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Pre-trained molecular representations
enable antimicrobial discovery

Roberto Olayo-Alarcon 1,2 , Martin K. Amstalden3, Annamaria Zannoni 4,
Medina Bajramovic 1,2, Cynthia M. Sharma 4, Ana Rita Brochado 3,5,6,
Mina Rezaei1 & Christian L. Müller1,2,7

The rise in antimicrobial resistance poses a worldwide threat, reducing the
efficacy of common antibiotics. Determining the antimicrobial activity of new
chemical compounds through experimental methods remains time-
consuming and costly. While compound-centric deep learning models pro-
mise to accelerate this search and prioritization process, current strategies
require large amounts of custom training data. Here, we introduce a light-
weight computational strategy for antimicrobial discovery that builds onMolE
(Molecular representation through redundancy reduced Embedding), a self-
supervised deep learning framework that leverages unlabeled chemical
structures to learn task-independentmolecular representations. By combining
MolE representation learning with available, experimentally validated
compound-bacteria activity data, we design a general predictive model that
enables assessing compounds with respect to their antimicrobial potential.
Our model correctly identifies recent growth-inhibitory compounds that are
structurally distinct from current antibiotics. Using this approach, we discover
de novo, and experimentally confirm, three human-targeted drugs as growth
inhibitors of Staphylococcus aureus. This framework offers a viable, cost-
effective strategy to accelerate antibiotic discovery.

Thedevelopment of novel antibiotics is a priority given thewidespread
dissemination of pathogenic strains resistant to current treatments1.
Novel therapeutic candidates are often first identified by screening
large chemical libraries. However, the success of these screenings is
limited, with a typical hit rate between 1 and 3%2,3. This issue is com-
pounded by the high cost of the experiments owing to the large size of
the chemical libraries being evaluated (from thousands to millions of
molecules). Furthermore, the limited variability in these libraries
makes it challenging to validate newly discovered or synthesized
chemical species2,4. In this context, deep learning-assisted strategies

hold the promise to greatly contribute to the prioritization of mole-
cules that should be experimentally evaluated, thus accelerating the
rate at which novel drug candidates are found5.

Using computational methods to estimate and predict properties
ofmolecules, traditionally referred to as quantitative structure-activity
relationships modeling, has a long history in material sciences, mole-
cular biology, and biochemistry6,7. The success of these modeling
approaches hinges on an appropriate representation of themolecules,
i.e., chemical descriptors such as the Extended Connectivity Finger-
print (ECFP)8, and the availability of sufficiently large training data to
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map structure and activity. In recent years, the field of computational
molecular property prediction has seen major breakthroughs, largely
owing to advances in graph neural networks (GNNs)9–12. These graph-
based methods adopt an end-to-end supervised learning framework
where predictive models infer a task-specific latent representation
from large-scale training data. Important application benchmarks
include the Tox21 data13, where twelve toxic effects of 12,000 envir-
onmental chemicals and drugs were measured and provided as pre-
diction challenges, and the MoleculeNet collection14 which comprises
prediction tasks for 16 datasets spanning different application
domains. In the context of antimicrobial discovery, a major focus has
been the prediction of antimicrobial peptides (AMPs) using curated
databases such as CAMPR3 (see

15 and references therein). Despite the
success of sophisticated deep-learning architectures for AMP
prediction16–19, their task specificity limits the transferability of the
learned representation to novel tasks and molecule types. Likewise,
the application of Directed Message Passing Neural Networks (D-
MPNNs)12 for general antimicrobial discovery2,20–22 required the crea-
tion of a custom training set via in-house compound screening. A large
number of compounds (ranging from 2000 to 39,000 molecules)
were tested for growth-inhibitory activity against each microbial

species of interest, requiring considerable lab expertise and resources.
Despite recent advances in lab automation and analysis23, a publicly
available large-scale data resource for generic antimicrobial discovery
is not yet available, thus hindering the straightforward use of end- to-
end learning schemes.

In this contribution, we tackle the challenge of antimicrobial dis-
covery by introducing a two-stage deep-learning strategy that enables
the assessment of the antibacterial potential of any compound of
interest (Fig. 1). The first stage uses a self-supervised pre-training
strategy, termedMolE (Molecular representation through redundancy
reduced Embeddings), for molecule representation (Fig. 1a). In the
second stage we learn a set of antimicrobial potential (AP) scores for
molecule prioritization that leverages the MolE representation and
publicly available measurements of growth-inhibiting effects of FDA-
approved drugs, including human-targeted and anti-infective drugs,
against a diverse set of bacterial species24 (Fig. 1b, c).

Inspired by recent molecular self-supervised learning
schemes25–28, MolE leverages the large collection of available unlabeled
chemical structures from PubChem29 to learn a general-purpose
molecular representation that is transferable to downstream predic-
tion tasks.
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Fig. 1 | Two-stage framework for antimicrobial discovery. a The MolE pre-
training framework uses a collection of 100,000 unlabeled structures from Pub-
Chem to learn a task-independent, molecular representation. Each structure is
represented as a molecular graph, from which two augmentations are created (YA

and YB) bymasking a randomly seeded subgraph. Each augmentation is encoded by
a GIN backbone to produce a concatenated vector representation (rA, rB) which is
then expanded into embedding vectors (zA, zB) using an MLP head. The cross cor-
relation between the two embedding vectors is optimized to be as similar as pos-
sible the target identitymatrix using theBarlow-Twins objective function.After pre-

training, any molecular structure can be encoded into a fixed-length vector
representation r, which captures relevant chemical information. b Publicly avail-
able measurements of growth inhibition against 40 microbial strains24 are used to
train a predictive model. c The pre-trained molecular representation is combined
with the compound-microbe activity measurements to train a machine-learning
model that produces a probability for each compound-microbe combination,
indicating how likely the compound is to inhibit the microbe’s growth. These
probabilities are used to estimate a collection of Antimicrobial Potential scores that
serve to prioritize compounds for experimental validation.
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MolE uses Graph Isomorphism Networks (GINs) for representa-
tion learning and introduces the non-contrastive Barlow-Twins pre-
training framework30 to the molecular domain. Combined with
supervised learning schemes, MolE enables competitive predictive
performance on a series of curated molecular property prediction
tasks from MoleculeNet.

For the purpose of antimicrobial discovery, we show that MolE-
derived AP scores not only reflect the broad- and narrow-spectrum
activity of structurally diverse compounds, such as Halicin2 and
Abaucin31, but can also serveas compoundprioritizationguide in large-
scale chemical screens. On a separate chemical library of over 2000
compounds, we identified approximately 200 compounds with high
AP scores and potential broad-spectrum activity. We observed sig-
nificant associations between MolE-derived AP scores and experi-
mentally measured minimum-inhibitory concentration (MICs) for a
large set of the discovered non-antibiotic compounds. Among the set
of predicted high-AP molecules with no known antimicrobial activity,
we used our framework to prioritize six compounds for experimental
growth-assay validation on four bacterial species. We confirmed sig-
nificant inhibitory effects of three of the six compounds on the growth
of the human pathogen Staphylococcus aureus, reaching an notable
success rate compared to the state of the art3.

Weenvision that the presentedworkflowandmethodologies such
as ours will be adopted by a wide range of microbiologists as a general
and cost-effective way to prioritize and discover novel molecules with
antibiotic properties.

Results
MolE learns meaningful compound representations
An important prerequisite for discovering compoundswith potentially
antimicrobial properties is the use of a general, yet efficiently tunable,
representation of molecular structures. To provide such a context-
independent representation we developed the MolE (Molecular
representation through redundancy reduced Embedding) framework
(Fig. 1a). MolE is a non-contrastive self-supervised deep learning
scheme that constructs a representation of molecular structures by
applying the Barlow-Twins redundancy reduction scheme30. We chose
the Barlow-Twins framework because of its superior transfer learning
capabilities and insensitivity to hyper-parameter choices when com-
pared to its contrastive counterparts30. The input into our pre-training
framework is based on SMILES (simplified molecular-input line-input
system32), a popular text-based representation of chemical structures.
The workflow, illustrated in Fig. 1a, comprises five main steps: (i) the
SMILES representation of molecules is used to construct a molecular
graph, where each node represents an individual atomand each edge a
chemical bond in the molecule; (ii) two augmentations are created for
each molecule by masking a subgraph of the original structure; (iii)
batches of these augmentations enter a series of Graph Isomorphism
Network (GIN) layers for feature extraction; (iv) the pooled output of
each GIN layer is collected to form a final vector representation
r 2 R1000; (v) a non-linear projection head expands each of the two
vector representations into an embedding of higher dimensionality
z 2 RD, serving as input to the Barlow-Twins objective function LBT

(Methods). After pre-training, the static MolE representation r can
readily serve as input for downstream machine learning applications
(such as Fig. 1b). Alternatively, concatenating the MolE architecture
with an additional predictive layer allows fine-tuning of the pre-trained
GIN layer parameters, thus making the representation adaptive to a
specific downstream task.

To investigate MolE’s pre-trained representation, we first exam-
ined similarities between the representations of 100,000 test mole-
cules not seen during pre-training. Figure 2a shows a UMAP33

embedding of these molecules using the MolE representation. We
observe that MolE learned similar representations for molecules with
matching functional groups and/or related topological features. For

instance, compounds consisting of a naphthalene group connected to
a long carbon chain are placed closely in the embedding space (Fig. 2a
top middle). Other examples include Pyridines bound to central
nitrogen heterocycles (Fig. 2a top right), Benzenes surrounded by
ether bonds (Fig. 2a lower right), and Nitrogen heterocycles with var-
ious decorations (Fig. 2a lower left). Notably, MolE’s representation
also recognizes the similarities in the structure of short amino-acid
chains (Fig. 2a top left). Indeed, these peptides belong to a distinct
cluster of molecules in the embedding space, indicating that MolE can
distinguish this molecule type without any further fine-tuning. This
offers an advantage over AMP-specific models by capturing broader
chemical variability.

Compared to the standard ECFP4 representation (see Supple-
mentary Fig. 1 for a corresponding UMAP embedding), MolE’s repre-
sentation captures distinct features for the same molecules. For
illustration, we chose Ractopamine (PubChem ID: 56052, Fig. 2c) as a
hypothetical query molecule. We extracted its corresponding MolE
and ECFP4 representations and calculated similarities to all other test
set molecules (shown in Fig. 2a) with the cosine and Jaccard (also
known as Tanimoto) distances, respectively (Methods).

Figure 2b shows the high-level agreement between the two
representations in terms of pair-wise distances to the query molecule
(Spearman correlation: 0.42). However, discrepancies arise in the
context of relevant nearest neighbors of the query, i.e., the most
similar molecules to Ractopamine. Figure 2c ranks the top four most
similar molecules in either representation. MolE’s most highly ranked
molecules share two phenol groups connected by a carbon chain with
one amine functional group with the query, ECFP4 only one phenol
ring and a carbon chainwith amethyl functional group. This illustrates
MolE’s chemically meaningful embedding capabilities. Further exam-
ples are listed in Supplementary Fig. 2, where MolE was able to high-
light global structural features such as a naphthalene group connected
to a long carbon chain (Supplementary Fig. 2b), aswell as the presence
of specific functional groups such as sulfonyl chloride (Supplemen-
tary Fig. 2c).

Taken together, these observations show that MolE captures
chemically relevant information from unlabeled molecular structures.
It recognizes the presence of functional groups and learns similar
representations formolecules that share structural characteristics. The
similarities recovered by MolE are distinct from those uncovered by
ECFP4, potentially boosting the performance in downstream predic-
tion tasks.

MolE enables competitive molecular property prediction
To showcaseMolE’s ability to achieve competitivemolecular property
prediction, we evaluated the out-of-sample performance of XGBoost34

and Random Forests35 when trained with MolE’s static representation
as well as feed-forward neural networks that fine-tuneMolE’s GIN layer
weights. We considered selected classification and regression tasks
from MoleculeNet14 that are relevant for our context of compound
prioritization in antimicrobial discovery, such as, e.g., the Tox21 and
ClinTox benchmarks. Each dataset was split into training, validation,
and testing sets following the scaffold splitting procedure36, thereby
creating a realistic scenario where molecules seen during training are
structurally distinct frommolecules seenduring validation and testing.
Performance is measured in terms of Area Under the Receiver Oper-
ating Characteristic curve (ROC-AUC) values obtained on the test set
for each task.

We observed that MolE’s static representation (MolEstatic) com-
bined with XGBoost outperformed alternative approaches in the
majority of the classification and regression tasks (Table 1 and Sup-
plementary Table 1, respectively). MolEstatic enabled the best metric in
four out of six classification tasks, with an average performance
increase of 3% (in terms of average ROC-AUC) compared to the
ECFP4 representation. Notably, XGBoost with MolE outperformed
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the end-to-end learning scheme D-MPNN in four classification tasks
and two regression tasks. The added benefit of using the MolEstatic
representation was not limited to XGBoost as we observed similar
performance gains with Random Forest predictors (Supplementary
Tables 2 and 3). In general, fine-tuned MolE-based predictions
(MolEfinetune) displayed similar performance to their static counter-
parts. On the ClinTox classification benchmark, however, MolEfinetune
achieved an average ROC-AUC of 92.85%, considerably outperforming
all other approaches and even rivaling fine-tuned classifiers on large-
scale ChemBERTa (90.6%) or MoLFormer (94.8%) representation
models25,26. This confirms that the computationally light-weight MolE
framework can learn meaningful molecular representations with only
~ 100,000 unlabeled structures from PubChem (Supplementary
Fig. 2d), contrasting the large-scale pre-training schemesChemBERTa25

or MoLFormer26, requiring millions of examples. To identify the con-
tributing factors of this performance improvement, we conducted an
ablation studyof allMolE components, including theuseof theBarlow-
Twins objective function, pretraining sample sizes, and representation
dimensions (Methods and Supplementary Fig. 3). Finally, the bench-
marks and the ablation study also revealed MolE’s pre-training archi-
tecture, in combination with the non-contrastive Barlow-Twins
strategy, to be superior to the state-of-the-art contrastive MolCLR
framework (Table 1 and Supplementary Fig. 3e).

Taken together, the benchmarking results indicate that (i) MolE
produces a molecular representation that enables excellent down-
stream prediction performance even when pre-trained on a small
dataset of 100,000 unlabeled structures (Supplementary Fig. 3d) and
(ii) MolE is particularly competitive for downstream tasks with a small
number of labeled data (such as ClinTox and BACE).

MolE enables generalizable predictions of antimicrobial com-
pound activity against human gut microbes
The second stage of our framework (see Fig. 1b, c) leveraged MolE’s
representation capabilities to learn a set of antimicrobial potential
scores that allow ranking and prioritization of compounds in the
antimicrobial discovery process. To this end, we made use of
the publicly available dataset created byMaier et al.24, which evaluated
the effect of 1197marketed drugs on the growth of 40 bacterial strains
representative of the humangutmicrobiome (Fig. 1b). This datasetwas
used to train an XGBoost model to learn the probability of growth
inhibition for all available compound-microbe pairs (Fig. 3a, b). For any
compound of interest, the trained model, termed MolE-XGBoost,
delivers a 40-dimensional vector of predictive probabilities (Fig. 3b).
Data-driven thresholding of these probabilities allows for (i) binary
classification of a compound to be growth-inhibitory of a specific
species or (ii) assessment of narrow- or broad-spectrum activity of the
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Fig. 2 | Illustration of MolE’s compound representation. a UMAP embedding of
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compound by inspecting the overall number of inhibited strains,
respectively (Fig. 3c, Eq. (11)).

MolE-XGBoost strongly outperformed ECFP4-based models and
a recently proposed predictive model4 that uses a collection of
explicit chemical descriptors in terms of Precision and Recall
(Fig. 3d). Furthermore, MolE-XGBoost accurately predicted the
broad-spectrum activity of the human-targeted drug Diacerein,
which was a part of the test set in our experiment (Fig. 3e). Themodel
correctly predicted an effect on 25 of the 33 strains that showed
inhibited growth in lab experiments (Fig. 3e bottom row). Noteably,
the ECFP4-XGBoost model failed to recover any antimicrobial activ-
ity for the same drug. Similar examples are highlighted in Supple-
mentary Fig. 4.

We next confirmed the generality of MolE-XGBoost by recapi-
tulating the findings from recent ground-breaking studies that
identified structurally novel antibiotic candidates2,31. Firstly, our
MolE-XGBoost model was able to re-discover the broad-spectrum
activity of Halicin2 (Fig. 3f, bottom row) and correctly predicted the
experimentally validated inhibition of Escherichia coli and Clos-
tridium difficile.

Secondly, in the case of Abaucin31, the model recovered its highly
narrow-spectrum activity, predicting only the (yet to be tested) inhi-
bition of Eubacterium rectale (Fig. 3f bottom row).

To further highlight the superior performance of MolE-based
predictions, we focused on the 24 compounds in the test set that had
experimentally determinedbroad-spectrumantimicrobial activity (i.e.,
inhibiting the growth of ten or more strains24). Figure 3g reports the
true number of species affected by each compound (last row) vs.
Chemical Descriptor-based, ECFP4-based, and MolE-based predic-
tions, respectively (top three rows). On average, MolE-XGBoost
achieved the highest accuracy in recovering the measured anti-
microbial activity of compounds independent of the intended target of
the compound. The ECFP4-based model failed to recall the activity of
most human-targeting drugs, while the Chemical Descriptor-based
model generally overestimated activities, leading to many false posi-
tive predictions (Fig. 3g and Supplementary Fig. 5a). MolE-XGBoost
recovered five compounds with broad-spectrum activity, not recog-
nized by the ECFP4-based model.

Predicting antimicrobial potential scores in an orthogonal che-
mical library
Next, we used MolE-XGBoost’s predictions to identify de novo bac-
terial growth inhibitors in an orthogonal chemical library of 2,320 FDA-
approved drugs, food homology products, and human endogenous
metabolites from MedChemExpress (MCE). This new discovery MCE
library contained compounds not seen during model training and
covered a broader chemical space (see Supplementary Fig. 6 for a joint
UMAP embedding of the discovery library and the previous
training data).

We used the model’s predictive probabilities for each of the 40
bacterial strains to design four variants of Antimicrobial Potential (AP)
scores that allow the ranking of individual compounds:

(i) The total number of strains predicted to be inhibited K (Fig. 3c,
Eq. (10)),

(ii) The log2-geometric mean of estimated probabilities across all
40 strains G (Fig. 3b, Eq. (12)),

(iii) The log2-geometric mean of the probabilities of all 22 gram-
positive strains G+ (Eq. (13)),

(iv) The log2-geometric mean of the probabilities of all 18 gram-
negative strains G− (Eq. (14)).

Following theoperational definition in24, we consider a compound
to be a potential broad- spectrum inhibitor of microbial growth if it is
predicted to inhibit the growth of ten or more strains (K≥10). Here, we
prioritize compounds according to this broad-spectrumdefinition and
use the Gram-based AP scores G+ and G− to assess compound target
specificity. We remark that our antimicrobial potential scores are
expected to encompass a broad range of effects, ranging fromgrowth-
delaying or -limiting effects all the way to complete inhibition.

Figure 4 a illustrates the diversity of the library’s 2320 compounds
in a MolE-based UMAP embedding, highlighting the 235 predicted
broad-spectrum inhibitor compounds. Among these, 158 compounds
were non-antibiotics. Our extensive post-hoc literature review
revealed that, out of these 158 compounds, 53 had previously been
reported to inhibit the growth of various bacterial species (Fig. 4b).
Examples include structurally diverse compounds such as natural
products Ellagic acid37 and Shionone38, as well as human-targeted

Table 1 | Average ROC-AUC (%) and standard deviation obtained on classification benchmark tasks

Performance on Classification Tasks

(Higher is better)

Dataset BBBP Tox21 ClinTox BACE SIDER HIV

# Molecules 2039 7831 1478 1513 1427 41127

# Tasks 1 12 2 1 27 1

GCN27 71.8 ± 0.9 70.9 ± 2.6 62.5 ± 2.8 71.6 ± 2.0 53.6 ± 3.2 74.0 ± 3.0

GIN27 65.8 ± 4.5 74.0 ± 0.8 58.0 ± 4.4 70.1 ± 5.4 57.3 ± 1.6 75.3 ± 1.9

SchNet27 84.8 ± 2.2 77.2 ± 2.3 71.5 ± 3.7 76.6 ± 1.1 53.9 ± 3.7 70.2 ± 3.4

MGCN27 85.0 ± 6.4 70.7 ± 1.6 63.4 ± 4.2 73.4 ± 3.0 55.2 ± 1.8 73.8 ± 1.6

D-MPNN27 71.2 ± 3.8 68.9 ± 1.3 90.5 ± 5.3 85.3 ± 5.3 63.2 ± 2.3 75.0 ± 2.1

ECFP4 68.51 ± 1.01 70.23 ± 0.76 84.52 ± 0.00 84.33 ± 1.12 62.58 ± 1.89 75.77 ± 1.6

N-Gram 74.00 ± 0.00 73.51 ± 0.54 89.68 ± 1.27 81.97 ± 0.00 63.68 ± 1.59 78.89 ± 0.48

MolCLRstatic 65.74 ± 0.68 72.05 ± 1.34 76.04 ± 3.05 68.78 ± 0.00 62.68 ± 2.40 74.29 ± 0.00

MolEstatic 75.98 ± 0.32 76.15 ± 0.61 84.90 ± 0.00 83.84 ± 0.86 64.48 ± 2.65 78.52 ± 0.00

Hu et al.27 70.8 ± 1.5 78.7 ± 0.4 78.9 ± 2.4 85.9 ± 0.7 62.7 ± 0.8 80.20 ± 0.9

HiMol54 73.2 ± 0.80 76.2 ± 0.30 80.8 ± 1.4 84.6 ± 0.20 62.5 ± 0.30 74.71 ± 0.23

MolCLRfinetune 73.17 ± 2.13 74.61 ± 1.67 87.79 ± 5.31 81.96 ± 1.11 63.23 ± 3.05 77.61 ± 0.92

MolEfinetune 75.34 ± 0.93 75.21 ± 1.77 92.85 ± 2.46 83.21 ± 1.84 64.98 ± 4.42 78.98 ± 0.57

The first 5 models are supervised learningmethods. The next 4 are the names of molecular features given as input to an XGBoost classifier. The final four methods are fine-tuned models. The best
performance metric for each category is marked in bold.
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drugs such as Doxifluridine39,40 (Fig. 4a). This putative 33% hit rate
considerably improves the 1–3% rate commonly cited for large-scale
chemical screens3.

We further assessed the validity of our proposed AP scores by
testing their ranking capabilities on the93known antibioticspresent in
the chemical library. Figure 4c shows the distribution of general AP
score G vs. the predicted number of inhibited strains K for all com-
pounds. We observed strong ranking capability, with an enrichment of

antibiotic compounds at large AP scores (Fig. 4c). Furthermore, 77 of
the 93 antibiotics were predicted to inhibit 10 or more strains (Fig. 4c,
dashed line), confirming that both scoring schemes generalize well to
unseen antibiotic compounds.

Finally, we assessed the discriminative potential of the refined AP
scores for Gram-positive and Gram-negative strains by simultaneously
ranking the 158 non-antibiotic compounds previously predicted to be
broad-spectrum (Fig. 4d). In line with current knowledge about the
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susceptibility of Gram-positive bacteria to chemical stressors24,41,42, we
confirmed that most compounds exhibited greater AP scores against
Gram-positive strains compared to Gram-negative strains (Fig. 4d,
above the dashed line).However,we observed that nucleotide analogs,
such as Uridine and Uridine derivatives, were predicted to be more
active against Gram-negative strains (Fig. 4d, below the dashed line),
confirming recent evidence that Uridine molecules are powerful
adjuvants for the activity of aminoglycosides against Escherichia coli43.

For completeness, we performed the same analysis using AP
scores derived from the ECFP4-XGBoostmodel. Briefly, AP scores from
the ECFP4-XGBoost model deemed (i) fewer compounds to have
broad-spectrum activity (Supplementary Fig. 7), (ii) fewer known
antibiotics to be inhibitory (Supplementary Fig. 8a), and (iii) only 82
non-antibiotic compounds to have broad-spectrum activity (vs. 158
from MolE-XGBoost AP scores). Of these, a lower proportion were

found to have growth-inhibiting activity against microbial life in the
literature (Supplementary Fig. 8c). MolE-XGBoost AP scores recovered
more non-antibiotic compounds with confirmed activity, 58 of which
were not prioritized by ECFP4-XGBoost AP scores. ECFP4-XGBoost
prioritized 13 compounds that are not present in the MolE-XGBoost-
derived set (Supplementary Fig. 8d).

Antimicrobial Potential scores correlate with experimentally
determined minimum inhibitory concentrations
We next investigated the relationship between MolE-XGBoost AP
scores G, G+, and G− and quantitative experimental data of bacterial
growth inhibition. To this end, we performed an extensive literature
search and collected all available data on in vitro measured minimum
inhibitory concentrations (MICs) among the 158 non-antibiotic com-
pounds predicted to have broad-spectrum activity. We identified 31
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in (b).
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compounds with an experimentally determined MIC ≤128 μg/mL
against awide variety of Gram-positive andGram-negative species (see
Supplementary Table 10). Figure 5a shows the relationship between
MolE-XGBoost AP score G and the experimentally measured MICs for
both Gram-positive (marked in blue) and Gram-negative (marked in
yellow) species. We observe a significant negative correlation (Spear-
man’s ρ = −0.5), indicating that compoundswith a high AP score have a
more potent growth-inhibiting activity (i.e., a lower MIC). Figure 5b
reports compounds with the top and bottom threeMIC values and the
corresponding inhibited species, together with MolE-XGBoost’ AP
scores G. Similar relationships hold when analyzing the Gram-specific
AP scores G+, and G− vs. MICs for the set of Gram-positive (Spearman’s
ρ = −0.41) and Gram-negative bacteria (Spearman’s ρ = −0.43),
respectively (see Supplementary Fig. 9a, b).

Notably, the experimentally determined MIC values were repor-
ted for several bacterial species that were not present in our training
set, including Streptococcus pneumoniae, Staphylococcus aureus, and
Klebsiella. This further confirms the ability of MolE-XGBoost AP scores
to generalize to unseen compound-species pairs (Fig. 5 b).

Strikingly, when performing the same analysis for the model
trained with ECFP4, we found no significant relationship between
ECFP4-XGBoost AP scores and corresponding MICs (Supplementary
Fig. 9c). Generally, we also found fewer compounds with a reported
MIC ≤128μg/mL when using the ECFP4-derived set of high-AP com-
pounds (Supplementary Fig. 9d), including fewer non-antibiotic com-
pounds active against Gram-negative and Gram-positive species
(Supplementary Fig. 9e).

Taken together, the associations found between MolE-XGBoost
predictions and external experimental data provide further evidence
that our framework can identify and rank potent antibacterial
compounds.

Experimental validation of predicted antibacterial compounds
Guided by MolE-XGBoost AP scores on the discovery MCE library, we
next selected six compounds to be experimentally validated via a MIC

assay: Cetrorelix, Ebastine, Elvitegravir, Opicapone, Thymidine, and
Visomitin. The selected compounds (i) were predicted to be broad-
spectrum (K≥10), (ii) had AP scores of G+ > −10 and G− > −10, (iii)
covered a variety of functions and chemical structures (Fig. 4d), and
(iv) were commercially available. Importantly, the chosen compounds
were all structurally distinct from the antibiotics in our training set
(Tanimoto similarity ≤0.3). Furthermore, Cetrorelix, Elvitegravir, Opi-
capone, and Visomitin shared low molecular similarity to all com-
pounds seen during model training (Supplementary Fig. 10). With the
exception of Visomitin, none of the chosen compounds had not been
previously reported to inhibit the growth of bacterial or fungal strains.
As a positive control, we included Visomitin as a non-antibiotic drug
with proven antimicrobial activity44.

We screened these compounds against a panel of bacterial strains
that were selected to cover Gram-negative and Gram-positive patho-
gens, most part of the ESKAPE group45. These included the Gram-
negatives Escherichia coli UTI, Klebsiella pneumoniae, Pseudomonas
aeruginosa, and the Gram-positive Staphylococcus aureus, all of which
were not present in the training dataset24. We also included one shared
commensal strain, namely E. coli IAI1 as a representative of the human
gut microbiome. The Gram-negative pathogens were taxonomically
related to microbes from the Proteobacteria phylum in the training
data, whereas S. aureus belonged to the Firmicutes phylum (Supple-
mentary Fig. 11).

Overall, three of the six tested compounds were confirmed to
have measurable effects on the growth of the Gram-positive pathogen
S. aureus. The strongest effect was observed for Elvitegravir, which
inhibited the growth of S. aureus at a concentration of 8μg/mL
(Fig. 6a). Furthermore, Opicapone significantly limited the growth of S.
aureus to a maximum optical density of 0.38 ±0.01 at a concentration
of 128μg/mL (Fig. 6b). At a lower concentration of 16 μg/mL, it
extended both, the duration of the lag phase, and the population
doubling time by about 1 h compared to growth observed with DMSO
exposure (Supplementary Fig. 12b, c). Finally, Ebastine extended the
duration of the lag phase of S. aureus by approximately 2 hours (Fig. 6c
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and Supplementary Fig. 13c). Notably, our experiments re-discovered
the broad-spectrum activity of Visomitin, showing that it can inhibit
the growth of P. aeruginosa and K. pneumoniae at 64μg/mL, thereby
expanding the list of species known to be susceptible to this
compound44.

While we did not observe growth inhibition in response to
Cetrorelix and Thymidine, their predicted Antimicrobial Potential can
be explained by the presence of similar molecules that affect the
growth of bacteria in the training set such as, e.g., Azidothymidine.
This medication is a chemical analog of Thymidine and was previously
shown to inhibit the growth of twelve strains (nine Gram-negative and
three Gram-positive)24. As a result, Thymidine was predicted to be
particularly effective against Gram-negative strains by our model
(Fig. 4d). For comparison,we also included thepredicted antimicrobial
effects of ECFP4- and Chemical Descriptor-based models for the five
compounds in Supplementary Fig. 14.

In summary, the experimental validation demonstrated a notable
discovery rate of our proposed MolE-based workflow, given the small
number of compounds screened. The compounds found to affect the
growth of S. aureus were structurally distinct from antibiotics present
in the training data, a key feature desired for novel antimicrobials.
While Opicapone and Ebastine did not completely inhibit S.aureus,
they did exhibit measurable limits and delays on the standard growth
dynamics. Themolecular structure of these compounds can serve as a

starting point to explore chemical modifications that increase their
potency1. Finally, the varied effects on bacterial growth observed for
each compound suggest different mechanisms of action that can be
further investigated in future studies.

Discussion
In this contribution, we have presented (i) a computationally light-
weight, predictive end-to-end workflow to identify novel anti-
microbial candidates and (ii) experimentally confirmed growth-
inhibitory effects of several compounds at a notable hit rate. Our
framework specifically addresses the pervasive scarcity of biological
and chemical data in the antimicrobial discovery process by lever-
aging the vast amounts of unlabeled chemical structures to learn a
novel molecular representation within the MolE framework (Fig. 1a).
This pre-trained representation captures relevant chemical and
structural features (Fig. 2) and improves the performance of down-
stream machine learning algorithms when predicting molecular
properties when few labeled examples are available (Table 1 and
Supplementary Table 1). The ability to obtain competitive perfor-
mance fromMolE’s representation enablesmicrobiology researchers
with variable access to high-performance computing resources to
make meaningful predictions of their property of interest, thus
helping to democratize research molecular property prediction in
microbiology, and beyond.
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We have shown that by using MolE’s pre-trained representation,
standard XGBoost prediction models enable concise assessment of
the antimicrobial potential of chemical compounds on publicly
available data (Fig. 3). Our MolE-XGBoost model re-discovered de
novo structurally distinct antibiotic candidates such as Halicin and
recognized the broad-spectrum activity of other compounds that
would have been missed by standard models. By designing and
validating a set of model-derived antimicrobial potential (AP) scores,
we have been able to provide a reliable ranking of the growth-
inhibiting potential of any compound of interest, not only for specific
microbial strains but also for the class of Gram-positive or Gram-
negative bacteria, and for bacteria in general (Figs. 4, 5, 6). This
allows a much broader applicability of our framework in the anti-
biotics discovery process.

While large-scale (blind) experimental screening of chemical
libraries will remain a common technique for drug discovery, it is
unlikely to keep pace with the continuous introduction of novel
chemical species. Therefore, methodologies such as ours are a
practical alternative to prioritize molecules for screening. We have
demonstrated these potential efficiency gains with the experimental
validation of our model predictions, where three out of six com-
pounds were found to have significant effects on the growth of S.
aureus (Fig. 6). These effects ranged from total growth inhibition
(Elvitegravir) to delays in the onset of exponential growth, slower
growth rates, and limited maximum growth (Opicapone and Ebas-
tine, respectively). Importantly, these compounds were structurally
distinct from compounds in the training set, particularly antibiotics,
further confirming our framework’s ability to uncover structurally
novel growth-inhibiting compounds. Screening additional strains,
particularly more Gram-positive strains, could further uncover the
growth-inhibitory activity of a greater number of predicted broad-
spectrum antimicrobials24. While the compounds evaluated in this
study require further research to be re-purposed into new antibiotic
treatments, they are interesting study subjects when considering the
effect of human-targeted drugs on microbial life. This is especially
relevant, given the growing body of research showing that non-
antibiotic drugs contribute to the appearance of bacterial strains
resistant to current antibiotics46–49. Future work can investigate the
molecular mechanisms of action of these compounds, leading to a
better understanding of the effect non-antibiotic drugs have on
microbial growth.

We consider our proposed framework as a first important step
toward the more general goal of computationally-guided anti-
microbial discovery in the face of data scarcity. We envision that
several future research directions can improve the present frame-
work. For example, the interpretability of MolE representation may
be enhanced by enabling quick identification of molecular char-
acteristics associated with properties of particular interest for
microbiology. Our comparative analysis between MolE-based and
ECFP4-based AP scores also suggests that ensemble scoring schemes
that combine AP scores from multiple molecular representations,
such as, e.g., MolFormer or ChemBERTa, may further improve
prioritization accuracy. Likewise, alternative deep-learning archi-
tectures such as graph-attention networks or graph-transformer
networks50 may also improve downstream prediction tasks. Incor-
porating biological features of microbial strains into the repre-
sentation learning process may also help improve the specificity of
predictions, enabling the identification of effective narrow-spectrum
treatments4.

In conclusion, our proposed framework addresses key challenges
in the field of antimicrobial discovery. By overcoming the need for
large data resources, we envision that the presented workflow and
methodologies such as ours are better poised to complement large
screenings, thus increasing the rate atwhichnew treatment candidates
are uncovered.

Methods
Pre-training
Dataset: The MolE pre-training dataset was created by randomly
sampling 100,000 unlabeled molecules from a collection of
10,000,000 unique structures originally collected by ChemBERTa25.
This subset is then randomly split into training (90%) and valida-
tion (10%).

Molecular graph construction: Each molecule is represented as a
graph, where all atoms are nodes V and the chemical bonds between
them are the edges E. The attributes encoded for each atom are the
element it represents and its chirality type (tetrahedralCW, tetrahedral
CCW, other). Likewise, each bond is embedded by its type (single,
double, triple, aromatic), and its direction (none, end-upright, end-
downright).

As shown in Fig. 1a, during pre-training two augmentations (YA and
YB) are created by following the subgraph removal procedure, first
described in MolCLR27. Briefly, a seed atom is selected at random. This
seed atom and its neighbors are masked and then neighbors of the
neighbors are masked until 25% of the atoms present in the original
have been masked. The bonds between these masked atoms are
removed, producing a subgraph of the original molecule. This sub-
graph removal procedure is done for each individual augmentation.
While this can result in very different subgraphs for the same com-
pound entering the GNN backbone, we expect that by performing this
procedure over several epochs and for several molecules, similar
representations are learned for compounds with similar struc-
tures (Fig. 2).

Graph Neural Networks: We explored the ability of Graph Iso-
morphism Networks (GINs)51 and Graph Convolutional Networks
(GCNs)11 to extract meaningful features from the molecular graphs
constructed in the previous step. Both algorithms use an update
function to learn anactualized representation of each node. In the case
of GINs, this update is performed by an MLP head:

hðlÞ
v =MLPðlÞ hðl�1Þ

v +
X

u2NðvÞ
hðl�1Þ
u + eðlÞv, u

 !
ð1Þ

wherehðlÞ
v is the updated vector representationof node v∈V at the l-th

GIN layer, N(v) is the set of neighbors of v, and ev,u represents the
vector embedding of the attributes of the bond between v and its
neighbor u.

Molecular representation: To obtain a global vector representa-
tion of the molecular structure, we first gather a pooled, graph-level
representation for each GNN layer (g(l)) by adding the node embed-
dings of all atoms in the molecule.

gðlÞ =
X
v2V

hðlÞ
v ð2Þ

A final graph representation r is obtained by concatenating the
graph-level representations of each layer into a single vector.

r = CONCAT ðgðlÞjl = 1, 2, :::, LÞ ð3Þ

Here, L represents the total number of GNN layers used, and
CONCAT is the concatenation operator. In our setup, the dimension-
ality of g(l) is set as a 200-dimensional vector. Given that L = 5, r is
therefore a 1000-dimensional vector. The graph representation
learned for augmentation YA is correspondingly denoted as rA, as is the
representation learned for augmentation YB denoted as rB.

Non-contrastive learning: Once the final graph representations rA

and rB are produced, anMLP layer is used to obtain embeddings zA and
zB, which are D-dimensional vectors. These embedding vectors are
used to evaluate the LBT objective function30. First, an empirical cross-
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correlation matrix C is computed between zA and zB:

Cij =
P

bz
A
b, iz

B
b, jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

bz
A
b, i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
bz

B
b, j

q ð4Þ

Here, b indexes the batch samples and i and j index the vector
dimensions of the embeddings. In practical terms, C is a D × D matrix
and represents the average cross-correlationmatrix of a given batch b.
Finally, C is used to calculate the LBT loss:

LBT =
X
i

ð1� CiiÞ2 + λ
X
i

X
i≠j

C2ij : ð5Þ

In essence, by minimizing LBT we minimize the difference
between C and the identity matrix. In this way, embeddings obtained
from augmentations of the samemolecule are made to be invariant to
distortions, while at the same time penalizing redundancy of infor-
mation encoded by the components of the embedding. The positive
constant λ controls the trade-off between these two terms.

Pre-training setup: For all experiments, MolE pre-training is done
over 1000 epochs with a batch size of 1000 molecules. An Adam
optimizer with weight decay 10−5 is used to minimize LBT . The first 10
epochs are performed with a learning rate of 5 × 10−4, after which
cosine learning decay is performed. The parameter configuration that
minimizes the validation error is kept for downstream tasks.

Benchmarking
Datasets: We collected 11 benchmark datasets originally curated and
made available by MoleculeNet14. This set included 6 binary classifi-
cation tasks and 5 regression tasks. To make these benchmarking
scenarios more challenging and realistic, we split each dataset into
training (80%), validation (10%), and test (10%) sets following the
scaffold splitting procedure described by Hu et al.36. Briefly, the
Murcko scaffold of each molecule is determined, which identifies key
topological landmarks in the overall structure52. Molecules that share
the same scaffold are then collectively assigned to the same set. The
aim of the scaffold splitting procedure is to create a realistic scenario
where the molecules seen during training are structurally dissimilar to
those seen during its application to a novel chemical library.

Training and evaluation: In our benchmarking experiments, MolE
was pre-trained on 100,000 molecules from Pubchem29. Different
dimensionalities of the embedding vectors (zA and zB) and values for
the trade-off parameter λ were explored, while the dimensionality of
the representation r is fixed as a 1000-dimensional vector. After pre-
training, we evaluated the resulting representation in two ways: (i) the
static vector representation r was used as input for machine-learning
algorithms (termed MolEstatic), or (ii) the weights learned by the GIN
layers were used to fine-tune a predictor for a specific task (termed
MolEfinetune).

In the first case, the pre-trained representationMolEstatic was used
as input molecular features to Random Forest35 or XGBoost34 algo-
rithms. Hyperparameter optimization is performed via random search
(details in Supplementary Tables 4 and 5). Each model configuration
was trained three times with different seed values. The model config-
uration with the largestmean ROC-AUC value on the validation set was
then evaluated on the test set. For datasets with more than one task,
the average performance per task is reported.

In the case of fine-tuning, an untrained MLP head is placed after
the GNN layers. For all classification tasks, the Softmax cross-entropy
loss is optimized, while in the case of regression, the L1 loss is opti-
mized for the QM7 and QM8 tasks and the mean squared error is
optimized for all other tasks. A random search is performed for
hyperparameter optimization (Supplementary Table 6). The selected
architecturewas trained for 100 epochs, using anAdamoptimizerwith

a weight decay of 10−6. While the GNN and theMLP are updated during
training, the learning rate chosen for both parts differed. Each model
configuration was trained three times.

Extended Connectivity Fingerprints (ECFP) were calculated using
the functionality available inRDKit 2020.09.1.053. In order to get ECFP4
fingerprints we set the relevant paramters fp_radius=2 and
fp_bits=1024.

Other predictors: In Table 1 and Supplementary Table 1, perfor-
mancemetrics forGCN,GIN, SchNet,MGCN,D-MPNN, andHuet al. are
taken from the publication of MolCLR27. The ROC-AUC values for
HiMol were taken from the respective publication54, except for the HIV
task which is evaluated in the current study.

The MolCLRGIN
27 model made available on their GitHub page was

used for all benchmarks, following the instructions in the same repo-
sitory. The molecular representation obtained after GNN feature
extractionwas used as the input for either XGBoost or RandomForest.
The N-Gram55 and HiMol54 models were pre-trained and molecular
features were extracted following the default instructions and para-
meters made available in their respective GitHub repositories.

Ablation study on the MolE framework
To identify the components of MolE that contribute to performance
gains, we performed an ablation study shown in Supplementary Fig. 3.

GNNbackbone and construction:We comparedGINs andGCNs in
our graph feature extraction step combined with two alternatives for
constructing the molecular representation r. Concatenated (C)
representations are obtained as described previously (Eq. (3)). Non-
concatenated (NC) representations consisted of the pooled output of
the last GNN layer. In experiments where no concatenation is per-
formed, g(l) is set as a 1000-dimensional vector and the representation
r remains a 1000-dimensional vector. We observed that models per-
formbestwhen trainedon representations built with the concatenated
strategy, independent of the GNN backbone used during pre-training
(Supplementary Fig. 3a). This indicates that each GNN layer captures
important information about the molecular structure. In the ClinTox
task, both GIN-derived representations outperformed their GCN
counterparts.

Embedding dimensionality, trade-off parameter, and dataset
size: We observed increased performance on the ClinTox task when
zA and zB were 8000-dimensional vectors (Supplementary Fig. 3b).
We also found performance increases as the λ trade-off parameter
approaches 10−4 (Supplementary Fig. 3c). Finally, we noted that the
size of the unlabeled dataset used during pre-training does not
necessarily improve performance on most classification tasks (Sup-
plementary Fig. 3d). A higher ROC-AUC value can be observed in the
ClinTox task when MolE’s representation is pre-trained on 200,000
molecules.

The Barlow-Twins non-contrastive objective: Overall, we note that
performance using MolCLR’s representation learned from large-scale
unlabeled data is on par with the performance obtained from our
Barlow-Twins pre-training framework on our smaller set of unlabeled
data. We see the largest performance improvement when con-
catenating the graph-level representation learned by eachGIN layer. In
our performance comparison, we denote the original representations
as non-concatenating (NC) and the novel strategy as concatenating
(C), respectively (see Supplementary Fig. 3e for details).

With these observations, we decided to pursue the task of anti-
microbial discovery using the MolEstatic representation obtained after
pre-training on 100,000 molecules with λ = 10−4, zA,B 2 R8000, using a
GIN backbone and constructed by concatenating graph-layer
representations.

Exploring the MolE representation
Representation similarity: The distance between two MolE repre-
sentations for compounds i and j, ri and rj, was determined using the
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cosine distance:

dcosineðri, rjÞ= 1�
ri � rj

jjrijj2jjrjjj2
ð6Þ

The dissimilarity between two ECFP4 fingerprints, riECFP4 and
rjECFP4 , was calculated using the Jaccard distance:

djaccardðriECFP4 , rjECFP4 Þ= 1�
jriECFP4 ∪ rjECFP4 j
jriECFP4 j+ jrjECFP4 j

ð7Þ

Importantly, the Jaccard distance is equivalent to 1 - Tanimoto
similarity (see Supplementary Fig. 2).

Uniform Manifold Approximation and Projection: A UMAP
embedding based on the cosine distance between MolE representa-
tions was built using the umap-learn 0.5.3 Python module.

Predicting antimicrobial activity on human gut bacteria
Dataset: The adjusted p value table from Maier et al.24 was used to
determine labels for the growth-inhibitory effects of the screened
compounds. Compound-microbe combinations with an adjusted
p value <0.05 were considered to be examples of growth inhibition.
The 1197 molecules were divided into training (80%), validation (10%),
and test (10%) sets following the scaffold splitting procedure.

Molecular and bacterial strain representation: We used the
SMILES string of a given molecule i to obtain the corresponding
representationmi, which is a d-dimensional vector. In our work,m can
be one of three possible representations: (i) ECFP4, in which case
d = 1024, (ii) MolEstatic (d = 1000), and (iii) a set of explicit Chemical
Descriptor features (d = 98), described by Algavi and Borenstein4,
which were calculated using RDKit.

A given microbial strain j ∈ B (where B is the complete set of
bacterial strains) is represented as a one-hot-encoded vector bj. Given
that 40 strains are present in the dataset, bj is a 40-dimensional vector.

Compound-microbe predictions of antimicrobial activity: The
compound andmicrobe vectorsmi andbj are concatenated to form xij,
which is a 40 + d-dimensional vector. This combination of molecular
and microbe representations is the input to our classifier function f(⋅).
In our work, f(⋅) is an XGBoost model that, for each xij, outputs a
probability (pij) that indicates the likelihood of compound i inhibiting
the growth of microbe j.

xij = CONCAT ðmi,bjÞ ð8Þ

pij = f ðxijÞ , pij 2 ½0, 1� ð9Þ

Ranking compounds with Antimicrobial Potential scores: We
summarize the predicted spectrum of activity of compound i
two ways:

(i) The total number of strains predicted to be inhibited by the
compound Ki. This is achieved by thresholding the antimicrobial pre-
dictive probabilities (pij) into binary predictions of growth inhibition
and adding up the number of strains predicted to be inhibited.

Ki =
X40
j = 1

tðpijÞ, Ki 2 ½0, 1, 2, :::, 40� ð10Þ

where

t ðpijÞ=
1, pij ≥ s

0, pij < s

(
ð11Þ

Here, the function t(⋅) binarizes the output by determining whe-
ther pij exceeds a threshold s. We selected s to optimize the F1-Score

metric obtained on the validation set for each model (Supplementary
Fig. 14 and Supplementary Table 7). This optimized cutoff was 0.044,
0.068, and 0.209 for the model trained with MolE, Chemical
Descriptors, and ECFP4 features, respectively.

(ii) We define the Antimicrobial Potential score Gi for compound i
as the log2 of the geometric mean of the antimicrobial predictive
probabilities pij across all j microbes:

Gi = log2

Y40
j = 1

pij

 ! 1
40

0
@

1
A ð12Þ

Additionally, we consider the value of the Antimicrobial Potential
score when calculated on the subsets of Gram-positive G+

i and Gram-
negative G�

i microbes. In Eqs. (13), (14) we impose a fixed indexing on
the set of taxa, where the first 22 indices represent all Gram-positive
bacteria (j ∈ [1, 2, . . . , 22]) and the remaining 18 indices represent all
Gram-negative bacteria (j ∈ [23, 24, . . . , 40])

G+
i = log2

Y22
j = 1

pij

 ! 1
22

0
@

1
A ð13Þ

G�
i = log2

Y40
j = 23

pij

 ! 1
18

0
@

1
A ð14Þ

Model selection and evaluation: A random search over XGBoost
hyperparameters was performed for each chemical representation.
Themodel configurationwith the highest PR-AUCon the validation set
was then evaluated on the test set.

Predicting antimicrobial compounds in an orthogonal chemical
library
Chemical library: A separate chemical library was constructed based
on the FDA-approved Drugs, Human Endogenous Metabolite, and
Food-Homology Compound libraries made available by MedChemEx-
press https://www.medchemexpress.com/. The chemical structures
for these compounds were gathered from PubChem29 using the
pubchempy 1.0.4 Pythonmodule. SMILES were canonicalized and salts
were removed using RDKit53.

Compound annotation: Information provided by MedChemEx-
press included descriptions of the chemicals in the library. The cor-
responding Anatomical-Therapeutic-Chemical (ATC) code was
assigned to each compound by matching compound name strings. A
complete collection of ATC codes was gathered from https://github.
com/fabkury/atcd. Overlapwith chemicals in the library used byMaier
et al.24 was determined by matching chemical names and ATC codes.
Chemicals present in both libraries were not considered for down-
stream prediction. SMILES were gathered from PubChem using the
Python module We also use the pubchempy v1.04.

Prediction and evaluation: Molecules with Ki ≥ 10 were prioritized
for further evaluation. We performed a literature search for articles
available on PubMed56 that described the in-vitro and/or in-vivo anti-
microbial activity of our prioritized compounds against any bacterial
species. When recording MICs, we considered the lowest concentra-
tion at which no growth was observed for any Gram-positive or Gram-
negative strain.

Experimental validation
Compound prioritization: In total 6 compounds were selected for
experimental validation. Criteria considered for compound selection
were the following: (i) The compound was predicted to inhibit
10 strains or more, (ii) the compound was not an antibiotic, (iii) the
compound did not have antifungal activity, (iv) no previous literature
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describing the antimicrobial activity of the compound was found, and
(v) the compound could be purchased through an independent pro-
vider. Furthermore, we attempted to choose compounds with differ-
ent biological functions thatwere structurally diverse from each other.
Additional information about the chosen compounds can be found in
Supplementary Table 8.

Bacterial strains and growth conditions: Before the experiments,
all strains were cultured overnight in Lysogeny Broth (LB Lennox)
adjusted to pH 7.5 at 37 °C. Detailed information about the strains used
in this study can be found in Supplementary Table 9.

Measurement of Minimum Inhibitory Concentrations: All com-
pounds were purchased from Biomol GmbH (Germany). Stock solu-
tions were prepared in DMSO and stored at − 20 °C until further use.
MIC measurements were performed in 96-well plates with 100 μL
bacterial cultures in Mueller Hinton (MH) broth using 1:2 serial dilu-
tions of the tested compounds. Starting concentrations of 128 μg/mL
were used for Cetrorelix, Opicapone, Thymidine, Visomitin, and Elvi-
tegravir, and 64 μg/mL for Ebastine due to low solubility. No-
compound controls contained DMSO or Water. Overnight cultures
of three biological replicates of each bacterial strain were adjusted to
OD600 = 0.1 and inoculated into the plates by pinning using a Singer
Rotor (Singer Instruments, UK), achieving a 1:200 dilution. Plates were
sealedwith transparent breathablemembranes (Breathe-Easy®, Sigma-
Aldrich-Merck) and incubated at 37°C in a Cytomat 2 incubator
(Thermo Scientific) with continuous shaking at 800 rpm. OD600 was
measured at regular 30-minute intervals for up to 12 h in a Synergy H1
plate reader (Agilent, USA). Additional information about the tested
bacterial strains can be seen in Supplementary Table 8.

Growth curve modeling: All growth curves were normalized by
subtracting the minimum of the second, third, and fourth measure-
ments taken. Afterward, each individual curve was modeled as a
logistic curve with Sicegar 0.2.4 R package. From these curves,
parameters such as themaximumgrowth rate (μmax), end of lag-phase,
start of stationary phase, and the carrying capacitywere extracted. The
maximum doubling time td was estimated as:

td =
ln2
μmax

ð15Þ

Software
TheMolE pre-training framework was implemented using the pytorch-
geometric 1.6.3 framework57 with Python 3.758. We use the Random-
ForestClassifier and RandomForestRegressor implementation
available in scikit-learn 1.0.259 and the XGBClassifier andXGBRegressor
objects from xgboost 1.6.260. The scikit-learn 1.0.259 module is also
used when computing ROC-AUC, PR-AUC, and F1 scoremetrics. The R
4.3.1 language was used for its ggplot2 3.4.2 for plotting, Sicegar 0.2.4
packages. ECFP4, chemical descriptors, and general SMILES proces-
sing were done with the rdkit 2020.09.1.0 package.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The unlabeled chemical structures used for pre-trainingwere gathered
from the MolCLR GitHub repository https://github.com/yuyangw/
MolCLR. The adjusted p-value table from24 was used to trainmodels to
predict antimicrobial activity and was gathered from the respective
publication. The chemical library fromMedChemExpress can be found
in our GitHub repository https://github.com/rolayoalarcon/mole_
antimicrobial_potential61. Results for predicting antimicrobial activ-
ity, and the data from experimental validation are available at https://
github.com/rolayoalarcon/mole_antimicrobial_potential61. All data is

publicly available and can be accessed without restrictions. Source
data are provided with this paper.

Code availability
The code for the MolE pre-training framework can be found at https://
github.com/rolayoalarcon/MolE62. Code for predicting antimicrobial
activity can be found at https://github.com/rolayoalarcon/mole_
antimicrobial_potential61. The pre-trained model used for the predic-
tion of antimicrobial potential is available in Zenodo https://doi.org/
10.5281/zenodo.1080309963.
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