
communicationsmedicine Article
A Nature Portfolio journal

https://doi.org/10.1038/s43856-025-00835-5

Deep learning model DeepNeo predicts
neointimal tissue characterization using
optical coherence tomography

Check for updates

Valentin Koch 1,2,3, Olle Holmberg1,2,4, Edna Blum5, Ece Sancar1,2, Alp Aytekin5, Masaru Seguchi5,
Erion Xhepa5, Jens Wiebe5, Salvatore Cassese5, Sebastian Kufner5, Thorsten Kessler5,6,
Hendrik Sager 5,6, Felix Voll 5, Tobias Rheude5, Tobias Lenz5, Adnan Kastrati5,6,
Heribert Schunkert 5,6, Julia A. Schnabel 1,2,7, Michael Joner5,6 , Carsten Marr1 & Philipp Nicol5

Abstract

Background Accurate interpretation of optical coherence tomography (OCT) pullbacks is
critical for assessing vascular healing after percutaneous coronary intervention (PCI).
Manual analysis is time-consuming and subjective, highlighting the need for a fully
automated solution.
Methods In this study, 1148 frames from 92 OCT pullbacks were manually annotated to
classify neointima as homogeneous, heterogeneous, neoatherosclerosis, or not analyzable
on a quadrant level. Stent and lumen contours were annotated in 305 frames for
segmentation of the lumen, stent struts, and neointima.Weused these annotations to train a
deep learning algorithm called DeepNeo. Performance was further evaluated in an animal
model (male New Zealand White Rabbits) of neoatherosclerosis using co-registered
histopathology images as the gold standard.
Results DeepNeo demonstrates a strong classification performance for neointimal tissue,
achieving an overall accuracy of 75%, which is comparable to manual classification
accuracy by two clinical experts (75%and 71%). In the animal model of neoatherosclerosis,
DeepNeoachieves anaccuracy of 87%whencomparedwith histopathological findings. For
segmentation tasks in human pullbacks, the algorithm shows strong performance with
meanDice overlap scores of 0.99 for the lumen, 0.66 for stent struts, and 0.86 for neointima.
Conclusions To the best of our knowledge, DeepNeo is the first deep learning algorithm
enabling fully automated segmentation and classification of neointimal tissue with
performance comparable to human experts. It could standardize vascular healing
assessments after PCI, support therapeutic decisions, and improve risk detection for
cardiac events.

Interventional revascularization by percutaneous coronary intervention
(PCI) with stent implantation is an important treatment option for
patients with obstructive coronary artery disease1. Despite advancements
in the field of PCI, including refinement of contemporary drug-eluting

stent (DES) technology, a proportion of patients still experience stent-
related events such as in-stent restenosis or stent thrombosis in the long-
term2. The development of mature and healthy stent-covering neointima
is critical to prevent these adverse events. However, delayed vascular
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Plain language summary

Optical coherence tomography (OCT) is an
imaging test used to detect blood vessel
healing after a minimally invasive procedure
that widens blocked heart arteries. However,
this analysis is performed manually, which is
time-consuming and can lead to incon-
sistencies in diagnosis between clinicians. In
this study, we developed a computer-aided
tool called DeepNeo that can analyze OCT
images of blood vessels and detect vascular
healing automatically. We trained the
computer-aided technology using manually
annotated OCT images and tested its per-
formance on both human and animal data.
DeepNeo performed to a similar degree as
clinicians.Ourfindingssuggest thatDeepNeo
can standardize and automate OCT image
analysis, potentially improving the efficiency
of vascular healing assessments and aiding
clinical decision-making to reduce the risk of
future cardiac events.
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healing can impair neointimal development and contribute to stent
failure3,4. Hence, immature or diseased neointima play an important role
in a substantial portion of cases with stent failure2,5. Optical coherence
tomography (OCT), as a high-resolution intravascular imaging modality,
provides detailed visualization of the coronary vasculature and can be
used to assess the mode of stent failure1,6,7. Using OCT, neointima can be
visualized in vivo and characterized as either homogenous or hetero-
genous. Previous studies have shown that homogenous neointimal tissue
has a favorable phenotype, while heterogenous neointimal tissue may be
associated with de novo atherosclerosis (neoatherosclerosis) and a worse
clinical outcome8–13. Therefore, accurate detection and distinction of
neointimal tissue is an important step in identifying patients at risk for
stent failure. However, manual evaluation of OCT images is time-
consuming and highly dependent on clinician experience, which can
limit clinical availability and transferability13. Moreover, the visual
interpretation of OCT images by clinicians in their daily practice may
result in missing or underestimating relevant pathological changes.
Hence, more standardized approaches to OCT image analysis are
necessary. Deep learning has the potential to greatly assist clinicians in
accurately diagnosing patients through the analysis of medical images14,15.
In intravascular OCT imaging, deep learning has been successfully used
to characterize native atherosclerotic lesions16,17. In this study, we present
the fully automated deep learning-based algorithm DeepNeo, that
enables quick and accurate automated segmentation and classification of
neointimal tissue characteristics. DeepNeo demonstrates strong classifi-
cation performance, achieving an overall accuracy of 75% for neointimal
tissue, comparable to expert manual classification. In an animal model of
neoatherosclerosis, it reaches 87% accuracy against histopathological
findings. Additionally, DeepNeo exhibits robust segmentation perfor-
mance in human OCT pullbacks, with mean Dice overlap scores of 0.99
for the lumen, 0.66 for stent struts, and 0.86 for neointima.

Methods
This study has been approved by the ethical board of the Technical Uni-
versity ofMunich,Germany in accordancewith local regulations (No. 2023-
143-S-NP). Informed consent of the patients undergoing coronary angio-
graphy andOCTwas obtained during the clinical routine. The rabbitmodel
was approved by the government (“Regierung von Oberbayern”, file
number 55.2.1.54-2532-40-16) and was in accordance with the German
AnimalWelfareAct (versionMay 18, 2006, amended onMarch 29, 2017) as
well as directive 2010/63/EU of the European Parliament on the protection
of animals used for scientific purposes. A patent application describing the
technology has been filed with the European Patent Office (Application 23
179 433).

Data acquisition
1148 OCT images from 92 patients who underwent clinically indicated
coronary angiography and in-stent intravascular imaging with OCT at the
GermanHeartCenterMunichwere collected.OCT imagingwas performed
according to current guidelines18 using a commercially available OCT sys-
tem (Abbott Vascular, Santa Clara, CA). The baseline characteristics of
patients are provided in Table 1.

Segmentation of neointima, lumen, and stent struts
Lumen contour and stent struts were manually annotated in 305 OCT
frames from a subset (40 of the 92 pullbacks) using the freeware tool
LabelMe (available at http://labelme.csail.mit.edu/Release3.0/) to enable
automated segmentation of stent struts, lumen, and neointimal area (see
Fig. 1a). Segmentation allows analysis of patient characteristics such as
average neointima thickness, detection of areas of uncovered stent struts, or
the localization of the minimal lumen diameter in the stent. Also, seg-
mentation masks allow the calculation of the center of the lumen, which is
used to cut frames into quadrants. To assess the performance of DeepNeo
for the segmentation of neointima, lumen, and stent struts, we employed a
5-fold cross-validation approach. This involved randomly dividing the

dataset of 305OCT frames intofive equal folds (parts), with one fold used as
a test set and the remaining four folds split into three training sets and one
validation set.We repeated this process five times, with each fold used as the
test set once. To prevent information leaks, frames from any unique patient
were assigned to the same fold. The validation set was used to adjust
hyperparameters that determine the model architecture and training pro-
cedure and choose the most suitable model.

Neointima classification
Manual quadrant annotation ofOCT frames every 1mm(everyfifth frame)
was performed for all pullbacks or in adjacent suitable frames when image
quality was insufficient. Neointimal tissue was classified using a quadrant-
based nominal character scoring system as previously described19: clockwise
and starting at 12 o’clock, every frame was divided into four quadrants (see
Fig. 1a), with the center of the lumen as the dividing point. Each quadrant
was then independently classified according to its predominant neointimal
appearance into one of four classes: homogenous neointima (uniform light
reflection without localized areas of stronger or weaker backscattering
properties), heterogenous neointima (consisting of a focal variation of the
backscattering pattern, including patterns described as layered), neoather-
osclerosis (containing neointimal foam cells, fibroatheroma or
calcifications)20,21, or not analyzable (quadrants with uncovered struts or
side-branch openings). In quadrants with more than one tissue type, the
most severe neointimal tissue type was scored. Examples of neointimal
tissue types are illustrated in Fig. 1b. Expert A manually classified a total of
1148 frames (i.e., 4592 single quadrants) from92pullbacks. Fromthe total of
1148 OCT frames derived from 92 pullbacks, we allocated 936 frames
(originating from 66 pullbacks) to the training set. The validation set
comprised 108 frames from 9 pullbacks, while the test set included 104
frames from 17 pullbacks. This test set was specifically used to assess inter-
observer variability and the final performance of DeepNeo, with frames
being independently analyzed by experts B andC. The split wasmade by the
patient, e.g. any patient’s frames are only contained in one of the train/
validation/test splits. The Fleiss Kappa score for the three independent
experts was 0.654 for the test set.

Animal model for neointima classification
As previously published, male New Zealand White rabbits were obtained
at an age of 3–4 months from Charles River, France and underwent stent
implantation in iliac arteries and repeated balloon denudation under a
hypercholesterolemic diet, promoting early neoatherosclerotic lesion
formation over 161 days22. Animals were under a 12-h light/dark cycle
and were fed a 1% cholesterol diet ad libitum (Altromin Spezialfutter
GmbH, Lage, Germany) for 7 days prior to balloon denudation of the
iliac arteries, followed by stent implantation. After another 4 weeks of a
high-cholesterol diet (1%), animals were switched to a 0.025% cholesterol
diet (Altromin Spezialfutter GmbH) at day 35 and were continued on
this diet until euthanasia. OCT imaging and histopathological analysis of
stented segments were performed using co-registration of both mod-
alities, where OCT frames were aligned with matching histopathology
frames. The co-registration process was based on the lumen contour and
the position of the stent struts in the corresponding section, as previously
described22. Histopathology frames were divided into quadrants and
scored according to the predominant tissue characteristic in each
quadrant. To ensure consistency and comparability across the scoring
process, we utilized a nominal character scoring system similar to that
employed by DeepNeo. Specifically, a “homogeneous” score was assigned
to frames demonstrating healthy neointima with a predominance of
smooth muscle cells, whereas frames demonstrating infiltration with
foam cells were assigned a “neoatherosclerosis” score. Frames showing
deposition of fibrin, hypocellular neointima, or peristrut hemorrhage
were assigned a “heterogeneous” score. It should be noted that the rabbit
dataset was entirely distinct from the human dataset. DeepNeo analyzed
OCT pullbacks from 12 rabbits (15 frames), and its neointimal tissue
predictions were compared to the co-registered histopathology findings.

https://doi.org/10.1038/s43856-025-00835-5 Article

Communications Medicine |           (2025) 5:124 2

http://labelme.csail.mit.edu/Release3.0/
www.nature.com/commsmed


Algorithm architecture
We employed two deep neural networks, trained separately and combined
during inference, to (i) segment lumen, stent struts, and neointima and (ii)
classify the neointima in each quadrant of an OCT frame (see Fig. 1c). To

segment stent struts, neointima, and lumen, a UNet++ was used23. Details
about the training of the segmentation network can be found in the sup-
plemental methods in the “Details of segmentation network” section. For
the classification of the quadrants, a ResNet-1824 networkwas used. To train
the classification network, we divided each frame into four quadrants, using
the segmentation generated by the UNet++ to determine the center of the
lumen, and rescaled them to a resolution of 224 × 224 pixels. Model cali-
bration was achieved through temperature sharpening and fusion of the
surrounding quadrants’ prediction25. Details on the need for calibration and
the formula used can be found in the supplemental methods under the
“Details of classification network” section.

Statistics and reproducibility
Statistical analyses were performed using metrics appropriate for segmen-
tation and classification tasks. A 5-fold cross-validation approach was
employed to evaluate segmentation performance on 305 frames, ensuring
that frames from the same patient were confined to a single fold to prevent
information leakage. Hyperparameters were optimized on validation sets,
and performance was reported on test sets derived from independent
patient data.

Sample sizes were defined as 936 frames for training, 108 frames for
validation, and 104 frames for testing for classification. Data splits were
performed at the patient level to ensure independence between sets.
Reproducibility was ensured by setting all random seeds. The rabbit dataset
was used as an independent test set to validate the model’s generalizability,
demonstrating consistent results across species and imaging setups.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Segmentation of neointima, lumen, and stent struts
DeepNeo achieves high accuracy in segmentation of lumen, stent struts, and
neointima with a Dice score of 0.99 (±0.02), 0.66 (±0.10), and 0.86 (±0.14),
respectively. The frames exhibiting inferior scoring are observed solely in
regions characterized by minimal or absent neointima, thereby rendering
precise annotation and prediction of the neointimal regions challenging
and susceptible to marginal annotation variability (see Fig. 2, low score
sample). In Supplemental Table 1, different segmentation networks are
compared.

Neointima classification
Wecompare theneointimal tissue classificationperformanceofDeepNeoto
that of clinical experts by having two additional independent specialists
(expert B and expert C) manually label the test set in a blinded fashion. The
labels annotated by the most experienced expert A are assumed to be the
ground truth and compared to the labels predicted by DeepNeo. DeepNeo
achievesanaccuracyof 0.75andamacroF1-Scoreof 0.74,while expertBhas
an accuracy of 0.75 with a macro F1-Score of 0.75, and expert C has an
accuracy of 0.71 with a macro F1-Score of 0.69, highlighting a high agree-
ment of DeepNeo with the experts, which is similar to the inter-observer
agreement. Figure 3 provides a comparison of manual annotations by
experts A–C with the automated prediction by DeepNeo. Note that frames
with disagreement between experts (Fig. 3a, b, and d) result in lower pre-
diction certainty (thin prediction line) compared to frames with agreement
between observers (thick prediction line). A robust correlation is observed
between themodel’s confidence in the predicted class and the probability of
a correct prediction (Fig. 4), indicating thatDeepNeo iswell-calibrated. This
is of special importance, as it gives a notion of confidence and thus inter-
pretability that many other algorithms lack. In Supplemental Fig. S1 we
show theneed for calibration: theuncalibrated versionof ourmodel tends to
be overly confident, and the correlation between the (uncalibrated) con-
fidence and the true probability is poor. In Supplemental Table 2, different
classification models are evaluated.

Table 1 | Baseline data of OCT data set

N 92/92 (100.0%)

Age in years 67.3 (±9.3)

Gender Female 13/92 (16.3%)

Male 77/92 (83.7%)

Cardiovascular risk factor Smoker 17/92 (18.5%)

Hypercholesterolemia 65/92 (70.7%)

Hypertension 88/92 (95.7%)

Diabetes mellitus 40/92 (43.5%)

Left ventricular function
(ejection fraction)

Normal 53/92 (57.6%)

Mildly reduced 20/92 (21.7%)

Reduced 18/92 (19.6%)

Severely reduced 1/92 (1.1%)

Coronary artery disease One-vessel 12/92 (13.0%)

Two-vessel 17/92 (18.5%)

Three-vessel 63/92 (68.5%)

Clinical presentation Stable angina 53/92 (57.6%)

Silent ischemia 21/92 (22.8%)

Non-ST-Elevation myocardial
infarction

7/92 (7.6%)

Unstable angina 10/92 (10.9%)

ST-Elevation myocardial
infarction

1/92 (1.1%)

Target vessel Left anterior descending artery 42/92 (45.7%)

Left coronary artery 2/92 (2.2%)

Left circumflex artery 26/92 (31.5%)

Right coronary artery 22/92 (23.9%)

Restenosis morphology Complete occlusion 3/92 (3.3%)

Diffuse beyond stent 1/92 (1.1%)

Diffuse intrastent 25/92 (27.2%)

Focal body 43/92 (46.7%)

Focal margin 6/92 (6.5%)

Multifocal 6/92 (6.5%)

No restenosis 8/92 (8.7%)

Index stent interval in days 1356.6
(±1477.4)

Index stent type Biodegradable polymer-
eluting stent

5/92 (5.4%)

Bare-metal stent 4/92 (4.3%)

Biodegradable polymer
sirolimus-eluting stent

8/92 (8.7%)

Drug-eluting stent 4/92 (4.3%)

Everolimus-eluting stent 46/92 (50.0%)

Polymer-free sirolimus-
eluting stent

3/92 (3.3%)

Sirolimus-eluting stent 3/92 (3.3%)

Zotarolimus-eluting stent 3/92 (3.3%)

Unknown 16/92 (17.4%)

Lesion length in mm 11.5 (±6.2)

Patient baseline data (n = number of patients with characteristics, N = total number of patients)
reported as n/N (%) or mean (±standard deviation).
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Confusion matrices shown in Fig. 4 demonstrate the performance of
DeepNeo similar to that of clinical experts. Notably, DeepNeo rarelymisses
diseased frames, indicating its reliability in detecting heterogenous neoin-
timaandneoatherosclerosis.Disagreement betweenDeepNeoandexpertA,
as well as inter-expert disagreement, is highest for these challenging
neointimal types, with expert B and expert C sometimes leaning more
towards homogenous labeling. Additional examples of DeepNeo’s auto-
mated analysis are shown in Fig. 5. Analysis of failed predictions reveals that

shadowing and missing stent struts were the two major sources of mis-
classification, as shown in Supplemental Fig. S2.

Animal model for neointima classification
Co-registered histopathology demonstrates a high degree of concordance
betweenDeepNeo’s predictions and the underlying tissue characteristics, as
illustrated in Fig. 6. DeepNeo achieves an accuracy of 0.87 and a macro F1-
Score of 0.78. Specifically, DeepNeo accurately identifies neointimal foam

Fig. 1 | DeepNeo provides neointimal tissue segmentation and classification on
the quadrant level. aOCT frames are divided into four 90° quadrants (Q1–Q4), rotating
clockwise from 12 o’clock and individually classified into one of four classes indicated by
the circular line color. Vessel lumen, neointima, and stent struts are annotated pixelwise.
b Representative examples of homogenous, heterogenous, neoatherosclerosis and not
analyzable OCT frames used in the study. c DeepNeo architecture: A frame is given as

input to a U-Net to get a segmentation mask. This allows the calculation of the center of
the lumen and the division of the OCT frame into 4 quadrants at the center, which are
then each resized to a size of 224 × 224 pixels before going through the classification
network (ResNet-18). The colored quarter-circles show the predicted class for each
quadrant, line thickness indicates model certainty (thick line = high certainty).
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Fig. 2 |DeepNeo accurately segments lumen, stent, andneointima.Beeswarmplot
with boxplot, with median values (central horizontal black line), boxes extend from
the 25th to the 75th percentile of scores generated by 5-fold cross-validation on
n = 305 images from42patients.Whiskers represent the range from theminimum to
themaximum values within 1.5 times the interquartile range from the 25th and 75th

percentiles (a). Good, average, and low-performing samples with respect to the
average Dice score (dsc) of an image (b). The Dice score is calculated as the area of
overlap between labeled ground truth and prediction, ranging from 0 to 1 (0 indi-
cating no overlap and 1 complete overlap between prediction and ground truth).
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cells and fibrin deposition as neoatherosclerosis or heterogeneous, while
categorizinghealthyneointimawith anabundanceof smoothmuscle cells as
homogeneous. It is worth noting that DeepNeo achieves these results
despite never being trained on rabbit images, demonstrating its robustness
and applicability across species and acquisition setups.

Clinical cases
Figure 7 displays how DeepNeo is applied in two clinical cases of patients
who underwent clinically indicated OCT imaging after PCI at the Ger-
man Heart Center. Neointimal thickness and lumen radius are quantified
in a standardized manner by DeepNeo, along with the neointimal tissue
composition at pullback level. The visualizations provided by DeepNeo
can guide clinicians to identify critical parts of the OCT pullback, which
in turn enables a reliable and prompt first impression of the patients. The
application of DeepNeo in these clinical cases highlights its potential in
improving the standardization and efficiency of intravascular OCT
imaging.

DeepNeo as an open-access tool
We release DeepNeo as an open-access tool, providing a valuable resource
for researchers to rapidly analyze intravascular OCT images of stented
patients. By making this freeware tool accessible to all, regardless of geo-
graphic location or financial resources, we hope to promote collaboration
and accelerate progress toward better patient outcomes. The tool is built
using Gradio, a freeware software, that can be run locally. The trained
models will be made available to all researchers after signing a usage
agreement, usage for diagnosis will be excluded. As demonstrated in Fig. 8,
DeepNeo offers a user-friendly interface that allows for easy access and
analysis of intravascular OCT images. Users can simply upload their
anonymized OCT pullback as a DICOM image or zip file, with the tool
providing subsequent analysis. A detailed quadrant-level analysis as well as
aggregated statistics over the whole pullback can be downloaded. Further-
more, the tool has the capability to determine the starting and ending points
of the stent through predicted segmentation masks and subsequent post-
processing techniques.

DeepNeo
prediction

homogenous

heterogenous

neoatherosclerosis

not analyzable

DeepNeo confidence

1 0.25

0.55

0.980.90

0.38 0.52

0.98

0.98

0.86 0.96

0.95

0.97

0.98 0.59

0.560.53

0.35

a b dc

Q4

Q3

Q1

Q2

Fig. 3 | Comparison of manual expert classification and prediction by DeepNeo.
Manual annotation of neointimal tissue type by three different observers is visua-
lized by three separate circular lines for four sample cases (a–d). Please note that high
interobserver agreement corresponds to a high prediction confidence (quadrants 2
and 3 in a, quadrant 3 in b, all quadrants in c with respective thick prediction lines).

In contrast, interobserver disagreement corresponds to lower confidence regarding
tissue prediction, visualized by a thinner prediction line. Confidence is computed
using test-time augmentations, temperature sharpening the class probabilities, and
normalizing to get a calibrated probability distribution.

Fig. 4 | Performance of DeepNeo and human experts. Confusion matrices for the
performance of DeepNeo and experts B and C with labels by expert A taken as
ground truth (a). Note that automated analysis by DeepNeo is similar to the inter-
expert variability.N = 420 (not analyzable: 23, homogenous: 186, heterogenous: 117,
neoatherosclerosis: 94). Calibration of DeepNeo (b): the probability of predicted

class (x-axis) vs. true probability (y-axis). To calculate true probability, the samples
are split into 10 equally sized bins according to the predicted probability of a sample.
The true probability for a bin is then calculated by dividing the number of true
predictions by the number of samples.
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Discussion
To the best of our knowledge, DeepNeo is the first fully automated deep
learning-based algorithm for characterization of vascular healing after PCI
using OCT imaging. The algorithm features segmentation of the vessel
lumen, neointimal area, and stent struts, enabling further automated
morphometric analysis as well as rapid detection and quantification of
uncovered stent struts. It also classifies neointimal tissue into healthy
(homogenous), diseased (heterogenous or neoatherosclerosis), or not ana-
lyzable with high accuracy, matching the performance of human observers.
Moreover, its accuracy was confirmed through the analysis of OCT-
pullbacks co-registered with histopathology from an animal model of
neoatherosclerosis.

With millions of PCIs performed globally every year26, there is a
pressing need for effective diagnostic and therapeutic strategies to ensure
optimal patient outcomes in the long term. Intravascular imaging with
optical coherence tomography enables high-resolution imaging of stented
lesions with detailed visualization of the neointima. Several studies have

demonstrated that subjects with neointima characterized as heterogenous
have a higher risk of clinical events compared to subjects with homogenous
neointima13,27. Additionally, heterogenous neointima might also reflect a
more atherogenic milieu per se, as it is associated with the progression of
native atherosclerosis as well28. Hence, heterogenous neointima following
stent implantation could be regarded as a surrogatemarker for poor arterial
healing and adverse clinical outcomes over time. Neoatherosclerosis pre-
sents an evenmore unstable condition20, beingdetected inup to one-third of
drug-eluting stents29. Using OCT, neoatherosclerotic plaque rupture was
recently identified as themajor underlying cause in patients presentingwith
very late stent thrombosis30,31. Recently, Xhepa et al. demonstrated that a
detailed assessment of neointimal tissue characteristics may aid in the
selection of dedicated treatment strategies in patients with in-stent rest-
enosis, showing an advantage of DES over DCB in patients with high
amounts of non-homogenous frames32. Thus, intracoronary imaging with
OCT is crucial for following up on patients after PCI with stent implanta-
tion, detecting and triaging patients at higher risk of device-related events.
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Fig. 6 | Correlation of tissue prediction by DeepNeo with histopathological
findings in rabbits. a Confusion matrix of DeepNeo with histopathological based
labels of n = 60 quadrants stemming from 12 rabbits. b Representative examples
from a rabbit model of neoatherosclerosis with hematoxylin–eosin staining,
revealing underlying neointimal tissue characteristics with areas of interest marked

with *, respectively+. DeepNeo-based analysis of co-registeredOCT frames showed
overall good agreement between histopathological findings and AI-based tissue
prediction, classifying the tissue into not analyzable (blue), homogenous (green),
heterogeneous (orange), and neoatherosclerosis (red). Line thickness represents
DeepNeo certainty, where high certainty corresponds to a thicker line.
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However, interpretation of OCT images requires clinical expertise, and
analyzing several hundred OCT frames is time-consuming and impractical
in busy clinical settings. With an aging population requiring medical
attention, the use of deep learning-based algorithms for clinical decision
support and hence reduced workload is reasonable and has already been
demonstrated in different fields of medicine33,34. Previous works have
demonstrated the ability to segment and characterize native atherosclerotic

lesions using artificial intelligence-enhanced OCT16,17,35,36. However, to the
best of our knowledge, no study so far has investigated the potential of deep
learning to facilitate OCT-based characterization of neointima. We believe
that DeepNeo, which allows quick and intuitive, fully automated char-
acterization of the underlying neointima without requiring additional
human input, would be useful in following up on vulnerable patients.
DeepNeo, in combination with DeepAD17, our previously published work

Fig. 7 | Clinical cases. 3D reconstruction of neointima, lumen and stents (1) as well as
3D reconstruction of neointimal tissue prediction (2) and sample frames (3) from two
clinical cases. Quantitative statistics derived from DeepNeo are provided as well. aMale
with PCI of RCA. OCT 12 months after PCI reveals predominately neoatherosclerotic
neointima. During follow-up, the patient underwent target lesion revascularization (TLR)
due to in-stent restenosis with unstable angina. b Male with PCI of the left anterior

descending artery. OCT 12 months after PCI reveals predominantly homogenous
neointima. During follow-up, no adverse events occurred. Note how neoatherosclerosis
can lead to a loss of signal leading to undetected stent struts (white box in a1 and a2).
Note the correct classification of uncovered stent struts as “not analyzable” (blue line in
b1 and b2) and detection of a side-branch (white circle in b1).

Fig. 8 | DeepNeo user interface. The user-friendly interface is designed with several
features to facilitate accurate and efficient analysis, including an upload mask (a),
which allows users to upload OCT pullback images (DICOM or.zip), a visual
representation of the current OCT frame with segmentation and neointima pre-
diction (b), a schematic view of quadrants (c) (top row represents quadrant I, bottom
row quadrant IV) and neointima and lumen (d) that provides a visual representation
of the tissue characteristics, including a slider that enables users tomove through the

pullback. In addition, the interface includes a pullback analysis (e) that provides a
detailed analysis of theOCT images and amanual correction feature (f) to correct the
beginning and end of the stent if necessary. The webtool also allows users to
download a detailed analysis of their results and provides an information tab (g) for
additional guidance. Users are required to accept the research-only use on the
welcome page (h) before accessing the tool.
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on the detection of native atherosclerotic lesions, provides interventional
cardiologists with a useful toolbox for facilitating OCT interpretation on
native as well as stented segments.

As a limitation of our study, we did not differentiate between layered
neointima and heterogenous neointima, as such a distinction would have
reduced the sample size for each tissue class and adversely affected the
performance of DeepNeo. While cross-validation would have been
advantageous for classification as well, we are pleased to have 416 labels
annotatedby three independent experts, whichwebelieve are sufficient for a
robust evaluation. The high performance of the model on animal frames
may be influenced by the limited data available for evaluation. The accuracy
of DeepNeo in classifying neoatherosclerosis and heterogenous versus
homogeneousneointima (71%and62%versus 85%) in clinical casesmaybe
partly explained by the increasing complexity of neointimal tissue.
Homogenous neointima typically displays a simple and uniform appear-
ance, whereas neoatherosclerosis, characterized by foam cells, calcification,
or fibroatheroma, exhibits a more diverse and complex aspect that poses a
challenge for accurate classification. It is worth emphasizing that a com-
parable reduction in performance is observed in human experts, indicating
that the task of distinguishing between different types of neointimal tissue is
inherently challenging. This observation suggests that the reduction in the
accuracy of DeepNeo is mainly not due to a failure of the algorithm but
rather a reflection of the complexity of the task. Additionally, splitting a
frame into four quadrants might create ambiguous cases, such as when
portions of a quadrant are more severely diseased, making classification
challenging. However, it is noteworthy that misclassifications of neoather-
osclerosis as heterogenous neointima or vice versa may still be considered
acceptable, as both conditions are indicative of diseased tissue that requires
further attention. Moreover, the identification of any diseased tissue
through automated analysis can help alert clinicians to potential issues,
prompting further investigation and intervention where necessary. In rare
circumstances, such as inadequate contrastmediumorhighly atypical cases,
themodelmay encounter difficulties. However, due to the calibratedmodel,
those cases should result in low-confidence predictions and could beflagged
for further inspection. Thus, even with some degree of misclassification,
DeepNeo is a valuable tool in the detection and characterization of neoin-
timal tissue in patients after PCI.

DeepNeo offers a fast, reliable, and standardized approach to neoin-
tima characterization after PCI. Its performance closely matches that of
clinical experts, and its well-calibrated predictions ensure interpretability,
making acceptance by cliniciansmore likely. By reducing the need for time-
intensive manual interpretation, DeepNeo has the potential to streamline
clinical workflows and support interventional cardiologists inmakingmore
informed decisions. Its open-access nature fosters collaboration and accel-
erates research in vascular healing, while its applicability across species and
imaging setups underscores its robustness. As deep learning continues to
integrate into medical practice, tools like DeepNeo will be instrumental in
enhancing diagnostic precision, improving patient outcomes, and paving
the way for further AI-driven innovations in cardiovascular medicine.

Data availability
The data underlying this article will be shared on reasonable request to the
corresponding authors. Source data used to create Fig. 2 can be found in
supplemental data 1. Source data used to create Fig. 4 and supplemental
Fig. 1 can be found in supplemental data 2. Source data used to create Fig. 6
can be found in supplemental data 3. Models can be downloaded after
approval on Zenodo37.

Code availability
The full code can be found on github.com/ValentinKoch/DeepNeo38.
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