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Agingis accompanied by considerable changes in the gut microbiome, yet
the molecular mechanisms driving aging and the role of the microbiome
remain unclear. Here we combined metagenomics, transcriptomics and
metabolomics from aging mice with metabolic modelling to characterize
host-microbiome interactions during aging. Reconstructing integrated
metabolic models of host and 181 mouse gut microorganisms, we show
acomplex dependency of host metabolism on known and previously
undescribed microbial interactions. We observed a pronounced reduction
inmetabolic activity within the aging microbiome accompanied by reduced
beneficial interactions between bacterial species. These changes coincided
with increased systemic inflammation and the downregulation of essential
host pathways, particularly in nucleotide metabolism, predicted torely on
the microbiota and critical for preserving intestinal barrier function, cellular
replication and homeostasis. Our results elucidate microbiome-host
interactions that potentially influence host aging processes. These pathways
couldserve as future targets for the development of microbiome-based
anti-aging therapies.

Aging and aging-related diseases are central contributors to morbid-  showing notable shifts in its composition as the host ages and strong
ity and mortality in Western societies'. Although research hasiden-  correlations with aging-related phenotypes®. Microbiome transfer
tified specific hallmarks of aging® and revealed the conservation of ~ experimentsrevealed thatintroducing young microbiotato old hosts
aging-associated changes across species and tissues’, the primary  extends their lifespan®’ and reverses specific aspects of aging in animal
causative factors of aging remain elusive’. The microbiome, comprising  models®. However, some studies have also shown beneficial effects of
a diverse bacterial community that resides within and on host organ-  aged microbiota’ or signatures specific to healthy aging in centenar-
isms, is gaining recognition for its interplay with host aging processes.  ians® that indicate that some aging-associated changes in the micro-
Itis implicated in many aging-associated physiological processes,  biotamight also be compensatory by counteracting aging-associated
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changes in the host’. Pathological changes in the host’s gastroenteric
system, such as obstipation, constipation and barrier dysfunction,
are comorbidities of many aging-related diseases and often precede
the manifestation of these diseases by many years®. Moreover, the
aging-associated loss of intestinal barrier function, which facilitates
the translocation of living bacteria and their products into the blood-
stream, isimplicated as adriver of systemic inflammaging, a hallmark
of aging characterized by a constant low-grade inflammation even
without the presence of a detectable pathogen'*".

However, it remains unclear which microbiome changes are
causes of aging in the host and which are consequences'. The primary
reasons for this uncertainty are the high plasticity and complexity
of the microbiota, which comprise dozens to hundreds of species®,
the low species-level conservation of microorganisms across human
cohorts' and the myriad of metabolites through which the microbiota
and host can interact”. One approach to overcome this complexity
is constraint-based metabolic modelling'. This method builds onin
silicorepresentations of the metabolic networks of individual species—
so-called genome-scale metabolic networks—and allows the prediction
of metabolic fluxes inindividual species or entire communities”. This
approach enables theintegration of different types of omics datasets
to derive context-specific metabolic networks (that is, networks repre-
senting the metabolic state of particular tissues or cells)'®. Therefore,
several studies have used constraint-based metabolic modelling to
investigate changes in microbiome-host interactions in various dis-
eases” and identify specific microbial processes linked to therapeutic
response’’?°,

In this study, we used tissue transcriptomic, metagenomic and
metabolomic data to elucidate the metabolic mechanisms through
which the gut microbiota could contribute to host aging. We exten-
sively characterized microbiome-host interactions at the level of
global associations between host transcript levels and microbiome
functions and then focused on metabolic interactions using an inte-
grated metabolic model of the host and the microbiota. Our results
revealed many known interactions between the host and the microbiota
and postulated numerous hitherto unknown ones. Next we investigated
how these interactions change in the context of aging. We observed a
considerable reduction in microbiome metabolic activity with age,
which seemed to be drivenby substantial changes in within-microbiota
ecological interactions. We subsequently connected aging-related
changes in the host with alterations in the microbiota and discov-
ered that aging-regulated gene networks were significantly enriched
for both microbiome-dependent genes and microbiota-dependent
host functions, as predicted by our models. These functions showed a
marked decline withage. Our findings indicate that the microbiomeisa
major contributor to aging-associated metabolic decline, whichwe also
observe atthe metabolome level and thereby pinpoints metabolic path-
ways through which the microbiome may influence aging in the host.

Results

Taxonomic and functional description of the mouse
microbiome

Wesstudied the effects of aging in 52 male wild-type C57BL/6J/Ukjmice,
separatedinto5age groupsbetween2 monthsand 30 monthsold, repre-
senting early adulthood until late age with ~-5% survival*. We obtained
transcriptome sequencing data for the colon, liver and brain, aswell as
shotgun (167 Gbp) and long-read sequencing data (13.7 Gbp) for faecal
samples, which we used to reconstruct 181 metagenome-assembled
genomes (MAGs; total 367 Mbp) of bacteria comprising their gut micro-
biome (Fig.1a and Extended Data Fig. 1a—e). Taxonomic classification
with the Genome Taxonomy Database Toolkit (GTDB-Tk)* assigned
175 MAGs to known taxa (with the prefix ‘GCA_" or ‘GCF_"), whereas
6 MAGs did not have a matching genome (prefixed ‘UNK_’). Of those
181 MAGs, 25 were considered high-quality drafts according to estab-
lished criteria®, and the rest were considered medium-quality drafts.

Notably, we used more stringent cut-offs (>80% completeness and <10%
contamination) than those suggested in ref. 23 for medium-quality
MAGs to require less gap filling and thus obtain more reliable meta-
bolicmodels for downstreamanalysis (Fig. 1a). Most of the MAGs were
attributed to the phyla Bacillota (previously Firmicutes; n=97) and
Bacteroidota (n = 65). The reconstructed genomes from rarer phyla
included Pseudomonadota (previously Proteobacteria; n =9), Cyano-
bacteriota (previously Cyanobacteria; n =4), Campylobacterota (n =3),
Deferribacterota (n =1), Desulfobacterota (n =1) and Verrucomicro-
biota (n=1).Regarding overall abundance, the most abundant MAGs,
with a coverage depth >1%, belonged to Bacteroidota in the families
Bacteroidaceae (n=5) and Muribaculaceae (n =12). The genome sizes
of the MAGs ranged from 0.9 Mbp to 6.7 Mbp (Fig. 1a).

To functionally annotate the assembled MAGs, we used gapseq*
toreconstruct their corresponding genome-scale metabolic networks.
Ina principal component analysis of the networks (Fig. 1b), principal
component (PC) 1 mainly separated models by the completeness score
(R*=0.15) of the underlying MAGs and the taxonomic rank ‘order’
(R*=0.87). The completeness of the MAGs significantly impacted
the prevalence of pathway gaps within the models. Consequently,
the occurrence of such gaps (R*= 0.55) and the sizes of the models
(R?=0.84) orgenomes (R? = 0.58) partially accounted for the observed
differentiation along the first two PCs. PC2 separated the metabolic
models by the phylum, GC content (R*=0.29) and contamination
score (R*=0.06).

Microbiome functions correlate with host transcripts

After reconstructing the metabolic models of the bacterial species of
the mice, we first determined host functions associated with microbi-
ome functions independent of age. Filtering by association strength
and afalse discovery rate (FDR)-adjusted P < 0.1, we identified 12,732
correlated microbiome reactions and host genes for the colon, 3,425
for the liver and 2,499 for the brain. Enriching these features with
gene ontology (GO)* biological processes (host genes), and meta-
bolic subsystems (microbiome reactions), we obtained 1,377 pairs of
host-microbiome-associated processes for the colon, 283 for the liver
and 167 for the brain; we further summarized these withlevel 2 GO bio-
logical processes and MetaCyc? superpathways (Fig. 2a—c, Extended
Data Fig.2a and Supplementary Tables 2.1-2.4).

The most strongly correlated host functions for the coloninvolved
innate and adaptiveimmune processes and protein processing (Fig. 2a,
Extended Data Fig. 2a and Supplementary Table 2.1). These included
anegative correlation between host immune system processes and
microbial galactose and arabinose degradation pathways. Moreover,
we observed strong positive correlations between microbial purine
metabolism and mitochondrial respirationinthe host. Furthermore, we
found that microbial pathwaysinvolved inlipid metabolism were cor-
related with host processesinvolved intissue homeostasis, such as DNA
damage responses and cell death. By directly inferring functions from
quality-controlled metagenomic read data (HUMANN3)*, we found
fewer, yet comparable, host-microbiome associations (Extended Data
Fig.2band Supplementary Table 2.7). For the liver, we detected associa-
tions between central metabolic pathways of the microbiota and chro-
matinorganizationinthe hostaswellasbetween T cell proliferation and
microbial branched-chain amino acid metabolism (Fig. 2b, Extended
Data Fig. 2a and Supplementary Table 2.2). For the brain, we found
strong correlations between protein catabolic processes and microbial
nucleotide metabolism (Fig. 2c, Extended Data Fig. 2a and Supplemen-
tary Table 2.3). To independently validate host genes associated with
microbiome functions, we determined their regulationin response to
microbial colonization. To thisend, we generated transcriptomic data
fromfive tissues (colon, liver, brain, gonadal white adipose tissue and
quadriceps) of three groups of mice: conventionally raised wild-type
mice (CONVR), germ-free (GF) mice and mice conventionalized with
faecal material from WT mice (CONVD; n = 8 per group). Comparing
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genes responsive to microbial colonization (comparison CONVR versus
GF and CONVD versus GF; Supplementary Tables 2.8-2.12) and those
associated with microbiome function, we found a highly significant
overlapincolonand liver, but notinbrain (Fig. 2d). The lack of signifi-
cantoverlap with microbiome-responsive genesin the brain mightbe
partially due to the relatively small number of microbiome-responsive
genesin this tissue (Supplementary Table 2.12).

Host-microbiome interactions in the metaorganism model

We nextaimed to gain amore mechanistic understanding of the under-
lying metabolic pathways mediating host-microbiome associations
with anintegrated metabolic metamodel of the host and the micro-
biome. In this metamodel, the host is represented by three different
tissues (colon, liver and brain) connected through the bloodstream and
interacting with the microbiome through the gutlumen (Fig. 3a). Each
host tissue is represented by aunique instance of the human metabolic
reconstruction Recon 2.2 (ref. 28), whereas the microbiome is repre-
sented by a combined model including all the metabolic reactions
occurring in at least one bacterial metabolic model reconstructed
from the MAGs (Fig. 3a). Subsequently, context-specific metabolic
metamodels representing the metabolic state of eachmouse were built
based ontissue transcriptomic and metagenomic data using fastcore”
(Supplementary Table 3.1).

To explore the extent to which the metamodel could reconstitute
known host-microbiome interactions, we used it to predict metabo-
lites exchanged between host and microbiota (Fig. 3b and Supplemen-
tary Table 3.2). In the colon, we observed many known interactions
including a provision of the microbiome with bile acids as well as
fucose, a part of mucins®, by the host and a microbial production of
short-chain fatty acids. Moreover, we observed that the microbiota
produced many nucleotides, including nucleotide derivatives such as
NAD and coenzyme A. For the liver, we observed a provision of primary
bile acids to the microbiota and microbial production of nucleotides
andshort-chain fatty acids. For the brain, we observed that the host was
provided with the microbial fermentation product ethanoland several
pyrimidines. The brain and colon provided the pyrimidine precursor
orotate and the nucleotide degradation product uracil to the micro-
biota, while the microbiota provided uridine and deoxycytidine in
return. Overall, we found thatamong the predicted interactions shown
inFig. 3b, 42 (51%) were already supported by previous experimental
evidence across all three organs (Supplementary Table 3.9), thereby
strongly supportingthe ability of the metamodel to capture metabolic
microbiome-hostinteractions.

To elucidate the underlying metabolic pathways connecting the
host and microbiota that might mediate the extensive associations
we have observed, we sampled elementary flux modes (EFMs)* in the
metamodel with the EFMSampler®. Each host reaction was defined as
anindicator reaction through which EFMs were sampled. By record-
ing the frequency at which microbial reactions occurred in the EFMs
of ahost indicator reaction, we obtained an interaction matrix of the
frequency at which microbiome reactions occurred in the pathways
sampledforindividual hostindicator reactions. Using these interaction
matrices, we found that correlated host gene-microbiome reaction
pairs (see Fig. 2) had a higher frequency of model-predicted inter-
actions compared with randomly sampled pairs for liver and colon,
but not for brain (Extended Data Fig. 3a). These findings suggest a
coupling of host metabolic transcription and microbiome metabolic
functionality, even though this might be biased by the utilization of
the same data basis for determining host-microbiome correlations
and reconstructing the metamodel.

To validate the metamodel’s ability to identify microbiome-host
interactions, we examined how microbial colonization influenced
predicted microbiome-dependent host reactions using gene expres-
sion data from our GF mouse cohort. In addition to the colon, liver
and brain, we analysed gonadal white adipose tissue and quadriceps

toassess whether microbiome dependency in one tissue could inform
predictions for others. For each tissue, we identified upregulated,
downregulated and unregulated genes, mapped them to reactions
and evaluated their predicted microbiome dependency. Upregu-
lated reactions showed significantly higher microbiome dependency
than unregulated reactions in seven comparisons, while downregu-
lated reactions showed higher dependency in three (Fig. 3c). Only
two instances showed lower dependency in regulated reactions,
strongly supporting the ability of the metamodel to capture func-
tional host-microbiome interactions. To show that these results were
not due to modelling-inherent biases, we repeated the analysis with
gene labels randomized and did not find a single case with a higher
number of significant associations across 1,000 randomized repeti-
tions (Extended Data Fig. 3b). We further validated the metamodel by
showing a strong correlation between model-predicted microbiome
dependence of serum metabolites and microbiome-driven variance of
those metabolites in an independent human metabolomics cohort®
(Spearman’s p = 0.43, P=1.5 x1073; Extended Data Fig. 3c and Supple-
mentary Table 3.10).

To further functionally characterize the host-
microbiome-interaction matrix, we performed enrichments for host
and microbial metabolic subsystems (Fig.3d-f).In the colon, we found
host pathways associated with energy metabolism, nucleotide metabo-
lism, vitamin metabolism and amino acid metabolism (Fig. 3d) depend-
ing on fermentation products, nucleotide metabolism and vitamin
biosynthesis pathways of the microbiota. Intheliver, energy-producing
pathways and bile acid synthesis were prominent on the host side and
fermentation pathways on the microbiome side (Fig. 3e). Inthe brain,
microbiome-dependent host reactions were enriched in nucleotide
metabolism, folate metabolism and the metabolism of neurotransmit-
ter precursors, such as tryptophan and tyrosine (Fig. 3f). Although
most host-microorganism interactions were relatively generic, rely-
ing on basic microbial metabolic functions (such as glycolysis and
fermentation), we alsoidentified specificinteractions, such as colonic
nucleotide interconversion dependent on microbial ATP synthesis
and colonic coenzyme A catabolism reliant on microbial production
of phosphopantothenate, acoenzyme A precursor.

Agingis linked to reduced microbiome metabolic activity

We next explored functional and taxonomic changesin the aging micro-
biome. Consistent with previous reports in mice****, we observed that
age was associated with a decrease in the abundance of Bacillota and
anincrease in Bacteroidota (Fig. 4a), also when inferring taxonomic
changes from metagenomic data directly (Extended Data Fig. 4a and
Supplementary Table 4.15). To obtain abetter functional understand-
ing of these species-level changes, we used community flux balance
analysis (FBA)"” to predict microbial metabolic activities (Supplemen-
tary Methods). In contrast to the metaorganism modelling approach
used in the previous section, which does not differentiate between
individual microbial species owing to computational limitations,
community FBA models each microbial species individually. Sum-
marizing age-associated reactions on the pathway level, we mainly
observed negative associations (Fig. 4b) involving many biosynthetic
pathways essential for bacterial replication, such as synthesis of amino
acids, nucleotides, vitamins and cell wall components. Similarly, for
metabolic interactions between the microbiota and the host as well
as within the microbiota, we mainly observed strong reductions in
both the consumption and production of metabolites (Fig. 4c and
Extended Data Fig. 4b), including the production of the short-chain
fatty acid butyrate, and increased production of few metabolites,
including pro-inflammatory succinate®. Consistent with a generally
reduced microbial metabolism, we also found that model-predicted and
metagenomics-derived microbial growthrates decreased considerably
withage (Fig.4d) and were strongly correlated (Extended DataFig. 4c).
Furthermore, we evaluated the change of FBA-predicted community

Nature Microbiology | Volume 10 | April 2025 | 973-991

977


http://www.nature.com/naturemicrobiology

Article

https://doi.org/10.1038/s41564-025-01959-z

[+

Host subsystem

Ileal uptake

Colonic . .
uptake Microbiome

Diet Colonic lumen

I Down
) =~~~} &

Bpo o8 8e
so88°

Unregulated [l Up

000 iy
foowsg ® cog@
oo o o oog |

Colon
GF vs. CONVR

Colon
GF vs. CONVD

Liver
GF vs. CONVD

Brain
GF vs. CONVD

gWAT
GF vs. CONVR

gWAT
GF vs. CONVD

Quadriceps
GF vs. CONVR

Quadriceps
GF vs. CONVD

Shared
GF vs. CONVR

T
0.4 0.6

Microbiome dependency

Enrichment Microbiome subsystem

@ 50
@ 100

Colon

2-Deox-p-ribose 1P de rad.
Adenosine ribonucl. biosynth.
°o@0 000°00000 OO@' Bifidobacterium shunt
Formaldehyde assimilation
L-arabinose degradation
Pentose phosphate pathway
Phosphopantothen. biosynth.

Calvin cycle

Vitamin B, metabolism -
Tyroslne metabolism
Tryptophan metabolism -
Triacylglycerol synthesis -
Transport, peroxisomal -
Transport, nuclear

Transport, mitochondrial ~
Transport, lysosomal -
Transport, Golgi apparatus -
Transport, extracellular
Sphingolipid metabolism —
Pyrimidine synthesis -
Pyrimidine catabolism -

Purine synthesis -

Purine catabolism -

Pentose phosphate pathway -
Nucleotide interconversion -
NAD metabolism

Met and Ser metabolism |
Lysine metabolism

Haem synthesis

Haem degradation

Glyox. and dicarboxy. metabolism -
Glycosphingolipid metabolism —
Glycolysis and gluconeogenesis
Glycerophospholipid metabolism -
Gly, Ser, Ala, Thr metabolism
Folate metabolism —

Fatty acid oxidation -

p-alanine metabolism

CoA metabolism

Blood group synthesis —

Bile acid synthesis
Aminosugar metabolism -

@ @@ Heterolactic fermentation

@O@F Glycolysis

oeQe o000

»
3
[}
<
[
>
IS
[}
g
S
o
=
o
©]
°
@
@
]
°
(]
&)
]
°

c0@o0@® @ 000@e ® @c00000

:
:
H

Fig.3|Model-predicted host-microbiomeinteractions. a, Structure of the

Purine ribonucl. degrad.

Rubisco shunt

metamodel. The solid borders indicate compartments of the metamodel. The

black arrowsindicate metabolite exchanges between compartments. The dashed
bordersindicate compartments represented only by exchange reactions. The

white arrows indicate the direction of metabolic exchanges along the bloodstream.
BBB, blood-brainbarrier. b, Frequency of microbiome dependence of metabolite
import (positive) and export (negative) across organs. Metabolites with the highest
frequency of exchange across 52 models are shown (Supplementary Table 3.2). For
metabolite abbreviations, see Supplementary Table 3.2. ¢, Microbiome dependency
of microbiome-responsive host genes in a cohort of GF, conventionalized

and conventionally raised mice (n = 8 each). The y axis indicates sets of genes

Sucrose degradation

co@oe@D @O0 o ®° @-o

Butyrate - I
Ethanol | — Butyrate | [ ]
Ur|d|ne B I .
ATP - 1 Propionate -
Myo-inositol - I
denosine I Maltose -
L-tryptophan - I L
L-valine — I Ubiquinone | -
L-tyrosine I
L-serine | I Deoxyuridine | -
Pyridoxine I
Diphosphate — utP [ ]
L- phenylalan ne - I
-lysine I _Ade-L-| 4
L {euc ne | I S-Ade-L-Homocys -
L-isoleucine - | ine -
Glycerol 3[ Qhosph(alte) — | | Thymine -
L-glutamate(l-) | I idine -
¢ Decanoate | [ ] Uridine -
Coenzyme A I ATP 4 .
L-asparagine — I
L-arabinose I
Glycine | | Lactose | -
o-ribose [ ]
L thll\';leolmne B = p-glucose — -
altose
Cytidine | Taurochen.chol. -
(l)rplthme q [ ] - holat -
L-glutamine | ycocholate |
Pgroplonate - | ]
Deoxycytidine [ |
L-arginine | ] -40 -20 0 20 40
Thymidine — ]
D-Sorbltol B | Net frequency
L-proline | ] .
L metl’E’ion ne - | Liver of exchange
L-cyste ne B [ ]
L-histidine ]
Nicotinami de 1 I
Guanosine - I Ethanol - ]
p-galactose | ] -
o — Deoxycytidine -| [ ]
T - | 4
Carbon dloxlde S | 2 Hydroxybutyréte -
dt tel - Uridine
ridoxal - - -
Taurochgn chol. - [—— © glucc.)se ]
Panthetheine-4P — | Creatine o
Formaldehyde - — Guanine
Nicotinate - I
2-Hydroxyblftyrate 1 = Acetaldehyde
o-glucose ic acid -
9 Uracl | Taurocholic aCK'j[
, | — Uracil
L-fucose - I Oxalate —
Chenocholic acid -| IEE—
Glycocholate - mmm— Orotate —
L e
-30 0 30 -20 0 20 40
Colon Net frequency Brain Net frequency
of exchange of exchange
e Enrichment Microbiome subsystem
@ 20 >
kel c
& S 5 2
Q E S 2 % %
g € = g 3 2 <
2 5 £ S o 9 S
. 60 5 2 o 2 5 3 ®
v £ s g E < °
& 3 g 2 L& g 9 g 8
o .3 kel 5 €
23 2 29 £ 25 2 8
T 8 9 5 8 2 B & 8 5 o
2 & 0 8 @ 2 & ¢ T o ©
x 8 = ¢ =2 35 g 3 @
i o & £ & g 8 2 8 ¢ 8§ o
Liver 2 3 2 E § ¢ & & £ 13 &
Q & @ 5 2 Z © § 5 35 3
@ O oL O O I a & & &
Il Il Il Il Il Il Il Il Il Il
£ Vitamin B, metabolism
% Transport, peroxisomal . Q O Q@ o o o 0O
> Transport, mitochondrial o . . @ o0 o . Q
g Transport, extracellular Q@ ©6 © © 0 o o o 0 @
2 Glycolysis and gluconeogengsis . . . . . .
3 Gly, Ser, Ala, Thr metabolism
T Bile acid synthesis © ©0 0o (©) Q
f Enrichment ) . e > £
nrichmen he] c
g g 8 § 2 3
® 500 g £33 §84
s 2 s £ § o < S
@ 1000 - & R E = 2 ]
3 E 5 o o 3 538 ¢ 8
© 15500 8 £ 238 32 6 c 8 £ S5 o
T &8 3 3 £ 9 o5 5 8§ £ &
B EEEREEEEEE
@ 2000 £ 72222 9 2 g2
g 9 £ 8 g 88 5 8 g 2 ¢
. § 2 25 £ §5 g ¢t 8 3 s
Brain a8 85803 t8&E R a
T O R T RO R N
Tyrosine metabolism o o o (@)
£ Tryptophan metabolism—- @
% Transport, peroxisomal4 @ © © o © © 0 © o o
> Transport, extracellular ° o o °
-g Pyrimidine catabolism o O () (6] o
@ Purine synthesis (@) o 0o o
8 Met and Ser metabolism (e} (o]
I Glycolysis and gluconeogenesis o 0 o 0 0 0 o O o O

Folate metabolism

differentially regulated in tissues and contrasts; the x-axis shows the microbiome

dependency of co
atleast threetissu

rresponding reactions. ‘Shared’ indicates genes regulated in
es. FDR-corrected Pvalues of Dunn’s tests following a group-

level Kruskal-Wallis test are shown next to the bar plots of means with error bars
representing the standard deviation. Only comparisons with a Kruskal-Wallis test
P<0.05areshown.*P<0.05; **P<0.01; **P < 0.001. Exact Pvalues are provided
inSupplementary Table 3.11. d-fSubsystem enrichment of model-predicted
interactions between host and microbiome reactions for subsystems connected
withatleast two host subsystems and an FDR-corrected enrichment P<10™

(one-sided Fisher’

sexact test; Supplementary Tables 3.3-3.5). For pathway

abbreviations, please see Supplementary Tables 3.3-3.5.

Nature Microbiology | Volume 10 | April 2025 | 973-991

978


http://www.nature.com/naturemicrobiology

Article

https://doi.org/10.1038/s41564-025-01959-z

GCF_Prevotella_intestinalis_01
GCA_Lachnospiraceae_11
GCA_Lactobacillus_johnsonii_01
GCA_Lachnospira_01
GCA_Coproplasma_01

GCA _Acetatifactor_02
GCA_Lachnospiraceae_05
GCA_Lachnospiraceae_08
GCA_Lachnospiraceae_03
GCA_Paramuribaculum_01
GCA_Muribaculaceae_22
GCA_Pelethomonas_03
GCA_Muribaculaceae_26
GCA_Lachnospiraceae_17

GCA Kineothrix_01
GCA_Lachnospiraceae_10
GCA_Odoribacter_01
GCA_Alistipes_04

2 9152430

000000000000 000000OCO

Scaled mean

O

0 0.1

Age (months)

GCA_Muribaculaceae_19 02 024
GCA_Paramuribaculum_02

GCA_Gallimonas_01 D 9 D 30
GCA_Muribaculaceae_11 015
GCA_Muribaculaceae_25

GCA_Enterousia_02

GCA _Alistipes_02
GCA_Coproplasma_04
GCA_Muribaculaceae_18
GCA_Muribaculaceae_13
GCA_Muribaculaceae_23
GCA_Paraprevotella_01
GCA_Cryptobacteroides_01
GCA_Muribaculum_01
GCF_Prevotella_01
GCF_Prevotella_rodentium_01
GCA_Duncaniella_02
GCA_Christensenellales_06
GCA_Muribaculaceae_01
GCA _Alistipes_06
GCF_Duncaniella_freteri_01
UNK_Coprobacillaceae_01
GCA_Muribaculaceae_15
GCA_Cryptobacteroides_02
GCA _Bacteroides_01

GCA _Alistipes_01
GCA_Amulumruptor_O1
GCA _Alistipes_03

c0c00000000000000000000 00 -00000000000000000000

Microbiota phylum
[ Bacillota
[l Bacteroidota

[l Pseudomonadota

b

2 9152430

Folate synth.
Sphingosine metab.
Phytol degr.

Reductive acetyl CoA pwy.

Dipicolinate synth.
L-lysine synth.
L-serine synth.
Haem b synth.

Adeninyl adenosylcobamide synth.

Methylerythritol phosphate pwy.

UMP synth.
Tetrapyrrole synth.

Phosphatidyl-serine and phosphatidyl-ethanolamine synth.
Peptidoglycan maturation
CDP-diacylglycerol synth.

Anhydromuropeptide recycling

UDP-acetylmuramoyl-pentapeptide synth.

Peptidoglycan synth.

Purine ribonucleosides degr.

Thymine degr.
L-valine synth.
L-isoleucine synth.

Scaled mean

[l Competition
B Amensalism
B Neutralism

B Commensalism

[\

-log,(adjusted P value)

T T T T 1
2 9 15 24 30

Age (months)

(]
Correlation to age
(Spearman p)
-0.6 -0.3 o 03 0.6
S S E—
[T m—
Co”" - E——o
[V S e—
V2 R S—
Ca” - ]
[ QR —
cl —/
L-tyrosine - [
L-isoleucine -
Octadecenoate - [
Y
Hexadecenoate - [
Sulfate - C———
pPPi - C—
L-valine - —/)
L-lysine - —/
Fe® - —/)
HO - =
Palmitate - —/)
Choline - —/
L-leucine - —
Putrescine - —
Butyrate - [C———
Phosphate - —///
H - —/
H, - —
co, - —
N-acetyl-L.-glutamate - —
Menaquinol 7 - | —
Hypoxanthine - —
Succinate -  e—

[J MB consumes
[J MB produces

Bile acid production regulation

® Host @ Microbiome @ Both

Aging regulation

Decr. Incr.

@
Ursocholic acid

w
o
o

Frequency
= N
o O
o O

o

[ ]
BA_Feature_0516

[ ]
BA_Feature_0514

(]
p:>§etanCA

alpha/beta-TMCA
LitRochalic acid
alpha/beta-MCA
CDCA-7S

BA‘Feature_45
BA_F eulurej)‘z)ﬁ'

12-KetoCDCA 7-

AL”H\ >
Dehydrolithocholic acid 1

BA,Featur“ejE)ZO
T T T T T T
-7.5 -5.0 -2.5 o 25 5.0

B Flux balance analysis e
0.030 (model based)
X O
P=17x10"
-C.é 0.025 - P=5x10"
o P=2.6x10"
2 2
> N ;
Z 0020 | P=17x10"
S OX % o
g X 0 50
2
8 o.015 s <
8x* S
SETLs
1 C
0.010 - N X 3 40
L x Q
" T T T : ©
2 9 15 24 30 2 35
Age (months) <
o
Peak to trough 30
(metagenome based)
P=91x10"
0.80 7 P=7.9x10"
_ = 12
0.75 4 __P=41x10°
< P=9.1x10 I
= < 10
2 o070 x o0 3
o 1 % X S 08
= 0.65 o - _§
S 060 - X i : 3 06
£ X, ©
| X
E 0551 x % 4 Q 04
o X =
050 1 ' x bs X X T 02
o T 2
0.45 - ; . . . : 0
2 9 15 24 30 2‘
Age (months)

Fig. 4| Microbiome alterations associated with host age. a, Aging-associated
changesin MAG abundance. b, Subsystem-level aging-associated changes in
microbiome internal reaction fluxes. ¢, Aging-associated changes of host-
microbiota metabolic exchange. d, Comparison of microbiome community
growthrates derived from FBA or the PTR (30 months: n =12; all others, n=10;
FDR-corrected Pvalues from Dunn’s test following Kruskal-Wallis test).

e, Aging-associated changes in model-predicted ecological interactions in the
microbiota. Linear-model-derived regression with 95% confidence intervals
(30 months: n=12; all others, n=10). f, Aging-associated changes in faecal
metabolite concentrations in mice. All age-associated metabolites are shown

T
9

T T 1
15 24 30

Age (months)

log,(Fold-Change)

(FDR-adjusted P < 0.1from Spearman correlations; log,(fold change (FC)) of 3

to 28 months; 3 months: n =15; 9 months: n =16; 15 months: n =15; 24 months:
n=17;28 months: n =18; Supplementary Table 4.12). The origin of bile acids
isindicated. ‘Both’ refers to bile acids produced by the host but regulated by

the microbiota. Metabolites with the prefix ‘BA_Feature’ have not been fully
resolved. incr., increase; decr., decrease; CA-7S, cholic acid-7-sulfate; CDCA-7S,
chenodeoxycholic acid-7-sulfate; MCA, muricholic acid; TMCA, tauromuricholic
acid. Box plot elements: centre line, median; box limits, 25-75% quantiles;

whiskers, 1.5x interquartile range (IQR); points, outliers.

Nature Microbiology | Volume 10 | April 2025 | 973-991

979


http://www.nature.com/naturemicrobiology

Article

https://doi.org/10.1038/s41564-025-01959-z

growthuponremoval of single bacterial members, and observed that
MAGs suppressed in aging had a beneficial effect on community pro-
ductivity and growth, while MAGs which were enriched in old mice
showed a negative impact (Extended Data Fig. 4d,e).

To gaininsightinto the potential microbiome-intrinsic causes of
the observed aging-associated suppression of metabolism, we used
community FBA" to predict the frequencies of ecological interactions
(Methods). We observed a significant decrease in amensal, commen-
sal and neutral interactions at the expense of increased competitive
interactions (Fig. 4e). These shifts in community interactions were
also observed at the level of individual microbial ecological strategies
derived from the universal adaptive strategies theory framework®”>s,
indicatingashiftinthe community towards the dominance of ruderals,
whicharefirst colonizers of niches and poor interaction partners owing
toreduced catabolic diversity”” (Extended Data Fig. 4f).

To further explore the predicted loss of microbiome metabolic
activity and metabolic cooperativity with age, we performed an untar-
geted metabolomics analysis of faecal samples from an independent
cohort of 82 mice across all age groups. We determined the corre-
lation between the abundance of identified metabolomic features
and age and found that 374 of 561 features (67%) showed significant
downregulation (FDR-adjusted P < 0.1; Fig. 4f). Within this dataset, we
specifically annotated bile acids using reference standards because
of their previously documented role in host aging®. Consistent with
the reduction in microbiome metabolic activity with age, we found
that the concentrations of host-regulated bile acids were significantly
increased (four out of six features). By contrast, the concentrations
of microbiome-regulated bile acids were mostly reduced (seven out
of eight features). Intriguingly, metabolomic features annotated as
cholic acid-7-sulfate, which is produced by the host but regulated
by the microbiota*®, were exclusively downregulated with age. Also,
further microbiome-regulated metabolites, including valine, betaine,
nicotinamide, enterolactone and 3-hydroxykynurenine, were down-
regulated with age (Supplementary Table 4.12). Moreover, we found an
increase inthe pro-inflammatory microbial metabolite D-galactose, for
which we observed a strong association with host immune processes
inthe colon (Fig. 2b), although only significant before FDR correction
(Extended DataFig.4g).

Aging decline of microbial metabolism impacts host functions

Next, we investigated how the aging-associated loss of microbiome
metabolic function potentially impacted host functions. To this end, we
used differential gene expression analysis and GO term enrichment to
identify aging-regulated genes and processes. Consistent with our pre-
vious work, we found a considerable conservation of aging-regulated
genes across tissues® including 157 transcripts that were consistently
downregulated and 526 genes that were consistently upregulated.
Upregulated genes were mostly enriched for immune-associated
processes and downregulated genes in cellular maintenance and
tissue regeneration processes (Fig. 5, Extended Data Fig. 5a-d and
Supplementary Tables 5.1-5.9). Exploring connections between
aging and the microbiome, we found a highly significant enrichment
of microbiome-correlated transcripts among aging-regulated genes
across all tissues (Fig. 6a). Along with the loss of microbiome meta-
bolic function with age (see Fig. 4), we also found a pronounced loss of
host-microbiome associations with age (Extended DataFig. 6a-e). We
found a higher number of GO biological processes for both aging and
microbiome-associated genes in the colon than in the liver and brain
(Fig. 6b, Extended Data Fig. 6f,g and Supplementary Tables 6.1-6.4).
Notably, tissue homeostasis and organ regeneration processes were
downregulated in the colon with age but positively correlated with
microbial metabolic pathways. Conversely, aging-induced processes,
primarily defence, inflammatory and immune responses, were nega-
tively associated with microbial metabolism (Fig. 6b). Brain devel-
opment was negatively correlated with microbial metabolism and
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Fig. 5| Aging-associated transcriptomic changes across host tissues.
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names, see Supplementary Tables 5.4-5.6.
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downregulated with aging (Extended Data Fig. 6g). On the microbial
side, glycolysis, nucleotide synthesis and D-galactose degradation
were suppressed with age and mostly negatively correlated with host
gene expression (Fig. 6¢). In connection with the aging-associated
increasein microbial production of the pro-inflammatory metabolite
succinate, observed in community modelling (see Fig. 4c), we also
identified many aging-associated changesin succinate-metabolizing
microbial pathways correlated with host gene expression (for example,
oxalate and itaconate degradation).

Given the observed reduction in microbiome-host associa-
tions, we next aimed to identify the underlying metabolic pathways
potentially mediating those changes. To achieve this, we defined
aging-regulated metabolic modules among the metamodel’s metabolic
reactions using the host-microbiome-interaction matrix obtained
from EFM sampling. Metabolic modules were determined accord-
ing to sampled EFMs (compare with Fig. 3d-f), selecting reactions
presentin at least 20% of the EFMs for each indicator reaction (Meth-
ods). Aging regulation of those modules was then inferred from the
over-representation of aging-regulated reactions in each module.
In the colon, liver and brain, we identified aging-induced (51, 88 and
99, respectively) and aging-repressed (2,509, 1,702 and 524, respec-
tively) metabolic modules (Supplementary Tables 6.5-6.7), with
aging-repressed modules being significantly more dependent on
the microbiome across all tissues (Fig. 6d). These modules revealed
downregulation of colon metabolic pathways linked to fatty acid oxi-
dation, N-glycan synthesis and sphingolipid metabolism, which are
central to cellular homeostasis. In the liver, downregulated modules
were enriched in bile acid synthesis and triacylglycerol synthesis,
aligning with age-related shifts in bile acid profiles (see Fig. 4f). Inthe
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Fig. 6| Aging-associated changes in host-microbiome interactions.

a, Overlap between aging-regulated and microbiome-regulated host genes
(Pvalues via upper-tailed hypergeometric test). b, Colon-specific gene
expression changes with age in processes correlated with microbiome metabolic
functions (legend shared with ¢). ¢, Aging-dependent changes in microbiome
processes correlated with host gene expression. For complete data and

full pathway names, see Supplementary Tables 6.1and 6.4.d, Frequency of
microbiome dependence of aging-regulated metabolic modules across host
tissues (Pvalues via one-sided Fisher’s exact test). e, Subsystem-level enrichment
of indicator reactions of aging-regulated metabolic modules (one-sided

Fisher’s exact test). The x axis represents enriched host subsystems; the y axis
represents aging-regulated gene sets. f, Aging association of brain metabolites
predicted to be exchanged between the microbiome and host. Data fromref. 41
(Supplementary Table 6.9). Pvalues obtained by two-sided Wilcoxon rank-sum
test. g, Aging-associated metabolome changes for selected model-predicted
microbiota-produced and microbiota-consumed metabolites (P values via
Kruskal-Wallis test). Data from ref. 41 (n = 64 mice). Box plot elements: centre
line, median; box limits, 25-75% quantiles; whiskers, 1.5 IQR; points, outliers.
Significance: *P < 0.05; **P < 0.01; ***P < 0.001. Exact Pvalues are provided in
Supplementary Table 6.9.
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brain, aging-regulated modules were enriched in nucleotide as well
as sphingolipid metabolism and transport pathways (Fig. 6e and Sup-
plementary Table 6.8). Given the strong effect of aging-suppressed
microbiome metabolismon the brain (Fig. 6d,e), we analysed itsimpact
onthebrain metabolome using a public mouse dataset*'. Correlations
between metabolite concentrations and mouse age revealed that
metabolites provided from host to microbiotaaccumulated with age,
while microbiota-derived metabolites were depleted (Fig. 6f). This
included accumulation of nucleotide precursors such as orotate and
uracil, and depletion of salvage pathway products such as adenosine,
2-deoxycytidine and uridine (Fig. 6g).

Discussion

Inthis study, we performed amodel-based analysis of aging-associated
alterationsin host-microbiotainteractionsin mice. We reconstructed
181 MAGs using shotgun and long-read sequencing, converting them
into constraint-based metabolic networks. Our investigation revealed
extensive associations between microbiome functions and the host’s
colon, liver and brain transcriptome. Many correlations involved host
immune processes, mitochondrial function and chromatin modifica-
tion, alongside microbiome-derived metabolites such as D-galactose,
known to promote neurodegeneration and inflammation*, and leu-
cine, aregulator of T cell function®. Associations also highlighted
microbial fermentation and nucleotide metabolism, consistent with
the roles of microorganism-produced short-chain fatty acids and
nucleotides in colonic energy balance** and intestinal barrier func-
tion* (Extended Data Fig. 7).

A key aspect of our analysis was the reconstruction of metabolic
metaorganism models, adapted from whole-body metabolic models
for humans*®. These models successfully recovered well-documented
microbiome-host interactions involving short-chain fatty acids, bile
acids and other microbial metabolites. Notably, 51% of the predicted
high-confidenceinteractions were corroborated by existing literature.
Furthermore, genes found to be regulated by microbial colonization
also showed a higher microbiome dependence in the metamodels,
underscoring the metamodel’s ability to infer host-microbiome inter-
actions accurately.

Examiningreaction-level dependencies viaEFM analysis revealed
that the host most often depended on central metabolic reactions of
the microbiome. This strategy may reduce reliance on specific bacte-
rial species, broadening the potential pool of interaction partners*,
consistent with conserved gut microbiome functions across human
cohorts*®. However, the focus on central pathways might also reflect
biasesin the model’s representation of bacterial metabolism.

Another interesting aspect of the predicted microbiome-host
exchanges are metabolites that the host can produce itself, such as
nucleotides. The reasons for the existence of such exchanges could
include advantages from a division of labour, as frequently observed
within microbial communities*’, areliance of the host on the microbiota
as a metabolic backup system to increase phenotypic plasticity®°,
or evolutionary addiction, whereby mutual dependencies develop
owing to the constant exposure of the host to microbially produced
metabolites®.

Aging-associated changes of the microbiome communities
revealed increases in Bacteroidota and decreases in Bacillota species,
reflecting human studies linking Bacteroidota persistence to poorer
health and Bacillota enrichment to healthier aging’. Furthermore, we
observed reduced microbiome growth and metabolic activity, spe-
cifically for the production of butyrate as key changes in aging. This
aligns with findings of decreased serum butyrate levels in aged mice
and humans®*2, By contrast, metabolic modelling predicted increased
production of the pro-inflammatory metabolite succinate®*, a known
indicator of a dysbiotic gut environment**, which we found to be
associated with key processes deregulated in aging on the host side
including, as previously reported, DNA damage response® and protein

homeostasis®. Reduced microbial growth could underlie increased
constipation risk® and longer colonic transit times* observed during
aging.Reduced microbial growth and a decreased capacity to turnnutri-
entsinto biomass have previously also been observed as adirect effect
of increased transit times in a bioreactor setup mimicking the colon®’.

Our analysis suggested that age-related changes in gut ecol-
ogy involved increased competition and decreased cross-feeding,
reducing dietary resource utilization efficiency. These trends were
reflected in faecal metabolomics, in which most metabolic fea-
tures decreased with age. Host-regulated bile acids increased, while
microbiome-regulated bile acids declined. Anti-inflammatory metabo-
lites such as valine, betaine and 3-hydroxykynurenine®®** decreased,
while pro-inflammatory metabolites such as b-galactose increased®.

Aging-associated inflammation and suppressed cellular repli-
cation across host tissues were consistent with our previous find-
ings on conserved aging signatures®. Colon-specific changes in the
transcriptome, supported by previous studies, included altered gut
motility®*, reduced colonicbarrier function® and proliferation®, while
theliver showed adecrease in mitochondrial biogenesis, as previously
observed®.

Agingalso considerably affected host-microbiome interactions.
Aging-regulated host genes were enriched for those correlated with
microbiome functions, particularly in downregulated metabolic mod-
ules central to cellular homeostasis, such as fatty acid oxidation and
nucleotide uptake. These findings align with our correlation analyses
showing positive associations between microbial metabolism and
host homeostasis and negative associations with inflammation. We
previously observed a similar loss of microbiome-host interactions
as a key component of pathology in inflammatory bowel disease?.
The observed loss of host-microbiome interactions across all organs
indicates that the microbiome might contribute to crucial aspects of
the systemicaging process, such as metabolic decline®®*® and the loss
of cellular proliferation, along with stem cell exhaustion.

Microbially produced nucleotides emerged as a key metabolic
exchange, with model predictions indicating host provision of pre-
cursors (for example, orotate) and degradation products (for exam-
ple, uracil) to the microbiota, which provided nucleotides in return.
This exchange aligns with our observation of widespread correlations
acrossalltissues between host gene expression and microbial nucleotide
metabolism. Despite host capability for de novo nucleotide synthesis,
recentstudies emphasize the microbiota’s contributing role, particularly
inthe colon*”°, Bacterial species such as Escherichia coliand Bacteroides
spp.actively excrete ATP, non-lyticly, duringgrowth” 2, and bacterial ATP
contributes tointestinal barrier function* aswell asimmune modulation
via purinergic receptors’™. An aging-associated decline in nucleotide
co-metabolism could underlie diminished intestinal barrier integrity*,
linked to age-related diseases’”*, reduced systemic proliferative capac-
ity” andimpaired mitochondrial function’. Furthermore, microbiome
involvement in brain nucleotide salvage, crucial for DNA repair and cel-
lular homeostasis”’, might relate to neurodegeneration’.

Insummary, we identified pronounced aging-associated changes
inmicrobiome-hostinteractions, largely driven by reduced microbial
metabolic activity. Although limited by its reliance on modelling,
our study validated many interactions through independent analy-
sis and literature, offering insights into the systemic aging process.
Notably, while metabolic metamodels identify specific metabolite
exchanges, transporter promiscuity and modelling limitations may
imply the exchange of structurally related compounds in vivo. A fur-
ther limitation of our study was the exclusive use of male mice, as the
logistical challenges of establishing a separate aging cohort for females
precluded the inclusion of both sexes. Focusing initially on males
ensured consistency by avoiding sex-specific variability. Consequently,
sex-specific changes were not investigated in this study but will be
consideredin future research. Besides chronological age, future work
should alsoincorporate epigenetic clocks and biological age markers
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such as frailty, loss of motor function and cognitive decline’. Finally,
ouridentification of aloss of microbiome metabolic activity indicates
apotentially crucial aging-associated change that could contribute to
many aging-associated pathologiesin the host. Therefore, microbiome
metabolic activity could be a target for future microbiome-based
therapies. Our modelling approach could play a crucial role in design-
ing targeted interventions aimed at mitigating microbiome-driven
aspects of aging.

Methods

Mouse strains

Main study and metabolomics cohorts. The mice used for the aging
study were an in-house strain derived from the C57BL/6) strain (The
Jackson Laboratory). These C57BL/6J/Ukj mice lack two common muta-
tions found inthe C57BL/6] strain: the DIP686 mutationinthe crumbs
family member 1(CrbI) gene, whichis vital for eyesight in aging mice,
and a mutation in the nicotinamide nucleotide transhydrogenase
(Nnt) gene, which encodes mitochondrial NAD(P) transhydrogenase,
protecting against oxidative stress. Preserving both these genes is
advantageous for metabolic and aging studies in mice.

GF mice cohort. The GF mice used for the analysis of host responses
to microbial colonization were rederived axenic conventional Jackson
Laboratory C57BL/6J, strain 000664 mice (The Jackson Laboratory).
The mice were housed in the Experimental Biomedicine facility at the
University of Gothenburg, Sweden.

Animal handling

Main study cohort. Male C57BL/6J/Ukj mice were bred in the Central
Experimental Animal Facility at Jena University Hospital (Jena, Ger-
many). The mice were housed at22 + 2 °C witha14:10 hday-night cycle
and a relative humidity of 55% + 10%. They were co-housed accord-
ing to their birth cohort (similar ages) in standard cages (GM500,
Type llI; Tecniplast Deutschland), and a maximum of two mice from
the same cage were used for experiments. The mice had unlimited
access to water and food (mouse V1534-300, ssniff Spezialdidten).
Next-generation RNA sequencing of host tissues and metagenomics
of faecal samples were conducted in 52 mice of different ages span-
ning the mouse’s adult lifespan (2-3 months (mean = 2.5 months),
9-10 months (mean = 9.8 months), 15-17 months (mean =15.9 months),
24-25 months (mean =24.8 months) and 28-31 months
(mean =29.1 months)). For simplicity, the five age groups are referred
toas2 months (n=10),9 months (n=10),15 months (n=10), 24 months
(n=10) and 30 months (n =12) throughout the paper (Supplementary
Table 1.1). In our study, we focused exclusively on male mice for two
primary reasons. First, we aimed to minimize potential confounding
factors arising from fluctuations in sex hormones in female mice,
which areknown to influence metabolic processes across tissues dur-
ing aging®. Second, addressing sex differences in aging would have
required a fully stratified experimental design® and, consequently,
a separate cohort of female mice. Given that only 10-15% of animals
typically reach the age of 30 months, achieving comparable sample
sizes and statistical power for the oldest age group alone would have
necessitated approximately 100 female mice.

Metabolomics cohort. An independent mouse cohort was used for
the metabolomics analysis of faecal samples. This cohort comprised
83 male mice in five age groups: 3 months (n=16), 9 months (n =16),
15 months (n =16), 24 months (n =17) and 28 months (n =18) (Sup-
plementary Table 4.11). These mice were bred and housed in the same
mouse facility under the same conditions.

GF mice cohort. For the analysis of host responses to microbial colo-
nization, tissues of female C57BL/6) mice (n = 24) were obtained from
the Experimental Biomedicine facility at the University of Gothenburg,

Sweden. Throughout the experiment, the mice had ad libitum access
to chow and water and were exposed to a12:12 hlight-dark cycle. The
mice were divided into three treatment groups: GF (n=8), conven-
tionally raised (CONVR, n = 8) and conventionalized (CONVD, n =8).
The mice withineach group were not all littermates. ACONVR mouse,
which was not part of the sampled CONVR group and was ~10 weeks
old, served as the donor for the conventionalization process. GF mice
were orally gavaged with gut microbiome at 10 weeks of age on aver-
age (Supplementary Table 1.1). The gut microbiome used for conven-
tionalization was extracted from the caecum and mixed with reduced
phosphate-buffered saline to obtain a final volume of 200 pl.

Sample collection
Main study and metabolomics cohort. The mice were sacrificed by
cervical dislocation in three cohorts (randomized by age) on three
consecutive mornings. The left hemisphere of the brain was prepped
onice, transferred to liquid nitrogen for storage and used later for RNA
extraction. Faeces were collected from the colon by squeezing the
colon contents towards the distal end and snap-freezing one pelletin
liquid nitrogen; the pellets were used later for metagenomic sequenc-
ing (for the first cohort) or metabolite measurement by hydrophilic
interaction liquid chromatography ultrahigh-performance liquid
chromatography-tandem mass spectrometry (for the second cohort).
The colons wererinsed with sterile phosphate-buffered salineand cut
longitudinally; a piece measuring the length of one-eighth of the left
half of the mid colon was frozen in liquid nitrogen for later use in RNA
extraction. A piece withalength of approximately 1 cmwas cutfromthe
end of theleftlaterallobe of the liver and snap-frozenin liquid nitrogen
forlater usein RNA extraction. RNA was extracted from tissue samples
oftheliver, colonand left brain hemisphere using the phenol-chloro-
form extraction method with1 ml of Qiazol Lysis Reagent (Qiagen)®'.
All studies were performed in strict compliance with the recom-
mendations of the European Commission for the protection of animals
used for scientific purposes and with the approval of the local govern-
ment (Thiiringer Landesamt fiir Verbraucherschutz, Germany; license:
02-024/15; TWZ-000-2017). Experiments were performed according
to the ARRIVE guidelines®.

GF mouse cohort. At -12 weeks of age, all mice were sacrificed for the
extraction of brain, colon, liver, gonadal white adipose tissue (gWAT)
and quadriceps tissues. RNA was isolated from the brain, colon, liver
and quadriceps via the ‘RNeasy mini kit’ (Qiagen) according to the
manufacturer’s protocol, while RNA from gonadal white adipose tissue
wasisolated using the TRIZOL method®. Briefly,1 ml TRIzol was added
t050-75 mg pestle-homogenized tissue followed by vortexing, a5-min
incubation at room temperature and addition of 200 pl chloroform.
After mixing, further incubation at room temperature for 2-3 min
and centrifugation (12,000 g) at 4 °C for 5 min, the clear supernatant
was mixed with 500 pl isopropanol followed by incubation at room
temperature for 10 min. After further centrifugation (12,000 g) at4 °C
for 10 min, the supernatant was discarded and the pellet washed with
1mlcold 75%EtOH followed by vortexing and centrifugation (7,500 g,
4°C,5min). The pellet was dried and dissolved in RNase-free water.
Allanimal protocols were approved by the Gothenburg Animal Ethics
Committee (vote #2652-19).

Metagenomic sequencing

Microbial DNA was extracted from colon contents with the DNeasy
PowerSoil Kit (Qiagen) following the manufacturer’s protocol. Next, the
DNA was prepared at the Max Planck Institute for Evolutionary Biology
(P16n, Germany) with the llluminaNexteraXT Library Kit. All 52 samples
were pooled and sequenced for 2 x 150 cycles in paired-end mode on
all four lanes of an Illumina NextSeq 500 machine. Demultiplexing
was performed with one mismatch allowed in barcodes. The raw read
data were merged sample-wise and subjected to quality control for
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adaptor contamination and base call qualities. Adaptor sequences with
anoverlap of >3 bp and base calls with a Phred+33 quality score of <30
were trimmed from the 3’ ends of reads using Cutadapt (version1.12).
lllumina’s Nextera transposon sequence and the reverse complement
of TruSeq primer sequences were used as adaptor sequences.

Subsequently, reads were subjected to quality control using Prin-
seq lite (version 0.20.4) with asliding window approach thatapplied a
step size of 5 bp, awindow size of 10 bp, ameanbase quality of <30 and
a minimume-length filter that discarded any reads shorter than 50 bp
after all other quality control steps. To filter out host sequences, the
remaining sequences were mapped to the mouse reference genome
(GRCm38.99) with Bowtie (version 2.2.5). The remaining unmapped
reads were then used for MAG assembly.

Nosignificant differences were detected in the total microbial read
depth orhost contamination between age groups (Kruskal-Wallis test
with post hoc Dunn’s test and Benjamini-Hochberg multiple-testing
correction conducted with the DunnTest function in the DescTools R
package (version 0.99.50); Extended DataFig. 1b,c).

Long-read sequencing was performed at the next-generation
sequencing (NGS) core facility of the FLI LeibnizInstitute on Aging (Jena,
Germany). The DNA quality was assessed with an Agilent Bioanalyzer
2100 witha DNA12000Kit (Agilent Technologies) and quantified withan
Invitrogen Quant-iT PicoGreen dsDNA Assay (Thermo Fisher Scientific).
Thesequencinglibrary was prepared accordingto the Pacific Biosystems’
manual ‘Procedure & Checklist-20 kb Template PreparationUsingBlue-
PippinSize-SelectionSystem’ (version10,January 2018) withthe SMRT-
bell Template Prep Kit 1.0 (Pacific Biosciences). Specifically, DNA from
age-matched samples was pooled, fragmented (75 kb) by aMegaruptor
(Diagenode) and size selected for >6-kbp fragments with a BluePippin
and 0.75% Gel Cassette (programme: 0.75% DF Marker S1 High-Pass
6-10 kb vs3; Sage Science). Each pool was loaded onto a SMRTcell and
sequenced on aPacific Biosystems RSIlmachine with DNA-Sequencing
Kit 4.0 v2, MagBeadBuffer Kit v2, MagBead Binding Buffer Kit v2 and
DNA Polymerase Kit P6v2. The sequence output of these eight runs had
anaverageread length of 7.8-9.7 kb with aminimumyield of 750 kbp per
SMRTcell. The raw read data were subjected to quality control, processed
intocircular consensus sequences and subreads, and exported as FASTQ
files viathe SMRTportal (provided by Pacific Biosciences).

MAG assembly and annotation

MAGs were constructed as follows (outlined in Extended Data Fig. 1a).
Pacific Biosystems circular consensus sequences and subreads were
used as is, while Illumina shotgun reads were filtered for low read
quality, adaptors and host contamination (Metagenomic Sequenc-
ing). A full cohort assembly was done in metaSPAdes (SPAdes version
3.13.1) in hybrid mode with k-mer sizes of 21, 33, 55 and 77. Concat-
enated, quality-controlled, forward and reverse Illumina short read
files of all samples were used as input. In addition, the assembly soft-
ware was informed with the eight Pacific Biosystems long read banks
(hybrid mode) inthe form of filtered subreads and circular consensus
sequences.

The resulting scaffolds were filtered for a minimum length of
1,000 bp and coverage >7.7815. The cut-offs were determined by
scatter plotting coverage versus length, as described in ref. 84. The
quality-controlled metagenomic reads were mapped back to the filtered
scaffolds with Bowtie (version 2.2.5); the insert size was 0-1,000 bp
in the very sensitive, non-deterministic, ‘fr’ stranded mode with
end-to-end alignment. Non-unique mappings and unaligned reads
were discarded. The scaffold coverage depth was determined with the
jgi_summarize_bam_contig_depthsscriptfrom MetaBAT (version2.12.1).
This coverage depth information was then used to sort the remaining
scaffolds into bins, each representing single bacterial genomes, with
the binning tools MetaBAT (version 2.12.1), CONCOCT (version 1.1.0)
and MaxBin (version2.2.4). For CONCOCT, the scaffolds were broken up
into 10-kbp chunks. Bin refinement was conducted with the combined

results of all three binners (252 bins) with DASTool (version1.1.2); subse-
quently, quality metrics were calculated by CheckM (version1.1.2). Bins
with a quality estimate of >80% and a contamination estimate of <10%
were considered for further analysis and are henceforth referred to as
MAGs. In our reporting of medium- and high-quality MAG drafts, we
referred to the standards and metrics laid out by The Genome Standards
Consortium?. Accordingly,aMAG will be considered high quality with
acompletion>90%, contamination <5% and whether genes for 23S, 16S
and 5S rRNA and at least 18 tRNAs are recovered. While 133 of our 181
MAG:s fulfil these very strict completion and contamination cut-offs,
only 25 of those 133 could be considered true high-quality MAGs only
duetosome missing rRNA or tRNA genes. The lack of those genes, how-
ever, doesnotimpact the quality of our MAG-derived metabolic models.
Only 18 of our MAGs showed a contamination score greater than 5%,
ranging from 5.1%to 9.8% with amean of 6.7%, and only 2 of those 18 had
acompleteness score<90% (Supplementary Table1.2). We used slightly
less strict cut-offs for contamination and completeness to include a
larger variety of MAGsin our study. While the metabolic model construc-
tion from MAGs can partially compensate for lack of completeness via
gap filling and for contamination by pathway-completeness checks,
our more loose contamination cut-offs might reduce the accuracy of
taxonomic assignments.

The 181 final MAGs were taxonomically annotated with GTDB-Tk
(version 2.1.1) and database version r214. The tRNA genes were char-
acterized using tRNAscan-SE (version2.0.9). The16S rRNA genes were
detected by barrnap (version 0.9) in the ‘kingdom bacteria’ mode. A
phylogenetic tree of the 181 MAGs (Fig. 1a) was created from a mul-
tiple sequence alignment created by GTDB-Tk (align/gtdbtk.bac120.
user_msa.fasta.gz) with the European Bioinformatics Institute’s online
Simple Phylogeny tool (ClustalW version 2.1) and visualized with R
statistical software. The complete characterization of the MAGs is
providedin Supplementary Table1.2.

Forassociation with age, MAG abundances were calculated viathe
mean of the scaffold coverage depths across all scaffolds belonging
toaMAG, normalized by total sample abundance and then correlated
withageinlinear models for eachMAG across all samples. The Pvalues
were corrected for multiple testing with the Benjamini-Hochberg FDR
method.Significant age-associated MAGs (FDR-adjusted Pvalue < 0.05)
were plotted (Fig. 4a).

Microbiome metabolic model construction

Metabolic models were constructed for each of the 181 mouse gut bac-
teriainferred from our MAGs in samples from the 52 mice. The recon-
struction was performed in gapseq (version 1.2) with default settings
including gap filling of models (git commit: 159ad378; sequence DB
md5sum: bf8ba98)*. Gap filled reactions for each model areindicated
in the reconstructed models in the Zenodo archive. The nutritional
input for the computational models was designed according to the
fortified rat and mouse diet (V1534-300; ssniff Spezialdiiten). The
diet was reconstructed according to the vendor’s information on its
molecular constituents translated into the corresponding metabolites
inthe models, following the protocol described inref. 85. We assumed
anaverage daily uptake of 3.5 g of food based onreference values®. This
amount was used to transform the percentages into grams and then
millimoles (millimoles per day). Limited information was reported on
fibreinthe mouse diet; therefore, their values wereimputed fromthe
consumed quantities of cereal and grain products of a German human
cohort”. Because the simulations depicted the intestinal setting, the
absorptionin the smallintestine was considered when calculating the
dietary input (see Supplementary Tables 1.3-1.11 for the respective
calculations and references).

Growthrate prediction from metagenomic data
To further validate the model growth rates, COPTR® was used to esti-
mate growthrates fromthe MAGsin each sample. This method uses the
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peak-to-trough ratio (PTR) (that is, the ratio of sequencing coverage
near the replication origin and the replication terminus) to estimate
the growth of aMAG in asample®®. We first indexed the MAGs with the
command ‘coptrindex -bt2-threads’. Next, using this index, we mapped
our quality-controlled metagenomic reads against our 181 MAGs with
the command ‘coptr map -threads 4 —paired’. Then, read positions were
extracted withthe command ‘coptr extract’, and the PTR was estimated
withthe command ‘coptr estimate’. Default parameters were used for all
commands except ‘coptrindex’and ‘coptr map’ for which the number of
threads was specified. Inaddition, ‘~paired’ was set for the ‘coptr map’
command to inform the software about the use of paired-end reads.
Community growth was determined for each mouse’s microbiome
community by calculating the median growth rate across all MAGs in
its sample. We did not weight growth rate predictions by individual
species’abundances to obtainacommunity-level growthrate. Thereby,
we avoided spurious correlations with community growth rates pre-
dicted using community FBA as community FBA explicitly incorporates
abundance information. Please note that while a previous study found
little correlation between PTR estimates and experimentally measured
growthrates®, this study did notinclude CoPTRin the benchmark and
CoPTRitself was explicitly validated on MAGs.

Modelling of ecological relationships within the microbiome
The ecological relationships for each pair of bacteria across all spe-
cies were predicted. To this end, the growth achieved by a single bac-
terium was compared with that achieved when each bacterium was
co-grown with other bacteria. The relationships were characterized
usingthe ecological relationships describedinaprevious study (Fig.1in
ref. 90) as areference. Growth was estimated by FBA for single growth
and community FBA for combined growth. To achieve this, we used the
R packages sybil® and MicrobiomeGS2 (www.github.com/Waschina/
MicrobiomeGS2) and the linear programming solver IBMILOG CPLEX
22.10. The six types of ecological relationships and their frequencies
among each microbial community were inferred with the R ECoGS
package (https://github.com/maringos/EcoGS). To this end, we con-
sidered for each microbiome each potential pair of species. The type
ofecologicalinteraction between the pair was determined by compar-
ingindividual growth rates with growth rates when both species were
combined. Summing pairwise frequencies for each type of inferred
interaction, we then obtained the frequency of an interaction in each
community. To obtain relative frequencies, the abundance of eco-
logical relations was normalized sample-wise to a sum of 1. Next, a
linear model analysis of each ecological interaction type with age was
conducted and P values were adjusted for multiple testing using the
Benjamini-Hochberg FDR method.

Host-microbiome partial correlations

The transcriptomic data were normalized separately for each organ
(colon, liver and brain) using variance-stabilizing transformation
informed with age and sequencing batch (blind =FALSE) implemented
in the R package DESeq2 (version 1.40.2)°%. A near-zero variance filter
was also applied using the nearZeroVar function of the R package caret
(version 6.0-94). The active reactions of each mouse’s microbiome
community were predicted as described in ‘Estimation of Functional
Capacity of Microbiomes’. The host transcript abundances were cor-
related pairwise with microbiome active reactions (each transcript with
each reaction), correcting for age and sequencing batch (only for the
liver and brain), with Spearman’s partial correlations (implemented
in the R package ppcor (version 1.0)°*). To balance stringent false dis-
covery cut-offs with reasonable result counts, strong correlations
with a Benjamini-Hochberg FDR-corrected’ P< 0.1 and Spearman’s
p > 0.55were considered for downstream analysis. Correlated feature
pairswere obtained for the colon (n=12,732), liver (n = 3,425) and brain
(n=2,499). They consisted of n unique features for the colon (micro-
biome, n=1,606; host, n =2,815), liver (microbiome, n=1,359; host,

n=1,277) and brain (microbiome, n=1,236; host, n=926). The strong
correlations were stratified into either positive or negative correla-
tions according to their correlation values and then annotated with
GO biological processes” (host transcripts) or MetaCyc Pathways*
(microbiome reactions) using hypergeometric over-representation
tests with the phyper function of the R stats package (version 4.3.2;
x =‘correlated features enriched for the term’ -1, m = ‘the total of
all correlated features, n = ‘all features’ - ‘correlated features’ and
k =‘the total of the features in the term’). Enriched terms (pathways
and processes) with at least three features and an FDR-corrected
over-representation P< 0.05werereported (Supplementary Tables 2.1-
2.3 and Fig. 2). After enrichment, we obtained n process pairs for the
colon (n=1,377), liver (n=283) and brain (n=167), as shown in Fig. 2
and Supplementary Tables 2.1-2.3. The negative decadic logarithm of
the over-representation FDR Pvalues was calculated and reported asis
for positive correlations and multiplied by -1for negative correlations.
Only process pairs that were associated with at least two other path-
ways were plotted (Fig. 2) and filtered to highlight the most significant
enrichments with FDR Pvalue cut-offs of <1 x 10° for the colon (Fig. 2a),
<1x10~*for the liver (Fig. 2b) and <1 x 107 for the brain (Fig. 2c).

For a broader overview of host-microbiome associations, the
GO biological processes were grouped by their higher-ranking level
2 GO biological process, and the MetaCyc pathways were grouped
by their respective highest-level superpathways (see Supplementary
Tables2.5and 2.6 for the process and pathway groups). The level 2GO
biological process groups were cellular process, metabolic process,
biological regulation, localization, developmental process, response
to stimulus, immune system process, multicellular organismal process,
viral process, reproduction, homeostatic process and growth. The
MetaCyc microbial superpathways were lipids, carbohydrates, utiliza-
tion, energy metabolism, nucleotides, secondary metabolites, amino
acids, other, signalling, carboxylates, cofactors, carriers, metabolic
regulators, c1 compounds, electron transfer, noncarbon nutrients,
cell structure, biosynthesis, detoxification, interconversion, glycans,
tRNA and bioluminescence. The —log,,(FDR-corrected Pvalues) were
summed for each level 2 GO and MetaCyc superpathway pair. The val-
ues are plotted in Extended Data Fig. 2a and listed in Supplementary
Table2.4.

The pairwise correlations between all host features and all micro-
biome features wererepeated, stratified by organand age group. Thus,
the ratio of significant host-microbiome correlations to all tested
pairs was obtained for each organ and age group. These ratios were
compared using Pearson’s chi-squared test with Yates’ continuity
correction and Bonferroni’s multiple testing correction to identify
significant differences between consecutive age groups (Extended
DataFig. 6a-e).

Theoverlaps of aging-regulated and microbiome-associated tran-
scripts between the three studied organs were determined to identify
shared aging-regulated and microbiome-regulated host transcripts.
The overlap between microbiome-associated and aging-associated
transcripts was statistically evaluated using hypergeometric
over-representation tests separately for each organ. The numbers of
shared transcripts were plotted (Fig. 6a) for each possible combina-
tion for the colon (age associated, n = 4,715; microbiome associated,
n=2,815; shared, n=589; hypergeometric P=4.9 x107"), liver (age
associated, n = 8,285; microbiome associated, n=1,277; shared, n = 485;
hypergeometric P=1.4 x107°) and brain (age associated, n = 6,505;
microbiome associated, n =926; shared, n=236; hypergeometric
P=3.7x107). Reported Pvalues from hypergeometric tests were cor-
rected for multiple testing via Benjamini and Hochberg’s method.

Validation of microbiome-associated host genes

Differentially expressed genes and transcripts were derived from the
GF validation cohort as described in the Supplementary Methods sec-
tion ‘Differential Gene Expression Analysis’. We identified the overlaps
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of microbiome-associated transcripts, identified from our main study
cohortvia partial correlations (see Methods section ‘Host-Microbiome
Partial Correlations’), with the differentially expressed transcripts from
our GF validation cohortinboth treatment contrasts (GF versus CONVR
and GF versus CONVD). The number of shared microbiome-associated
transcripts between both cohorts was statistically evaluated using
hypergeometric over-representation tests stratified by organ and treat-
ment contrast. Thenumbers of shared transcripts were plotted (Fig. 2d)
for each possible combination, for the colon (main cohort, n=2,815;
GF cohort versus CONVR, n=2,703; shared, n = 438; hypergeometric
P=1.1x10"?and GF cohortversus CONVD, n =7,637; shared, n=1,207;
hypergeometric P=7.2 x107'%), for the liver (main cohort, n=1,277;
GF cohort versus CONVR, n = 3,281; shared, n =223; hypergeometric
P=2.7x107 and GF cohort versus CONVD, n=351; shared, n=24;
hypergeometric P=7.9 x1072) and for the brain (main cohort, n = 926;
GF cohort versus CONVR, n = 0; and GF cohort versus CONVD, n = 554;
shared, n=20; hypergeometric P=1.7 x 10"). Reported Pvalues from
hypergeometric tests were corrected for multiple testing via Benjamini
and Hochberg’s method.

Reconstruction of the generic metamodel

A two-step procedure was followed to obtain a metamodel for each
mouse. In the first step, a generic metamodel representing the indi-
vidual organs and the microbiome was assembled. In the second step,
aspecificmetamodel of each mouse was derived by integrating expres-
sion and metagenomic data.

In the first step, we joined three times the human metabolic
reconstruction Recon 2.2 (ref. 28) representing the individual organs
with amicrobiome metabolic model according to their physiological
interactions (Fig.3a). A mouse-specific metabolic reconstruction was
not used, as the human reconstructions are by far the best curated
and there is a high overlap in metabolic content between mice and
humans®. All compartments interfaced with each other viacommon
exchange environments, such as the gut lumen (microbiome and colon)
and thebloodstream (colon, brainand liver). Some exchanges along the
bloodstream were defined as directional, following the physiological
interactions of the organs (see Fig. 3a). Metabolite uptake into the brain
was restricted to metabolites known to cross the blood-brain barrier
(see Supplementary Table 3.7 for a list). To compile this list of com-
pounds, literature resources****”” were used; in addition, we selected
the compoundsinRecon2.2 (ref.28), along with those identified onthe
Virtual MetabolicHuman website (www.vmbh.life) whose physicochemi-
cal properties would allow them to cross the blood-brain barrier®. For
the microbiome metabolic model, all individually reconstructed MAGs
were merged into a single model by combining all microbial reactions
oftheindividual bacterial cellular compartmentsinto asingle reaction
space. This merged microbiome model could then interact with the
human metabolic models via the lumen exchange environment. We
decided to use a merged microbiome model instead of species-level
metabolic reconstructions to maintain computational tractability of
the metamodel for comprehensive downstream analysis (for example,
flux variability analysis and EFM sampling).

Tobetteraccount for organ-and microbiome-specific uptake and
secretion of metabolites, exchange reactions of the individual compart-
ments were splitintoirreversible forwards and backwards directions.
To model the dietary uptake of the mice, the molar concentrations of
allmetabolitesintheir diet were derived and represented in the model
following an established protocol®. In addition, information on the
absorption of dietary metabolites before entry into the colon was
obtainedto differentiate betweenileal and colonic uptake. The diet was
integrated into the model by a direct inflow of absorbed compounds
tothebloodstream and unabsorbed compoundsto the coloniclumen
for microbiome and colonic use.

Following the merging of the human and bacterial metabolic
models, several energy-generating cycles (that is, sets of metabolic

reactions that can form ATP from ADP without the consumption of
other metabolites) were identified and resolved by correcting poten-
tial problems in the reversibility of participating reactions (Supple-
mentary Table 3.6). The metamodel can be found under accession
MODEL2310020001in the EBIBioModels database (https://www.ebi.
ac.uk/biomodels/)*”.

Reconstruction of mouse context-specific metamodels

In the second step, we built a context-specific metamodel for each
mouse. To achieve this, StanDep'°° was applied to the transcriptomic
and metagenomic data to derive the core reactions for each tissue
required to reconstruct context-specific models using fastcore®. Tran-
scriptomic data were preprocessed by transforming counts into frag-
ments per kilobase of transcript per million mapped reads (FPKMs).
After removing genes with at least one sample with zero detected
expression or amean FPKM < 0.1and log, transformation, FPKM values
were normalized using Combat'® and then transformed back to their
original scale. To identify core reactions, mouse genes were mapped
to their corresponding human orthologues using Ensembl Biomart'*%,
The gene expression data of all tissues were combined into a single
matrix, and tissue and age groups were used as separating categories
for StanDep. StanDep was applied with ‘chi2dist’as the distance method
and ‘complete’as the linkage method. After screening optimal cluster
numbers, predicted core reactions remained stable when using 39
clusters (that is, the Jaccard distance of derived core reactions for
StanDep runs with increasing cluster numbers was below 0.05 using
atleast 39 clusters).

For metagenomic data, we obtained areaction abundance matrix
for each microbiome sample. To this end, reads were mapped to MAGs
toderive species-level counts. These were then multiplied with areac-
tion contribution matrix indicating for each reaction in which species
they are present (normalized to a sum of one for each species) and
normalizing to a sum of one across all reactions ina sample. Reaction
abundances were used as input to StanDep with the age group of the
sample as the separating factor, ‘chi2dist’ as the distance method and
‘complete’ as the linkage method. Following the same procedure as
for the gene activity data, 15 clusters were identified as optimal for
reaction abundance data.

Inaddition, metabolic exchanges betweenindividual organs and
the bloodstream previously measured in pigs were included'”* by map-
ping IDs of exchanged metabolites to the corresponding metabolite
identifiers in Recon 2.2. If an organ took up or secreted a metabolite,
the corresponding uptake or secretion reactions were added to the
core reactions. If the kidney took up a metabolite, the correspond-
ing outflow reaction from the blood was added to the core reactions
because the kidney was not modelled explicitly. Subsequently, the
corereactions for each sample and the generic metamodel were used
as input for fastcore to derive a context-specific metamodel for each
mouse. To run fastcore, CORPSE (https://github.com/Porthmeus/
CORPSE) was used as an interface to the corresponding functions of
the TROPPO toolbox™*.

Host and microbiome dependence of reactions

To determine microbiome- or host-dependent functions, flux variabil-
ity analysis withand without the microbiotawere conducted. FVAwas
performed'® by maximizing and minimizing flux through eachreaction
using the ‘flux_variability_analysis()’ function of CobraPy'*® without
optimization of growth (fraction_of_optimum =0) as for most tissues
in mammals there is only negligible cellular replication'”’. Because
internal exchange reactions were split into irreversible forwards and
backwards steps, they were treated separately by always blocking the
corresponding opposing direction. FVA results were summarized by
determining admissible flux ranges, by subtracting minimal from
maximal flux. Microbiome-dependent exchange reactions in the host
were identified by repeating the FVA but blocking each microbiome
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reaction. An exchange reaction was deemed microbiome dependent if
its flux range was reduced to less than 10% when blocking microbiome
reactions. To elucidate the metabolites exchanged between the host
and the microbiota, the microbiota-dependent uptake and secretion
reactions of metabolites for agiven organ were counted. If the number
of cases of microbiome-dependent secretion subtracted from the
frequency of microbiome-dependent uptake was larger than 10, a
metabolite was classified as being provided by microbiotato the host
orviceversa (20% of samples). For plotting (Fig. 3b), only metabolites
with a difference of at least 35 for colon and a difference of at least 12
for brain and liver were shown.

Identification of reaction-level host-microbiome
dependencies

Todetermine the dependencies of individual host reactions onindivid-
ual microbial reactions, EFMSampler®* was used to sample EFMs with
each host and microbial reaction as indicator reaction for sampling.
Theindicatorreactionis used to define the specificreactioninamodel
through which EFMs should be determined. For each target reaction,
EFMSampler wasrunineightparallel threads using flux minimization as
objective until either 10,000 EFMs were sampled or >200 s had elapsed
and the average frequency of occurrence of reactions in EFMs was
recorded. Subsequently, occurrence frequencies were averaged across
all 52 mice. This yielded a matrix in which each column corresponded
to atarget reaction and each row indicated the frequency at which all
otherreactions occurred in EFMs containing that reaction. Thus, avalue
of ‘I’ indicates microbiome reactions that always co-occur in EFMs of
the target reaction and a value of ‘0’ no co-occurrence

To compare EFM-predicted interactions to host-microbiome
correlations, scoresin the interaction matrix were compared between
genes and microbiome reactions with significant associations. To
this end, for each significant host gene-microbiome reaction asso-
ciation (FDR-adjusted P < 0.1), the maximum interaction score in the
sub-matrix containing reactions associated with the host gene and
the microbiome reaction were determined and collected across all
significant host gene-microbiome reaction associations in a tissue
to derive aset of ‘true’ maximal interaction scores. The same analysis
was performed 100 times for randomly drawn genes associated with
reactions present in the tissue and randomly selected microbiome
reactions to obtain ‘random’ maximal interaction scores. Then, true
and randomly generated maximal interaction scores were compared
using the Wilcoxon rank-sum test.

To analyse the most strongly interacting metabolic processes
between the host and microbiome, aninteraction was assumed if the
microbiome reaction occurred in at least 50% of the EFMs sampled
from that host reaction across all metamodels. Then, for each host-
microbiome reaction pair, we determined which metabolic subsystems
they were associated with and counted each corresponding host-
microbiome subsystem pair across all such pairs in the interaction
matrix. The enrichment of pairs was then tested using Fisher’s exact
test comparing for each pair the number of mutual interactions of
reactions belonging to the host and microbiome subsystems to the
frequency of interactions across the entire interaction matrix. An
enrichment was assumed with an FDR-corrected P < 0.05, calculated
using the p.adjust functioninR.

Identification of aging-regulated metabolic modules

To identify aging-regulated metabolic modules, we defined sets of
reactions associated with each indicator reaction used for EFM sam-
pling. A reaction was assumed to belong to the metabolic modules of
anindicator reactionifit occurredinatleast20% of the EFMs sampled
for that indicator reaction. Unlike in the analysis of reaction-level
dependencies between host and microbiota, we considered both the
host and microbiome components of the EFMs; thus, metabolic mod-
ules contained both host and microbiome reactions. A metabolic

module was considered dependent on the microbiome ifit contained
atleast 20 microbial reactions. To identify aging-regulated metabolic
modules, aging-induced and aging-repressed genes (Supplemen-
tary Tables 5.1-5.3) were translated into the reactions with which they
were associated in the metabolic model. Then, for each metabolic
module, we tested whether the corresponding set of reactions was
enriched for aging-induced or aging-repressed metabolic reactions
using Fisher’s exact test, assuming the entire set of reactions occur-
ring in a tissue as background. Subsequently, we determined host
pathways in which indicator reactions of aging-regulated modules
dependent on the microbiota were enriched. To this end, we filtered
microbiome-dependent aging-regulated modules with an enrich-
ment of aging-regulated reactions with P < 0.01. For each module, we
determined the corresponding indicator reactions and performed a
pathway enrichmentbased on the subsystem annotation of the Recon
2.2 model using Fisher’s exact test. For transport reactions, we also
added asubsystem annotation for the transport of nucleotides (encom-
passing deoxyribonucleic and ribonucleic acids) and amino acids. All
reactions of atissue occurringin atleast one metamodel were used as
background or universe in the Fisher’s exact test of that tissue.

Materials availability
This study did not generate new unique reagents.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Metagenomic raw read and MAG assembly data were deposited in the
EuropeanNucleotide Archive (ENA) under BioProject PRJEB73981 (ebi.
ac.uk/ena/browser/view/PRJEB73981). Individual accession numbers
for each MAG are listed in Supplementary Table 1.2. Gene expression
data were published in the GEO database under record GSE262290
(ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE262290) and record
GSE278548 (ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE278548).
Metabolomics data have been made available at the MassIVE database
(massive.ucsd.edu) withidentifiersMSV000094409, MSV000094410
and MSV000094436. The metamodel can be found under accession
MODEL2310020001inthe BioModels database (ebi.ac.uk/biomodels/
MODEL2310020001)”. Detailed sample metadata, the microbial meta-
bolicmodels and supplementary resources are available viaZenodo at
https://doi.org/10.5281/zenodo.10844502 (ref.108).

Code availability
The source code used for data analysis is available via GitHub at
github.com/sciwitch/MouseMicrobiomeAging.

References

1. Lopez, A.D., Mathers, C. D., Ezzati, M., Jamison, D. T. & Murray,

C. J. L. Global and regional burden of disease and risk factors,
2001: systematic analysis of population health data. Lancet 367,
1747-1757 (2006).

2. Loépez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer,
G. Hallmarks of aging: an expanding universe. Cell 186, 243-278
(2023).

3. Aramillo Irizar, P. et al. Transcriptomic alterations during ageing
reflect the shift from cancer to degenerative diseases in the
elderly. Nat. Commun. 9, 327 (2018).

4. Zhou, Y., Hu, G. & Wang, M. C. Host and microbiota metabolic
signals in aging and longevity. Nat. Chem. Biol. 17, 1027-1036
(2021).

5. Wilmanski, T. et al. Gut microbiome pattern reflects healthy
ageing and predicts survival in humans. Nat. Metab. 3, 274-286
(2021).

Nature Microbiology | Volume 10 | April 2025 | 973-991

987


http://www.nature.com/naturemicrobiology
https://www.ebi.ac.uk/ena/data/view/PRJEB73981
https://www.ebi.ac.uk/ena/browser/view/PRJEB73981
https://www.ebi.ac.uk/ena/browser/view/PRJEB73981
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE262290
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE262290
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE278548
http://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE278548
https://massive.ucsd.edu/
https://massive.ucsd.edu/ProteoSAFe/QueryMSV?id=MSV000094409
https://massive.ucsd.edu/ProteoSAFe/QueryMSV?id=MSV000094410
https://massive.ucsd.edu/ProteoSAFe/QueryMSV?id=MSV000094436
https://www.ebi.ac.uk/biomodels/search?query=MODEL2310020001&domain=biomodels
https://www.ebi.ac.uk/biomodels/MODEL2310020001
https://www.ebi.ac.uk/biomodels/MODEL2310020001
https://doi.org/10.5281/zenodo.10844502
https://github.com/sciwitch/MouseMicrobiomeAging

Article

https://doi.org/10.1038/s41564-025-01959-z

10.

mn.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

Kong, F. et al. Gut microbiota signatures of longevity. Curr. Biol.
26, R832-R833 (2016).

Wilmanski, T., Gibbons, S. M. & Price, N. D. Healthy aging and the
human gut microbiome: why we cannot just turn back the clock.
Nat. Aging 2, 869-871(2022).

Bhutto, A. & Morley, J. E. The clinical significance of
gastrointestinal changes with aging. Curr. Opin. Clin. Nutr. Metab.
Care 11, 651-660 (2008).

Kundu, P. et al. Neurogenesis and prolongevity signaling in young
germ-free mice transplanted with the gut microbiota of old mice.
Sci. Transl. Med. 11, eaau4760 (2019).

Thevaranjan, N. et al. Age-associated microbial dysbiosis
promotes intestinal permeability, systemic inflammation, and
macrophage dysfunction. Cell Host Microbe 21, 455-466.e4
(2017).

Guedj, A. et al. Gut microbiota shape ‘inflamm-ageing’ cytokines
and account for age-dependent decline in DNA damage repair.
Gut 69, 1064-1075 (2020).

Nagpal, R. et al. Gut microbiome and aging: physiological and
mechanistic insights. Nutr. Healthy Aging 4, 267-285 (2018).
Gilbert, J. A. et al. Current understanding of the human
microbiome. Nat. Med. 24, 392-400 (2018).

Falony, G. et al. Population-level analysis of gut microbiome
variation. Science 352, 560-564 (2016).

Krautkramer, K. A., Fan, J. & Backhed, F. Gut microbial metabolites
as multi-kingdom intermediates. Nat. Rev. Microbiol. 19, 77-94
(2021).

Heinken, A., Basile, A. & Thiele, I. Advances in constraint-based
modelling of microbial communities. Curr. Opin. Syst. Biol. 27,
100346 (2021).

Pryor, R. et al. Host-microbe-drug-nutrient screen identifies
bacterial effectors of metformin therapy. Cell 178, 1299-1312.e29
(2019).

Passi, A. et al. Genome-scale metabolic modeling enables
in-depth understanding of big data. Metabolites 12, 14

(2021).

Hertel, J. et al. Integrated analyses of microbiome and
longitudinal metabolome data reveal microbial-host interactions
on sulfur metabolism in Parkinson’s disease. Cell Rep. 29,
1767-1777.e8 (2019).

Aden, K. et al. Metabolic functions of gut microbes associate
with efficacy of tumor necrosis factor antagonists in patients with
inflammatory bowel diseases. Gastroenterology 157, 1279-1292.
e11(2019).

Frahm, C. et al. Transcriptional profiling reveals protective
mechanisms in brains of long-lived mice. Neurobiol. Aging 52,
23-31(2017).

Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H.
GTDB-Tk: a toolkit to classify genomes with the Genome
Taxonomy Database. Bioinformatics 36, 1925-1927 (2020).
Bowers, R. M. et al. Minimum information about a single amplified
genome (MISAG) and a metagenome-assembled genome
(MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725-731
(2017).

Zimmermann, J., Kaleta, C. & Waschina, S. gapseq: informed
prediction of bacterial metabolic pathways and reconstruction of
accurate metabolic models. Genome Biol. 22, 81 (2021).

The Gene Ontology Consortium. et al. The Gene Ontology
knowledgebase in 2023. Genetics 224, iyad031(2023).

Caspi, R. et al. The MetaCyc database of metabolic pathways

and enzymes—a 2019 update. Nucleic Acids Res. 48, DA45-D453
(2020).

Beghini, F. et al. Integrating taxonomic, functional, and
strain-level profiling of diverse microbial communities with
bioBakery 3. eLife 10, e65088 (2021).

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49,

50.

Swainston, N. et al. Recon 2.2: from reconstruction to model of
human metabolism. Metabolomics 12, 109 (2016).

Pacheco, M. P. & Sauter, T. The FASTCORE family: for the fast
reconstruction of compact context-specific metabolic networks
models. Methods Mol. Biol. 1716, 101-110 (2018).

Leal, J., Smyth, H. D. C. & Ghosh, D. Physicochemical properties
of mucus and their impact on transmucosal drug delivery. Int. J.
Pharm. 532, 555-572 (2017).

Schuster, S., Dandekar, T. & Fell, D. A. Detection of elementary flux
modes in biochemical networks: a promising tool for pathway
analysis and metabolic engineering. Trends Biotechnol. 17, 53-60
(1999).

Bohl, K. et al. CASOP GS: computing intervention strategies
targeted at production improvement in genome-scale metabolic
networks. In Lecture Notes in Informatics (eds Schomburg, D. &
Grote, A.) 71-80 (German Conference on Bioinformatics, 2010).
N, B. et al. A reference map of potential determinants for the
human serum metabolome. Nature 588, 135-140 (2020).

Wu, C.-S. et al. Age-dependent remodeling of gut microbiome
and host serum metabolome in mice. Aging 13, 6330-6345
(2021).

Lee, J. et al. Gut microbiota-derived short-chain fatty acids
promote poststroke recovery in aged mice. Circ. Res. 127,
453-465 (2020).

Macias-Ceja, D. C. et al. Succinate receptor mediates intestinal
inflammation and fibrosis. Mucosal Immunol. 12, 178-187

(2019).

Fierer, N. Embracing the unknown: disentangling the complexities
of the soil microbiome. Nat. Rev. Microbiol. 15, 579-590 (2017).
Zimmermann, J. et al. The functional repertoire contained within
the native microbiota of the model nematode Caenorhabditis
elegans. ISME J. 14, 26-38 (2020).

Perino, A., Demagny, H., Velazquez-Villegas, L. & Schoonjans, K.
Molecular physiology of bile acid signaling in health, disease, and
aging. Physiol. Rev. 101, 683-731(2021).

Chaudhari, S. N. et al. A microbial metabolite remodels the
gut-liver axis following bariatric surgery. Cell Host Microbe 29,
408-424.e7 (2021).

Ding, J. et al. A metabolome atlas of the aging mouse brain. Nat.
Commun. 12, 6021(2021).

Ho, S.-C., Liu, J.-H. & Wu, R.-Y. Establishment of the mimetic aging
effect in mice caused by D-galactose. Biogerontology 4,15-18
(2003).

Ananieva, E. A., Powell, J. D. & Hutson, S. M. Leucine metabolism
in T cell activation: mTOR signaling and beyond. Adv. Nutr. 7,
7985-805S (2016).

Donohoe, D. R. et al. The microbiome and butyrate regulate
energy metabolism and autophagy in the mammalian colon. Cell
Metab. 13, 517-526 (2011).

Lee, J. S. et al. Microbiota-sourced purines support wound
healing and mucous barrier function. iScience 23, 101226
(2020).

Thiele, I. et al. Personalized whole-body models integrate
metabolism, physiology, and the gut microbiome. Mol. Syst. Biol.
16, €8982 (2020).

Vieira-Silva, S. et al. Species-function relationships shape
ecological properties of the human gut microbiome. Nat.
Microbiol. 1,16088 (2016).

Tian, L. et al. Deciphering functional redundancy in the human
microbiome. Nat. Commun. 11, 6217 (2020).

Tsoi, R. et al. Metabolic division of labor in microbial systems.
Proc. Natl Acad. Sci. USA 115, 2526-2531(2018).

Kolodny, O. & Schulenburg, H. Microbiome-mediated plasticity
directs host evolution along several distinct time scales. Philos.
Trans. R. Soc. Lond. B 375, 20190589 (2020).

Nature Microbiology | Volume 10 | April 2025 | 973-991

988


http://www.nature.com/naturemicrobiology

Article

https://doi.org/10.1038/s41564-025-01959-z

51.

52.

53.

54.

55.

56.

57.

58.

50.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

7.

72.

Hammer, T. J. Why do hosts malfunction without microbes?
Missing benefits versus evolutionary addiction. Trends Microbiol.
https://doi.org/10.1016/.tim.2023.07.012 (2023).

Kirschner, S. K. et al. Short-chain fatty acid production in
accessible and inaccessible body pools as assessed by novel
stable tracer pulse approach is reduced by aging independent of
presence of COPD. Metabolism 141, 155399 (2023).

Connors, J., Dawe, N. & Van Limbergen, J. The role of succinate in
the regulation of intestinal inflammation. Nutrients 11, 25 (2018).
Serena, C. et al. Elevated circulating levels of succinate in human
obesity are linked to specific gut microbiota. ISME J. 12, 1642-1657
(2018).

Schumacher, B., Pothof, J., Vijg, J. & Hoeijmakers, J. H. J. The
central role of DNA damage in the ageing process. Nature 592,
695-703 (2021).

van de Ven, R. A. H., Santos, D. & Haigis, M. C. Mitochondrial
sirtuins and molecular mechanisms of aging. Trends Mol. Med.
23, 320-331(2017).

Gallegos-Orozco, J. F., Foxx-Orenstein, A. E., Sterler, S. M. & Stoa,
J. M. Chronic constipation in the elderly. Am. J. Gastroenterol. 107,
18-25 (2012).

Madsen, J. L. Effects of gender, age, and body mass index on
gastrointestinal transit times. Dig. Dis. Sci. 37, 1548-1553 (1992).
Minnebo, Y. et al. Gut microbiota response to in vitro transit time
variation is mediated by microbial growth rates, nutrient use
efficiency and adaptation to in vivo transit time. Microbiome 11,
240 (2023).

Jian, H. et al. Dietary valine ameliorated gut health and
accelerated the development of nonalcoholic fatty liver disease
of laying hens. Oxid. Med. Cell. Longev. 2021, 4704771 (2021).
Zhao, G. et al. Betaine in inflammation: mechanistic aspects and
applications. Front. Immunol. 9, 1070 (2018).

Krause, D. et al. The tryptophan metabolite 3-hydroxyanthranilic
acid plays anti-inflammatory and neuroprotective roles during
inflammation: role of hemeoxygenase-1. Am. J. Pathol. 179,
1360-1372 (2011).

Derrien, M. et al. Modulation of mucosal immune response,
tolerance, and proliferation in mice colonized by the
mucin-degrader Akkermansia muciniphila. Front. Microbiol. 2, 166
(20Mm).

Patel, B. A. et al. Impaired colonic motility and reduction in
tachykinin signalling in the aged mouse. Exp. Gerontol. 53, 24-30
(2014).

Branca, J. J. V., Gulisano, M. & Nicoletti, C. Intestinal epithelial
barrier functions in ageing. Ageing Res. Rev. 54,100938 (2019).
Funk, M. C., Zhou, J. & Boutros, M. Ageing, metabolism and the
intestine. EMBO Rep. 21, e50047 (2020).

Nahata, M. et al. Decline in liver mitochondria metabolic function
is restored by hochuekkito through sirtuin 1in aged mice with
malnutrition. Front. Physiol. 13, 848960 (2022).

Hasler, R. et al. Genetic interplay between human longevity and
metabolic pathways—a large-scale eQTL study. Aging Cell 16,
716-725 (2017).

Palmer, A. K. & Jensen, M. D. Metabolic changes in aging humans:
current evidence and therapeutic strategies. J. Clin. Invest. 132,
e158451(2022).

Perruzza, L. et al. T follicular helper cells promote a beneficial
gut ecosystem for host metabolic homeostasis by sensing
microbiota-derived extracellular ATP. Cell Rep. 18, 2566-2575
(2017).

Mempin, R. et al. Release of extracellular ATP by bacteria during
growth. BMC Microbiol. 13, 301 (2013).

lhssen, J., Jovanovic, N., Sirec, T. & Spitz, U. Real-time monitoring
of extracellular ATP in bacterial cultures using thermostable
luciferase. PLoS ONE 16, e0244200 (2021).

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

Lewis, C. V. & Taylor, W. R. Intestinal barrier dysfunction as a
therapeutic target for cardiovascular disease. Am. J. Physiol. Heart
Circ. Physiol. 319, H1227-H1233 (2020).

Pellegrini, C. et al. The intestinal barrier in disorders of the central
nervous system. Lancet Gastroenterol. Hepatol. 8, 66-80 (2023).
Pentinmikko, N. et al. Notum produced by Paneth cells attenuates
regeneration of aged intestinal epithelium. Nature 571, 398-402
(2019).

Chistiakov, D. A., Sobenin, I. A., Revin, V. V., Orekhov, A. N. &
Bobryshey, Y. V. Mitochondrial aging and age-related dysfunction
of mitochondria. Biomed Res. Int. 2014, 238463 (2014).

Rolig, R. L. & McKinnon, P. J. Linking DNA damage and
neurodegeneration. Trends Neurosci. 23, 417-424 (2000).

Feng, M. et al. Gut microbiota may be involved in Alzheimer’s
disease pathology by dysregulating pyrimidine metabolism in
APP/PS1 mice. Front. Aging Neurosci. 14, 967747 (2022).

Olecka, M. et al. Nonlinear DNA methylation trajectories in aging
male mice. Nat. Commun. 15, 3074 (2024).

Bresilla, D. et al. The sex-specific metabolic signature of
C57BL/6NR]j mice during aging. Sci. Rep. 12, 21050 (2022).
Ederer, M.-L. et al. Voluntary wheel running in old C57BL/6 mice
reduces age-related inflammation in the colon but not in the
brain. Cells 11, 566 (2022).

Percie du Sert, N. et al. The ARRIVE guidelines 2.0: updated
guidelines for reporting animal research. PLoS Biol. 18, e3000410
(2020).

Pan, W.-H. et al. Exposure to the gut microbiota drives distinct
methylome and transcriptome changes in intestinal epithelial
cells during postnatal development. Genome Med. 10, 27 (2018).
Douglass, A. P. et al. Coverage-versus-length plots, a simple
quality control step for de novo yeast genome sequence
assemblies. G3 9, 879-887 (2019).

Marinos, G., Kaleta, C. & Waschina, S. Defining the nutritional
input for genome-scale metabolic models: a roadmap. PLoS ONE
15, 0236890 (2020).

Starr, M. E. & Saito, H. Age-related increase in food spilling by
laboratory mice may lead to significant overestimation of actual
food consumption: implications for studies on dietary restriction,
metabolism, and dose calculations. J. Gerontol. A 67, 1043-1048
(2012).

Joseph, T. A,, Chlenski, P., Litman, A., Korem, T. & Pe’er, |. Accurate
and robust inference of microbial growth dynamics from
metagenomic sequencing reveals personalized growth rates.
Genome Res. 32, 558-568 (2022).

Korem, T. et al. Growth dynamics of gut microbiota in health and
disease inferred from single metagenomic samples. Science 349,
101-1106 (2015).

Long, A. M., Hou, S., Ignacio-Espinoza, J. C. & Fuhrman, J.

A. Benchmarking microbial growth rate predictions from
metagenomes. ISME J. 15, 183-195 (2021).

Zélé, F., Magalhaes, S., Kéfi, S. & Duncan, A. B. Ecology and
evolution of facilitation among symbionts. Nat. Commun. 9, 4869
(2018).

Gelius-Dietrich, G., Desouki, A. A., Fritzemeier, C. J. & Lercher, M. J.
Sybil—efficient constraint-based modelling in R. BMC Syst. Biol. 7,
125 (2013).

Love, M. ., Huber, W. & Anders, S. Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2. Genome
Biol. 15, 550 (2014).

Kim, S. ppcor: an R package for a fast calculation to semi-partial
correlation coefficients. Commun. Stat. Appl. Methods 22,
665-674 (2015).

Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate:
a practical and powerful approach to multiple testing. J. R. Stat.
Soc. Ser. B’57, 289-300 (1995).

Nature Microbiology | Volume 10 | April 2025 | 973-991

989


http://www.nature.com/naturemicrobiology
https://doi.org/10.1016/j.tim.2023.07.012

Article

https://doi.org/10.1038/s41564-025-01959-z

95. Sigurdsson, M. I., Jamshidi, N., Steingrimsson, E., Thiele, |. &
Palsson, B. @. A detailed genome-wide reconstruction of mouse
metabolism based on human Recon 1. BMC Syst. Biol. 4,140 (2010).

96. Pardridge, W. M. The blood-brain barrier: bottleneck in brain drug
development. NeuroRx 2, 3-14 (2005).

97. Laffel, L. Ketone bodies: a review of physiology, pathophysiology
and application of monitoring to diabetes. Diabetes Metab. Res.
Rev. 15, 412-426 (1999).

98. Pajouhesh, H. & Lenz, G. R. Medicinal chemical properties of
successful central nervous system drugs. NeuroRx 2, 541-553
(2005).

99. Malik-Sheriff, R. S. et al. BioModels—15 years of sharing
computational models in life science. Nucleic Acids Res. 48,
D407-D415 (2020).

100. Joshi, C. J. et al. StanDep: capturing transcriptomic variability
improves context-specific metabolic models. PLoS Comput. Biol.
16, 1007764 (2020).

101. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in
microarray expression data using empirical Bayes methods.
Biostatistics 8, 118-127 (2007).

102. Martin, F. J. et al. Ensembl 2023. Nucleic Acids Res. 51, D933-D941
(2023).

103. Jang, C. et al. Metabolite exchange between mammalian organs
quantified in pigs. Cell Metab. 30, 594-606.e3 (2019).

104. Vieira, V., Ferreira, J. & Rocha, M. A pipeline for the reconstruction
and evaluation of context-specific human metabolic models at a
large-scale. PLoS Comput. Biol. 18, 1009294 (2022).

105. Mahadevan, R. & Schilling, C. H. The effects of alternate optimal
solutions in constraint-based genome-scale metabolic models.
Metab. Eng. 5, 264-276 (2003).

106. Ebrahim, A., Lerman, J. A., Palsson, B. O. & Hyduke, D. R.
COBRApy: COnstraints-Based Reconstruction and Analysis for
Python. BMC Syst. Biol. 7, 74 (2013).

107. lismaa, S. E. et al. Comparative regenerative mechanisms across
different mammalian tissues. NPJ Regen. Med. 3, 6 (2018).

108. Best, L. Metabolic modeling reveals the aging-associated decline
of host-microbiome metabolic interactions in mice. Zenodo
https://doi.org/10.5281/zenodo.13899808 (2024).

Acknowledgements

We acknowledge funding by the German Research Foundation

to C.K. within the scope of CRC1182 (project A1.5), the Research
Group miTarget (FOR5042) and the Cluster of Excellence ‘Precision
Medicine in Chronic Inflammation’ (EXC2167). We also acknowledge
funding from the German Research Foundation (DFG, project
number: 416 418087534) to C.K. and C.F., project SO1141/10-1to F.S,,
intramural grants of the medical faculty of Kiel University (grants

nos K126408 and K126493) to F.S., the Carl Zeiss Foundation IMPULS
programme (project number: P2019-01-006) to C.F. and the European
Union'’s Horizon 2020 Research and Innovation Programme (under
the Marie Sklodowska-Curie grant: agreement number 859890
(SmartAge)) to OW.W., C.K. and C.F. P.R. was supported by BMBF
iTREAT, DFG SFB1182 (C2), RU miTARGET (P3) and EXC 2167 RTFVI

and TI1. This work was supported by the DFG Research Infrastructure
NGS_CC (project number: 407495230) as part of the Next Generation
Sequencing Competence Network (project number: 423957469).
Short-read sequencing was conducted at the Competence Centre for
Genomic Analysis (Kiel, Germany). We thank K. Cloppenborg-Schmidt
for the excellent technical assistance in preparing the samples

for metagenomic sequencing. We thank L. Manneras Holm and F.
Backhed (University of Gothenburg) for providing tissue samples from
wild-type, GF and conventionalized C57BL/6J mice.

Author contributions

Conceptualization: C.F., CK., D.E., L.B., M.H., OWW. and S.S.
Methodology: A.S.K.,AW., C.F., CK., D.E.,, GM,, J.FB., J.Z, LB, MG,
M.H., F.S., PS.-K., R.H.,R.S., S. Flor, AAM.G., S.K., SW. and T.D. Software:
ASK., CK.,GM., JT,JZ.,L.B.,S.Flor, SW. and T.D. Investigation:

AW., C.F,CK,D.E., L.B., MG, MH., PS.-K,, R.H.,R.S., S. Franzenburg,
F.S.and S.K. Formal analysis: A.S.K., AW.,CK., G.M., J.Z., L.B., S. Flor,
A.M.G., SW. and T.D. Writing, original draft: A.S.K., AW, CK., G.M.,
J.Z.,L.B., S. Flor and T.D. Writing, review and editing: C.F., J.F.B., JT and
F.S. Visualization: C.K. and L.B. Supervision: C.F., C.K.,, OWW., P.S.-K.
and SW. Funding acquisition: C.F., CK., J.F.B., P.R., F.S. and O.W.W.
Project administration: C.F., C.K. and L.B. The order of those authors
who contributed equally was determined alphabetically. To accurately
represent their equal contributions in any type of professional or
academic documentation, they are permitted to rearrange the order
of their names among the shared equally contributed positions at their
discretion.

Funding
Open access funding provided by Christian-Albrechts-Universitét zu
Kiel.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/
s41564-025-01959-z.

Supplementary information The online version contains
supplementary material available at https://doi.org/10.1038/s41564-
025-01959-z.

Correspondence and requests for materials should be addressed to
Christoph Kaleta.

Peer review information Nature Microbiology thanks

Sean Gibbons and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work. Peer reviewer
reports are available.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2025

Nature Microbiology | Volume 10 | April 2025 | 973-991

990


http://www.nature.com/naturemicrobiology
https://doi.org/10.5281/zenodo.13899808
https://doi.org/10.1038/s41564-025-01959-z
https://doi.org/10.1038/s41564-025-01959-z
https://doi.org/10.1038/s41564-025-01959-z
https://doi.org/10.1038/s41564-025-01959-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Article https://doi.org/10.1038/s41564-025-01959-z

'Research Group Medical Systems Biology, Institute of Experimental Medicine, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany.
2Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel/Liibeck, Germany. *Department of Neurology, Jena University Hospital, Jena,
Germany. “CAU Innovation GmbH, Kiel University, Kiel, Germany. *Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Neuherberg, Germany.
SEvolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany. ’Antibiotic resistance group, Max Planck Institute for Evolutionary
Biology, Plén, Germany. 8Max Planck Institute for Evolutionary Biology, Plén, Germany. ®Institute of Clinical Molecular Biology, Kiel University and
University Hospital Schleswig-Holstein, Kiel, Germany. '°Core Facility Next-Generation Sequencing, Leibniz Institute on Aging—Fritz Lipmann Institute,
Jena, Germany. "Nutriinformatics, Institute of Human Nutrition and Food Science, Kiel University, Kiel, Germany. “Institute of Analytical Food Chemistry,
Technical University Miinchen, Freising, Germany. *Section of Evolutionary Medicine, Institute of Experimental Medicine, Kiel University, Kiel, Germany.
YPresent address: Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany. ®These authors contributed equally:
Thomas Dost, Daniela Esser, Stefano Flor, Andy Mercado Gamarra, Madlen Haase, A. Samer Kadibalban, Georgios Marinos, Alesia Walker, Johannes
Zimmermann. "®These authors jointly supervised this work: Christiane Frahm, Christoph Kaleta. [<le-mail: c.kaleta@iem.uni-kiel.de

Nature Microbiology | Volume 10 | April 2025 | 973-991 991


http://www.nature.com/naturemicrobiology
mailto:c.kaleta@iem.uni-kiel.de

Article https://doi.org/10.1038/s41564-025-01959-z

A
Single
» > > Cohort-
QC Host Removal Combine Meta-
Shotgun Quality > 30 genome
e Length > 50 Map host reference Concat all samples
* fastqc Discard Adapter - keep unmapped
* Cutadapt * Bowtie2
* PrinSeq
* FastQC
Assembly of Contigs / Scaffolds * MetaSpades
A
> > > Metagenomic
Co-Assembly QC Binning QC Bins
Length > 1 kb Completeness > 80 %
Coverage Filter Co-Abundance Contamination < 10 %
Kmer similarity
* Quast Marker genes * checkm
» Coverage/Length » DASTool
. Plot * MaxBin2 * Amber
PacBlod * MetaBat2 * BlobTools
Long reads « CONCOCT
(CLR, CCS) « DASTool gapseq
Cc D
1200 - %  _x > 0 4.2 =
| ' ' ! X >
: ! - | * 40 K X
< A 0 : * 4
g 1000 1 T = : : 5 38 g % x| =
o° X X S % > h ° f X,
5 by K % 2 T < 36 [% R *
I X S 10 4 h ! X! : X X %,
800 ¥ |x ||x : S N S 5 X VN
— X ' ' -
5 < « o ° . % | x S 34 ' -3 Xy
_8 XX X o X . o g :
k3] X X ‘g’ 5 X & );('\ » 32+ !
S 600 §(<I X \Iz‘ X, T Xee X X 3.0 H .
! _&_ , X ; X ol =3
- Xl o e s x— 2.8 - X
T T T T T T T T T T T T T T T
2 9 15 24 30 2 9 15 24 30 2 9 15 24 30
E Age [month] Age [month] Age [months]
2500
£
§' 2000 Microbiota Phylum: B Bacteroidota B Bacillota B Verrucomicrobiota
§ 1500 @ campylobacterota [ Deferribacterota B Cyanobacteriota
o
g 1000
(=}
= 500
=] mmm
N PIAPRIRIFTEIFTIRIPRIRII AN PR T IR R Q\“Q‘Lfﬁ&&
\\'b \\e/,be/¢\/,bz/,beé\fa\z«\\'b/\'o%z/\z%\\\e,bz e/\o\ /,be;/ e/@\ (/f)e/ Q’é@"{éer’/ee/@/&/%\\/fz@/ef’/ro@/fbe'/\)%/ﬂ\‘-’/ e/,be,/q, /,be,/ a/@\ /\'b/(\\g\{:)/ e@fag\«\é@e«w o(\\eéta{@}/ \\ Qc’/’b@/&/’z&/
R <\Q &, 2 e“\\.\fo"e@vf}‘ \0\,)0)\»"@» S \\'o & ,vo N \§» &’b &fa \’b P ,b Q'b \e" EOANE \\\\‘00"7 <~_° O D5 \\'o \\e\ SO
R QS v?‘ \e\\\,b PO ,bo,bo %0‘9 0\’9 Voo‘\ c.\\*\ e(, QY‘VQQQG
QR Oo &8 RN SIS 2 v 6\‘?’\@\&\00 P 0 Oo
RETT OISO S ?‘% Sy wv\&\xy\v\&@ L & S Vs
(2 O \g v TG 00; c?@% X @0“00 e £ o R (( Y\%\\ 58
&7 I N R
Nl ol
¢° o
&
Extended Data Fig. 1| Metagenomic processing steps and results. 30mo.:n=12,all others n =10. e Abundance profile of the 60 most abundant
aMetagenomics workflow. b, c Abundance of metagenomics reads derived MAGs in the full cohort. Bacteroidota predominated in the cohort. Boxplot
from b microbes or c mouse DNA. d Alpha diversity derived from metagenomic elements: center line, median; box limits, 25%-75% quantiles; whiskers, 1.5x IQR;

reads mapped against MAGs. b-d Dunn’s test FDR, all not significant; sample size: points, outliers.

Nature Microbiology


http://www.nature.com/naturemicrobiology

Article https://doi.org/10.1038/s41564-025-01959-z

A
Golon [ e
Cellular proc. T
Metabolic proc. - |
Biological reg. - g
Loc. - 1 0
Devel. proc.
Resp. to stimulus —A:ﬁ
Immune sys. proc. =<
Multicell. organism proc.
Viral proc. H—
Reprod. Sum -log10( FDR ) jt
Homeostati proc. ©800 0400 0 2 [
T T T T T T T T T
Liver |_||_||_||_| s | |
Cellular proc. - rs s i S
Metabolic proc. - H %‘:? ]
Biological reg. | ]
Multicell. organism proc. =
Devel. proc. 0
Loc.
Resp. to stimulus
Hc ic proc.
Growth H—
Immune sys. proc. Sum -IoglO( FDR ) jt:
Reprod.
Viral proc. O 100 ©400 o 2 H—
T T T T T T T T T
Brain |_| =
Loc. 7 ? T O & TTETTT ? T
Devel. proc. i I 1
Cellular proc. 7 1
Biological reg. ? 1
Metabolic proc. = I ]
Hc ic proc. I }
Multicell. organism proc. 0
Growth
Resp. to stimulus H—
Immune sys. proc. Sum -IoglO( FDR ) j::
Reprod.
Viral proc. O 100 ©400 o 2 H—
T T T T T T T T T
) B S R R N P T C R CE NN <§\\4?~ 3
o \Q?Q@Q@"’k%o’\\ S 3R 0"’%%\0%@“‘3\'5‘ SRR NV
W e SRR el S R e o
o @:?:&a " ¢ @&"0\\ %\\;m@‘oo ?’\%E;‘ * 6\"\@\
B » Signed log10( FDR)
Iy
g % @ @
Yo, "
N, . _
by o, Pty 0, i, @2 @
0/9/ oy, Ay, "OK o
s, s o g 6’6} Aoy, e -2 o2
713, 2, >, 0y, "y
1 1 1 1 |
Protein complex disassembly - @ @
Internal peptidyl-lysine acet. {® (] o
Transcrpt. by RNA polymerase I @
MHC class | antigen presentation ] @
Neg. reg. of neuron death @ @
Neuron death @ @
Extended DataFig. 2| Correlation-derived host-microbiome interactions. a survival, while microbial fatty acids were found positively associated with colon
High-level pathway overview of host-microbiome associations. For complete immune processes (MHC class I) and negatively with transcription regulation.
dataand full pathway names, see Supplementary Table 2.4.b HUMAnN3 These HUMANN3-based results were generally in concordance, although much
predicted microbial functions (MetaCyc) correlated to host colon transcription less detailed, to our MAG and metabolic model derived host-microbiome
(GO biological processes) using Biobakery 3. Bacterial pyruvate fermentation correlations (cf. Fig. 2a).

and co-factor biosynthesis were negatively correlated with host side neuron

Nature Microbiology


http://www.nature.com/naturemicrobiology

Article

https://doi.org/10.1038/s41564-025-01959-z

A 2 p=97e-49  p-dSeds p-17e-03 B 250
® [ ]
509
3 200
)§<§ 0.6 s
875 31
= ® 2 150
303 )
< . g
00 L L A
Co'\on Li\;er Br'am
50
Interaction type
- True interactions 0

o

o

1.0

0.5

Microbiome dependency

E Random interactions 0 5
Extended Data Fig. 3| Metamodel validation. a Maximal interaction scores for
pairs of host-microbiome-associated processes versus 100 randomly selected
pairs of host genes and microbiome reactions for each tissue (see Methods).
P-values indicate the significance of the differences according to a two-sided
Wilcoxon rank-sum test. bRandomization of germfree mouse analysis (cf. Fig.
3c). The identification of significant differences in microbiome dependence
between significantly up-regulated, down-regulated as well as unregulated
genes was repeated 1000 times after randomization of gene assignments and the
number of significant associations was counted. The dashed red line indicates

10

Number of significant comparisons

15 20

0.1
Microbiome R?

0.2 0.3 0.4

the number of significant associations in the original analysis. ¢ Association
between model-predicted microbiome dependency of metabolites in blood and
explained variation of serum concentrations of the corresponding metabolite
by microbiome compositionin ahuman cohort (each dotis one metabolite).
The association between microbiome dependency and explained variance is
significant using Spearman’s correlation (rho=0.43, p-value = 1.5x10-3). Boxplot
elements: center line, median; box limits, 25%-75% quantiles; whiskers, 1.5x IQR;
points, outliers.

Nature Microbiology


http://www.nature.com/naturemicrobiology

Article

https://doi.org/10.1038/s41564-025-01959-z

A
30 Q QO@@@® ¢ 000000000000 006000606 c60cococs oo o s s o o s s o o o
024 © 0 02°: 0000000000000 00Q000090@@®©° 00 00000600000 @00 00200 O° 06020600 o020 s o oo
<c» 15 © 000000000000 °:-0000°0000000°000°°00000000°000000 @000 o .o. e 00 o 0
9] ¢ c 00 00000000000000000000000°0000000°000c0Q@°00000Q00Q0@00@°@0 °
2| LIl 00000000000000000 0000000 000000000000
r:,Q eQ eQ gQ Q,Q Q,Qe gQ rg%(gq rgQ r,Q ch_, Qe L e’g BG‘,Q r,Q e,Q rgQ QQ C_,Q Q,Q r,Qr, gQ C,,Q e,Q r,Q r,Q Q Q QQ%QQ QC_,Q "gQ cf? Q Qng QQQJéggQ ng Qr:,Q r—,Q Q Qng Q:‘,Q :Q %@QGGQGGQGGQQ
b"\} s "’@ ‘2‘\‘216 %\z \e;\b:b Q;bng 2 % Q;z}" 2T aqufb%,\gb B 6’0 ee;zg \ee’ef% \eee;b 'oqub 22 ’be’be’e'be 'z@ 'z@ fz> 'oQ;\ 2o fz? fz»i ”ie?% %Q"bzb\ Q;b@ fz% S %p@ 'b"“ e 220 ’b(,_)Q fz> fb,zp
SR ORGP D R
'b '2> B A 0 \k~ 'b %‘0 & % A\ (\ \ S 0 0 \ 2 & O (\ O
q~\ me?; & Q%&Q«Q o ‘\\‘b@‘b@% ‘\Q& v@ Q&x\\\$§o‘ \@s‘\\(\ @\0@00 \‘\@Qc}*\ﬂ‘c)q& 2N \%3&0
W S S
Microbiota Phylum: B Bacillota @ Bacteroidota B Pseudomonadota O Actinobacteria
B
)
2 82 c Age [months]
e 0.2 I:H:I O2 Oo24 o
- 0.
S 0.0 I:I'I:I 409 O30
© _
= 0.2 - 15
£-0.4 20.02
3 -06 e
o= P T T T T e S S S S S o o -
QLR 93992222 2.203L F*9.99Q % 2.2.2:2.2 2.2 2923 .92.2X:92.5.9 < | -
SLLEFLELELFOISILITS I EFSELESLEILETESF B 9,8% 0%~
TSXILTIEEFI LS &Y FOXOLESOSLFSSSESOIT O L L O oL,
FEETILINE & §S  SEFTITELLT 288 ©_&8Bage °
/
ST R NS § & S £ GIT YV UKy 0.01 0% o
AR\ S &I Q Q
7/ $ S < X /
N bq; > 4¥ T T T
5? / Q ~?
YQ 31 0.5 0.6 0.7
4 COPTR Growth
D E
Change in Aging ° ° o
B decrease o o © 0 ° 0.010
[ increase n.s. p=4.5e-5 p=5.9e-16 p=5.5e-16 p=5.5e-16
@ 0.005 o o
o - - T T T T o
o T T 0 T 8
£ 1 1 1 1 1 1 1 1 E 0.005
1 | £ 0. — -
g : I | | | | = g X
9] 8 T o - |
2 N : o .- -
50000 - o ey ) i s e = == [ £ -~ ! = . .
£ L+ L L L L [ T T T T S B S 0000 o mr- =t ! p— p— -
IS 4o o L g g g g g e € prmy I ! 4
<) s [ T T T TR TR B IS -~ e -+
&—) g 8 B g 0 o o o0 o© T T N O 8
o - -+ I
: : -
& -0.005 | $-0.005 ! .
I 15
&) o o 0 6 O K o
© o %o o oo (&) g
O O o0 o
o
o © -0.010
T T T T T T T T T T T T T T T T T T T T T T T T T
SESSSROISHSSISETS LD 2o m o aw W
@ Qo o o o o/ & %/ o/ o/ o o/ & ©
STETSFEESTFESEILLEISTEES
T 9 T IS FLFFPF FIIFF SFSLEFLE FTE 5 & Age [months]
FELESFFTFTEFEF L FITESTLS
§ § 8V 58 FFT 0 F F oo § o S5 &
S 3 F 7 8 FFSTFST T IS ol
S EVUEITSIFPFESFT0IFFOLOIS O N F
& </ OF S 08 5 9 I » 00 0 x' 8
Y F O S PSS N9 RS X S
& QY ¢ SN e 7 LS O (G
P STFTFIFTSLIF S 5 G
& $ S d T Fo < T x o <
& NANc & « &S D-Galactose
é\)r/ Cg) é) 2000 (D-Fructose, myo-Inositol, D-Mannose)
Removed MAG-Model p=7.9e-2 o
E
Ruderal Competition Stress toleration 1500 p=7.9e-2
90 p=4.8e-3 80 p=3.5e-2 p=6.3e-3 50 p=39e-3 o
©
o
80 4 pet0-2 70 __pase2 p77ed 5 p=8.7e-2
= < = 401 kel o _—
T g o - S p=39e-3 c 10004
§ 70 by § | ox § p=2.2e-3 3
3 T S 50 - T g 807 > o
5 607 5 X1 5 e ox >
3 2 w0d N 2 . xe B -
2 de *T 2 20 ¥ e g
£ 50+ £ £ B % o 500
2 ; gyl ] = E = o~
e 10 o X x
40 1 g 20 - XTI _I_x R oot R
x ox he
30 - s 10 4 0- 0-
| e e — I T T T 1
2 9 15 24 30 2 9 15 24 30 2 9 15 24 30 3 9 15 24 28
Age [months] Age [months] Age [months] Age [months]

Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4| Age-dependent microbiome changes. a MetaPhlAn4
derived species with significant changes in abundance with host age. The
MetaPhlAn-based approach identified 335 bacteria at the species level of which
69 were found differentially abundant with age. The species Lactobacillus
johnsonii matched the MAG based analysis (Fig. 4a). However, due to different
taxonomic databases and methods of annotation the resulting species names
might vary. On phylum level, the overall aging pattern of both MetaPhlAn and
MAG-based taxonomic analysis yielded comparable results, which was a general
decrease of Bacillota spec. and an increase of Bacteroidota spec. with host age. b
Age-associated changes in metabolic fluxes within the community. c Comparison
of community growth rates derived from FBA or PTR. d, e Change of microbiome

community growth rate upon removal of a single MAG from the community.

The y-axis shows the difference of community growth rate compared to the full
community while the x-axis names the MAG that was removed ind or the age
group of the host in e (p-values via FDR corrected Wilcoxon’s rank sum test). f
Relative abundance of universal adaptive strategies in microbiome communities
by age (p-values via FDR corrected Dunn’s test). Sample size for a-f: 30mo.:n=12,
all others n =10. g Metabolomics derived D-galactose concentration in mouse
fecesincreases with age (Spearman’s p=0.22, unadjusted p = 0.04; Pairwise
p-values via Dunn’s test with FDR correction; 3mo.:n=15,9mo.: n=16,15mo.:
n=15,24mo.:n=17,28mo.: n =18). Boxplot elements: center line, median; box
limits, 25%-75% quantiles; whiskers, 1.5x IQR; points, outliers.
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Extended Data Fig. 5| Aging-associated transcriptomic changes across host
tissues. a Each row represents a gene that shows common expression changes
across all tissues studied (see Supplementary Table 5.7-5.9). b-d Enriched

GO biological processes are shown as the average expression of all associated
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others n =10). For complete data and full pathway names, see Supplementary
Tables 5.4-5.6.
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Extended Data Fig. 6 | Host-Microbiome associations in aging. a-e Strong
host-microbiome correlations stratified by age group, compared with Yates’s
chi-squared test (one-sided). a Frequency of microbiome-colon correlations
stratified by age group. Significance was tested via Yates’ Chi-squared test with
Bonferroni multiple testing correction. b Liver transcripts correlated with
microbiome reactions. c Liver transcripts partially correlated with microbiome

reactions, corrected for sequencing batch. d Brain transcripts correlated with
microbiome reactions. e Brain transcripts partially correlated with microbiome
reactions, corrected for sequencing batch. f-g Organ-specific gene expression
changes with age in GO biological processes that were also correlated with
microbiome metabolic functions (F =liver, G = brain). For complete data and full
pathway names, see Supplementary Tables 6.2, 6.3.
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metamodel can be found under accession MODEL2310020001 in the BioModels database (ebi.ac.uk/biomodels/MODEL2310020001) 97. Detailed sample metadata,
the microbial metabolic models and supplementary resources as well as source code used for data analysis (github.com/sciwitch/MouseMicrobiomeAging) were
deposited in a Zenodo record (doi.org/10.5281/zenodo.10844503).
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Sample size 52 main mouse cohort, 83 metabolomics mouse cohort, 24 germ-free mouse cohort. The animal numbers per age group are based on
empirical data and previously published group sizes.

Data exclusions | No data were excluded from the analysis. For metabolomics, one sample in positive and negative mode each failed and therefore were
discarded.

Replication A replication — as in animal testing — was not necessary in this case, as we only took and analyzed the organs per age group.

Randomization  Animals for the age groups were randomly selected from a large breeding population. However, these animals are phenotypically
recognizable due to their age, so blinding was not meaningful in this case.

Blinding See randomization

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.
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studies involving existing datasets, please describe the dataset and source.
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what criteria were used to decide that no further sampling was needed.

Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
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Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample
cohort.

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.

Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.
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Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,

describe the data and its source.

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.
Timing and spatial scale |/ndicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which

the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your study.
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Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).
Access & import/export |Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,

the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.
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system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines Name any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,

export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals Mus Musculus C57BL/6J/Ukj (3 months, 9 months, 15 months, 24 months and 30 months of age) and Mus Musculus C57BL/6J (10
weeks of age)

Wild animals No wild animals were used in this study.

Reporting on sex all mice of main and metabolomics cohort were male, all mice of germ-free cohort were female, sex is reported in Methods section,
sex was determined be examining externally visible gonads

Field-collected samples  No field-collected samples were used in this study.




Ethics oversight Aging/metabolomics mouse cohort: All studies were performed in strict compliance with the recommendations of the European
Commission for the protection of animals used for scientific purposes and with the approval of the local government (Thiringer
Landesamt fur Verbraucherschutz, Germany; license: 02-024/15; TWZ-000-2017. Germfree mouse cohort: All animal protocols were
approved by the Gothenburg Animal Ethics Committee (vote #2652-19).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
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Files in database submission Provide a list of all files available in the database submission.

Genome browser session
(e.g. UCSC)

Methodology

Replicates

Sequencing depth
Antibodies
Peak calling parameters

Data quality

Software

Flow Cytometry

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
enable peer review. Write "no longer applicable" for "Final submission" documents.

Describe the experimental replicates, specifying number, type and replicate agreement.

Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.

Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and
lot number.

Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files
used.

Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Describe the software used to collect and analyze the ChlIP-seq data. For custom code that has been deposited into a community
repository, provide accession details.

Plots
Confirm that:

|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation
Instrument

Software

Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.
Identify the instrument used for data collection, specifying make and model number.

Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.
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Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state, event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across

subjects).
Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI |:| Used D Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | whole brain || ROI-based  [_| Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).
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Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| I:' Graph analysis

|:| I:' Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis | Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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