen-

dency structure within the individual-level re-

sponses (‘‘DAGY ’’) is simulated. This scenario is rep-

resented in Figure 3C. An example of the complex

dependency patterns generated in the simulation
y 1, 2025



A

D

E F

G

I J

K L

H

C

B

Figure 4. Examples of unconfounded dependency structure simulated at the individual-level data and estimated by using summary-
level statistics within the exposures, the outcomes, and between them in two different scenarios
In each panel, individual-level outcomes Y ¼ ðY1;.;Y5Þ and exposures X ¼ ðX1;.;X15Þ as well as genetically predicted outcomesbY � ¼ ðbY �

1;.; bY �
5Þ and exposures bX� ¼ ðbX�

1;.; bX�
15Þ are represented with orange and blue nodes, respectively. Directed edges indicate

dependency relations, while undirected edges denote partial correlation. Dashed lines depict the true (unconfounded by U) and esti-
mated dependency structure within the exposures and the outcomes, while solid lines indicate true and estimated causal effects between
them. Red color denotes false positives, either falsely detected effects (regardless of the directionality) or wrong directionality of the
edges. Besides the proposed model, alternative methods considered Mendelian randomization with Bayesian model averaging (MR-
BMA),1 multi-response Mendelian randomization (MR2),2 Mendelian randomization with PC algorithm (MRPC),51 and partition-
DAG (ParDAG).44 We report the results of MR-BMA and MR2 obtained by thresholding the marginal posterior probability of inclusion
(mPPI) > 0:5, which correspond to the median models.52 No threshold is applied to MrDAG posterior probability of edge inclusion
(PPEI). MRPC partially directed acyclic graphs (PDAGs) are obtained by specifying the type I error rate for the conditional independence
test at a ¼ 0:01. ParDAG results are the solutions of causal effects estimation with Lasso penalization set at l ¼ 0:9.
(A–F) Single replicate of the simulated scenario UndGX-DAGY , where an undirected graph encodes the dependency patternwithinX and
a DAG represents the dependency relations withinY along with the simulated causal effects from the exposures to the outcomes, result-
ing in an overall partially oriented DAG. In this scenario, the strength of correlation between consecutive X is set at rX ¼ 0:6 and then
decreases exponentially for non-consecutive exposures, and the average level of the mediation parameters within Y is set at mY ¼ 1.
(G–L) Single replicate of the simulated scenario DAGX-DAGY , where two topologically ordered DAGs have been independently simu-
lated within X and Y along with the simulated causal effects from the exposures to the responses, resulting in an overall fully oriented
DAG. In this scenario, the average level of mediation parameters for X and Y are set at rX ¼ 0:6 and mY ¼ 1, respectively.
study between the traits for one replicate of scenario

UndGX-DAGY is shown in Figure 4A.

(4) ‘‘DAGX-DAGY .’’ This is the most complex simulated

scenario, where two independent topologically or-

dered DAGs have been simulated within the expo-

sures and outcomes. Figure 3D presents a schematic

illustration of this scenario, while Figure 4G shows

the intricate dependency structure simulated be-

tween the traits for one replicate of DAGX-DAGY

scenario.
The America
Taken together, in scenarios (2) and (4), the overall indi-

vidual-level DAGs obtained by combining two different

simulation strategies for X and Y are fully oriented, while

in scenarios (1) and (3) the overall DAGs are partially ori-

ented. Details regarding the parameters jX and jY , the

simulated levels of the effects of the unobserved

confounder U on the responses and the outcomes, BX,

the simulated levels of the genetic effects on the exposures,

and GX and GY , the simulated levels of the mediation pa-

rameters within the exposures and the outcomes and their
n Journal of Human Genetics 112, 1173–1198, May 1, 2025 1179



average value rX and mY , are presented in the Appendix A.

Finally, all simulations are replicated 25 times and initial-

ized with a different random seed.

We compare MrDAG with published MVMR methods

and their software implementations, excluding the com-

parisons from naive one-exposure one-outcome MR

models, since it has been shown that they are outper-

formed by MVMRmethods when there is measured pleiot-

ropy among exposures.3 Specifically, we consider MR with

Bayesian model averaging (MR-BMA),1 an MVMR algo-

rithm that allows for many exposures to be included but

does not model explicitly the dependency relations within

the exposures.3 MR-BMA estimates the sparse direct causal

effects between the exposures and one outcome, providing

the marginal posterior probability of inclusion (mPPI)

along with the (Bayesian model-averaged) direct causal ef-

fects. We treat MR-BMA as the baseline algorithm for the

comparisons, since it analyzes one outcome at a time. Sec-

ond, we present the results of a sparse multi-variable

Bayesian summary-level MR model for the joint analysis

of multiple responses (MR2).2 MR2 estimates mPPIs, the

(posterior mean of) direct causal effects between the expo-

sures and the outcomes as well as the residual covariation

between the outcomes not explained by the exposures.

Similarly to MR-BMA, it allows for correlation among the

exposures, while unmeasured pleiotropy between re-

sponses is accounted for by a Gaussian decomposable

graphical model. Third, we include an in-house modified

version for summary-level data of the PC algorithm53

with the principle of MR (MRPC),51 which uses the PC al-

gorithm for the estimation of the causal graphical model

among the variables (in the original implementation: ge-

netic variants and traits; in our modified version: expo-

sures and outcomes) under partial ordering. At a specified

type I error rate for the Gaussian conditional indepen-

dence test, MRPC returns the estimated partially directed

acyclic graphs (PDAGs)36 (see Appendix A) in which

some undirected edges are present along with the directed

ones (recall that an undirected edge z � v is equivalent to

z/v and v/z) as well as the p values of all conditional in-

dependence tests. For a given PDAG detected by MRPC in

each replicate and scenario, we utilize Kalisch et al.50 to es-

timate the causal effects between the exposures and

outcomes. Fourth, Partition-DAG (ParDAG)44 provides a

solution to the structure learning problem once the sum-

mary-level statistics have been partitioned into two groups

and the orientation of the edges from the exposures to the

outcomes has been enforced. ParDAG computes the causal

effects estimates under Lasso regularization. It has not

been combined with instrumental variable estimation

and applied to genetic data to date. Finally, we consider

Graph-MRcML,6 which is based on a bidirectional MR

framework and does not distinguish between exposures

and outcomes. Among the causal graphical models consid-

ered, ParDAG is the only one that returns the estimation of

a fully oriented DAG, while MRPC, Graph-MRcML, and

MrDAG return PDAGs according to the designed level of
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type I error rate, Bonferroni-adjusted significance level,

and posterior probability of edge inclusion (PPEI), respec-

tively. However, since in ParDAG no identifiability condi-

tions are assumed, the reported DAG is the sparsest DAG

in the MEC. All methods use summary-level statistics as

input data after IVW. For eachmethod and algorithmic im-

plementation, details of the parameter settings are pro-

vided in supplemental text. Finally, all algorithms were

run on the same Cambridge high-performance computer

(HPC), taking for each replicate (and based on the designed

parameters settings) on average 1 min for MR-BMA and

MRPC, 2 min for MR2, <10 s for ParDAG, >2 h for

Graph-MRcML, and 10 min for MrDAG.

Regarding the evaluation criteria, we use a precision-

recall curve (PRC) that shows the relationship between pre-

cision (i.e., positive predictive value, on the y axis) and

recall (i.e., sensitivity, on the x axis) for every possible cut-

off and is not impacted by the over-representation of null

effects. In drawing PRCs, for MR-BMA, MR2, and MrDAG,

we rank the estimated mPPIs and PPEIs, respectively. For

Graph-MRcML, we rank p values obtained by the perturba-

tion scheme. This allows us to represent the PRC as a

smooth step line, where each step corresponds to a

different cutoff on mPPIs, PPEIs, and p values. As ParDAG

is based on a Lasso-type penalization, unimportant causal

effects are forced to zero and excluded from the model.

Consequently, ParDAG does not provide a full ranking of

important dependency relations but rather a single cutoff.

Thus, it is presented as a single point along with its stan-

dard error for each specified value of the penalization

parameter l instead of a continuous line. Similarly, we

report as a single cutoff the PDAG estimated by MRPC in

two steps (graph-skeleton selection at a specified a fol-

lowed by edges-orientation step with further conditional

independence tests at the same type I error rate) for

different values of a. See supplemental text for a detailed

discussion regarding how we implemented a fair compari-

son between the methods considered.

Finally, to evaluate the quality of the causal effects esti-

mation, we calculate the sum of squared errors (SSE),

defined as the sum of the squared differences between

the estimated and the simulated causal effect. In contrast

to the evaluation of the recovery obtained by each method

of the simulated dependencies within the exposures, the

outcomes, and between them, we do not report the SSE

of the mediation parameters GX and GY , since they are

considered nuisance parameters in the proposed model

(see supplemental text).

MrDAG more accurately detects unconfounded

dependency relations within the exposures and the

outcomes and between them

Figure 4 presents the results of MrDAG and alter-

native methods for one replicate of the simulated

scenario UndGX-DAGY (Figures 4A–4F) and DAGX-DAGY

(Figures 4G–4L) for a particular choice of the parameters

rX ¼ 0:6 and mY ¼ 1 used in the simulation study to
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control the average value of the mediation parameters GX

within the exposures and GY within the outcomes, and

jX ¼ 2 and jY ¼ 1 for the level of confounding on the ex-

posures and the outcomes, respectively (see Appendix A).

For its applicability, Graph-MRcML requires the assump-

tion that the spectral radius of the direct causal graph is less

than 1,6,7,9 which is violated not only in these two repli-

cates but in most of the simulated scenarios’ replicates.

Therefore, although originally considered, we omit

Graph-MRcML from the simulation study. The general per-

formance of the other competing algorithms is already

apparent from it. In scenario UndGX-DAGY , if a causal ef-

fect is simulated from an exposure to an outcome and

there are dependency relations from this outcome to other

responses (Figure 4A), MR-BMA adds erroneously causal ef-

fects to all linked responses with severe false positive (FP)

inflation (Figure 4B, FPs between bX�
12 and bY �

3;
bY �
4;
bY �
5 de-

picted in red). On the other hand, MR-BMA estimates

neither the dependency pattern within X, since the (par-

tial) correlation between summary-level exposures is

assumed in the model3 but not estimated, nor the depen-

dencies within Y , since it considers one response at a

time. MR2 detects bidirectional (as assumed by the model)

relationships between the outcomes, although this is not

sufficient to prevent FPs, similarly to MR-BMA

(Figure 4C). ParDAG results regarding the causal effects

simulated from the exposures to the outcomes are

extremely sparse but very dense within the responses.

Only oriented dependencies are estimated within the re-

sponses, as assumed by themodel (Figure 4D). MRPC infers

correctly most of the dependencies within X, but it does

not have the power to detect all simulated causal effects

Q at the specified type I error rate for the conditional inde-

pendence test ða ¼ 0:01Þ with a few false negatives (FNs)

(Figure 4E, FNs between bX�
1;
bX�
2 and bY �

2) and well as FPs

withinY (FPs between bY �
2;
bY �
3;
bY �
4;
bY �
5, where bidirectionally

is erroneously detected). MrDAG performs better than

alternative methods to detect both directed and bidirected

edges, with only one FP between bX�
5 and bX�

15 (Figure 4F).

Similar comments can be made for a particular replicate

of scenario DAGX-DAGY , although in this scenario the de-

pendency patterns are more complex, since a topological

ordered DAG is simulated also within the outcomes

(Figure 4G). MR2 does not detect any unmeasured pleiot-

ropy within the outcomes, and the results coincide with

MR-BMA, both with several FPs (Figures 4H and 4I).

MrDAG confirms its good performance except for the

directionality of the dependency relations withinX, where

bidirectional edges are found with a few FPs (Figure 4L, FPs

between bX�
12 and bX�

1 and between bX�
8 and bX�

9) and an FP

between bX�
1 and bY �

1 (although no threshold has been

applied to PPEIs) and no FNs.

Figure 5 generalizes the results depicted in Figure 4, aver-

aging the results over 25 replicates of the simulated sce-

narios UndGX-DAGY (Figures 5A–5C) and DAGX-DAGY

(Figures 5D–5F) with the same parameters setting used in

Figure 4. The results are presented separately for the simu-
The America
lated dependency structures from the exposures to the out-

comes (Figures 5A and 5D), within the exposures

(Figures 5B and 5E), and within the outcomes (Figures 5C

and 5F), respectively.

On average, MRPC and MrDAG have good performance

in both simulated scenarios (Figures 5A and 5D). MRPC’s

best results are obtained at a stringent type I error rate

a ¼ 0:01 for the conditional independent tests (blue

dots), although they are quite similar across different

values of a and thus robust to this choice. However, it fails

to detect the simulated dependency pattern within X in

scenario DAGX-DAGY (Figure 5E). The performance of

MR-BMA can be only evaluated for the detection of the

causal effects from the exposures to the outcomes

(Figures 5A and 5D). As we noticed above, the large num-

ber of FPs degrades the results of this method, which was

not developed to deal with multiple related responses.

MR2 is not able to detect complex dependency relations

simulated within the outcomes (Figures 5C and 5F),

although this is expected given the assumed bidirectional-

ity within Y . It performs better than MR-BMA in scenario

DAGX-DAGY but not in scenario UndGX-DAGY , where de-

pendencies within Y are wrongly estimated, showing that

its results crucially depends on the quality of the detected

unmeasured pleiotropy. The performance of ParDAG is the

worst among the methods considered for all types of de-

signed relationships, slightly better within the exposures

(Figures 5B and 5E) and between the exposures and out-

comes (Figures 5A and 5D), andworse within the outcomes

(Figures 5C and 5F), likely due to the very dense solutions

within Y as already noted in Figures 4D and 4J. Since

ParDAG detects only directed edges, in Figure 5B, where

the partial correlation between exposures is simulated,

the method has 50% recall rate. The results also seem quite

different according to the penalty parameter l.

MrDAG has a strong performance in both scenarios. In

contrast to MR-BMA and MR2, in scenario DAGX-DAGY

(Figures 5D–5F), there is only a small reduction of the

precision in the estimation of the dependency relations

between the exposures and the outcomes and within

the latter, compared to the scenario UndGX-DAGY

(Figures 5A–5C).

The comments above can be extended to the scenarios

where the relationships within outcomes are completely

mediated (UndGX-MedY depicted in Figures S2A–S2C and

DAGX-MedY shown in Figures S2D–S2F). In these sce-

narios, the mediation within the outcomes is easier to

detect (Figures S2C and S2F) than a topologically ordered

DAG simulated within Y .

Figure S4 shows the results of the area under the curve of

precision recall (AUCPR) to detect the causal effects Q and

the sensitivity of the methods to different specifications of

rX and mY . MrDAG is confirmed to be the best method,

with stable AUCPR for any combination of rX and mY

andwith similar AUCPRwhen partial correlation or a topo-

logical ordered DAG is simulated within X. MR-BMA per-

forms well, especially in the scenario UndGX-MedY
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Figure 5. Precision-recall curves (PRCs) for all methods considered in the simulated scenarios
UndGX-DAGY and DAGX-DAGY show recall (¼ sensitivity ¼ TP=ðTPþFNÞ) in the x-axis and precision
ð¼ positive predictive value ¼ TP =ðTPþFPÞÞ in the y-axis with TP ¼ true positive; FN ¼ false negative and FN ¼ false positive aver-
aged over 25 replicates in each scenario. In scenario UndGX-DAGY (A–C), the strength of correlation between consecutive X is set at
rX ¼ 0:6 and then decreases exponentially for non-consecutive exposures, and the average level of the mediation parameters within
Y is set at mY ¼ 1, while in scenario DAGX-DAGY (D–F), the average level of the mediation parameters within X and Y is set at
rX ¼ 0:6 andmY ¼ 1, respectively. For details, see Appendix A. In both scenarios, the results are presented separately for the simulated
dependency structures from the exposures to the outcomes (A and D), within the exposures (B and E) and the outcomes (C and D),
respectively. Vertical bars in each PRC, at specific recall levels 0.0625, 0.125, 0.25, 0.50, and 0.75, indicate standard error. For the
MRPC algorithm, the type I error rate for the conditional independence test is set at a ¼ f0:01;0:05;0:10;0:20g (from light- to dark-
blue dots), and for the ParDAG algorithm we specify three different values for the Lasso penalization l ¼ f0:5;0:7;0:9g (from light-
to dark-green dots). See supplemental text for details.
(Figure S4A), which is the scenario that is most compatible

for this method, as well as in scenario DAGX-MedY

(Figure S4C), where its performance slightly decreases.

Despite the limitations highlighted above, MR2 is overall

the second-best method, although it shows a drop of po-

wer in scenario UndGX-DAGY (Figure S4B). Both MRPC

and ParDAG seem to be less precise at higher levels of rX ir-

respective of the simulated scenario, with ParDAG also

influenced by the value of mY . Similarly, Figures S5 and

S6 show the sensitivity of the algorithms to detect the

simulated patterns within X and within Y for different

specifications of rX and mY .

In summary, MrDAG outperforms competing methods

in estimating the dependency relations, unconfounded

by U, within the exposures, within the outcomes, and be-

tween them, simulated at the individual level and esti-

mated by using summary-level data in a variety of sce-

narios and with different levels of the strength of the
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dependencies (mediation parameters rX and mY ) within

the exposures and the outcomes.

MrDAG improves the estimation of the causal effects

over existing methods

Figure 6A shows the SSE of the causal effectsQ between the

exposures and the outcomes for all methods considered in

the simulated scenario UndGX-DAGY and in Figure 6B for

the simulated scenario DAGX-DAGY across 25 replicates in

each scenario with the same parameter settings and imple-

mentation of algorithms described above. For MRPC and

ParDAG algorithms, we only show the results obtained at

type I error rate for the conditional independence test

a ¼ 0:01 and Lasso penalization l ¼ 0:9, respectively.

These values provide the best results for the two algorithms

as shown in Figures 5 and S2.

MrDAG has the lowest SSE mean and median (white

dots and horizontal black line, respectively) in both
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A B Figure 6. Violin plots of the sum of
squares error (SSE) of the causal effects
Q between the exposures and the out-
comes for all methods considered in the
simulated scenarios UndGX-DAGY and
DAGX-DAGY across 25 replicates in each
scenario
(A) In scenario UndGX-DAGY , the strength
of correlation between consecutiveX is set
at rX ¼ 0:6 and then decreases exponen-
tially for non-consecutive exposures, and
the average level of the mediation parame-
ters within Y is set at mY ¼ 1.
(B) In scenario DAGX-DAGY , the average
level of the mediation parameters within
X and Y is set at rX ¼ 0:6 and mY ¼ 1,

respectively. For details, see Appendix A. In each violin plot, the vertical black thick line displays the interquartile range, the black hor-
izontal line denotes the median, and the white dot denotes the mean. For MRPC and ParDAG algorithms, we only show the results ob-
tained at type I error rate for the conditional independence test a ¼ 0:01 and Lasso penalization l ¼ 0:9, respectively. These values pro-
vide the best results for the two algorithms as shown in Figures 5 and S2.
scenarios. As expected, when a topological ordered DAG is

simulated within the exposures (Figure 6B), the violin plots

have a wider range, showing more variable results,

although the median is almost similar to the scenario

with simulated partial correlation within X (Figure 6A).

Alternative methods have larger SSEs.

Similar comments can be made for simulated scenarios

UndGX-MedY (Figure S3A) and DAGX-MedY (Figure S3B),

where a complete mediation is considered within the out-

comes. MrDAG is confirmed as the best method.

We conclude this section by inspecting the sensitivity of

the SSE of the causal effects between the exposures and the

outcomes for different values of the average level of

the mediation parameters rX and mY . The estimation of

the causal effects displayed in Figure S7 shows that both

MR-BMA and MRPC depend on the combination of rX
andmY , with almost similar performance when a complete

mediation is simulated (Figures S7A and S7C). MR2 has

good performances across all scenarios compared to the

other methods, but its behavior depends largely on the

simulated level ofmY , which, in turn, affects the estimated

dependency relations within Y (see Figure S6). Compared

to the other methods, MrDAG is not only the best, but it

is rather insensitive to different levels of the mediation pa-

rameters within X and Y .

In summary, MrDAG has the lowest bias in the estima-

tion of the causal effects in all simulation scenarios and

for any combinations of the parameters rX and mY that

control the strengths of the pleiotropy within the exposure

and the outcomes. The advantage of MrDAG is more pro-

nounced when there are complex relationships within

the responses or the outcomes, and, in particular, when

both cases are simulated, which reflects more closely

what happens in real-life applications.

Robustness to noisy genetic association estimates and

mis-specification of the exposure-outcome groups’

definition

We evaluate the robustness of the proposed MrDAGmodel

by looking at the effect of noisy genetic association esti-
The America
mates and the mis-specification of the exposure-outcome

groups’ definition.

Regarding the effect of imprecise genetic association es-

timates, we replicate the setup used in the simulated sce-

narios described above, but we decrease the number of in-

dividuals from N ¼ 100;000 to N ¼ 20;000, equally split

between the exposures and the outcomes, i.e., NY ¼
NX ¼ 10; 000. Although this can be considered an

extreme case because the sample size in modern GWASs

is much larger (see Table S1 for the number of individuals

considered in the real data application), it reflects the pres-

ence of noisy genetic association estimates.

The results concerning the detection of the simulated

sparse signals and the quality of the causal effect estimates

are presented in Figures S8–S11 for all simulated scenarios

and a particular choice of the parameters rX ¼ 0:6 and

mY ¼ 1. While there is a less clear advantage of the pro-

posed MrDAG model over MR-BMA and MR2 in all sce-

narios considered and a similar behavior regarding the

detection of the simulated causal effects with the MRPC al-

gorithm (see Figures S8 and S9), MrDAG outperforms the

other methods in the quality of the causal effect estimates

when dependency relations are simulated within the out-

comes (see Figure S11). Only in one case do we record a

worse performance of the proposedmodel than alternative

methods, specifically against MR-BMA and MR2 in their

most favourable simulated scenario UndGX-MedY (see

Figure S10A).

Regarding the robustness to the mis-specification of the

exposure-outcome groups’ definition, we took the data-

sets originally simulated and incorrectly defined the two

groups. Specifically, for all algorithms considered, 5 expo-

sures are now mis-specified as outcomes, which reduced

the group of exposures from 15 to 10 and increased the

group of outcomes from 5 to 10. In doing so, reverse

causation, originally not considered in the simulation

study, is now present. For instance, this happens if, in a

relation dependence between two exposures, the parent

node is mis-specified and wrongly assigned to the out-

comes group.
n Journal of Human Genetics 112, 1173–1198, May 1, 2025 1183



We evaluate the ability of the algorithms to detect the

simulated sparse signals based not only on a subset of

the causal effects Q originally simulated from the expo-

sures to the outcomes (i.e., selecting 1035 exposure-

outcome combinations from the original simulated 153

5) but also on a subset of the sparse signals GX that origi-

nally was simulated within the exposures (i.e., including

1035 exposure-exposure combinations from the original

simulated 153 15). Overall, in all mis-specified scenarios,

the number of exposure-outcome combinations where

the sparse causal effects might be present increases from

1535 ¼ 75 to 103 10 ¼ 100.

The results of this experiment regarding the detection of

the simulated sparse signals and the quality of the causal

effects estimation for all simulated scenarios, and a partic-

ular choice of the parameters rX ¼ 0:6 and mY ¼ 1, are

presented in Figures S12–S15. As expected, the detection

of the simulated causal effects is more difficult, although

MR-BMA depends less on the mis-specification given that

it does not model dependency relations within either the

exposures or the outcomes. MrDAG is less influenced

than the other causal graphical algorithms and particularly

MRPC, and it still has a clear edge on MR-BMA when de-

pendency relations are simulated within the outcomes

(see Figures S13A–S13D). Regarding the quality of the

causal effects estimation, MrDAG is confirmed to be the

overall best method (see Figures S14 and S15). MR-BMA

is the second-best method when no dependency structure

is simulated within the outcomes.

Real data application: The impact of lifestyle and

behavioral traits on mental health

We apply MrDAG to investigate its ability to detect the ef-

fects of lifestyle and behavioral exposures on the risk of

mentalhealthphenotypesaswell aspotential formsof inter-

ventions for their prevention. As exposures, we chose seven

lifestyle and behavioral traits that have previously been

investigated for their effects on mental health, including

EDU, physical activity (PA), sleepduration (SP), alcohol con-

sumption (ALC), SM, and LST. As outcomes, we selected

seven mental health phenotypes, including MDD, AN,

attention-deficit hyperactivity disorder (ADHD), BD, autism

spectrum disorder (ASD), schizophrenia (SCZ), and COG.

See Table S1 for the description of the summary-level statis-

tics, the data sources, and the number of IVs for each trait,

and the Appendix A for the pre-processing steps. In a sepa-

rate analysis, we also investigate the reverse direction, i.e.,

whether the same mental health phenotypes have an

impact on the group of lifestyle and behavioral traits select-

ing IVs for the mental health phenotypes (see Appendix A

for the respective pre-processing steps).

Figure 7 presents the results of MrDAG. In particular,

Figures 7A and 7C show the estimated PPEI (Equation

A14) after structure learning, and Figures 7B and 7D

show the (Bayesian-model-averaged) causal effects (95%

credible intervals [CI]) between the exposures and the out-

comes.We ran theMrDAG algorithm for 106 Markov chain
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Monte Carlo (MCMC) sweeps, 105 of which as burn-in (for

details see supplemental text). The computational time is

1 h 40 min on Cambridge HPC. Figure S16A shows no

sign of aberrant behavior of the MCMC or the Markov

chain being trapped in local maxima. The number of

sweeps seems sufficient for the convergence of the

MCMC algorithm to draw samples from the posterior dis-

tribution. Results on PPEI and the causal effects are not

thresholded, and sparsity is enforced by assigning a priori

on the number of expected edges. We set it at pedge ¼
0:16, i.e., we expect a priori one edge for each of the 13

traits (see Appendix A and supplemental text). Post-pro-

cessing of the MrDAG output and corresponding outliers

detection (CPO estimation) show no invalid IVs due to un-

measured pleiotropy that acts on a single outcome at a

time (see Appendix A and Figure S17). The time required

to estimate CPO is 3 h 30 min, higher than the MrDAG al-

gorithm, since the marginal likelihood has to be calculated

for each observation across all the graphical models visited

during the MCMC. However, it is less than the computa-

tion time of the MrDAG algorithm 3 the number of obser-

vations, since no structure learning needs to be performed

and, thus, there is no need to evaluate the time-consuming

Metropolis-Hastings ratio in Equation A11.

As shown in Figures 7C and 7D, there are two key shared

exposures with important downstream effects on mental

health phenotypes, which are EDU and SM, on which we

focus our discussion. For each of them, we describe how

MrDAG can disentangle complex dependency relations

within the exposures and the outcomes and detect (partial

or complete) mediation, which prevents spurious findings.

As could be expected due to its centrality in the global

health agenda54 and the high level of confounding of

this phenotype with other genetically associated biolog-

ical, behavioral, and socioeconomic traits, genetically pre-

dicted EDU shows the most inter-exposure and exposure-

outcome dependency relations (Figure 7C, bottom part).

Previous work has supported the broad mental health im-

plications of education.55 First, in keeping with previous

findings,26,56–58 our results show that genetically predicted

EDU increases COG, and liability to ASD and BD, as well as

decreasing liability to ADHD. In contrast, genetically pre-

dicted EDU has no effects on SP, the amount of ALC, or

the liability to MDD,26 AN,59 or SCZ58 (Figure 7D). Second,

we investigate the detected dependency relations of EDU

with other exposures that contribute to the reported asso-

ciations. We find bidirectional relationships between

genetically predicted EDU, PA, and LST consistent with a

large body of literature.26,60 Dependency relations have

been also identified between EDU and SM.26,27 Supported

by the existing literature, these results confirm the ability

of MrDAG to disentangle complex relationships that exist

between inter-related exposures.

We find that SM is second only to EDU in its association

with several outcomes. Specifically, genetically predicted

levels of SM are associated with an increased liability to

MDD and ADHD, as previously reported.61,62 It is also
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Figure 7. Results of MrDAG algorithm regarding how lifestyle and behavioral exposures impact mental health outcomes
(A) PDAG of the posterior probability of edge inclusion (PPEI) within the exposures (lifestyle and behavioral traits, blue nodes), the out-
comes (mental health phenotypes, orange nodes), and between them. Undirected edges are represented as bidirectional edges; see, for
instance, edges between PA (physical activity) and LST (leisure screen time) or ASD (autism spectrum disorder) and ADHD (attention-
deficit hyperactivity disorder). Red edges indicate the estimated direct and indirect path from SM (smoking) to COG (cognition),
including the path from SM to SCZ (schizophrenia). Neither reverse causation from the outcomes to the exposures nor phenotypic traits
feedback loops are allowed.
(B) (Bayesianmodel-averaged) Causal effects on the outcomes (orange nodes) under intervention on the exposures (blue nodes). Red and
green edges indicate positive and negative (Bayesian model-averaged) causal effects, respectively.
(C) Posterior probability of edge inclusion (PPEI) for each combination of outcomes (mental health phenotypes) and exposures (lifestyle
and behavioral traits). Horizontal and vertical dotted lines separate the exposures (bottom-right submatrix) from the outcomes (top-left
submatrix). PPEIs between exposures and outcomes are depicted in the bottom-left submatrix. Neither reverse causation (top-right sub-
matrix) nor phenotypic traits feedback loops (main diagonal) are allowed (black-white strips).
(D) (Bayesian model-averaged) Causal effects (95% credible intervals) on the outcomes (y axis) under intervention on the exposures
(x axis).
associated with BD and SCZ (although these effects are

small) and COG. Notably, the association between geneti-

callypredicted levels of SMandCOGis alsodetectedby stan-

dardMRbutwith anegative effect (see Figure 1A),whileMR-

BMA1 does not declare it significant after FDR control across

all exposures and outcomes, although it estimates a positive

effect (see Table S3). As discussed above, we also check the

detected dependency relations of SM with other exposures.
The America
MrDAG appropriately identifies the relationship between

ALC and SM, but not vice versa. In a recent MR publica-

tion,63 the opposite association is observed. However, in

contrast to Reed et al.,63 who conceptualize SM with smok-

ing initiation,weuse a lifetime smoking index,61whichcap-

tures smoking duration, heaviness, and cessation.

As important as the discussion of existing associations

between the exposures and the outcomes is, it is similarly
n Journal of Human Genetics 112, 1173–1198, May 1, 2025 1185



insightful to discuss the absence of causal effects, espe-

cially those relationships that are reported in the literature

or found by standard (one exposure and one outcome) MR

models. For example, we do not replicate all previous evi-

dence for genetically predicted levels of SM being associ-

ated with mental health phenotypes. Although we find a

strong effect of genetically predicted levels of SM on

MDD,61 we do not find the same strong effect of SM on

SCZ61 as observed in observational studies.64,65 By looking

at Figure 7C, this might be due to pleiotropic effects that

have been identified by MrDAG within the mental health

phenotypes. In line with prior findings, evidence from

MrDAG supports dependency relations between genetic li-

ability to MDD and AN, ASD, and BD28 as well as between

genetic liability to BD and SCZ.66 Lastly, in keeping with

prior findings of possible bidirectional ASD-ADHD rela-

tionships,67 we observed genetic dependency relations be-

tween ASD and ADHD, and vice versa. These results sug-

gest that the genetic effects of SM on SCZ can be

mediated by pleiotropic effects within the responses. By

considering the results above, we hypothesize that the

SM-SCZ relationship is partly mediated first by MDD and

then by BD. Moreover, there is another path that goes

from the genetically predicted level of SM to SCZ through

a positive weak association identified by MrDAG between

SM and BD.68 Both genetic paths are illustrated in

Figure 7A and highlighted in red. Conditionally on these

relationships that are not considered in standard MR or

MVMR, MrDAG does not detect a strong causal effect be-

tween SM and SCZ.

We further note that the effect of SM on ADHD is both

direct and indirect, the latter mediated first by MDD and

then by ASD. Thus, our analysis pinpoints the important

role of MDD, which partly or entirely accounts for many

paths within mental health phenotypes and their causal

exposures. This might be due to the potentially high levels

of confounding and non-specific genetic associations pre-

sent in the original MDD GWAS69,70 as well as the high

levels of symptom-level and, therefore, diagnostic overlap

between MDD and all other psychiatric disorders.71 None-

theless, the implications of our results, assuming the valid-

ity of all GWAS findings, are that prevention and/or thera-

peutic intervention on MDD72 can have a cascade of

important effects for the prevention of several mental

health phenotypes.

To investigate this hypothesis, Figures S18A and S18B

show the results of MrDAG when MDD is removed from

the list of outcomes. Regarding the association between

genetically predicted levels of SM and ADHD, it is still pre-

sent with the same strength and similar CI depicted in

Figure 7D, suggesting that the indirect effect mediated first

by MDD and then by ASD is negligible. Figure S18B also

shows that, after removing MDD, genetically predicted

levels of SM are positively associated with SCZ, as reported

in the literature, as well as negatively associated with LST,

as shown in Figure 1. Combined with our main findings,

this result indicates that the absence of a link between
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SM and SCZ (and the link between LST and SCZ) in the

MrDAG model is likely due to the mediation of MDD.

Similar results are obtained if BD, which appears in the

path highlighted in red in Figure 7A, is removed from

the list of outcomes (see Figure S19).

To check whether the hypothesized edges’ orientation

between the exposures and the responsesmight not be sup-

ported by the data, we have also tested reverse causation,

whereby we assess the impact ofmental health phenotypes

on lifestyle and behavioral traits by selecting genetic vari-

ants to be associated with the mental health phenotypes.

As before, we used 106 MCMC sweeps of which 105 were

burn-in, and the computational time is 2 h on the Cam-

bridge HPC. Post-processing of MrDAG output to check

for the presence of invalid IVs due to unmeasured pleiot-

ropy that acts on a single outcome at a time identifies 84

IVs (18%) as invalid (see Figure S26). CPO estimation took

3 h to run. We removed these IVs and rerun MrDAG on

the remaining 386 IVs. Figures 8 and S27 show the results

of this analysis where, besides the positive effect of geneti-

cally predicted COG on EDU,73 genetic liability to MDD61

and ADHD is associated with SM, the latter well docu-

mented in epidemiological studies74 and confirmed in a

randomized clinical trial of smoking cessation,75 although

the respective effect size is small.

We conclude the analysis of the real data application by

assessing the validity of the results obtained by MrDAG

and adding the comparisonwith othermethods.We divide

this internal check into sensitivity to hyper-prior specifica-

tion and robustness of structure learning. Regarding the

first point, Figure S20 shows that the (Bayesian model-

averaged) causal effects as well as the 95% CIs for different

values of the a priori probability of edge inclusion are not

influenced by this choice. For the second internal check,

we bootstrap MrDAG repeatedly on the data76 (see supple-

mental text). In Figure S21 we present the bootstrap fre-

quency of edge inclusion for each permitted combination

of exposures and outcomes and the scatterplot of the PPEI

against the bootstrap frequency of edge inclusion. The re-

sults show that there is a satisfactory agreement between

a single run of the algorithm and the bootstrap results

for the reported causal associations. Extended results are

presented in supplemental text.

Figures S22–S25 show results of MR2, MRPC, ParDAG,

and Graph-MRcML applied to the same real data. We

discuss in detail the results of MR2 and Graph-MRcML.

As in the simulation study, MR2 shows some difficulties

in teasing out complex relationships within the responses,

which are mostly directed, e.g., MDD / BD, or mediated,

e.g., ADH / MDD / AN, and detected by MR2 as MDD-

BD and ADHD-AN, once the causal effects have been de-

tected, and vice versa.

Graph-MRcML is the only method considered that treats

all traits as equal and does not distinguish between expo-

sures and outcomes. To perform this task, it requires a

different format for the data input (see supplemental

text). The results show generally a good agreement with
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A B Figure 8. Results of MrDAG regarding
how liability to mental health phenotypes
affects lifestyle and behavioral traits after
removing invalid IVs
(A) Posterior probability of edge inclusion
(PPEI) for each combination of outcomes
(lifestyle and behavioral traits) and expo-
sures (mental health phenotypes). Horizon-
tal and vertical dotted lines separate the ex-
posures (bottom-right submatrix) from the
outcomes (top-left submatrix). PPEIs be-
tween exposures and outcomes are depicted
in the bottom-left submatrix. Neither
reverse causation (top-right submatrix) nor
phenotypic traits feedback loops (main di-
agonal) are allowed (black-white strips).
(B) (Bayesian model-averaged) Causal ef-
fects (95% credible intervals) on the out-
comes (y axis) under intervention on the
exposures (x axis).
MrDAG regarding EDU and SM as effective points of inter-

vention, and the absence of any direct effect of SM on SCZ.

They also largely agree on the lack of reverse causation,

with the effect of COG on EDU detected by both. However,

two important differences are apparent. They are related to

MrDAG shrinkage of unimportant causal effects and sparse

structure learning. In Graph-MRcML, the total effects are

decomposed into the direct effects of all possible trait pairs

(see Figure S25B), including the non-significant ones (see

Figure S25C), leading to the ‘‘dilution’’ of the causal effect

size of significant trait pairs. An example of this phenome-

non is the effect of SM on SCZ. Albeit not selected at 5%

Bonferroni-adjusted significance level ðpadj ¼ 1Þ, the direct
causal effect of SM on SCZ is one of the largest estimated by

Graph-MRcML, weakening the estimated causal effects of

the other trait pairs; for example, the size of the causal ef-

fect of SM on ADHD obtained by Graph-MRcML (1.03) is

50% lower compared to MrDAG (1.55). In contrast,

MrDAG estimates the direct causal effects given the sparse

visited EGs, on average withz21 edges out of 114 possible

ones (Figure S16), thus shrinking to zero the causal effects

of unimportant dependency relations. The second differ-

ence is linked to the selection of important relationships.

In MrDAG this is accomplished by a score-based (marginal

likelihood) structure learning of sparse EGs visited during

the MCMC, which separates important dependency rela-

tions from less important ones. In Figure S20 we show

that the results do not depend on the a priori probability

of edge inclusion. Contrarily, in Graph-MRcML small dif-

ferences in the adjusted significance level lead to different

models. An example is the effect of SM on ADHD

(Figure S25A), which is not significant at 5% Bonferroni-

adjusted significance level ðpadj ¼ 0:051Þ, although this

relation has been detected by MrDAG and the majority

of alternative approaches. At higher Bonferroni-adjusted

significance level it becomes significant. Another example

is the effect of EDU on ASD, which has an adjusted p value

that is only slightly higher than 20% ðpadj ¼ 0:208Þ. It is
not clear whether or not it should be included in the causal

graphical model.
The America
Discussion

In this study, we have introduced MrDAG, the first

Bayesian causal graphical MR model for joint analysis of

multiple exposures and outcomes. The proposed method

can detect dependency patterns within the exposures as

well as within the outcomes, thus allowing for a more pre-

cise estimation of the causal effects from the exposures to

the outcomes.

In a comprehensive simulation study, MrDAG outper-

forms recently proposed one-outcome-at-a-time and

multi-response multi-variable MR methods and causal

graphical models under the constraint on edges’ orienta-

tion from the exposures to the outcomes. We showcased

the advantage of MrDAG also in a real data application

to disentangle how lifestyle and behavioral traits interact

to cause mental health phenotypes and, separately, the

opposite. We highlighted how MrDAG can recover infor-

mation on the genetic paths that link exposures to out-

comes compared to existing MRmethods that ignore these

dependency relations. Specifically, we highlighted primar-

ily, education and secondarily, smoking as solely effective

points of intervention given their distinct downstream ef-

fects on multiple mental health phenotypes. In contrast to

widely used uni- and multi-variable MR methods, and a

recently proposed multi-response model, neither leisure

screen time (LST) nor sleep duration (SP) have been identi-

fied as key exposures of intervention. Compared to other

causal graphical models considered in this study under

the assumption of known directionality between the expo-

sures and the outcomes, more significant causal effects are

detected by MrDAG, especially those linked with educa-

tion. Finally, by enforcing sparsity, MrDAG better separates

important dependency relations from less important ones

and better estimates direct causal effects than an alterna-

tive bidirectional causal graphical model where no regula-

rization of the estimated causal effects is implemented.

These insights are possible because threemethodological

advances are considered in MrDAG. First, in structure

learning, the hypothesis of no unobserved confounding
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is a fundamental underlying assumption. This assump-

tion, known as causal sufficiency, is difficult to justify in

real data applications, and its violation produces biased re-

sults. By using IVs within the MR paradigm, we bypass the

need to remove the effects of the unobserved confounder

from the individual-level data.39,77,78 Specifically, we avoid

the assumption of causal sufficiency by employing geneti-

cally predicted exposures and outcomes that depend only

on the genetic variants chosen as IVs. Genetically pre-

dicted exposures are key in the derivation of the two-stage

least-square causal effect estimator,41 but in MrDAG we

have extended it to include genetically predicted out-

comes. On both predicted groups of traits, we perform

EG exploration to learn the unconfounded dependency re-

lations that exist within and between the exposures and

the outcomes. Our second contribution is the estimation

of causal effects under intervention on the exposures

conditionally on a given DAG. We showed that they can

be estimated based on Pearl’s interventional calculus.17

Moreover, differently from Kalisch et al.50 and its applica-

tion in the MRPC algorithm,5,51 in the proposed Bayesian

implementation the estimation of the causal effects is

averaged over the visited graphical models,43 thus taking

into account the uncertainty regarding the EGs that

best describe the dependency structure in a given dataset.

Third, MrDAG allows the possibility of including

domain-knowledge relations between the traits. In the de-

signed MrDAG model, constraints between the exposures

and the outcomes descend directly from the MR paradigm.

Our Bayesian implementation of structure learning

under restrictions offers clear advantages over alternative

methods.44 In particular, adding an acceptance/rejection

step to check whether the proposed EG satisfies the edge-

orientation constraints is simple and effective. Although

not presented in this study, other restrictions can be

straightforwardly included—for instance, known relations

regarding disease progression or time-dependent out-

comes, e.g., smoking initiation and cessation.79

MrDAG is an MR approach that is best suited in the

context of biologically informed relationships, since expo-

sures and outcomes need to be specified before the anal-

ysis. This insight should be used to inform the design of

the study as well as the data sources selected to test specific

research questions and hypotheses. The lack of sufficient

appreciation of underlying biology is one of the reasons

for the current crisis faced in the application of MR more

widely.80 In the case of no prior domain knowledge,

agnostic causal network models should be preferred.6

There are some limitations in the proposed method. A

drop in power to detect causal effects is apparent in the

simulation study when the summary-level data are

derived from noisy genetic association estimates. This is

expected, since the detection of dependency relations re-

quires informative data. As we have shown in the real

data application, modern GWASs are performed on large

cohorts, so noisy genetic association estimates are less of

a concern, although this might still be an issue (shared
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with most causal graphical models) when molecular traits

are considered, since their sample size could be small.81

Mis-specification of the exposure-outcome groups’ defini-

tion has the same effect on the power, since the hypoth-

esized edges’ orientation between the exposures and the

responses might not be supported by the data, e.g., if

reverse causation is present. This can be investigated by

flipping the comparison and treating the outcomes as ex-

posures and vice versa. This entails selecting a new set of

genetic variants as IVs to instrument the outcome traits

and rerunning MrDAG to check for reverse causation, as

illustrated in the real data application where we investi-

gated the reverse direction, i.e., the impact of liability to

mental health phenotypes on lifestyle and behavioral

traits. We also suggest monitoring the rate of the rejection

step. High levels might be an indicator of reverse causa-

tion and, thus, mis-specification of the exposure/outcome

groups’ definition.

In the real data application, while the use of existing

summary-level statistics of GWASs facilitates the integra-

tion of diverse phenotypes measured in different cohorts,

we are also limited by the biases suffered by the initial

GWASs. Specifically, studies of mental health rely on the

presence of a clinical diagnosis. Consequently, it is not

truly the genetic liability of the disease itself as much as

the probability of having access to diagnoses or treatment.

Our findings on the relationship between higher geneti-

cally predicted EDU and increased risk of ASD and BD,

but decreased ADHD risk, provide an example of such

bias. In these analyses, the predicted number of school

years completed is unlikely to be causally implicated in

the development of ASD traits. While the typical age of

onset of ASD precedes the start of formal education (and

is therefore unlikely to be caused by it), ASD-related traits

are more likely to be recognized and referred, particularly

in those who are undiagnosed or untreated, when individ-

uals are within a schooling system where standardized

testing and progress reports by peer comparison are per-

formed. Moreover, current GWASs consider one trait or

disease at a time and do not consider to what extent cases

are comorbid with other diseases. Future GWASs on co-

morbidity82 might provide more fine-grained genetic as-

sociations, allowing disentanglement of some of these

relationships.

In conclusion, MrDAG, with its unidirectional approach

and Bayesian implementation, represents an alternative

contribution to how we can learn complex relationships

among phenotypic traits. It provides analysts with the op-

portunity to derive a more comprehensive picture of causal

mechanisms between complex phenotypes. The real data

application is an example of the proposed holistic

approach, whereby we leverage MrDAG and large-scale

genome-wide association data to offer novel mechanistic

insight into the causal behavioral determinants of mental

health phenotypes to delineate between their overlapping

pathophysiology and phenotypic presentation toward

translational progress in the field of mental health.
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Data and code availability

Data sources are presented in supplemental text with associated

URL links. Social Science Genetic Association Consortium

(SSGAC) summary-level statistics are available through a standard

registration procedure (https://thessgac.com/register/).

The MrDAG learning R package is freely available on https://

github.com/lb664/MrDAG/. It includes the data of the real data

applications and how to run the algorithm. Post-processing rou-

tines to estimate the (Bayesian model-averaged) causal effects pre-

sented in this article are also included along with PPEI.
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Appendix A

In the following, we denote with capital letters the random vari-

ables Y;X;G, and U for the observed outcome, exposure, instru-

mental variable, and unobserved confounder, respectively, and

with small letters y; x; g, and u their corresponding observations.

Multivariate random variables and corresponding observations

are presented in bold. A marginal element of a vector of random

variables is specified by a suitable subscript index, e.g., Yk; k˛
K ¼ f1;.; qg;Xj; j˛ J ¼ f1;.; pg, and Gi; i˛ I ¼ f1;.;ng. Y\k
The America
and X\j consist of all the outcomes and exposures except those

that are related to the kth response and jth exposure, respectively.

Finally, vectors understood as column vectors and matrices are

indicated in bold, the latter also in capital letters.

We indicate with bXi;j and bYi;k the effect of the genetic variant i˛ I

on the exposure j˛ J and outcome k˛K, respectively, with bXj
and

bYj
the n-dimensional vector of genetic effects on the jth exposure

and kth outcome, respectively, and, finally, with BX and BY the

ðn 3 pÞ- and ðn 3 qÞ-dimensional matrices of the genetic effects on

all exposures and outcomes. qj;k denotes the causal parameter of in-

terest, i.e., the direct causal effect of Xj on Yk, and gX
h;j and gY

h;k the

mediation effect of Xh on Xj;hsj and Yj on Yk;hsk, respectively.

Q; GX, and GY indicate the corresponding ðp 3 qÞ-, ðp 3 pÞ-, and
ðq 3 qÞ-dimensional matrices of the causal parameters of interest

ðQÞ and the mediation parameters GX and GY whose average value

is rX andmY , respectively. The symbol ‘‘^’’ denotes the estimator of

a parameter or its estimated value and ‘‘*’’ an IVW parameter.

Let D ¼ ðV ;EÞ be a directed acyclic graph (DAG), where V de-

notes a set of vertices (nodes) and E ¼ V3V a set of directed edges,

i.e., if ðz;vÞ˛E, then ðz;vÞ;E. For a given DAG D, if z/v, then z is

a parent of v and, conversely, v is a child of z. Moreover, if

z/./v, then z is an ancestor of v and v is a descendant of z.

We denote the parent set of v in D as paDðvÞ and

vWpaDðvÞ ¼ faDðvÞ the family of v. Unless otherwise stated, for

ease of notation, we remove the subscript D. We indicate with

YpaðkÞ and XpaðkÞ the outcome and exposure parents of the

outcome k˛K, with XpaðjÞ the exposure parents of the exposure

j˛ J and with XfaðjÞ its family, i.e., XfaðjÞ ¼ XjWXpaðjÞ.
In research by Didelez and co-workers,15,37,38 key results

regarding standard Mendelian randomization (MR) (single expo-

sure with single instrumental variable and single outcome) are pre-

sented. Here, we use them to show that MrDAG is an extension of

standard MR when multiple exposures and outcomes are consid-

ered. Technical details are provided in supplemental text.

These results are conditioned on a given DAG. Since the un-

derlying dependency relations within and between exposures

and outcomes are not known (latent) and need to be estimated,

structure learning is performed on the genetically predicted

values of the traits. We draw the connection between them

and the genetic components of the phenotypic covariance,

which are orthogonal to any confounders U . Thus, by using

the genetically predicted values, the causal sufficiency condition

(usually assumed explicitly or implicitly in structure learning) is

not required. We conclude this section with a description of the

Bayesian implementation of the proposed model and details

regarding the data-generation steps used in the simulation

study.
Multi-exposure and multi-outcome core conditions for

instrumental variables
Let Y ;X, and G be the q-, p- and n-dimensional vector of the out-

comes, exposures and instruments (genetic variants) random vari-

ables, respectively.

Let us assume the following ‘‘multi-variate core conditions’’

(MCC) for valid instrumental variables (IVs), which are the exten-

sions of the core conditions thatG has to satisfy in standardMR15:

(IV1) GivU ;ci˛ I, i.e., Gi must be independent of U ;

(IV2) , i.e., Gi must not be

independent of Xj conditionally on X\j; and

(IV3) GivYkjðX;UÞ;ci˛ I;and ck˛K, i.e., Gi must be indepen-

dent of Yk conditionally on X and U .
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The first multi-exposure and multi-outcome core condition

(MCC) for instrumental variables is similar to the first CC in stan-

dard MR.15 The second MCC imposes that Gi should be associated

with Xj conditionally on the other exposures. The third MCC es-

tablishes that the instrumental variables and outcomes are condi-

tionally independent given the exposures and the unobserved

confounder.

From the DAG D involving Y ; X; G, and U that satisfies the

MCC, the corresponding Markov properties say that GivU;ci˛
I, since Gi is not a descendant of U and vice versa and

, because Xj is a descendant

of Gi. The Markov property for the third MCC is GivYk

��ðYpaðkÞ;
XpaðkÞ; UÞ;ci˛ I and ck˛K, since Gi is a non-descendant of Yk

and ðYpaðkÞ;XpaðkÞ;UÞ are the parents of Yk.
Interventional distributions and causal effects

estimation
The conditional dependencies associated with the multi-exposure

and multi-outcome DAG D lead to the following factorization of

the joint density of all random variables considered:

f ðy;x; g ; uÞ ¼
Y
k˛K

f
�
yk

���ypaðkÞ;xpaðkÞ; u
�Y

j˛ J

f
�
xj
��xpaðjÞ; g ;u

�
f ðgÞf ðuÞ;

which is known as pre-intervention distribution and assumed to

be faithful to the DAG,53 i.e., there are no conditional dependence

relationships between the variables in the model that do not

follow directly from the Markov properties.

The post-intervention distribution under intervention on the

hth exposure sets to take the value ~xh is obtained by the truncated

factorization17

f ðy;x\h; g ; ujdoðXh ¼ ~xhÞÞ ¼
Y
k˛K

f
�
yk

���~xh; ypaðkÞ;xpaðkÞ; u
�

Y
j˛ J\fhg

f
�
xj
��xpaðjÞ; g ;u

�
Ixh ð~xhÞf ðgÞf ðuÞ

;

(Equation A2)

where Ixð~xÞ is the indicator function which is equal to one if xh ¼
~xh and zero otherwise. Graphically, the directed edges to Xh from

its parents in X;G and U are removed.

A post-intervention distribution under intervention on the hth

exposure is obtained from Equation A2 by marginalizing all vari-

ables but the selected outcome and the exposure on which an

intervention is carried out:

f
�
yk
��doðXh ¼ ~xhÞ

� ¼ Z
f ðy;x\h; g ; ujdoðXh ¼ ~xhÞÞ dy\kdx\hdg du

¼
Z

f
�
yk
��~xh;xpaðhÞ; u

�
f
�
xpaðhÞ;u

�
Ixh ð~xhÞ dxpaðhÞdu

(Equation A3)

This result is derived from Pearl17 and follows directly from the

Markov properties of the DAG. It establishes that the parents of

the variable on which an intervention is carried out are the only

variables that need to be measured to estimate the causal effect

on an outcome.83

The post-intervention distribution (Equation A3) can be sum-

marized by taking the expectation and defining the causal effect

of an intervention84 as

qh;k ¼ v

vxh
EðYkjdoðXh ¼ xhÞÞ

����
xh ¼ ~xh

;h ˛ J; k˛K:

In supplemental text, we show the identifiability of the causal ef-

fect (proposition S2) and the derivation of its estimand inmultiple
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exposures andmultiple outcomesMR framework (proposition S3).

We also show the consistency of the effects of the regressions of

each outcome and exposure on G (proposition S1), i.e., the esti-

mated genetic effects on the outcomes and exposures contain all

information regarding the causal parameters of interest and the

mediation parameters within the exposures and the outcomes un-

confounded by U.

Here, for a given DAG D, we report the IVW estimator of the

causal effect of the intervention in Xh on Yk:

bqh;k ¼
h�bB�u

XfaðhÞ
bB�

XfaðhÞ

��1 bB�u
XfaðhÞ

bb�
Yk

i
1
; (Equation A4)

where the subscript indicates the first element of the

solution of the linear least squares (LLS) regression, since

faðvÞ ¼ vWpaðvÞ;XfaðhÞ denotes the exposures that are the family

of the exposure Xh under intervention, bB�
XfaðhÞ are the IVW esti-

mated coefficients of the regressions of each exposure in XfaðhÞ
on G, and bb�

Yk
is the IVW estimated coefficient of a regression of

Yk on G. Equation A4 resembles the standard IVW estimator of

the causal effect that approximates the estimate that would have

been obtained if individual-level data were available.3 However,

in contrast to general proposed solutions in MVMR, in Equation

A4 the set of regressors is with regard to the family of the exposure

under intervention.
Dependency structure under the effect of unobserved

confounders
To estimate Equation A4, structure learning of the graphical

models needs to be performed to detect the parents XpaðhÞ of the
exposure Xh under intervention. However, structure learning as-

sumes causal sufficiency,39 i.e., it requires that there are no hidden

(or latent) variables that are common causes of two or more traits.

Instead, in this study we explicitly assume that an unobserved

confounder U acts on both outcomes and exposures.

Links between the genetic correlation and MR causal effect esti-

mate have been already discussed in Bulik-Sullivan et al.85 Here we

provide further connections with genetic covariance,86 which is

key to showing that, by working with summary-level statistics, it

is possible to recover the dependency structure between the corre-

sponding traits in the original (individual-level) data uncon-

founded by U.

Let us assume that the genetic effect on a phenotypic trait is

linear and consider two traits,

Yk ¼ Gu
bYk

þ jYU þ eYk
; k˛K;

Xj ¼ Gu
bXj

þ jXU þ eXj
; j˛ J;

where G is a set of genetic variants of dimension n, either span-

ning the whole genome or region(s)-specific or selected to be asso-

ciated with a trait, bYk
and bYk

are the genetic effects, U is an unob-

served confounder that affects both traits with jY and jX the

effects sizes, and eYk
and eXk

are white noises that can be inter-

preted as environmental effects. We assume that GvU and, simi-

larly, GveYk
and GveXj

. Finally, we assume that UveYk
and

UveXj
, i.e., the unobserved confounder U exerts its effect on

both traits and it is distinct from other environmental factors. Un-

der this model, the phenotypic covariance is

Cov
�
Yk;Xj

� ¼ Cov
�
Gu

bYk
þ jYU þ eYk

;Gu
bXj

þ jXU þ eXj

�
¼ bu

Yk
VðGÞbXj

þ jYjXVðUÞ þ Cov
�
eYk

; eXj

�
(Equation A5)
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The phenotypic covariance can be decomposed into cgðYk;XkÞ ¼
CovðGubYk

; GubXj
Þ ¼ bu

Yk
VðGÞbXj

, the genetic covariance be-

tween the two traits, i.e., the covariance between the genetic

components of the two traits, GubYk
and GubXj

, and the

environmental covariance, i.e., the covariance between the envi-

ronmental effects of two traits that we have split into the effect of

the unobserved confounder, cuðYk; XkÞ ¼ jYjXVðUÞ, and other

environmental factors, ceðYk; XkÞ ¼ CovðeYk
; eXj

Þ. If the environ-

mental factors are trait specific, since U includes all common

confounding factors, ceðYk;XkÞ ¼ 0 and Equation A5 shows that

an estimand of the covariance between two traits unconfounded

by U is cg .

Assuming that the individuals for the two phenotypic traits

are drawn from the same population with LD matrix between

the genetic variants V ¼ GuG, the sampling distribution

of the genetic effects are N
1=2
Yk

ðbbYk
�bYk

Þ/d Nnð0;s2Yk
V�1Þ and

N
1=2
Xj

ðbbXj
� bXj

Þ/d Nnð0;s2Xj
V�1Þ, where ‘‘d’’ denotes convergence

in distribution. Under infinite sample sizes, bbYk
/
p
bYk

andbbXj
/
p
bXj

, where ‘‘p’’ denotes convergence in probability, and an

estimator of the genetic covariance between the two traits is

bcg�Yk;Xj

� ¼ bbu
Yk
VbbXj :

In the finite sample sizes case, the estimates of bYk
and bXj

are

noised and bcgðYk;XjÞ is biased86:

E
�bcg�Yk;Xj

�� ¼ bu
Yk
VbXj

þ
No

Pn
i¼1

V ii

NYk
NXj

cu
�
Yk;Xj

�
; (Equation A6)

where No is the sample size overlap between the two traits and n is

the number of genetic variants considered. However, even in the

scenario of complete overlap, the bias in Equation A6 is negligible

if the sample sizes of the two traits are large, as usually happens in

modern GWAS, and n is small compared to the sample sizes.

The same considerations can made for all phenotypic traits un-

der investigation to reconstruct their joint genetic covariance un-

confounded by U :

S ¼
	
SYY SYX

SXY SXX



¼
"
Bu

Y VðGÞBY Bu
Y VðGÞBX

Bu
X VðGÞBY Bu

X VðGÞBX

#
(Equation A7)

whereSYY ;SXX, andSXY are the genetic covarianceswithin the out-

comes, the exposures, and between them, and BY and BX are the

genetic effects on the outcomes and the exposures, respectively.
MrDAG model
Assuming that the individuals for two phenotypic traits Yk and Xj

are drawn from the same population with LD matrix V, we

have N
1=2
Yk

ðgubbYk
� gubYk

Þ/d Nð0;s2Yk
Þ and N

1=2
Xj

ðgubbXj
�

gubXj
Þ/d Nð0; s2Xj

Þ, where g are the selected IVs, gubbYk
and

gubbXj
are the kth and the jth genetically predicted values of the

outcome and exposure, i.e., bYk and bXk, respectively.

The joint distribution of all genetically predicted values of the

outcomes and exposures based on the IVs is

½gu bBYg
u bBX�u � Nqþpð½guBYg

uBX�u;SÞ;
i.e., for large sample sizes they are normally distributed with mean

½guBYguBX�u and covariancematrixS˛CD, the space of the sym-

metric positive definite covariance matrices Markov with respect

to the DAG D.

If we assume that IVW is performed on the estimated genetic ef-

fects and IVs are independent after pruning or clumping, i.e.,

V ¼ In, the MrDAG model becomes
The America
�
gu bB�

Yg
u bB�

X

�u � Nqþp

��
guB�

Yg
uB�

X

�u
;S��; (Equation A8)

where ½gu bB�
Yg

u bB�
X�

u ¼ ½gus�1
Y
bBYgus�1

Y
bBX�

u
with s2YIn ¼ q�1P

k˛KVðbbYk
Þ2 and similarly for ½guB�

Yg
uB�

X�u. The covariancema-

trix can be partitioned into

S� ¼
"
S�

YY S�
YX

S�
XY S�

XX

#
;

where S�
YY ;S

�
XX, and S�

XY are the genetic covariances within the

outcomes, the exposures, and between them and its inverse (Har-

ville,87 theorem 8.5.11) into

U� ¼ S��1 ¼
24 U�

YY �U�
YYS

�
YXS

��1

XX

�S��1

XX S�
XYU

�
YY S��1

XX þ S��1

XX S�
XYU

�
YYS

�
YXS

��1

XX

35;
(Equation A9)

with U� ˛PD, the space of the precision matrices Markov with

respect to the DAG D and U�
YY ¼ ðS�

YY � S�
YXS

��1

XXS�
XYÞ

�1
. How-

ever, since by partial ordering U�
YX ¼ U�

YYS
�
YXS

��1

XX ¼ 0, Equation

A9 becomes

U� ¼
"

U�
YY 0

�S��1

XX S�
XYU

�
YY S��1

XX

#
:

By using U�, Gaussian graphical models33 can be used to esti-

mate the conditional dependence relationships between the traits

in the original (individual-level) data unconfounded by U, since

genetically predicted outcomes and exposures depend only on

the selected IVs.

Finally, for a given DAG D, the estimand of the causal effect un-

der intervention88 is

qh;k ¼
h
S��1

faðhÞ;faðhÞS
�
faðhÞ;k

i
1
; (Equation A10)

where S�
faðhÞ;faðhÞ indicates the submatrix of S� whose rows and col-

umns are faðhÞ;S�
faðhÞ;k indicates the subvector ofS

� whose rows are

faðhÞ and the columns correspond to the kth outcome, and where

the subscript indicates the first element of the vector. By using

Equation A7 and since VðGÞ ¼ In, Equation A10 becomes

qh;k ¼
h�

B�u
XfaðhÞB

�
XfaðhÞ

��1

B�u
XfaðhÞb

�
Yk

i
1
;

where B�
XfaðhÞ are the IVW coefficients of the regressions of each

exposure in XfaðhÞ on G, and b�
Yk

is the IVW coefficient of a regres-

sion of Yk onG. The corresponding estimator coincides with Equa-

tion A4. As noted above, in contrast to general proposed solutions

in MVMR, by conditioning on a given DAG, the set of regressors

used in the estimator of the causal effect is with regard to the fam-

ily of the exposure under intervention.
MrDAG algorithm
Markov equivalent class, completed partial DAGs, essential graphs,

and partial DAGs

The estimation of a DAG from observational data suffers the

known problem of identifiability, i.e., it is not possible to estimate

uniquely the underlying true DAG, since its conditional indepen-

dencies can be encoded in several alternative DAGs. This set of

DAGs that hold the same conditional independencies is known

as Markov equivalent class (MEC), and the best that can be done

from observational data is to estimate this class. All DAGs with

the same conditional independencies can be represented by a

completed partial DAG (CPDAG)89 or essential graph (EG).35 EGs
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are chain graphs (CGs) whose chain components are decompos-

able undirected graphs.33 A CPDAG or EG is a partially directed

graph that might contain both directed and undirected edges

without directed cycles. Finally, Partially DAGs (PDAGs) contain

both directed and undirected edges, and directed cycles might be

present.

Posterior probability of edge inclusion

In the following, we refer to bY � ¼ gu bB�
Y and bX� ¼ gu bB�

X, the

genetically predicted values of the outcomes and exposures based

on the genetic variants selected as IVs, as the ‘‘data.’’ Note that

these quantities are not directly observable, but they are readily

available as the product of the IVW summary-level statistics and

the genotypes.

Technical details of the algorithm for graphical model explora-

tion that we used to develop the MrDAG algorithm are presented

in Castelletti et al.90 In brief, it is based on a MCMC algorithm

devised to explore the space of EGs whose enumeration is infea-

sible, since their number grows super-exponentially with the

number of nodes. The EG G is sampled from a proposal distribu-

tion described in He et al.91 Specifically, given EG G, six types of op-

erators in the proposal distribution are considered: (1) inserting an

undirected edge, (2) deleting an undirected edge, (3) inserting a

directed edge, (4) deleting a directed edge, (5) converting two adja-

cent undirected edges in a v structure, and (6) converting a v struc-

ture in two adjacent undirected edges. Each operator oG deter-

mines the transition of G into another EG G0 with the probability

of transition from G to G0 given by pG;G0 ¼ 1=jOGj, where OG is

the set of operators that are allowed in the current EG G. The pro-

posed EG G0 is accepted with a probability given by a Metropolis-

Hastings (M-H) ratio defined to guarantee the convergence of

the algorithm to the correct posterior distribution

a ¼ min

(
1;

mG0 ðdataÞpðG0ÞpG0 ;G
mGðdataÞpðGÞpG;G0

)
; (Equation A11)

where pðGÞ is the prior on G (Equation A12) and pG;G0 is the transi-

tion probability defined above. The key ingredient of the M-H ra-

tio is a closed-form expression for the marginal likelihood

mGðdataÞ. For its computation, along with some hyper-parameters

based on the data input (including the number of IVs), it requires

the sufficient statistic for S� which is function of bY � and bX�. Since
the IVs are chosen independently after pruning or clumping, the

sufficient statistic becomes a function only of the summary-level

data. We refer interested readers to Castelletti et al.90 for the deri-

vation of the marginal likelihood.

In the MrDAG algorithm, we added an acceptance/rejection

step to guarantee that in the proposed graph the partial ordering

that corresponds to the orientation of the edges from the expo-

sures to the outcomes is satisfied (see Figure 2E). Specifically, let

fDlðGÞ; l ¼ 1;.;LGg denote the set of distinct DAGs in the MEC

represented by G. The acceptance/rejection step checks that the

partial ordering is fulfilled in the set of distinct DAGs. To check

the efficiency of this step, we also monitor its acceptance rate.

We also included a tempering scheme92 by considering an anneal-

ing parameter T in the M-H ratio to facilitate the convergence of

the MCMC algorithm to the posterior distribution and the explo-

ration of regions of high posterior mass. The temperature 1= T ex-

ponentiates the M-H ratio, and its value increases linearly during

the burn-in until T ¼ 1 at the end of the burn-in.

Sparsity is enforced by assigning a prior to G and specifically on

GU, the skeleton of G, which contains the same edges of G but

without orientation:
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GU
ðlÞjpedgef�i:i:d:Ber�pedge

�
; l ¼ 1;.; ðqþ pÞðqþ p � 1Þ

.
2;

(Equation A12)

where GU
ðlÞ is the lth element of the vectorized lower triangular part

of the adjacency matrix of GU and ðqþpÞðqþp �1Þ=2 is the

maximum number of edges in an EG on qþ p nodes.

The posterior distribution of G is

PðGjdataÞ ¼ mGðdataÞPðGÞP
G˛SmGðdataÞPðGÞ ;

with S the set of all EGs with qþ p nodes.

The posterior probability of edge inclusion (PPEI) is defined as

Pz/vðdataÞ ¼
X

G˛Sz/v

PðGjdataÞ;

where Sz/v is the set of EGs with qþ p nodes containing the

directed edge z/v.

Let fGs; s ¼ 1;.; Sg the set of visited EGs by MrDAG. The poste-

rior probability of Gs can be approximated by

PðGsjdataÞz mGs ðdataÞPðGsÞPS
s¼1 mGs ðdataÞPðGsÞ (Equation A13)

and, similarly, the PPEI by

Pz/vðdataÞz
XS
s¼1

IG˛Sz/v ðGs ˛ Sz/vÞPðGsjdataÞ; (Equation A14)

where IG ˛Sz/vðGs ˛Sz/vÞ is the indicator function that is equal

to one if the visited EG belongs to the set of EGs with qþ p nodes

containing the directed edge z/v. Note that, although MrDAG

explores the space of EGs, the graphs obtained by thresholding

the PPEIs might give rise to a PDAG.90
Bayesian causal effects estimation
Here, we summarize the results reported in Castelletti and Con-

sonni88 that we employed to derive the Bayesian estimation of

the causal effects under unobserved confounders.

Let us rewrite Equation A8 as�
gu bB�

Yg
u bB�

X

�u��S�
D � Nqþp

��
guB�

Yg
uB�

X

�u
;S�

D

�
;

where S�
D ˛CD, the space of s.p.d. (symmetric positive definite)

covariance matrices Markov with respect to D. For ease of nota-

tion, in the following, we drop the subscript D.

Let U� ¼ S��1 ¼ L�D��1

L�u be the modified Cholesky decom-

position of the precision U�. The DAG Cholesky parameterization

of U� is given by the node-parameters u�
l ¼ ðD�

ll;L
�
faðlÞÞ; l ¼ 1;.;

qþ p, with

D�
ll ¼ S�

lljpaðlÞ;L
�
faðlÞ ¼ �S��1

paðlÞS
�
faðlÞ;

where S�
paðlÞ indicates the submatrix of S� whose rows and col-

umns are paðlÞ.
For a given DAGD,88 derive the posterior distribution of u�

l ;l ¼
1;.;qþ p, in an objective Bayes framework, which has the advan-

tage of not depending on subjective priors hyper-parameters. In

turn, the posterior draws of the Cholesky parameters u�
l provide

posterior draws from ðU�jdataÞ ¼ ðL�D��1

L�u
���dataÞ and, finally,

by using Equation S9 for a given DAG, posterior samples of the

causal effects between the exposures and the outcomes.

In contrast to frequentist approaches50,84 where, for an esti-

mated EG G by the PC algorithm53 (or any other score-based

method), the causal effects are calculated over all DAGs within
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the MEC G or, more efficiently, only ‘‘the unique possible’’ causal

effects within a given EG G are provided, in this study we also

consider the uncertainty related to the estimation of the EGs.

Averaging over the visited EGs, the (Bayesian-model-averaged)

causal effect under intervention in the hth exposures on the kth

outcomes is

qh;k
��data ¼

XS
s¼1

Eðqh;kðGsÞ��data;GsÞPðGsjdataÞ;h ˛ J; k˛K;

(Equation A15)

where Gs is an unique EGs visited during the MCMC,

Eðqh;kðGsÞ��data;GsÞ is the posterior expectation of the causal effect

given Gs;PðGsjdataÞ is defined in Equation A13. Note that

Eðqh;kðGsÞ��data;GsÞ is implicitly defined over the distinct DAGs in

the EG G. Specifically, let fDlðGÞ; l ¼ 1;.;LGg denote the set of

distinct DAGs in the MEC represented by G. Then,

Eðqh;kðGsÞ��data;GsÞ ¼ 1

LGs

XLGs
l¼1

Eðqh;kðDlðGsÞÞ��data;GsÞ;

where qh;kðDlðGsÞÞ��data;Gs are posterior draws obtained during the

MCMC. Finally, by a suitable modification of Equation A15, cred-

ible intervals of the causal effects between the exposures and out-

comes can be derived.
Detection of invalid IVs due to unmeasured pleiotropy
Detection of invalid IVs due to unmeasured pleiotropy in which

some genetic variants are directly associated with a single outcome

at a time and not via the exposures is performed by using the con-

ditional predictive ordinate (CPO).93 The CPO is also known as the

leave-one-out cross-validation predictive density,94 which is

defined for the MrDAG model as

CPOi ¼ mðdataijdata� iÞ
¼
Z
S

mGðdataiÞPðGjdata� iÞdG

¼ E�1
Gjdata

�
m�1

G ðdataiÞ
� ;

where mGðdataiÞ is the marginal likelihood evaluated at the ith IV

conditionally on the EG G and PðGjdata� iÞ is the posterior proba-

bility of the EG G conditionally on all remaining IVs, with S the set

of all EGs with qþ p nodes. The CPO is based on the idea that is

behind leave-one-out cross-validation: if the likelihood of

observing an IV, having observed all the remaining IVs, is ‘‘small,’’

then the IV is considered an outlier and therefore an invalid IV.

An estimate of the CPO is based on the visited EGs during the

MCMC. Specifically,

dCPOi ¼ 1

1

S

PS
s¼1

m�1
Gs ðdataiÞ

;

with fGs; s ¼ 1;.; Sg the set of EGs visited during the MCMC.

Thus, the Monte Carlo estimate of CPOi is obtained without actu-

ally omitting the ith IV from the estimation of the posterior distri-

bution of G and is provided by the harmonic mean of the marginal

likelihood across the visited graphical models.

Recommendations are available regarding the threshold for the

detection of outliers. Log-inverse-CPOs larger than 40 can be

considered as possible outliers and higher than 70 as extreme

values. Ntzoufras95,96 and Congdon95,96 recommend scaling

CPOs by dividing each one by its maximum recorded across the

MCMC sweeps and considering observations with scaled CPOs

under 0.01 to be outliers. If few CPOs are less than 0.01, the model
The America
is considered to fit adequately. For the detection of outliers, we

employ scaled CPO definition.
Simulation study
We share several aspects of the simulation study with Zuber et al.2

It is formulated in a two-sample summary-level MR design, where

N ¼ 100;000 independent individuals are simulated, of which

NY ¼ 50;000 are used to compute the genetic associations with

the exposures and NX ¼ 50;000 to compute the genetic associa-

tions with the outcomes. Thus, we assume that the quantitative

exposures Xj; j˛ J ¼ f1;.;pg, and the quantitative responses Yk;

k˛K ¼ f1;.; qg, are measured on the same individuals NX and

NY , respectively, with 100% sample overlap within the exposures

and 100% sample overlap within the outcomes, but the samples

are independent between the two groups, i.e., no sample overlap

between NX and NY .

In all simulated scenarios, we consider p ¼ 15 exposures,

q ¼ 5 outcomes, and n ¼ 100 independent genetic variants as

IVs. Genetic variants for the ith genetic variant and each indi-

vidual l are simulated independently according to a binomial

distribution with minor allele frequency (MAF) equal to 0.05,

i.e., gl;i
g�i:i:d:Binð2;0:05Þ;l˛L ¼ f1;.;Ng; i˛ I ¼ f1;.;ng. The re-

sulting matrix of genetic variants G is split into two equally

sized groups, GX and GY , of dimension NX3n and NY 3 n,

respectively. Thus, no IVW is needed in the simulation study

given that the same MAF at 5% is used to simulate the genetic

variants.

Overall, the data-generation process consists of two stages. In

the first stage, the raw data for the exposures X and the outcomes

Y are simulated. Then, in the second stage, summary-level statis-

tics are obtained as the linear regression coefficients bbX
i;j from a

univariable linear regression in which the jth exposure is re-

gressed on the ith genetic variant in sample 1 and the linear

regression coefficients bbY
i;k from a univariable linear regression

in which the kth outcome is regressed on the ith genetic variant

in sample 2.

In the following, we detail each stage and how we simulate the

quantities involved. We start with the first stage which is divided

into two steps.

(1) In the first step, the exposures are generated as follows:

xj ¼ GXbXj
þ jXuX þ eXj

; j˛ J; (Equation A16)

where GX and uX are the genetic variants of the n IVs and the

values of the confounder U measured on the same NX individuals,

respectively, and where bXj
and jX are the corresponding genetic

and confounding effects. eXj
� NNX

ð0;hXj
INX

Þ, with hXj
the jth di-

agonal element of the ðp 3 pÞ-dimensional matrix

HX ¼ 1 � vX
vX

�
GXBX þ jXuX1

u
p

�u�
GXBX þjXuX1

u
p

�
;

(Equation A17)

where vX is the desired level of heritability, or howmuch variation

G can explain of Xj, fixed at 10% for all exposures and in all simu-

lated scenarios. In Equation A17, BX ¼ fbXj
gj˛ J is an ðn 3

pÞ-dimensional matrix of the effects of the genetic variants on

the exposures.

The confounder U is drawn from a multi-variate standard

Gaussian distribution, i.e., u � NNð0; INÞ and then split into two

equally sized vectors uX anduY , with effect jX impacting all expo-

sures and jY effecting all outcomes.
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The effects bXj
of the n genetic variants on the jth exposure are

drawn following Castelletti et al.90 We randomly generate a topo-

logically ordered DAG among the p exposures with a probability of

edge inclusion p
edge
X ¼ 2=ðp �1Þ using the function random-

DAG() in the R package pcalg.50 Thus, the resulting DAG implies

the following system of equations34:

bXj
¼

X
h˛paðjÞ

gX
h;jbXh

þ eXj
(Equation A18)

with eXj
� Nð0; InÞ. For each j˛ J, the effect within the exposures

gX
h;j are uniformly chosen in the interval ½ � 1:1rX; � 0:9rX�W

½0:9rX; 1:1rX�. This construction procedure for bXj
corresponds to

the simulated scenario that we call ‘‘DAGX,’’ i.e., DAG within X,

which, in turn, is paired with two different simulated scenarios

for the effects bYk
described in the second step (first stage) of the

simulation study.

We also simulate the effects bXj
following Zuber et al.2 Specif-

ically, we simulate bXj
� Nnð0;RXÞ, whereRX is the ðp 3 pÞ-dimen-

sional Toeplitzmatrix with r
jj� j0 j
X for j;j0 ˛ J. ThematrixRX implies a

tridiagonal sparse inverse correlation matrix UX ¼ R�1
X . The

interpretation of non-zero elements of UX coincides with the ef-

fects simulated in Equation A18. We call this second scenario for

the effects of the genetic variants on the exposures ‘‘UndGX,’’

i.e., undirected graph within X.

In both simulated scenarios for X we use different levels of rX,

ranging from independence to a strong dependence, i.e., rX ¼
f0;0:2;0:4;0:6;0:8g, where rX ¼ 0:6 represents a medium depen-

dence between the genetic associations with the exposures. We

use this value in the figures presented in the ’’simulation study’’

section.

(2) In the second step (first stage) of the simulation study, the

outcomes are generated on another independent set of NY

individuals based on the following set of equations:

yk ¼ Xqk þ
X

h˛paðkÞ
gY
h;kyh þ jYuþ eYk

; k˛K; (Equation A19)

where X is the ðNX 3 pÞ-dimensional matrix of exposures simu-

lated using Equation A16, qk ¼ ðq1k;.; qpkÞu is p-dimensional

(sparse) vector the causal effects from the exposures to the kth

outcome and where jY is the effect of the confounder U on the

outcomes. eYk
� NNY

ð0;hYk
INY

Þ, with hYk
the kth diagonal element

of the ðq 3 qÞ-dimensional matrix

HY ¼ 1 � vY
vY

 
Xqk þ

X
h˛paðkÞg

Y
h;kyh þ jYuþ εYk

!u

 
Xqk þ

X
h˛paðkÞg

Y
h;kyh þ jYuþ εYk

! ;

where vY is the desired level of the proportion of variance ex-

plained, fixed at 25% for all outcomes and in all simulated

scenarios.

In Equation A19, the term
P

h˛paðkÞg
Y
h;kYh depends on a

randomly generated topologically ordered DAG among the q out-

comes with probability of edge inclusion p
edge
Y ¼ 1= ðq � 1Þ. For

each k˛K, the effects within the outcomes gY
h;k are uniformly

drawn in the interval ½0:9mY ; 1:1mY �. In analogy with the first

step, we call this scenario ‘‘DAGY ,’’ i.e., DAG within Y .

We also simulate a simplified scenario where

yk ¼ gY
h;kyh þ jYuþ eYk

; (Equation A20)
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i.e., a randomly selected outcome k is completed mediated by

another randomly selected response chosen between the remain-

ing ones. We call this scenario ‘‘MedY ,’’ i.e., complete mediation

of an outcome, since in the previous scenario ‘‘DAGY ’’ partial me-

diations97 are likely simulated, while here we exclude this case. In

this second simulated scenario for the outcomes, the matrixHY is

calculated according to Equation A20. Moreover, we use different

levels ofmY , ranging from small to a strong level of (partial or com-

plete) mediation, i.e., mY ¼ f0:25; 0:50; 0:75; 1; 1:5; 2g, where

mY ¼ 1 represents a medium (partial or complete) mediation ef-

fect. We use this value in the figures presented in the section

‘‘simulation study.’’

Finally, the causal effects qk are drawn independently from a

multi-variate Gaussian distribution, i.e., qk � Npð0; IpÞ.
In both simulated scenarios for Y, we consider a ðq 3

pÞ-dimensional sparse matrix of causal effects Q ¼ fqkgk˛K,

where 30 cells of the matrix are non-zero and where several ex-

posures are either shared or distinct for the outcomes. Specif-

ically, we select at random the same proportion of cells in the

matrix Q and assign them the simulated values, while the other

cells are set to zero.

After the first stage, four scenarios are created by combining the

simulations for X and Y : (1) ‘‘UndGX-MedY ; ’’ i.e., undirected

graph within X and complete mediation of an outcome in Y ;

(2) ‘‘DAGX-MedY ,’’ i.e., topologically ordered DAG within X

and complete mediation of a response within Y ; (3)

‘‘UndGX-DAGY ,’’ i.e., undirected graph within X and topologi-

cally ordered DAG within Y ; and (4) ‘‘DAGX-DAGY ,’’ topologi-

cally ordered DAGs within X and Y . In (2) and (4) the overall

DAGs, obtained by combining different simulation patterns for

X and Y , are fully oriented, while in (1) and (3) they are partially

oriented.

After creating the data at the individual level, in the second

stage, we compute the summary-level statistics from the two

independent groups of individuals. The input data for the simula-

tion study are the summary-level statistics bBX ¼ fbbX
i;jgi˛ I;j˛ J ,

an ðn 3 pÞ-dimensional matrix, and bBY ¼ fbbY
i;kgi˛ I;k˛K, an

ðn 3 qÞ-dimensional matrix, derived from a univariable linear

regression model, where each genetic variant Gi is regressed

against each exposure Xj and each outcome Yk, one at a time.
Real data application: Pre-processing and data

preparation
The first step of the data processing merges the summary-level

data (beta regression coefficients, their standard errors, and associ-

ated p values) of all exposures by their unique ‘‘rs’’ identifier and

aligns the effect direction of the genetic associations with each

exposure according to the same effect allele. As IVs, we select the

genetic variants that are associated with any of the exposures at

genome-wide significance (minimum p value <5 3 10�8 across

all exposures). Next, we merge the genetic variants selected as

IVs with the outcome data by their unique ‘‘rs’’ identifier and align

the effect direction of the genetic associations with each outcome

according to the same effect allele. Finally, we clump the genetic

variants to be independent at r2 < 0:01 using a European refer-

ence panel.30 This results in n ¼ 708 independent genetic

variants selected as IVs. See Table S1 for the description of the sum-

mary-level statistics, the data sources, and the number of non-

unique IVs that were genome-wide significant for each exposure,

along with the contribution (%) of each exposure on the selected

IVs.
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Finally, we perform reverse causation using the same traits with

mental health phenotypes as exposures and lifestyle and behav-

ioral traits as outcomes. We apply the same procedure described

above, resulting in 470 IVs for mental health phenotypes. See

Table S1 for details regarding the number of non-unique IVs that

were genome-wide significant for each exposure along with the

contribution (%) of each exposure on the selected IVs.
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