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Abstract

Identifying spatial domains for spatial transcriptomics is crucial for achieving comprehensive insights into the pathogenesis of gene
expression. Increasingly, computational methods based on graph neural networks are being developed for spatial transcriptomics.
However, previous methods have solely focused on the Euclidean manifold. To effectively exploit and explore the informative and
deeper topological structures of inherent manifolds, we presented a Multi-Manifolds fusing hyperbolic graph network, balanced
by Pareto optimization, for identifying spatial domains in Spatial Transcriptomics (MManiST). First, we developed multi-manifolds
encoders for distinct manifolds using the hyperbolic neural network. Features from different manifolds were then combined using an
attention mechanism, with multiple reconstruction losses balanced by Pareto optimization. Extensive experiments on commonly used
benchmark datasets show that our method consistently outperforms seven state-of-the-art methods. Additionally, we investigated the
validity of each component and the impact of fusion methods in ablation experiments.

Keywords: spatial transcriptomics; spatial domain identification; hyperbolic space; graph neural network

Introduction
Spatial transcriptomics (ST) captures gene expression with spatial
location information [1–3]. The accessibility of spatial information
offers significant potential to depict the spatial patterns and
activities of cells. It provides deeper insights into the underlying
mechanisms and pathology of both healthy and diseased tissues.
Identifying spatial domains within ST analysis is of great
significance and essence. Numerous computational methods
have been developed, which can be categorized into three groups:
(1) Statistical/probabilistic model-based methods: Giotto [4]
employs a hidden Markov random field to model nodes’ gene
expression. Drawing inspiration from achieving super-resolution
images in computer vision, BayesSpace [5] constructs a fully
Bayesian statistical model with a Markov random field. (2) Deep
learning-based methods: stLearn [6] normalizes ST by using
neighbor-based smoothing and morphological adjustment and
identifies spatial domains by utilizing a graph-based clustering
method. (3) Graph neural network (GNN)-based methods: SEDR
[7] simultaneously trains a deep auto-encoder and a variational
graph auto-encoder to learn low-dimensional spatial embeddings
of ST. SpaGCN [8] integrates ST, spatial location, and histology
to identify the spatial domain of ST. DeepST [9] integrates node

features and location using a denoising autoencoder and GNN.
STAGATE [10] adopts an adaptive graph attention auto-encoder to
decipher spatial domains by integrating ST with location
information. CCST [11] introduces the unsupervised deep graph
infomax model [12] for identifying spatial domains. SpaceFlow
[13] introduces spatially regularized deep graph networks to
generate spatially consistent embeddings. GraphST [14] fully
integrates spatial information and gene expression ST by using
graph self-supervised contrastive learning. For reference, a survey
[15] benchmarks these state-of-the-art methods.

Most existing methods focus on exploring features within the
Euclidean manifold and fail to provide in-depth insights into the
complex structures inherent in ST. Unlike the Euclidean manifold,
hyperbolic geometry, as a Riemannian manifold with constant
negative curvature, has demonstrated remarkable success due
to its ability to model complex structured and hierarchical data.
Hyperbolic graph neural networks (HGNNs) based on hyperbolic
geometry were introduced by [16] and [17]. The Lorentz graph
convolutional network (GCN) [18] focuses on the Lorentz model.
HGCL [19] introduces contrastive learning to further enhance
hyperbolic graph embedding. GraphZoo [20] provides a convenient
toolkit for utilizing GNNs based on hyperbolic geometries. HGNN
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has been applied in various fields, including recommendation
systems [21], computer vision [22], and bioinformatics [23].

Driven by a hyperbolic graph network, we introduce Lorentz
and Poincaré manifolds for ST to address the limitations of the
Euclidean manifold. By introducing multi-manifolds, we aim to
better capture the complex and deeper topological structures
inherent in ST. To fully exploit and fuse the most informative
and discriminative features from different manifolds, we for-
mulate the solution as a multi-objective optimization problem.
Balancing different objectives due to potential conflicts remains
a fundamental and challenging issue in multi-objective optimiza-
tion. Typically, hyperparameter search or heuristic algorithms
are employed to solve multi-objective optimization, but these
methods are highly time-consuming and do not guarantee a satis-
fying solution. Therefore, based on the multiple-gradients descent
algorithm (MGDA) [24], the Pareto optimal solution is considered
an alternative approach. To reduce the time consumption caused
by multiple backpropagation processes in MGDA, an upper bound-
based approach [25] is proposed. Additionally, MGDA has been
adopted to reconcile classic self-supervised learning objectives
in GNNs [26]. Inspired by these works on Pareto optimality, we
use Pareto optimal methods to handle multi-object optimization.
We aim to achieve an effective multi-manifolds fusing hyperbolic
graph network.

Based on the discussion above, we propose a multi-manifolds
fusing hyperbolic graph network, balanced by Pareto optimiza-
tion, for identifying spatial domains in ST, named MManiST. To
our knowledge, this is the first work introducing manifold-based
hyperbolic geometry for ST analysis. Our main contributions are
summarized as follows:

(i) Multi-manifolds encoders: we design multi-manifolds
encoders, incorporating both Euclidean and hyperbolic
geometry, to explore the latent complex structures inherent
in ST.

(ii) Pareto optimization for reconstruction objectives: we
address the optimization problem of multiple reconstruction
objectives by achieving a Pareto optimal solution using the
MGDA algorithm.

(iii) Experimental validation: extensive experiments on com-
monly used benchmark datasets show that MManiST
consistently outperforms seven state-of-the-art methods.
Additionally, we validate the effectiveness of MManiST’s
components and study the influence of different spatial
graph construction and fusion methods in ablation experi-
ments.

Methodology
Symbols and abbreviations
The achieved graph is denoted as G = (V ,E), where V is the
vertex set and E is the edge set. Euclidean and Hyperbolic space
are denoted as E and H, respectively. In practice, we often use
projection models to indirectly represent Hyperbolic geometry
with the Poincaré Ball and the Lorentz model. Specifically, two
Hyperbolic models, Poincaré Ball and Lorentz, are denoted as
B and L, respectively. The curvature of the model is denoted
as c.

Model architecture
As shown in Fig. 1, the overall architecture of MManiST is com-
posed of five modules: (1) Spatial Graph Construction of ST: the
spatial graph is constructed using the k-nearest neighbor (KNN)

algorithm on the position matrix for ST data. For the case where
the number of samples is <20 000, we set each sample as a spot,
and for some large-scale datasets with subcellular, such as Stereo-
Seq [27], we would use cell position information provided by offi-
cial split results. (2) Multi-manifolds Encoders: we design graph
encoders in three manifolds: Euclidean, Poincaré, and Lorentz,
to explore unique geometric characteristics. (3) Multi-manifolds
Fusion by Attention Mechanism: the attention mechanism fuses
node features from different manifolds. (4) Pareto Optimization:
Pareto optimization automatically adjusts the relative weight of
each reconstruction task or the relative importance of each man-
ifold. (5) Identifying Spatial Domain: the fused embeddings are
applied to identify the spatial domain using the Gaussian mixture
clustering algorithm.

Multi-manifolds encoders
Due to the variable metric tensor in hyperbolic geometry, per-
forming operations such as matrix-vector addition, matrix-vector
multiplication, or nonlinear activation is not straightforward. The
hyperbolic graph network [16] is designed to introduce multi-
manifolds for ST.

Hyperbolic initialization layer
Initially, node representations on hyperbolic geometry are needed.
The exponential function maps features from Euclidean space to
a specific hyperbolic model. The logarithmic function performs
the inverse operation. Specifically, for the Poincaré ball model,
the exponential and logarithmic functions are summarized as
follows:

expc
x (v) = x ⊕c

(
tanh

(√|c|λ
2
x ‖v‖2

2

)
v√|c| ‖v‖2

)

logc
x

(
y
) = 2√|c|λc

x

tanh−1
(√|c| ∥∥−x ⊕c y

∥∥
2

) −x ⊕c y∥∥−x ⊕c y
∥∥

2

(1)

For operations on the Lorentz model, the exponential and
logarithmic functions are formulated as follows:

expc
x (v) = cosh

(√|c| ‖v‖L

)
x + v

sinh
(√|c| ‖v‖L

)
√|c| ‖v‖L
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(
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〉
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(2)

Representations on two models are calculated as follows:

xB = expc
o

(
xE)

xL = expc
o

((
0, xE)) (3)

To adapt the hierarchical features of different types of data, the
curvature c is set as a trainable parameter.

Hyperbolic feature transformation
Instead of directly using Möbius multiplication, we adopt an
alternative approach driven by the model [16] to implement
matrix-vector multiplication. Specifically, we first use a logarith-
mic mapping function to project hyperbolic features into their
tangent space, a vector space isomorphic to Euclidean space.
Thus, Euclidean multiplication can be applied in the tangent
space. Subsequently, an exponential mapping function maps
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MManiST | 3

Figure 1. The workflow of MManiST: Spatial Graph Construction, Multi-manifolds Encoder, Multi-manifolds Fusion by Attention Mechanism, Pareto
Optimization and Identifying spatial domain.

the transformed features back to the corresponding hyperbolic
space. The multiplication process of the two models is shown
in Eq. (4).

M ⊗B
c xB = expc

o

(
M logc

o

(
xB))

M ⊗L
c xL = expc

o

(
0, M logc

o

(
xL)

[1:n]

)
(4)

Similarly, matrix-vector addition is implemented by parallel
transport on the tangent space as follows:

xH ⊕H
c bH = expc

xH

(
PTc

o→xH
(
logc

o

(
bH)))

, (5)

where PT means parallel transport.
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Parallel transport operations in two models are formulated as
follows:

PTc
x→y (v) = λc

x

λc
y

gyr [y, −x] v

PTc
x→y (v) = v − c

〈
y, v

〉
L

1 + c
〈
x, y

〉
L

(
x + y

)
(6)

Hyperbolic neighborhood aggregation
In GNNs, each adjacent node is considered equally important. To
eliminate the impact of the node degree, we normalize the weight
by the degree of the two endpoints. Additionally, a highly weighted
self-loop is added to avoid the risk of over-smoothing, which is
formulated as follows:

⎧⎨
⎩

Aij = 1, i = j

Aij = 1/
√

didj, i �= j
(7)

For message aggregation, the sum aggregation strategy is
adopted in the following:

AGG
(
xH

i

) = expc
o

⎛
⎝∑

j∈Ni

Aij
(
logc

o

(
xH

i

))⎞⎠ , (8)

where xH
i represents the embedding of the ith node and Ni

denotes the neighbors of node i.

Nonlinear activation
Nonlinear activation operation still needs to be projected into
tangent space first, activated, and then projected back, as follows:

σ⊗cl−1 ,cl (
xB) = expcl

o

(
σ

(
logcl−1

o

(
xB)))

σ⊗cl−1 ,cl (
xL) = expcl

o

(
0, σ

(
logcl−1

o

(
xL

[1:n]

)))
, (9)

where σ denotes the nonlinear activation function. It is worth
noting that the activation process is in the middle of two layers,
or in other words, in the middle of two manifolds, which might
have different curvatures.

Based on the above operations, the total process of the hyper-
bolic graph network layer is represented as follows:

hl,H
i =

(
Wl ⊗cl−1 xl−1,H

i

)
⊕cl−1 bl

yl,H
i = AGGcl−1

(
hl,H

)
i

xl,H
i = σ⊗cl−1 cl

(
yl,H

i

)
, (10)

where Wl is trainable weight matrix of l-layer.

Multi-manifolds fusion by attention mechanism
To obtain a more informative representation, we enhance and
extend the architecture of heterogeneous attention graph net-
works [28] for multi-manifolds fusion. Specifically, the attention
score matrix B is computed for adjacent nodes by taking the
dot product between the trainable attention vector v and the
concatenation of embeddings from each manifold. Then, this
score matrix is normalized. The process of calculating attention

score matrix is formulated as Eq. (11) and Eq. (12):

Bij =
⎧⎨
⎩

σ
(
v	 ·

[
xE

i ||xB
j ||xL

i

])
, Aij �= 0

0, Aij = 0
(11)

B̃ij = exp
(
Bij

)
∑

j′∈Ni
exp

(
Bij′

) (12)

To alleviate overfitting, a damping factor λ is used to update
the embeddings:

X′ =
(
(1 − λ) A + λB̃

)
XB (13)

Pareto optimization for multi-reconstruction
tasks
Balancing multiple objective functions is a perennial challenge.
In this study, we employ the Multiple Gradient Descent Algo-
rithm (MGDA) [24] to determine the weights of each objective
function for Pareto optimality. Specifically, we design a shared
GCN encoder that serves two roles. Firstly, input embeddings are
encoded to a lower dimension in the forward propagation, and
the information from neighboring nodes is further aggregated.
The gradients produced from each objective function are recorded
during the backward propagation. These gradients form the basis
for calculating weight parameters.

Considering the gradients related to each loss function as a vec-
tor in the parameter space, these four vectors constitute a convex
hull. The process of reaching Pareto optimality is equivalent to
persistently taking steps in a direction that possesses the minimal
common vector norm [24].

For the simple scenario of balancing two objectives, assuming
that the sum of all weights is equal to 1, the goal can be expressed
as follows:

minγ∈[0,1]

∥∥∥γ∇θg L̂1 (
θg, θ1) + (1 − γ ) ∇θg L̂2 (

θg, θ2)∥∥∥2

2
, (14)

where θg represents the global weight parameter in the shared
GCN encoder, and θ1 and θ2 represent task-specific weight param-
eters.

We consider three conditions as depicted in Fig. 2 to achieve
the minimal common vector norm. Based on this, γ is calculated
by Eq. (15).

γ =
⎡
⎢⎣

(
∇θg L̂2

(
θg, θ2

) − ∇θg L̂1
(
θg, θ1

)	)
∇θg L̂2

(
θg, θ2

)
∥∥∥∇θg L̂1

(
θg, θ1

) − ∇θg L̂2
(
θg, θ2

)∥∥∥2

2

⎤
⎥⎦

+,1	

, (15)

where [·]+,1	
represents clipping to the interval [0, 1].

For the case of more than two objectives, we adopt the Frank–
Wolfe algorithm [29] to iteratively solve for the weight vector
α ∈ R

K with an initial value as 1/K, where K is a total number
of objectives. We denote current common descent direction as
∇̂θg = ∑K

k=1αk · ∇θgLk
(
G; θg, θ t

)
. In each iteration, we update the

objective whose descent direction correlates least with current
common descent direction. Therefore, we choose t that satisfies
t = arg minr

∑K
i=1αi ·∇θgLi (G; θg, θ r)

	 as the objective to be updated.
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Figure 2. The case of two objectives, arrow points to common vector with minimal norm.

One iteration of the updating process is formulated as follows:

α := (1 − η) · α + η · et

η =
⎡
⎢⎣ ∇̂θg ·

(
∇̂θg − ∇θgLt

(
G; θg, θ t

))	

∥∥∥∇̂θg − ∇θgLt
(
G; θg, θ t

)∥∥∥2

2

⎤
⎥⎦

+,1	

, (16)

where η is step size, and et is a one-hot vector with tth element
equal to 1.

The iterations repeat until η is smaller than a predefined
threshold or the number of iterations exceeds the maximum
value allowed. After α is computed, the training loss is set as
follows:

Ltotal = ∑K
i=1αi · Li

(
G; θg, θ t) , (17)

where K is number of tasks and in this study L means MSE loss
for reconstruction.

Identifying spatial domain
We employed a Gaussian mixture model-based clustering algo-
rithm, specifically mclust [30], to identify spatial domains by
clustering the fused embeddings. The number of spatial domains
is set to match the ground truth. For those dataset without
ground truth, we choose Leiden algorithm to get the clustering
results. We varied the resolution parameter from 0.2 to 1.0 and
selected the resolution corresponding to the highest silhouette
score. Additionally, to achieve higher consistency, we offer an
optional refinement operation that aligns each node with the
majority in its community within the selected radius.

Results
MManiST well identified spatial domains of
dorsolateral prefrontal cortex data
As a common dataset, the LIBD human dorsolateral prefrontal
cortex (DLPFC) is often used as a benchmark (Fig. 3(A)). We
explored the performance of MManiST on this dataset. Compared
with other state-of-the-art methods, MManiST could more
accurately identify spatial domains. As shown in Fig. 3(B),
MManiST outperformed previous methods across multiple
evaluation metrics. Figure 3(C) demonstrates the visualized
spatial domain identification results on section 151509. Regarding
the ground truth labels in Fig. 3(B), we found that MManiST
identified the complete Layer 1 and Layer 2 regions, while other
methods tended to separate these regions easily. Additionally,
the spatial domains identified by our method exhibited better

spatial continuity. Figure 3(D) depicts the 2D UMAP visualization
of the low-dimensional representations obtained by each encoder-
based method. stLearn [6], SEDR [7], and SpaceFlow [13] displayed
dispersed label distribution, corresponding to a lack of spatial
continuity in the spatial domain identification results. The
label distribution of STAGATE [10], GraphST [14], and MManiST
is more compact. However, STAGATE [10] could not clearly
classify Layer 5 and Layer 6, and a portion of Layer 2 was
mixed into Layer 3. GraphST [14] also struggled to build clear
boundaries between Layers 2 and 5. In contrast, our method
produced distinct boundaries for different labels. We attempted
to use the PAGA graph to reveal the potential developmental
trajectory of tissue types, as shown in Fig. 3(E). We found that
SpaceFlow [13], STAGATE [10], and MManiST exhibited a linear
developmental trajectory, consistent with our prior knowledge of
DLPFC.

MManiST demonstrates excellent noise reduction capabilities.
In Fig. 4(A), we selected seven layer marker genes—GFAP, HPCAL1,
CARTPT, NEFH, S100A11, FN1, and PLP1—and showed their spatial
distribution before (original gene expression) and after (recon-
structed gene expression) denoising. After denoising, the distribu-
tion of these genes became more concentrated in one or several
layers, exhibiting more distinct spatial distribution characteris-
tics. Figure 4(B) illustrates violin plots showing the distribution of
layer marker genes across layers before and after denoising. Post-
denoising, the expression of these genes shifted from a relatively
uniform distribution to a more concentrated distribution in one or
several layers, with expression in the remaining layers approach-
ing zero.

MManiST well identified spatial domains of
osmFISH data
In Fig. 5(B), we present the spatial domain identification results
of various methods on the mouse somatosensory cortex dataset
by osmFISH. MManiST achieved the highest ARI value. While
CCST [11], SpaceFlow [13], GraphST [14], and our method were
all able to identify a relatively clear hierarchical structure,
the spatial domains identified by CCST [11] and SpaceFlow
[13] lacked distinct boundaries and contained many noise
points. Despite good spatial continuity, GraphST [14] could not
distinguish between the Layer 2-3 lateral and Layer 2-3 medial
subregions. In contrast, MManiST achieved a more accurate and
refined identification that other methods could not. Figure 5(C)
illustrates the 2D UMAP visualization of the low-dimensional
representations obtained by each method. We found that the
representations obtained by MManiST exhibited the smallest
intra-class distance and the largest inter-class distance. Because
our method can clearly separate spots of different categories,
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6 | Li et al.

Figure 3. Spatial domain identification result of 10x Visium DLPFC data: (A) Ground truth, (B) Boxplot of clustering accuracy of the DLPFC dataset,
(C) Spatial domain visualizations generated by stLearn, SEDR, SpaceFlow, SpaGCN, CCST, STAGATE, GraphST and MManiST on DLPFC section 151509,
(D-E) UMAP visualizations and PAGA graphs generated by stLearn, SEDR, SpaceFlow, GraphST and MManiST.
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MManiST | 7

Figure 4. Denoising result of DLPFC data: (A) Layer-specific marker genes expression before (upper) and after (bottom) denoising, (B) Violin plot of
layer-specific marker genes before (left) and after (right) denoising.

the predicted developmental trajectory shown in the PAGA graph
in Fig. 5(D) had fewer edges and a more distinct developmental
pathway than other methods. Both SpaceFlow [13] and our
method predicted a clear developmental trajectory, with the spot
types along this pathway being Pia Layer 1, Layer 2-3 medial, Layer
2-3 lateral, Layer 3-4, Layer 4, Layer 5, and Layer 6.

MManiST well identified spatial domains of
starMAP data
MManiST achieved the best performance in spatial domain iden-
tification on the starMAP mouse medial prefrontal dataset. In
Fig. 6, we selected the 20180417_BZ5_control section for demon-
stration. As shown in Fig. 6(A), this section is unevenly divided
into four spatial domains, with Domain 1 being the smallest and
Domain 3 the largest. In Fig. 6(C), we presented the spatial domain
identification results of different methods for this section. We
observed that stLearn [6], SEDR [7], SpaGCN [8], and STAGATE [10]
did not identify distinct spatial domains, while CCST [11] incor-
rectly assigned the majority of spots to a single spatial domain.
Although SpaceFlow [13] successfully divided the section into four
spatial domains, it did not accurately distinguish the quantitative
relationship between Domain 2 and Domain 3. GraphST [14]
and MManiST successfully delineated these four spatial domains,
demonstrating our method’s ability to identify imbalanced spatial
domain data. From the UMAP visualization shown in Fig. 6(D), we
observed that the actual label distributions for SpaceFlow [13],
GraphST [14], and MManiST were relatively concentrated. The
PAGA graph shown in Fig. 6(E) indicated that only SpaceFlow [13]
and MManiST exhibited a clear linear developmental trajectory,
which aligns with the actual data.

MManiST well identified spatial domains of
baristaseq and merFISH data
MManiST also demonstrated strong performance on data
obtained through other techniques, highlighting the general-
izability of hyperbolic embeddings across different data types.
We presented the spatial domain identification results of
various methods on the BaristaSeq mouse primary visual cortex
and merFISH mouse hypothalamus datasets in Fig. 7. From
Figures 7(B) and (E), we found that our method achieved the
best performance across multiple evaluation metrics on both
data sets. Figure 7(C) demonstrated the analysis results on the
BaristaSeq Slice:2 section. stLearn [6], SEDR [7], and SpaGCN [8]
failed to identify a clear hierarchical structure, and the spatial
domains identified by STAGATE [10] lacked spatial continuity.
GraphST [14] and CCST [11] did not effectively separate certain
categories, resulting in some categories containing a larger
number of spots. Although SpaceFlow [13] identified a detailed
hierarchical structure, it did not effectively distinguish between
the VISp_IV and VISp_V layers. We demonstrated the analysis
results on the merFISH_0.19 section in Fig. 7(F). We found that
STAGATE [10], SpaceFlow [13], GraphST [14], and our method
all delineated accurate spatial domains. However, only our
method identified the complete MPA region, while other methods
partitioned this region in various ways.

Ablation study and parameter analysis
To thoroughly investigate the effectiveness and significance of
each component in MManiST, we conducted comprehensive
ablation experiments from four perspectives using the DLPFC
benchmark dataset. Figures 8(A) to (D) illustrate the impact
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8 | Li et al.

Figure 5. Spatial domain identification result of osmFISH mouse somatosensory cortex data: (A) Ground Truth, (B) Spatial domain visualizations
generated by stLearn, SEDR, SpaceFlow, SpaGCN, CCST, STAGATE, GraphST and MManiST, (C-D) UMAP visualizations and PAGA graphs generated by
stLearn, SEDR, SpaceFlow, GraphST and MManiST.

of composition methods, embedding manifolds, feature fusion
approaches, and the use of Pareto optimization on spatial domain
identification results. In Fig. 8(C), we tested various traditional
fusion methods, including linear attention [31], self-attention
and its multi-head version [32], channel attention [33], inter-
view attention (proposed in this study), co-guided fusion [34],
and simple concatenation. We reached the following conclusions:
firstly, we compared different graph construction methods with
highlight the superiority of a location-based graph. However,
the KNN and spatial radius algorithms showed no significant
performance difference. Additionally, comparing three manifolds
demonstrated that graph auto-encoders in hyperbolic space
achieved remarkably better results. Investigating different fusion
methods showed that an appropriate fusion approach could
effectively improve performance, with our inter-view attention
achieving the best results. Furthermore, comparing results with
and without Pareto optimization highlighted its validity in balanc-
ing multiple objectives, though the improvement was marginal.

In the training process, two main parameters were consid-
ered: the number of neighbors k and training epochs (epoch).

To investigate the impact of each parameter, we computed aver-
age ARI and NMI values across 12 DLPFC sections under dif-
ferent conditions, illustrated in Fig. 8(E) and (F). Overall, MMan-
iST demonstrated robust performance with respect to parameter
variations. With the increase of k, spatial domain identification
performance initially improved and then deteriorated, especially
when k reached 15. The model achieved its best result when epoch
reached 3500.

Conclusion
In this study, we propose a multi-manifolds fusing hyperbolic
graph network, balanced by Pareto optimization, for identifying
ST spatial domains, named MManiST. To explore the complex
structure inherent in ST, we introduce the hyperbolic space,
including the Lorentz and Poincaré manifolds. To effectively fuse
multi-manifolds, we solve the problem within a multi-objective
optimization framework. Additionally, to balance multiple
reconstruction losses, we utilize Pareto optimization. Experiments
demonstrate the advancements of MManiST over state-of-the-art
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Figure 6. Spatial domain identification result of starMAP mouse mddial prefrontal dataset: (A) Ground Truth, (B) Boxplot of clustering accuracy of the
starMAP dataset, (C) Spatial domain visualizations generated by stLearn, SEDR, SpaceFlow, SpaGCN, CCST, STAGATE, GraphST and MManiST on section
20180417_BZ5_control, (D-E) UMAP visualizations and PAGA graphs generated by stLearn, SEDR, SpaceFlow, GraphST and MManiST.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/26/2/bbaf162/8112759 by G

SF-Forschungszentrum
 fuer U

m
w

elt und G
esundheit G

m
bH

 - Zentralbibliothek user on 12 M
ay 2025



10 | Li et al.

Figure 7. Spatial domain identification result of BaristaSeq and merFISH dataset: (A) Ground Truth of BaristaSeq mouse primary visual cortex dataset,
(B) Boxplot of clustering accuracy of the BaristaSeq dataset, (C) Spatial domain visualizations of BaristaSeq dataset, (D) Ground Truth of merFISH mouse
hypothalamus datasets, (E) Boxplot of clustering accuracy of the merFISH dataset, (F) Spatial domain visualizations of merFISH dataset.

Figure 8. Ablation study and parameter analysis: (A-D) Ablation study of graph construction ways, embedding manifold, feature fusion ways and Pareto
optimization, (E-F) Parameter analysis with respect to k and epoch. feat_knn: knn graph by feature, spa_r: radius graph by spatial location, spa_knn:
knn graph by spatial location, Eu: Euclidean, Po: Poincaré Ball, Lo: Lorentz, att: linear attention, self: self-attention, self_m: self-attention multi-head
version, ch: channel attention, inter: inter-view attention, co: co-guided attention, con: concatenation.
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and basic methods. Extensive ablation experiments validate the
effectiveness of each component and further investigate the
potential application of other technologies in this field.

Future studies will explore several directions for improving
the spatial domain of ST. First, the MGDA algorithm’s multiple
gradient backward propagation process significantly increases
time complexity. The approach proposed by Sener [25] offers a
theoretical foundation for reducing time expenditure, which is
expected to address this issue. Furthermore, a solid theoretical
framework for the fusion of different manifolds still needs to be
developed, requiring more effort.

Key Points

• The study addresses the importance of identifying spa-
tial domains for spatial transcriptomics to understand
gene expression’s pathogenesis.

• A new method called MManiST is introduced, which
encodes gene expression data into both Euclidean and
Hyperbolic manifolds by hyperbolic graph network.

• MManiST combines features from different manifolds
using an attention mechanism and balances multiple
reconstruction losses using Pareto optimization.

• The method has been tested on benchmark datasets,
showing consistent outperformance compared with
seven state-of-the-art methods.

• Ablation experiments were conducted to assess the
validity of each component and the impact of different
fusion methods.

Supplementary data
Supplementary data is available at Briefings in Bioinformatics
online.
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Data availability
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from http://spatial.libd.org/spatialLIBD. OsmFISH, starMAP,
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Code availability
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Training Details
We trained MManiST on one NVIDIA RTX 3090 for 3500 epochs,
taking ∼5 min. On the training process, ∼8GB of GPU memory
being used. We employ an Adam optimizer with a learning rate
1e-4.
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