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Abstract
We address statistical inference for linear fractional diffusion processes with random
effects in the drift. In particular,we investigatemaximumlikelihood estimators (MLEs)
of the random effect parameters. First of all, we estimate the Hurst parameter H ∈
(0, 1) from one single subject. Second, assuming that the Hurst index H ∈ (0, 1) is
known, we derive the MLEs and examine their asymptotic behavior as the number of
subjects under study becomes large, with random effects being normally distributed.
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1 Introduction

Parametric and nonparametric estimation of random effects models has recently been
investigated by many authors (e.g., [1, 4–6, 19, 20]). In these models, noise is rep-
resented by Brownian motion characterized through the independence property of
its increments. Such a property is not fulfilled for long-memory phenomena arising
in a variety of applications from different scientific fields, including hydrology [17],
biology [3], medicine [14], economics [9] or traffic networks [24]. As a consequence,
self-similar processes have been used to successfullymodel data exhibiting long-range
dependence. Among the simplest models that display long-range dependence, one can
consider fractional Brownian motion (fBm), introduced to the statistics community
by Mandelbrot and Van Ness [16]. A normalized fBm with Hurst index H ∈ (0, 1) is

a centered Gaussian process
(
WH

t : t ≥ 0
)
with covariance

E

(
WH

s W H
t

)
= 1

2

(
t2H + s2H − |t − s|2H

)
.

Here, statistical estimationofmodel parameters is of particular importance and resulted
in a growing number of papers devoted to statistical methods for equations with frac-
tional noise. We will cite only a selection of them; further references can be found in
[18, 22]. In [12], the authors proposed and studied maximum likelihood estimators
(MLEs) for fractional Ornstein–Uhlenbeck processes. Related results were obtained
by Prakasa [21], where a more general model was considered. In [10], the authors
proposed a least squares (LS) estimator for fractional Ornstein–Uhlenbeck processes
and proved its asymptotic normality. Recently, the same results were obtained for
the fractional Vasicek model with long-memory using the same approach (LS) ([25]).
Note that [11, 23] deal with the whole range of the Hurst parameter H ∈ (0, 1). Mean-
while, we have cited other papers that consider only the case where H > 1/2, which
corresponds to long-range dependence. Recall that for H = 1/2 we get a classical
diffusion process extensively treated in the literature [15].

This paper deals with statistical estimation of population parameters for fractional
stochastic differential equations (SDEs) with random effects. To our knowledge, this
problem has not been investigated yet. Precisely, we consider fractional diffusion
processes of the form

Xt = x +
∫ t

0
(a(Xs) + φb(Xs)) ds + WH

t , (1.1)

where φ is a random variable relying on a parameter θ to be estimated, and WH is a
normalized fBm with Hurst parameter H to be estimated. We study the additive linear
case, b(x) ≡ 1, when φ ∼ N (μ, σ 2). The estimators μ̂, σ̂ 2 and Ĥ of μ, σ 2 and H ,
respectively, are constructed and their asymptotic behaviors are investigated. There
are several reasons why we chose the model (1.1): It is simple, and we can derive
explicit estimators. It generalizes the model considered in [11], while the techniques
used here to investigate asymptotic properties are elementary due to the incorporation
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of the random effects, and hence, we avoid the Malliavin techniques. Second, (1.1)
is widely applied in various fields. In fact, the Vasicek model is an example of type
(1.1). The third reason is that the estimation of the population parameters requires few
observations per subject, which coincides with several natural phenomena where the
repeated measurements are rarely available if not impossible. Finally, nonparametric
estimation has been realized recently by us for a similar model [8].

The paper is organized as follows. In Sect. 2, we introduce the model and some
preliminaries about the likelihood function. In Sect. 3, we derive parameter estimators
and establish consistency and asymptotic normality. Simulations are presented in Sect.
4, while Sect. 5 contains concluding remarks and gives directions of further research.

Throughout the paper, the notations �⇒,
P−as�⇒ and

D�⇒ mean, respectively, simple
convergence, convergence almost surely with respect to the probability measure P and
convergence in distribution.

2 Model and Preliminary Results

Before introducing our estimation techniques, we first state some basic facts about

fBm and its likelihood function. Let
(
�,F , (F i

t ),P
)
be a stochastic basis satisfy-

ing the usual conditions. The natural filtration of a stochastic process is understood
as the P-completion of the filtration generated by this process. Let WH ,i =(
WH ,i (t) , t ≤ T :

)
, i = 1, · · · , N be N independent normalized fBm’s with

a common Hurst parameter H ∈ (0, 1). Let φ1, · · · , φN be N independent and
identically distributed (i.i.d) R-valued random variables on the common proba-

bility space (�,F ,P) independent of
(
WH ,1, · · · ,WH ,N

)
. Consider N subjects(

Xi (t),F i
t , t ≤ T

)
with dynamics ruled by the following general linear SDEs:

dXi (t) =
(
a(Xi (t)) + φi b(X

i (t))
)
dt + dW H ,i (t)

Xi (0) = xi ∈ R, i = 1, · · · , N , (2.1)

where a(·) and b(·) are supposed to be known in their own spaces. Let the random
effects φi be F i

0-measurable with common density g(ϕ, θ)dν(ϕ), where ν is some
dominating measure on R and θ is unknown parameter. Set θ ∈ U , where U is an
open set in Rd . Sufficient conditions for the existence and uniqueness of solutions to
(2.1) can be found in [18, p. 197] and references therein.

Let CT denote the space of real continuous functions (x(t) : t ∈ [0, T ]) defined
on [0, T ] endowed with a σ -field BT . The σ -field BT is associated with the topology
of uniform convergence on [0, T ]. We introduce the distribution μXi

ϕ,H
on (CT ,BT )

of the process
(
Xi |φi = ϕ

)
. OnR×CT , Q

i
θ,H = g(ϕ, θ)dν⊗μXi

ϕ,H
denotes the joint

distribution of (φi , Xi ). Let Pi
θ,H be the marginal distribution of

(
Xi (t) : t ≤ T

)
on

(CT ,BT ). Since the subjects are independent (this is inherited from the independence
ofφi andWH ,i ), the distribution of thewhole sample

(
Xi (t) : t ≤ T , i = 1, · · · , N

)
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on C⊗N
T is defined by Pθ,H = ⊗N

i=1P
i
θ,H . Thus, the likelihood can be defined as

�(θ, H) = dPθ,H

dP
=

N∏
i=1

dPi
θ,H

dPi
,

where P = ⊗N
i=1P

i and P
i = μXi

ϕ0,H
, provided that μXi

ϕ,H

 μXi

ϕ0,H
for some fixed

ϕ0 ∈ R. It is well known that μXi
ϕ,H

coincides with the distribution of the process

Xi,ϕ defined by

dXi,ϕ(t) =
(
a(Xi (t)) + ϕb(Xi,ϕ(t))

)
dt + dW H ,i (t), Xi,ϕ(0) = xi ,

when H = 1/2, since in this case the process (Xi , φi ) is Markovian (e.g., [7]); hence,
the Girsanov formula can be applied to get the derivative
dμXi

ϕ,H
/dμXi

ϕ0,H
. For H �= 1/2, the non-Markovian property of the coupled process

(Xi , φi ) makes the construction of the likelihood very difficult. In our case, however,

the process Xi is transformed into a Y i for which the law of
(
Y i |φi = ϕ

)
coincides

with the distribution of a parametric fractional diffusion process Y i,ϕ .

3 Construction of Estimators and their Asymptotic Properties

Consider the following process

Y i (t) := Xi (t) − xi −
∫ t

0
a(Xi (s))ds, t ≥ 0 (3.1)

= tφi + WH ,i (t) ∼ N
(
tμ, t2σ 2 + t2H

)
, t ≥ 0. (3.2)

Since φi and WH ,i are independent, the process
(
Y i (t) : t ∈ [0, T ]

)
is Gaus-

sian. Furthermore, for each ϕ ∈ R, we have E
(
Y i (t)|φi = ϕ

) = tϕ and
Cov

(
Y i (t),Y i (s)|φi = ϕ

) = 1
2 (t

2H +s2H −|t − s|2H ). For each subject Y i , we con-

sider n observations Y i := (
Y i (t1), · · · ,Y i (tn)

)′
where 0 = t0 < t1 < · · · < tn = T

is a subdivision of [0, T ]. The density of Y i given φi = ϕ is expressed as

	(Y i |φi = ϕ, H) = 1√
(2π)ndetV (H)

exp

(
−1

2
(Y i − ϕu)′V−1(H)(Y i − ϕu)

)
,

where u = (t1, · · · , tn)′ and (V (H))k,l = Cov
(
Y i (tk),Y i (tl)|φi = ϕ

)
is the common

covariance matrix of the subjects Y i , i = 1, · · · , N . The log-likelihood of the whole
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sample
(
Y 1, · · · ,Y N

)
is defined as

l(θ, H) =
N∑
i=1

log
∫

	(Y i |φi = ϕ, H)g(ϕ, θ)dν(ϕ). (3.3)

For a specific distribution (say g(ϕ, θ)dν(ϕ) = N (μ, σ 2)), we can solve the integrals
given in (3.3). Indeed,

∫
	(Y i |φi = ϕ, H)g(ϕ, θ)dν(ϕ)(2π)

−n
2 σ−1det(V (H))

−1
2

(
u′V−1(H)u + 1/σ 2

)−1
2

× exp

[
−1

2

(
μ2/σ 2 + Y i ′V−1(H)Y i − (u′V−1(H)Y i + μ/σ 2)2

u′V−1(H)u + 1/σ 2

)]
. (3.4)

3.1 Estimation of the Hurst Parameter H

Using data induced by one single subject (without loss of generality, say Y 1 with
t j = j/n, j = 1, · · · , n, T = 1), we may construct a class of estimators of the Hurst
index H . More precisely, for all k > 0 and for any filter γ = (γ0, · · · γl) of order
p ≥ 2, that is,

for all indices 0 ≤ r < p;
l∑

j=0

jrγ j = 0 and
l∑

j=0

j pγ j �= 0. (3.5)

Consider the following arguments: Ĥ(n, p, k, γ,Y 1) = g−1
n,k,γ (Sn(k, γ )), where

Sn(k, γ ) = 1

n − l

n−1∑
i=l

∣∣∣∣∣∣
l∑

q=0

γqY
1
(
i − q

n

)∣∣∣∣∣∣

k

, gn,k,γ (t) = 1
ntk

{πγ
t (0)}k/2Ek and

π
γ
t ( j) = −1

2

l∑
q,r

γqγr |q − r + j |2t , with Ek = 2k/2�(k + 1/2)/�(1/2), where

�(x) is the usual gamma function. For invertibility of the function gn,k,γ (·), we refer
to [2, p. 7].

Theorem 3.1 The following statements hold true as the number of observations n −→
∞:

(i) Ĥ(n, p, k, γ,Y 1)
P−as�⇒ H ,

(ii) n−1/2 log(n)
(
Ĥ(n, p, k, γ,Y 1) − H

) D�⇒ N
(
0,

A(H , k, γ )

k2

)
, where

A(t, k, γ ) =
∑
j≥1

(ck2 j )
2(2 j)!

∑
i∈Z

ρ
γ
t (i)

2 j
with
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ck2 j = 1

(2 j)!
j−1∏
q=0

(k − 2q), and ρ
γ
t (i) = π

γ
t (i)

π
γ
t (0)

.

Proof Following Coeurjolly [2], we set V γ (i/n) =
l∑

q=0

γqW
H ,1

(
i − q

n

)
, for i =

l, · · · , n − 1. From (3.5), we see that the filter γ is of order p ≥ 2,
l∑

q=0

i − q

n
γq = 0.

Therefore, substituting Y 1
(
i − q

n

)
by

i − q

n
φ1 + WH ,1

(
i − q

n

)
, we obtain

Sn(k, γ ) = 1

n − l

n−1∑
i=l

∣∣∣∣∣∣
l∑

q=0

γqY
1
(
i − q

n

)∣∣∣∣∣∣

k

= 1

n − l

n−1∑
i=l

∣∣∣∣∣∣
l∑

q=0

γq
i − q

n
φ1 +

l∑
q=0

γqW
H ,1

(
i − q

n

)∣∣∣∣∣∣

k

= 1

n − l

n−1∑
i=l

∣∣V γ (i/n)
∣∣k .

Hence, our estimators coincide with estimators Ĥ based on k-variations of the fBm
(see [2, Proposition 2]) and the proof is complete. ��

3.2 Estimation of the Population Parameter� = (�,�2)

Now, assume that H is known. From the log-likelihood given by (3.3) and (3.4), we
derive an estimator μ̂ given by

μ̂ =
1
N

∑N

i=1
u′V−1(H)Y i

u′V−1(H)u
. (3.6)

Derivation of an estimator for the parameter σ 2 is difficult. However, we can construct
an alternative estimator and study its asymptotic behavior. Observing that μ̂ is a sample
mean drawn from a sequence of i.i.d random variables, one might think that sample
variance could also be used to estimate σ 2. Unfortunately, simple computations show
that such a sample variance is not consistent. Thus, as an alternative, we propose the
following estimator for σ 2:

σ̂ 2 = 1

N

N∑
i=1

(
u′V−1(H)Y i

u′V−1(H)u

)2

− 1

N 2

(
N∑
i=1

u′V−1(H)Y i

u′V−1(H)u

)2

−
(
u′V−1(H)u

)−1
.

(3.7)
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Theorem 3.2 The estimator μ̂ is unbiased, μ̂
P−as�⇒ μ and Var(μ̂) −→ 0 as N → ∞.

Proof Set εi = (
WH ,i (t1), · · · ,WH ,i (tn)

)′
. Substituting Y i by φi u + εi , we have

μ̂ = 1

N

∑N

i=1
φi +

1
N

N∑
i=1

u′V−1(H)εi

u′V−1(H)u
, so E(μ̂) = μ. For the second statement, we

consider the random variables ξi (H) defined by

ξi (H) = u′V−1(H)Y i

u′V−1(H)u
. (3.8)

Clearly, ξi (H) are i.i.d random variables with E(ξi (H)) = μ < ∞, then by the strong
law of large numbers, μ̂ converges almost surely to μ as N → ∞. Set z(H) :=
(z1(H), · · · , zn(H)) = u′V−1(H), we have

Var(μ̂) = Var

(
1

N

N∑
i=1

φi

)
+ 1

N 2(z(H) · u)2
Var

(
N∑
i=1

z(H) · εi

)

= 1

N 2Var

(
N∑
i=1

φi

)

+ 1

N 2(z(H) · u)2

N∑
i, j

E

{(
n∑

k=1

zk(H)WH ,i (tk)

) (
n∑

l=1

zl(H)WH , j (tl)

)}

= 1

N 2

N∑
i=1

Var(φi ) + 1

N 2(z(H) · u)2

N∑
i, j

n∑
k,l

zk(H)zl (H)E
(
WH ,i (tk)W

H , j (tl)
)

= σ 2

N
+ 1

N 2(z(H) · u)2

N∑
i

n∑
k,l

zk(H)zl(H)E
(
WH ,i (tk)W

H ,i (tl)
)

= σ 2

N
+ 1

N 2(z(H) · u)2

N∑
i

n∑
k,l

1

2
zk(H)zl (H)

(
t2Hk + t2Hl − |tk − tl |2H

)

= σ 2

N
+ 1

N 2(z(H) · u)2
Nz(H)V (H)z(H)′ = σ 2 + Nu′V−1(H)V (H)V−1(H)u

N 2(z(H) · u)2

= σ 2

N
+ 1

Nu′V−1(H)u
−→ 0 as N → ∞.

��
Before considering the bias of σ̂ 2, the estimator of σ 2, we first give the following

result:

Lemma 3.3 One has

E(ξ1(H))2 = σ 2 + μ2 + 1

u′V−1(H)u
and E

(
N∑
i=1

ξi (H)

)2

= Nσ 2 + N 2μ2
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+ N

u′V−1(H)u
,

where ξi (H) are random variables given by (3.8).

Proof Substituting Y 1 by φ1u + ε1, the independence of φ1 and ε1 gets

E(ξ1(H))2 = E

(
φ1 + u′V−1(H)ε1

u′V−1(H)u

)2

= Eφ2
1 + E

(
u′V−1(H)ε1

u′V−1(H)u

)2

= σ 2 + μ2 + 1

u′V−1(H)u
.

For the last equality, we used the same techniques as in the proof of Theorem 2. For
the second statement, by using the previously defined random variables zi (H)′s, we
get

E

(
N∑
i=1

ξi (H)

)2

= E

(
N∑
i=1

φi +
N∑
i=1

z(H) · εi

z(H) · u

)2

= E

(
N∑
i=1

φi

)2

+ E

(
N∑
i=1

z(H) · εi

z(H) · u

)2

=
N∑
i=1

Eφ2
i + 2

N∑
i< j

E(φiφ j ) + 1

(u′V−1(H)u)2
Var

(
N∑
i=1

z(H) · εi

)

= Nσ 2 + N 2μ2 + N

u′V−1(H)u
.

��
Theorem 3.4 The estimator σ̂ 2 is asymptotically unbiased, σ̂ 2 P−as�⇒ σ 2, and

Var(σ̂ 2) = 2(N − 1)

N 2

(
σ 2 + 1

u′V−1(H)u

)2

�⇒ 0 as N → ∞.

Proof By virtue of Lemma 3, we get

E(σ̂ 2) = 1

N

N∑
i=1

(
σ 2 + μ2 + 1

u′V−1(H)u

)
− 1

N 2

(
Nσ 2 + N 2μ2 + N

u′V−1(H)u

)

− 1

u′V−1(H)u

= N − 1

N
σ 2 − 1

N (u′V−1(H)u)
�⇒ σ 2 as N → ∞.
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Applying the strong law of large numbers and the continuous mapping theorem for
almost sure convergence, we get

σ̂ 2 = 1

N

N∑
i=1

ξi (H)2 −
(
1

N

N∑
i=1

ξi (H)

)2

− 1

u′V−1(H)u

P−as�⇒ E(ξ1(H))2 − E
2(ξ1(H)) − 1

u′V−1(H)u
= Var(ξ1(H)) − 1

u′V−1(H)u

= Var

(
φ1 + u′V−1(H)ε1

u′V−1(H)u

)
− 1

u′V−1(H)u

= Varφ1 + Var

(
u′V−1(H)ε1

u′V−1(H)u

)
− 1

u′V−1(H)u

= σ 2 + E

(
u′V−1(H)ε1

u′V−1(H)u

)2

− 1

u′V−1(H)u
= σ 2.

Similar computations lead to

Var(σ̂ 2) = N − 1

N 3

(
(N − 1)E(ξ1(H) − μ)4 − (N − 3)β2

)

= 2(N − 1)

N 2 β2,

where β = Var(ξ1(H)) = σ 2 + 1

u′V−1(H)u
. In the last equality we used the fact

that (ξ1(H) − μ) is a centered Gaussian random variables with variance β. ��
Remark For the case of continuous observation with horizon T , we propose the fol-
lowing estimator μ̃(T , N ) defined by

μ̃(T , N ) = 1

NT

N∑
i=1

Y i (T ).

It is easy to see that E

∣∣∣∣
1

T
Y i (T ) − φi

∣∣∣∣
2

≤ 1

T 2−2 H −→ 0 as T −→ ∞ and μ̃(T , N )

is consistent when T , N → ∞. The reason for choosing this double asymptotic
framework is that we proceed in two steps: In the first step, we estimate random effects
φi as the horizon T increases to ∞; then, we use the empirical mean and variance to
estimate θ = (μ, σ 2), where the random effects are replaced by their estimators.

Theorem 3.5 The estimators μ̂ and σ̂ 2 are asymptotically normal, i.e.,

√
N (μ̂ − μ)

D�⇒ N
(
0, σ 2 + 1

u′V−1(H)u

)
as N → ∞, (3.9)
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and

√
N

2

(
σ̂ 2 − σ 2

) D�⇒ N
(
0,

(
σ 2 + 1

u′V−1(H)u

)2
)

as N → ∞. (3.10)

Proof Since μ̂ is the average of N i.i.d random variables with finite mean and finite
variance, (3.9) follows immediately from the central limit theorem. In order to show

(3.10), we consider the following random variables ξ̃i (H) =
√

N

N − 1
(ξi (H) − μ̂),

i = 1, · · · , N and set β = σ 2 + 1

u′V−1(H)u
. We see that

(̃
ξi (H) , i = 1, 2, · · · )

is a centered Gaussian process with variance Var (̃ξi (H)) = E(̃ξi (H)2) = β,
and Var (̃ξi (H)2) = 2β2. So using the strong law of large numbers, we have

σ̃ 2 = 1

N

N∑
i=1

ξ̃i (H)2
P−as�⇒ β as N → ∞. Furthermore, the central limit theorem

leads to
√
N

(
σ̃ 2 − β

) D�⇒ N (0, 2β2) as N → ∞. Since

√
N

2

(
σ̂ 2 − σ 2

)
=

αN
√
N

(
σ̃ 2 − β

)
− εN , where αN = N − 1√

2N
and εN = β√

2N
, therefore, using

Slutsky theorem, the convergence in (3.10) is easily concluded. ��

4 Simulations

We implemented the two studied population parameter estimators to investigate their
empirical behavior. To that end, we simulated the observed vectors Y i using (3.2) for
two numbers of subjects N = 50 and N = 500 with different lengths of observations
per subject; n = 22, n = 25 and n = 28. The fBm’s were simulated as in [13]. The
experimental design looks as follows: We set H equal to 0.15, 0.5 and 0.85. For each
case, replications involving 400 samples are obtained by resampling n trajectories of
Y i .

Table 1 Themeans with exact (bold) and empirical (italic) standard deviations of estimators μ̂, σ̂ 2 based on
400 samples, with true values (μ0, σ

2
0 ) = (−2, 1), (T, n) = (5, 22), and different values of N (= 50; 500)

True values H = 0.15 H = 0.50 H = 0.85
N = 50 Mean (std. dev.) Mean (std. dev.) Mean and std. dev.’s

μ = −2
σ 2 = 1

−1.9902(0.1456 0.1430)
0.9744(0.2099 0.1942)

−1.9964(0.1549 0.1594)
1.0303(0.2376 0.2494)

− 1.9820(0.1795 0.2009)
1.3314(0.3191 0.3891)

N = 500

μ = −2
σ 2 = 1

−2.0009( 0.0460 0.0441)
0.9964(0.0670 0.0689)

−1.9986(0.0490 0.0515)
1.0442(0.0758 0.0836)

−1.9985(0.0568 0.0634)
1.2022(0.1018 0.1228)

(For interpretation of the references to color in this table the reader is referred to the electronic version of
this article)
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Table 2 Themeans with exact (bold) and empirical (italic) standard deviations of estimators μ̂, σ̂ 2 based on
400 samples, with true values (μ0, σ

2
0 ) = (−2, 1), (T, n) = (5, 25), and different values of N (= 50; 500)

True values H = 0.15 H = 0.50 H = 0.85
N = 50 Mean (std. dev.) Mean (std. dev.) Mean and std. dev.’s

μ = −2
σ 2 = 1

−2.0050(0.1449 0.1427)
0.9713(0.2077 0.2075)

−2.0146(0.1549 0.1518)
1.0028(0.2376 0.2247)

− 1.9824(0.1793 0.1920)
1.0871(0.3181 0.3391)

N = 500

μ = −2
σ 2 = 1

−2.0057(0.0458 0.0434)
1.0005(0.0663 0.0671)

−1.9979(0.0490 0.0498)
1.0021(0.0758 0.0758)

−2.0038(0.0567 0.0596)
1.0849(0.1015 0.1011)

(For interpretation of the references to color in this table the reader is referred to the electronic version of
this article)

Table 3 Themeans with exact (bold) and empirical (italic) standard deviations of estimators μ̂, σ̂ 2 based on
400 samples, with true values (μ0, σ

2
0 ) = (−2, 1), (T, n) = (5, 28), and different values of N (= 50; 500)

True values H = 0.15 H = 0.50 H = 0.85
N = 50 Mean (std. dev.) Mean (std. dev.) Mean and std. dev.’s

μ = −2
σ 2 = 1

−2.0015(0.1447 0.1454)
0.9996(0.2073 0.2008)

− 1.9960(0.1549 0.1563)
0.9764(0.2376 0.2448)

− 2.0055(0.1792 0.1709)
0.9971(0.3180 0.3323)

N = 500

μ = −2
σ 2 = 1

−1.9997(0.0458 0.0442)
0.9971(0.0662 0.0650)

−2.0009(0.0490 0.0471)
0.9993(0.0758 0.0747)

− 2.0006(0.0567 0.0566)
1.0083(0.1015 0.1045)

(For interpretation of the references to color in this table, the reader is referred to the electronic version of
this article)

The averages of the estimators and their exact against empirical standard deviations
are reported in Tables 1–3. The tables show that the parameter estimates are generally
much closer to their true values as the number of subjects increases. Figures1–3
display histograms of the estimates, which reveal empirical convergence toward a limit
distribution as N is sufficiently large. This confirmswhat was established before. From
Table 1, we see that the estimates of σ 2 deviate from underlying true values when there
are very few observations (n ≤ 23) per subject when H = 0.85. This situation appears
whenever H becomes larger than 1/2. In this situation, for non-synthetic cases where
the true value of σ 2 is not available, it will be better to choose n as large as possible
(n ≥ 24), but this leads to huge computational cost for large values of N , since, to
keep the balance between the computational cost and goodness of fit, a small value
of n and sufficiently large values of N should be considered.

5 Concluding Remarks

In this paper, we have provided full parametric likelihood estimation of population
parameters for a specific dynamical model described by a fractional SDE including
random effects in the drift. We are essentially concerned with the estimation of the
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Fig. 1 Frequency histograms of population parameter estimates based on 400 samples for different values
of (N , H). In each box of the two rows (top N = 50 and bottom N = 500), histograms of μ̂ (pink) and σ̂ 2

(gray) are given for fixed parameters (μ, σ 2, T , n) = (−2, 1, 5, 22). (For interpretation of the references
to color in the legend of this figure, the reader is referred to the electronic version of this article)

Fig. 2 Frequency histograms of population parameter estimates based on 400 samples for different values
of (N , H). In each box of the two rows (top N = 50 and bottom N = 500), histograms of μ̂ (pink) and σ̂ 2

(gray) are given for fixed parameters (μ, σ 2, T , n) = (−2, 1, 5, 25). (For interpretation of the references
to color in the legend of this figure, the reader is referred to the electronic version of this article)
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Fig. 3 Frequency histograms of population parameter estimates based on 400 samples for different values
of (N , H). In each box of the two rows (top N = 50 and bottom N = 500), histograms of μ̂ (pink) and σ̂ 2

(gray) are given for fixed parameters (μ, σ 2, T , n) = (−2, 1, 5, 28). (For interpretation of the references
to color in the legend of this figure, the reader is referred to the electronic version of this article)

Hurst index, aswell aswith themean and variance estimators of the random effects that
have a Gaussian distribution. Qualitative and asymptotic properties of the estimators
are obtained when the population of subjects becomes large.

This study suggests several important directions for future research. First, asymp-
totic properties of the maximum likelihood estimators forμ and σ 2 remain open when
the Hurst index H is unknown. Given that the model is fully parameterized, one may
wish to estimate H , μ and σ 2 simultaneously. The achievement of this task is part of
our ongoing work. Second, the present study assumes that the model is linear and the
diffusion is constant and equal to one. This assumption is not verified in almost all
real applications. So to overcome this issue, one can use, for example, Euler scheme
approximations. However, it is not clear how to get an explicit approximation for
the maximum likelihood function. Such an extension would be worth being studied
from both theoretical and applied points of view. Third, as mentioned previously, we
may estimate the population parameters by using a double asymptotic framework.
Such an idea is considered in an ongoing work for a more general model and in the
nonparametric estimation context.
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