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Exon-variant interplay and multi-modal evidence identify
endocrine dysregulation in severe psychiatric disorders
impacting excitatory neurons
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Bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia share genetic architecture, yet their molecular
mechanisms remain elusive. Both common and rare genetic variants contribute to neural dysfunction, impacting cognition and
behavior. This study investigates the molecular effects of genetic variants on human cortical single-cell types using a single-exon
analysis approach. Integrating exon-level eQTLs (common variants influencing exon expression) and joint exon eQT-Scores
(combining polygenic risk scores with exon-level gene expression) from a postmortem psychiatric cohort (BD= 15, MDD= 24,
schizophrenia= 68, controls= 62) with schizophrenia-focused rare variant data from the SCHEMA consortium, we identified 110
core genes enriched in pathways including circadian entrainment (FDR= 0.02), cortisol synthesis and secretion (FDR= 0.026), and
dopaminergic synapse (FDR= 0.038). Additional enriched pathways included hormone signaling (FDRs < 0.0298, including insulin,
GnRH, aldosterone, and growth hormone pathways) and, notably, adrenergic signaling in cardiomyocytes (FDR= 0.0028). These
pathways highlight shared molecular mechanisms in the three disorders. Single-nuclei RNA sequencing data from three cortical
regions revealed that these core set genes are predominantly expressed in excitatory neuron layers 2–6 of the dorsolateral
prefrontal cortex, linking molecular changes to cell types involved in cognitive dysfunction. Our results demonstrate the power of
integrating multimodal genetic and transcriptomic data at the exon level. This approach moves beyond symptom-based diagnoses
toward molecular classifications, identifying potential therapeutic targets for psychiatric disorders.
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INTRODUCTION
Psychiatric disorders such as bipolar disorder (BD), major depressive
disorder (MDD) and schizophrenia are characterized by shared
pathophysiological, clinical and biological features, often involving
alterations in neural circuits within the prefrontal cortex (PFC) [1].
These brain areas are critical for cognition and executive functioning,
processes frequently affected in psychiatric disorders [2]. Under-
standing how these impairments manifest requires exploring the
underlying biological mechanisms. Cross-disorder psychiatric studies
provide a valuable framework for investigating these shared
processes, moving beyond surface-level phenotypic features such
as symptomatology and diagnostic criteria. By exploring common-
alities across disorders, we gain deeper insights into the underlying
mechanisms that contribute to psychiatric illness.

Postmortem brain specimens provide a unique opportunity to
investigate disease-related changes at the cellular and molecular
level and explore transcriptome-wide molecular processes in
neural circuits, which is important given that this is the level at
which novel treatment targets can be identified.
Genome-wide association studies (GWASs) are powerful tools

for understanding genetic predisposition of complex psychiatric
disorders and have successfully identified numerous disease-
associated genetic loci. For example, Trubetskoy et al. conducted a
GWAS on schizophrenia with 76 755 cases and 243 649 controls,
identifying 287 genetic risk loci significantly enriched in gene
expression of the Brodmann area 9 (BA9) PFC region [3]. Based on
the single variant GWAS results the idea of calculating polygenic
risk scores (PRSs) was developed [4]. The PRS quantifies the
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cumulative genetic risk for a disorder, yet its predictive diagnostic
accuracy in psychiatry is still evolving, with limited explained
variance (e.g., 7.3% for schizophrenia [3]). Improvements in
statistical methods for PRS calculation and inclusion of larger
and more diverse GWAS datasets hold promise for increasing
this accuracy and refining our genetic understanding of psychia-
tric disorders as well as potentially enabling computer-aided
diagnosis [5].
In addition to GWASs focusing on common single nucleotide

polymorphisms (SNPs), investigations of rare, pathogenic variants
may also substantially enhance our understanding of the genetic
bias of psychiatric disorders. Wainschtein et al. [6] proposed that
the lower heritability of common SNPs compared to population-
based estimates is attributed to rare variants, which are often
located in regions of low linkage disequilibrium and are more
likely to be protein altering. This finding aligns with previous
findings showing that rarer and evolutionarily younger SNPs
exhibit greater SNP heritability in various complex traits, including
BD, MDD and schizophrenia [7]. Notably, rare coding variants
identified as major contributors to schizophrenia risk, with ten
genes highlighted by Singh et al. [8], play a critical role in bridging
molecular interruptions and disease phenotypes in psychiatric
genetics. Furthermore, a study found evidence for an additive
model in which the presence of rare copy number variants (CNVs)
reduces the impact of common SNPs on schizophrenia risk,
highlighting the interplay of common and rare variants [9].
Additionally, studies utilizing postmortem brain samples from
established large cohorts, such as Genotype-Tissue Expression
(GTEx) [10], CommonMind Consortium (CMC) [11] and PsychEN-
CODE [12] have identified large-scale molecular changes in gene
expression and regulation. Recent advancements in single-cell/
nucleus RNA-sequencing (sc/snRNA-seq) technologies have built
on these works to enable the study of cell-type-specific gene
expression, as demonstrated recently in the first single-cell atlas
for schizophrenia, which revealed differentially expressed genes in
inhibitory and excitatory neurons [13].
GWASs often pinpoint significant variants in non-coding regions

[14], many of which influence gene expression as expression
quantitative trait loci (eQTLs) [15]. SNPs associated with schizo-
phrenia are enriched for eQTLs [16, 17]. While subgene-level eQTL
studies, such as those focusing on alternative splicing (spli-
cingQTLs) [18], have demonstrated their importance in complex
disorders like schizophrenia [19, 20], a comprehensive under-
standing requires investigating regulatory effects at the exon
level. Exon-level analyses, as demonstrated by Jaffe et al. [21], can
reveal transcript-specific gene regulation missed by traditional
gene-level approaches. This study emphasizes the importance of
accurately quantifying exon-level expression to identify subtle but
potentially impactful genetic effects. However, there has been
little previous exploration of genetic effects on exon-level
expression in the context of psychopathology, using a focused
approach for accurate quantification [22].
To identify these key regulatory elements and gain a deeper

understanding of their role in psychiatric disorders, we hypothe-
sized that integrating common variant effects with rare variant
data would identify core disease mechanisms, specifically genes
and pathways where both common and rare variation contribute
to dysregulation. Common variants may exert subtle, widespread
effects, while rare variants can be more disruptive; convergent
findings across both types of variation highlight robust targets.
Therefore, this study investigates genetic effects on exons and
their correlation with affected cell types in the human PFC (BA9).
Specifically, we aimed to identify genes and pathways showing
convergent evidence of dysregulation across common and rare
variant data and to determine the cell-type and layer-specific
expression of these prioritized genes within the PFC (BA6, BA9,
BA10, and BA11). This multi-faceted approach allowed us to
explore the interplay of genetic risk, gene expression at the exon

level, and cell-type localization in contributing to the pathophy-
siology of psychiatric disorders. Our findings contribute to a
broader understanding of psychiatric disorder development and
inform the identification of potential therapeutic targets and
intervention approaches.

MATERIALS AND METHODS
Study samples, tissue collection and processing
The primary cohort (Dataset 1 - exon array data) has been previously
described in Scarr et al. [23] and Dean et al. [24]. Briefly, dorsolateral
prefrontal cortex (DLPFC) tissue from 169 adult subjects aged 18–87 years
was included in the study. The cohort comprised individuals diagnosed
with BD (n= 15), MDD (n= 24) and schizophrenia (n= 68) and 62 subjects
with no psychiatric diagnosis (refer to Table S1). Demographic, clinical and
pharmacological data were obtained during a case history review
conducted using the Diagnostic Instrument for Brain Studies (DIBS), as
described previously [23]. Tissue collection and processing was performed
as described previously [23]. All tissue was obtained from the Victorian
Brain Bank at the Florey Institute for Neuroscience and Mental Health.
Brodmann area 9 (BA 9) was taken from the lateral surface of the frontal
lobe from an area comprising the middle frontal superior gyrus to the
inferior frontal sulcus of the left hemisphere.
Dataset 2 consisted of multiple human postmortem brain cohorts

utilized for downstream single-nucleus RNA-sequencing (snRNA-seq)
analysis. (a) Postmortem orbitofrontal cortex tissues from Brodmann area
11 (BA11) obtained from two neurotypical individuals (Table S1) were used
for snRNA-seq. These brain tissues were fresh-frozen and obtained from
the NSW Brain Tissue Resource Centre in Sydney, Australia. BA 11 was
dissected from the 3rd 8–10mm coronal slice from each fresh hemisphere
for each subject, guided by visual inspection of neuroanatomical
landmarks (primarily the straight and medial orbital gyri) in a slice anterior
to the corpus callosum. This approach ensured consistent dissection across
subjects. (b) Publicly available snRNA-seq data from BA9 postmortem brain
tissue obtained from 17 individuals not diagnosed with a psychiatric
disorder [25] were downloaded from the NCBI database under GEO
accession number GSE144136. (c) Publicly available snRNA-seq data from
BA6 and BA10 postmortem brain tissue obtained from six neurotypical
adult human brains [26], GSE97930, were used in WebCSEA.

Gene expression data
For Dataset 1, gene expression analysis was conducted using exon arrays.
Total RNA was extracted from frozen gray matter, with RNA quantity and
quality subsequently assessed. The expression arrays were processed
utilizing Affymetrix Human Exon 1.0 ST v2 Arrays. Preprocessing included
background adjustment, quantile normalization and summarization to the
probeset level using the oligo package in R. Batch corrections were made
using surrogate variable analysis. Gene annotations were sourced from
GENCODE, with data summarized to gene-, transcript- and exon-level (see
Supplemental Methods for more details). This led to expression values of
17 447 genes, 100 750 transcripts and 242 443 exons.
For Dataset 2a, single-nucleus RNA-seq libraries were generated from

post-mortem human brain tissue using the 10X Genomics Chromium
platform. Nuclei were isolated from brain tissue and processed according
to standard protocols. Data were processed using established bioinfor-
matics pipelines, including alignment using Cell Ranger. Subsequently,
count matrices were processed using Scanpy, including filtering of cells
based on counts and mitochondrial genes, normalization, log-
transformation and clustering using highly variable genes. Cell type
annotation was performed based on the expression of known marker
genes for major neuronal and non-neuronal cell types (see Supplemental
Methods for more details).

Genotype data, imputation and polygenic risk scores (PRSs)
For Dataset 1, genotyping was conducted using Illumina Infinium Global
Screening Arrays on genomic DNA extracted from postmortem cerebellar
tissue. Quality control measures were applied using PLINK [27]. The study
population primarily consists of individuals of European ancestry.
Imputation of missing genotypes was performed with IMPUTE2 [28],
utilizing the 1 000 Genomes Phase III reference panel, which includes
individuals of European ancestry, as a reference. SNP coordinates are
aligned with the hg19 genome assembly (totaling 9 164 462 SNPs; further
details are available in the Supplemental Methods). Additionally, PRSs were
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calculated using PRSice-2 [29] with a significance threshold of 0.01
(additional information provided in the Supplemental Methods).

Phenotypic data
Phenotypic data from Dataset 1, including age, sex, pH, postmortem
interval (PMI), RNA integrity number (RIN), suicide status and cause of
death (CoD; natural, violent or non-violent) were collected. Ancestry
dimensions were calculated using multidimensional scaling based on
genotypes.

Differential expression analysis
For the differential expression analyses, all samples diagnosed with a
psychiatric disorder were grouped as affected (n= 107). We used the
limma version 3.42.2 package in R 3.6.1 for analysis. The effect of being
diagnosed or not on gene expression differences was assessed, controlling
for age, sex, pH, PMI, RIN, RIN2, suicide and CoD. Additionally, adjustments
were made for the first four dimensions of genotype-defined ancestry
(Dim1-Dim4) and one identified surrogate variable (SV1) not correlated
with other model covariates. Differential expression analysis was con-
ducted separately for each genetic level and only results with an FDR
below 0.1 were considered for further analysis. For transcript- and exon-
level expressions, only one exon or transcript per gene model was
subjected to multiple testing correction, so as not to confound the
correction of genes with hundreds of exons (Figure S1). The FDR was
recalculated by: (1) generating p-values using limma, correcting for all
covariates; (2) selecting the transcript or exon with the lowest p-value for
each Ensembl gene ID to create a new expression matrix; and (3)
recalculating the FDR using limma on this refined matrix. Differential
expression analyses extended beyond diagnosis to include all listed
covariates, adjusting for all other model covariates (as shown in Figure S3
and Figure S4A).

Expression quantitative trait locus (eQTL) analysis
For the eQTL analysis, we utilized all imputed SNPs with a minor allele
frequency (MAF) greater than 5% for robust statistical power, totaling 6
830 577 SNPs. The eQTLs were calculated using the additive linear model
provided by MatrixEQTL [30], with adjustments for age, sex, pH, PMI, RIN,
RIN2, suicide, CoD, Dim1-4 and SV1. The threshold for cis-eQTL significance
was set at 0.05, with the physical distance criterion set to 1 Mb.

Exon expression quantitative trait score (eQT-Score) analysis
To compute exon eQT-Scores, we followed the procedure similar to the
one used for the differential expression analysis. In this approach, we
replaced the diagnosis variable with PRS in a linear model, adjusting for
age, sex, pH, PMI, RIN, RIN2, suicide, CoD, Dim1-4 and SV1. PRSs for
psychiatric disorders (BD [31], cross disorder [32], MDD [33] and
schizophrenia [3]) were derived from respective GWAS studies, while PRS
for the non-psychiatric GWAS type 2 diabetes (T2D) [34] served as negative
control. Calculations were conducted on the entire 169-subject sample.
Additional methodological details are available in the Supplementary
Methods section.

Core gene set generation
To generate the core gene set (n= 110), we identified genes that were
present in all three data categories: exon-level eQTL genes (n= 6 401) and
joint exon eQT-Score genes (n= 11,102) from Dataset 1 and genes
harboring rare variants (n= 231) from the SCHEMA consortium [8]. The
overlap was performed using Ensembl gene IDs to ensure consistency
across datasets.

Enrichment analyses
We conducted enrichment analysis for eQTL SNPs (eSNPs) using public
data from Ensembl Variant Effect Predictor (VEP) [35], the core 15-state
model of chromatin in DLPFC from the Roadmap Epigenomics Project [36]
and GWAS summary statistics for attention-deficit hyperactivity disorder
(ADHD) [37], autism spectrum disorder (ASD) [38], bipolar disorder (BD)
[31], cross-disorder meta-analysis (CDG) [32], educational attainment (EA)
[39], major depressive disorder (MDD) [33], schizophrenia (SCZ) [3] and
type 2 diabetes (T2D) [34]. Our background dataset comprised all eQTL
SNPs overlapping with the GWAS datasets. To mitigate bias stemming
from different minor allele frequency (MAF) distributions across GWAS and
our cohort, we binned MAFs for each eSNP set (gene, transcript and exon-

level eSNPs) and the background SNP set in increments of 0.05 from 0–1.
We then conducted an enrichment analysis using 10,000 permutations,
assessing overlap between randomly selected background SNPs and
public datasets. An empirical p-value was generated based on the
frequency of overlaps exceeding the actual overlap of the eSNP set with
the public dataset. We calculated odds ratios (OR) by dividing the actual
overlap by the mean of the resampled overlaps. ORs were considered
significant if the associated empirical p-value was less than 0.05 (Tables
S6i–v).

KEGG pathway analysis
For the KEGG pathway analysis of exon-level differentially expressed genes
and the core gene set, we utilized FUMA GENE2FUNC [40], excluding
disease and drug treatment relations. Default parameters were applied,
with exon-level based genes (n= 17 496) serving as the background list.
Only significant pathways with an FDR ≤ 5% were considered for KEGG
pathway enrichment.

Cell type enrichment analysis
We performed cell type enrichment analysis using two snRNA-seq datasets
(Datasets 2a–b) to identify cell types enriched among the genes with the
highest mean expression of the core genes (n= 110). Core genes and all
tested genes (n= 17 044) were mapped to single-nuclei expression data
using Ensembl gene IDs [41]. Most core genes (106/102) and background
genes (14 600/14 377 for Dataset 2a and Dataset 2b, respectively) were
detected in the single-nuclei dataset. The cell type distribution of the top
25% cells based on mean expression value for core genes was compared
to the distribution considering all background genes. Statistical signifi-
cance of enrichment in each cell type was evaluated using Fisher’s exact
test. Additionally, cell-type-specific analysis was conducted using WebCSEA
[42] on snRNA-seq data from BA6 and BA10 (Dataset 2c) with 107 core
genes detected, using a combined p-value threshold of 0.05.

RESULTS
Exon-level gene expression in cortex is associated with
psychiatric disorder diagnosis
Traditional gene expression analyses often overlook subtle
molecular changes occurring at lower resolutions, such as
differentially expressed exons, particularly in complex diseases like
psychiatric disorders. To address this limitation, we conducted a
comprehensive profiling of gene expression in postmortem DLPFC
tissue from 169 individuals aged 18–87 years, using an exon array
data analysis strategy (Figure S1). Our cohort comprised 15
individuals with BD, 24 with MDD, 68 with schizophrenia, and 62
controls with no psychiatric diagnosis (Table S1).
We compared differential expression at gene-, transcript- and

exon-levels. Grouping samples with BD, MDD and schizophrenia
into a cross-disorder diagnosis, we observed no significant
differential expression at the gene-level. However, at the
transcript-level, six genes showed differential expression, whereas
at the exon-level, 2 223 genes exhibited significant differential
expression (Fig. 1a, Figure S4A and Table S2i–iii).
KEGG pathway analysis of exon-level differentially expressed

genes revealed pathways related to cell-cell interactions, cell
motility and organismal systems, with the extracellular matrix-
receptor interaction (FDR= 7 × 10−5) and complement and
coagulation cascade (FDR= 0.027) pathways primarily containing
up-regulated genes (Figure S4B). In contrast, the axon guidance
pathway (FDR= 0.046) showed predominantly down-regulated
genes (Figure S4B).
Gene-level analysis did not yield any differentially expressed

genes, confirming the importance of exon-level analysis. Six genes
differentially expressed at the transcript-level were also differen-
tially expressed at the exon-level. Further examination of the fold
changes revealed a decrease in the magnitude of differential
expression from exon- to transcript- to gene-level (Fig. 1b–e). We
focused on fibronectin type III domain containing 3A (FNDC3A), an
ECM-glycoprotein that plays vital roles during tissue repair, as a
multi-exon gene, and found significant association with diagnosis
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in one specific exon (ENSE00003488149, FDR= 0.0539), while
most exons showed no expression differences (Figs. 1f and S4E).
Our findings demonstrate that exon-level analysis captures

molecular alterations in psychiatric cases, emphasizing the
importance of sub-gene alterations typically overlooked by
gene-level analysis.

Common variants associated with changes in cortical gene
expression are enriched for psychiatric cross-disorder
GWAS traits
We performed cis-eQTL analysis to identify genetic variants
influencing gene expression independently of diagnosis and
discovered 44 040 gene-eQTLs, 203 069 transcript-eQTLs and 477
352 exon-eQTLs at FDR < 5% (Fig. 2a, Figure S5A–C, Tables S3–S5).
The number of uniquely identified SNPs and genes increased from
gene- to exon-level analysis (Figs. 2b and S5D), with 65% of genes
exclusively detected at the exon-eQTL level. The calcium-binding
gene neurocalcin delta (NCALD) is an example of an exon-level-
specific effect, where only one out of 13 exons (ENSE00001231633,
FDR= 4 × 10−45) was differentially expressed in a variant-dependent

manner (Fig. 2c). Notably, 49% of the exon-level differentially
expressed genes (n= 1 090 out of 2 223 genes) were in common
with exon-eQTL genes.
We validated our eQTLs by comparing them to prior PFC (BA9)

eQTLs from GTEx v8 (425 donors) and the CMC (537 donors,
including individuals with schizophrenia [11]) cohorts. The overlap
with the GTEx data was lower compared to the disease-matched
CMC cohort, with a high overlap (>75%) observed between our
transcript- and exon-level eQTLs and CMC e/splicingQTLs,
demonstrating the reliability of our eQTL identification (Fig. 2d).
We characterized our eQTLs at gene, transcript, and exon levels,

finding eQTL (e)SNPs primarily located within intronic regions and
enriched in various regulatory elements (Fig. 2e). Exon-level eSNPs
showed specific enrichment for stop gains. Chromatin state
analysis revealed associations with both active and repressive
chromatin marks (Fig. 2f). Additionally, we observed significant
enrichment of eSNPs at all three levels in GWAS risk variants for
psychiatric disorders, including BD and schizophrenia (Fig. 2g),
with exon-level eSNPs showing the largest overlap (Table S6iii).
For detailed results, refer to Supplementary Results.

Fig. 1 Differential expression analysis results. a Bar plot illustrating significantly differentially expressed genes at the gene-, transcript- and
exon-level. b Forest plot displaying the log2 fold change (log2FC) range and median absolute log2FC (dot) of the 2 223 exon-level differentially
expressed genes compared to transcript- and gene-level. Exon-level changes exhibit a larger magnitude (median absolute log2FC= 0.23,
range of −0.69–0.75) than transcript- (median absolute log2FC= 0.11, range of −0.47–0.55) and gene-level (median absolute log2FC= 0.047,
range of −0.38–0.51). Volcano plots depicting (c) gene-level, (d) transcript-level and (e) exon-level differential expression analysis outcomes.
The x-axis represents log2FC, while the y-axis shows -log10(FDR). Significant hits (FDR < 0.1) are highlighted in turquoise for transcript-level and
light green for exon-level differentially expressed gene hits. Among the exon-level differentially expressed genes, 51% (1 139 of 2 223 genes)
and among the transcript-level differentially expressed genes, 83% (5 of 6 genes) are upregulated. f Boxplots illustrating the effect of diagnosis
on FNDC3A expression, separately for each level: FNDC3A gene, FNDC3A-002 transcript and ENSE00003488 exon residualised expression for
cases (purple, turquoise, or light green) and control subjects (gray). The x-axis indicates expression residuals and an asterisk indicates a
significant multiple testing corrected p-value (FDR < 0.1).
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Joint-SNP effects associated with cross-diagnostic disease risk
influence cortical exon expression
We next investigated the relationships between exons in BA9 and
genomic loci identified in large psychiatric GWASs. To encode
genetic disease risk, we employed PRS analysis to calculate a
cumulative sum of risk variants per individual for BD, MDD, cross-

disorder and schizophrenia GWASs. We focused on exon-level
expression due to the robust signal in our cohort. We computed
the exon expression quantitative trait (eQT)-Score by combining
individual PRSs with exon-level expression data (Fig. 3a), following
the same analysis approach used for differential gene expression
(see Methods). The eQT-Score analyses revealed numerous genes
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transcript-level
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Fig. 2 eQTL results and enrichment analysis of genomic features. a Bar plot showing significant eQTLs at the gene-, transcript- and exon-
level. b Venn diagram illustrating the overlap of eQTL genes among all three levels. c Example association plot for rs505460-NCALD expression,
displaying the effects of this variant on the expression of this gene at all three levels. rs505460 only has a visible influence on the expression of
exon ENSE00001231633. d Overlap between genes from the three eQTL levels and eQTL and splicingQTL genes from the GTEx or CMC
datasets in the human cortex. Genomic overlap between eSNPs of all three levels with (e) Ensembl Variant Effect Predictor (VEP) categories, (f)
the 15-state model of the Roadmap Epigenomics Project measured in DLPFC and (g) various GWAS traits from the Psychiatric Genomics
Consortium and non-psychiatric phenotypes as negative controls. The results are presented as bar plots showing odds ratios with significant
p-values indicated by an asterisk (*p-value < 0.05), along with proportions of overlap with the original datasets. ADHD attention-deficit
hyperactivity disorder, ASD autism spectrum disorder, BD bipolar disorder, CDG cross disorder meta-analysis, EA educational attainment, MDD
major depressive disorder, SCZ schizophrenia, T2D type 2 diabetes.
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associated with BD, MDD and schizophrenia (3 610-8 359) per
eQT-Score, corresponding to a total of 11 102 unique genes and
16 199 exons (Table S8), hereafter referred to as the joint exon
eQT-Score set, surpassing the number of exon-level genes
associated with the diagnosis (2 223, c.f. Fig. 1b). This suggests
that the comprehensive genetic disease architecture offers more
informative insights than binary diagnosis codes. In contrast, the
negative control GWAS for type 2 diabetes did not yield any hits.
The joint exon eQT-Score set, which included 78.8% of exon-

level genes associated before with clinical diagnosis, indicated a
substantial contribution to genetic disease risk. By comparing the
joint-SNP approach to single-SNP eQTL results, we observed that
77.9% of single-exon-level eSNPs overlapped with the joint exon
eQT-Score set. The joint-SNP approach exhibited larger effect sizes
than the single-SNP approach (Fig. 3b). Additionally, the joint exon
eQT-Scores showed differential expression for diagnosis (15.8%,
n= 1 751 differentially expressed genes, Table S2iii) and exhibited
single-SNP effects in cis (44.9%, n= 4 985 exon-level eQTL genes,
Table S5), see Fig. 3c.

Rare and common variants share risk for cross-diagnostic
psychiatric disorders
Given that common variants explain only a small proportion of
schizophrenia heritability, we incorporated rare variant data from
the SCHEMA Consortium (exomes from whole blood of 24 248
schizophrenia cases and 97 322 controls without a psychiatric
diagnosis) [8], identifying 244 schizophrenia-associated genes (231
in Dataset 1). We hypothesized that genes implicated by both
common and rare variants represent core disease mechanisms.
Common variants may have subtle effects, while rare variants can
be disruptive; convergent findings highlight robust targets.
Integrating common exon-level eSNP and joint-SNP effects with
rare variant data, we identified 110 core genes (Fig. 4a, Table S9),
prioritizing genes with multiple lines of genetic and transcriptomic
evidence.
KEGG pathway analysis of these core set genes revealed

significant enrichment of brain-related pathways, including
Circadian entrainment (FDR= 0.020), Cortisol synthesis and
secretion (FDR= 0.027), and Dopaminergic synapse (FDR= 0.038).

Fig. 3 Joint-SNP effects on cortical expression. a Bar plot displaying the number of significant exon-level expression-polygenic risk score
associations, also known as the exon expression quantitative trait score (exon eQT-Score). The y-axis represents the counts of exon eQT-Score
genes, and the x-axis indicates the corresponding GWAS used in the eQT-Score calculation. b Forest plot illustrating the effect size of exon-
level eQTL genes and exon eQT-Score genes. The y-axis shows the median beta or t-statistic and the x-axis displays the GWAS used in the eQT-
Score calculation. Exon eQT-Score genes exhibited a larger effect size (median absolute schizophrenia t-stats= 2.55, range from −4.53–4.32,
median absolute MDD t-stats= 2.46, range from −4.39–5.2, median absolute BD t-stats= 2.63, range from −4.81–4.89) compared to single-
exon-level eQTL genes (median absolute beta=−0.1, range from −3.77–2.48, p-value Wilcoxon test < 2.2 × 10−16). c Venn diagram showing
the overlap between exon eQTL genes (gray), the joint BD, MDD and SCZ GWAS exon eQT-Score genes (purple) and differentially expressed
exon-level genes (blue). BD bipolar disorder, MDD major depressive disorder, SCZ schizophrenia, CDG cross disorder, T2D type 2 diabetes.
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Also, several other pathways showed enrichment, including
hormone-related pathways (FDRs < 0.0298) and Adrenergic
signaling in cardiomyocytes (FDR= 0.0028), as shown in Fig. 4b
and Table S10. Examination of hormone production pathways
(Aldosterone synthesis and secretion, Insulin secretion, Cortisol

synthesis and secretion, GnRH secretion, and Growth hormone
synthesis, secretion and action) revealed that each involved 4–6
genes from our dataset out of 63–117 pathway genes. Specifically,
CACNA1C, a voltage-gated calcium channel involved in neuronal
signaling and shown to increase risk of psychiatric disorders [43],
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was shared across multiple hormone-related pathways, suggest-
ing a broader role of calcium signaling in neuronal and endocrine
regulation. Pathway-specific genes such as PCLO from Insulin
secretion and DAGLA from Aldosterone synthesis and secretion
highlight distinct roles within their hormonal systems. These
findings indicate a similar functional impact of rare and common
variants in psychiatric disorders.
We finally studied the cell type specificity of the core genes by

analyzing snRNA-seq data from BA9 (Dataset 2b) and comparing it
to data from other cortical areas (BA6/10/11, Dataset 2a, c; see
Supplementary Results). The core genes showed significant
enrichment in excitatory neurons (layers 2–6) within BA9 and
BA11 and replicated in snRNA-seq data from BA6 and BA10
cortices (Fig. 4c).
To gain deeper mechanistic insight, we conducted a cell type

enrichment analysis (see Materials and Methods), which identified
BA9 excitatory neuron layers 2–4, 5, 4–6 or 5–6 with p < 1 × 10−50

as the most significantly enriched cell types. Based on this
analysis, we derived a subset of 30 genes from the core gene set
specifically associated with these enriched excitatory neurons and
examined their annotations and associations (Fig. 5a). The majority
(87–97%) of these genes overlapped with previously identified
cortical eQTL and splicingQTL genes from the CMC dataset.
Furthermore, 50–67% of the exon-level eSNPs were enriched in
weakly transcribed regions or enhancers. In addition, 90% of the
genes were significantly associated with PRS for MDD, 73% for
cross-disorder and 60% for schizophrenia. Interestingly, only nine
(30%) of the genes overlapped with the differentially expressed
exon-level genes. Among the highly annotated genes were
Ankyrin-2 (ANK2), Ryanodine Receptor 2 (RYR2) and Glutamate
Ionotropic Receptor NMDA Type Subunit 2A (GRIN2A), see Fig. 5a.
GRIN2A, a key glutamate system gene, is enriched in excitatory
neurons and linked to several psychiatric disorders (schizophrenia,
BD, MDD and cross-disorder), actively-transcribed states and
DLPFC enhancers. This gene included synonymous variants and
was confirmed to be a cortical e/splicingQTL gene. GRIN2A’s top
eQT-Score exon was down-regulated in patients, and controls had
slightly greater mean cross-disorder PRS scores (mean= 0.04)
compared to patients (mean=−0.02), see Fig. 1b. The presence of
specific exons was associated with cross-disorder, MDD and
schizophrenia PRSs. Furthermore, individuals with the T allele of
SNP rs1545099 showed significant up-regulation of GRIN2A exon-
level expression (Fig. 5c), which was mainly localized in excitatory
neuron layers 2–4 and 4–6 (Fig. 5d, e).

DISCUSSION
Over 95% of multi-exon genes undergo alternative splicing,
particularly in the brain [44], indicating its importance in neuronal
development and function [45]. Splicing defects have been
implicated in the pathogenesis of psychiatric disorders, including
schizophrenia [46]. This study provides a comprehensive investi-
gation of targeted exon-level gene expression in the human brain,
emphasizing the importance of exon-level gene expression in the
pathophysiology of psychiatric disorders. Unlike conventional
methods that average expression across entire transcripts or
genes, we precisely measured exons, leading to the identification

of 2 223 genes with differentially expressed exons between
psychiatric cases and controls (Fig. 1), showing larger fold changes
than those observed at the gene- or transcript-level. This finding is
consistent with previous research that has shown larger fold
changes at the exon level compared to the gene level [21].
Moreover, we observed no significant main effects of diagnosis at
the gene-level and only a few at the transcript-level (n= 6 genes).
Our focus was on individuals with psychiatric disorders, specifically
those with symptoms associated with the schizophrenia spectrum.
This approach better mirrors the clinical and scientific reality of
psychiatric disorders, capturing their complexity, dimensionality,
and comorbidity [47]. Many of our identified differentially
expressed genes at the transcript- and exon-level, such as Cyclic
Nucleotide Gated Channel Subunit Beta 1 (CNGB1), Cystatin B (CSTB)
and Dipeptidyl peptidase 4 (DPP4), have been previously linked to
psychiatric disorders in various studies, including exome sequen-
cing and GWAS of schizophrenia [3, 48–50].
By integrating transcriptome and genetic variation data, we

found a significantly greater number of exon-level eQTLs, two
times greater than at the transcript-level and ten times greater
than at the gene-level (Fig. 2a). This finding is consistent with
previous reports demonstrating the transcript-specificity of many
eQTL signals, particularly those identified in brain tissue [21]. An
example of an exon-level-specific eQTL is Neurocalcin Delta
(NCALD), a brain-enriched protein associated with various
neurological disorders (Fig. 2c). In genetic rat models of
schizophrenia, NCALD expression was downregulated and in
NCALD knockout mice, it was linked to adult hippocampal
neurogenesis [51, 52]. Additionally, NCALD SNPs have been
associated with bipolar disorder [53]. Interestingly, 75–77% of
our significant exon-level eQTL genes in the present study
overlapped with published postmortem eQTL genes, while
65–75% overlapped with splicingQTL genes, confirming the
robustness of our findings and the importance of studying
exon-specific expression. Variant effects from exon-level eQTLs
highlight an accumulation of gene flanking regions and synon-
ymous and missense variants. Moreover, exon-level eSNPs were
enriched in stop-gained variants, indicating a potentially higher
protein-damaging impact compared to transcript- or gene-level
analysis. Despite the high polygenicity of psychiatric diseases and
the distinction in variant sets between GWAS and eQTL studies
[54], we found significant enrichment of our exon-level eSNPs in
GWAS SNPs associated with ADHD, BD, cross-disorder, educational
attainment and schizophrenia, providing further evidence for the
shared genetic basis of psychiatric disorders. Although eQTL
analysis provides valuable insights, it may not directly elucidate
the underlying disease mechanisms involved. Instead, this finding
underscores the significance of conducting gene expression
analysis at the exon-level.
In our study, we employed a novel approach that combines

polygenic risk scores (PRSs) with exon-level expression data (eQT-
Scores) to gain deeper insights into the genetic foundations of
psychiatric disorders. Psychiatric disorders are known for their
intricate symptomatology and frequent co-occurrence, under-
scoring the need for a continuous, transdiagnostic perspective to
better comprehend the complex genetic underpinnings of these
conditions. With this approach we found that 79% of the genes

Fig. 4 Genes disrupted by rare and common variants. a Venn diagram showing the overlap between single SNP exon eQTL genes (gray),
joint exon eQT-Score genes (purple) and genes altered by rare variants in the SCHEMA consortium data [8] (green). b Bar plot illustrating the
KEGG pathway enrichment analysis results for the core set of genes (n= 110). The top 10 pathways are visualized, with dark gray bars
denoting statistically significant pathways. The significance threshold, set at FDR < 0.05 / -log10(adj.P-value)>1.3, is indicated by the dashed red
line. The y-axis represents the enriched KEGG pathways, while the x-axis displays the -log10-transformed adjusted p-values (FDRs). c Heatmap
depicting cell-type specificity for the core gene set of enrichment signals defined at the gene-level from the snRNA-seq data (BA11: Dataset
2a, BA9: Dataset 2b, BA6/10: Dataset 2c). The star indicates a significant enrichment p-value < 0.05. Ex excitatory neurons, In inhibitory neurons
(identified based on the expression pattern of peptide genes: VIP, SST, SV2C and calcium-binding protein: gene PVALB), OPC oligodendrocyte
precursor cell, Oligo oligodendrocyte.
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Fig. 5 The missense gene GRIN2A, a core gene enriched in excitatory neurons. a Heatmap displaying 30 genes from the core gene set
significantly enriched in at least one of the overrepresented BA9 cell types. The plot shows the datasets in which the genes are significant.
b Association plot of cross-disorder PRS and ENSE00001323909.1 exon-level expression of GRIN2A, separated into cases and controls with
mean residualized expression in control= 0.04 and cases=−0.02 (cross-disorder exon eQT-Score). The x-axis indicates expression residuals
and the y-axis shows cross-disorder PRS values. c Box plot indicating the exon-level eQTL expression of GRIN2A exon ENSE00001323909.1 for
rs1545099. The y-axis indicates expression residuals and the x-axis shows genotypes. d UMAP of the Glutamate Ionotropic Receptor NMDA
Type Subunit 2A (GRIN2A) expression in BA9, where gray denotes minimal expression and blue represents high expression. e UMAP of the 26
clusters identified in BA9.
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associated with diagnosis share commonalities with genes
implicated in genetic risk, while 81% of the genes related to
genetic risk (eQT-Score genes) provide additional insights (Fig. 3c).
This striking observation implies that genetic risk factors extend
their influence on additional genetic loci beyond those directly
associated with the disorders themselves. Furthermore, our eQT-
Score approach encompasses information from multiple SNPs,
offering a broader perspective, while traditional eQTL analysis
often involves scrutinizing a single SNP at a time. This expanded
scope resulted in the identification of 1.6–3.8 times more
differentially expressed genes (Fig. 3a, c) and effect sizes that
were 22.3–47.5 times greater than those observed at the single-
exon-level in eQTL analysis (Fig. 3b). Our findings illustrate the
importance of exon-level expression analysis and its integration
with genetic risk through PRS, offering a deeper understanding of
the genetic foundations of psychiatric disorders and the potential
to enhance risk prediction, diagnosis, and therapeutic strategies.
Further advances in larger sample sizes and incorporation of
functional annotations such as cell type or epigenetic marks could
enhance the results of exon eQT-Scores, leading to more accurate
diagnostic tools in the future.
Additionally, we combined the effects of common and rare

variants, acknowledging the limited impact of common variants
and the potential significance of rare variants in psychiatric
disorders. We analyzed rare coding variants from whole exomes
from the SCHEMA consortium [8] and found mutations affecting
the same genes as those identified for exon-level eQTLs (50%
overlap, Fig. 4a), suggesting that shared loci are the basis for
schizophrenia. Our findings, despite the complexities and shared
genetic basis of psychiatric disorders, demonstrate robustness and
consistency with larger studies, validating their reliability.
Integrating the various genetic models of the transdiagnostic

psychiatric phenotype (eQTL, eQT-Score and rare variants)
identified a core set of 110 genes representing a combination of
rare and common risk factors for psychopathology. These genes
are significantly enriched in several pathways, including those
related to neurotransmission (dopaminergic synapse and adre-
nergic signaling in cardiomyocytes), circadian entrainment, as well
as in the production of hormones (cortisol, insulin, aldosterone
and GnRH) (Fig. 4b). Interestingly, adrenergic signaling, which
plays a crucial role in the sympathetic nervous system and
influences various cognitive and emotional processes [55], was
also significantly enriched. This is an unexpected finding,
considering the primary function of the DLPFC in higher cognitive
processes. While the DLPFC does not directly innervate the heart,
the enrichment of the adrenergic signaling in cardiomyocytes
pathway may reflect shared regulatory mechanisms or indirect
connections, potentially influenced by the higher prevalence of
cardiometabolic conditions, such as diabetes and cardiovascular
disease, in individuals with psychiatric disorders [56]. While
increased striatal dopamine is associated with psychosis, evidence
suggests prefrontal cortical dopamine deficits in schizophrenia.
Animal studies support this, showing that prefrontal cortex
dopamine lesions increase striatal dopamine, while dopamine
agonists reduce it. Antipsychotics targeting D2 receptors further
support dopamine’s involvement [57]. However, dopamine’s role
in schizophrenia is complex and involves intricate interactions
within and between brain regions. Circadian dysfunction is
frequently observed in major psychiatric disorders [58] and is
intricately connected to dopamine regulation, as dopamine
entrains the master clock in the suprachiasmatic nuclei [59]. The
suprachiasmatic nuclei also play a role in hormone secretion [60],
aligning with our identification of genes related to cortisol,
aldosterone, insulin and GnRH regulation, all exhibiting circadian
rhythms [61, 62]. Notably, gene expression patterns in the
prefrontal cortex exhibit diurnal rhythms [63], further supporting
the relevance of circadian processes. These pathway findings

highlight the potential involvement of multiple biological systems
in the pathophysiology of psychiatric disorders.
Our core gene set was enriched in excitatory neuron subtypes

of BA6, 9, 10 and 11. Notably, alterations in specific cortical layers
of the DLPFC, particularly layers 2 and 3, have been associated
with cognitive deficits in schizophrenia, including impairments in
working memory and executive functions [64–66]. Cortical
neurons seem vulnerable to the effects of stress in psychopathol-
ogy [67], aligning with the implications of cortisol in our core gene
set and its connection to circadian entrainment. Future studies
focusing on single-nucleus omics will continue to unveil crucial
cell types involved in psychiatric diseases [13].
To leverage multi-level information from common and rare

genetics, as well as tissue transcriptomics (bulk exon array
expression and snRNA-seq), we zoomed-in on a subset of core
genes (n= 30 genes, Fig. 5a). We based this selection on
comprehensive evidence from functional annotations and
single-cell-type enrichment. Notably, Glutamate Ionotropic Recep-
tor NMDA Type Subunit 2A (GRIN2A) has emerged as a standout
gene that encodes the NMDA receptor NR2B subunit, regulating
neuronal excitability. It has been strongly associated with
schizophrenia in a recent large exome-sequencing study [8].
NMDA receptor hypofunction and glutamate dysregulation are
consistently implicated in postmortem brain studies examining
the cortex in schizophrenia patients and are closely linked to
dopamine neurotransmission and dysfunction [66]. The NMDA
receptor composition switches during development from NR2B to
NR2A (GRIN2A) subunit dominance, influencing cortical circuit
maturation and NMDA receptor hypofunction [68]. In-depth
analysis of the core gene set may provide novel insights into
schizophrenia and reveal common foundations across psychiatric
disorders.
While postmortem studies provide only a snapshot of the brain

at the time of death, they enable examination of brain pathology
at cellular and molecular resolution, which is not possible with
current imaging modalities in living people [69]. To account for
possible confounding factors associated with the study of
postmortem human brain tissues, we included demographic and
clinical variables such as PMI, RIN and pH to ensure that the results
obtained were related to pathology and not tissue quality
characteristics. Additionally, while microarrays are informative,
they may be less sensitive than RNA-seq methods. Future RNA-seq
studies at the single-cell level may offer deeper insights.
It is worth noting that the cohort composition of our primary

cohort (Dataset 1, comprising mainly schizophrenia cases (n= 68)
with fewer cases of major depressive disorder (n= 24) and bipolar
disorder (n= 15)) is biased towards schizophrenia diagnoses. This
imbalance should be kept in mind when interpreting our findings,
as some effect may be disproportionately influenced by this
diagnostic group. Furthermore, Dataset 2, comprising a relatively
small sample size, may limit the statistical power and general-
izability of the findings from this dataset. These considerations
highlight areas where future research can be improved based on
the insights gained from this study. In addition, to ensure a
sufficient number of significantly differentially expressed genes
were identified, a less stringent threshold of FDR < 0.1 was
employed. This threshold, while less stringent than the conven-
tional FDR < 0.05, still maintains a relatively stringent level of
statistical significance.
Overall, our study highlights the importance of examining exon-

level gene expression directly in the human brain and integrating
multi-level datasets to uncover crucial combined genetic risk and
diagnosis-related gene sets with pathological relevance. This
approach pointed to cortical excitatory neurons as a potentially
crucial cell type in psychopathology and identified key genes such
as GRIN2A as potential targets for further research and treatment
development in psychiatric disorders.
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DATA AVAILABILITY
The expression data of Dataset 1 can be accessed on the Gene Expression Omnibus
(GEO) under the accession number GSE208338. However, access to the genotypes of
Dataset 1 requires an approved request. The snRNA-seq data of Dataset 2 are also
available on GEO. Specifically, the Dataset 2a can be found under the accession
number GSE205642, the Dataset 2b under GSE144136 and the Dataset 2c under
GSE97930. These GEO accessions provide access to the respective snRNA-seq data
sets for further exploration and analysis. Code for the analysis is available at GitHub:
https://github.com/cellmapslab/PostmortemBrainAnalysis. The web links for the
publicly available datasets used in the study are as follows: SCHEMA results to
integrate rare coding variants: https://schema.broadinstitute.org/downloads, 15-core
state model of chromatin from Roadmap Epigenomics Roadmap (ChromHMM v1.10)
for functional annotation of eSNPs: https://egg2.wustl.edu/roadmap/web_portal/
chr_state_learning.html#core_15state, CommonMind Consortium for result compar-
ison: http://CommonMind.org, Current NetAffx probeset annotation file for
the Affymetrix HuEx 1.0 ST v2 microarray: http://www.affymetrix.com/Auth/
analysis/downloads/na36/wtexon/HuEx-1_0-st-v2.na36.hg19.probeset.csv.zip, DIA-
betes Genetics Replication And Meta-analysis (DIAGRAM) Consortium for the type
2 diabetes (T2D) GWAS summary statistic: https://diagram-consortium.org/
downloads.html, GENCODE release 19 (GRCh37.p13) annotation file: http://ftp.ebi.ac.
uk/pub/databases/gencode/Gencode_human/release_19/gencode.v19.annotation.
gtf.gz, Genotype-Tissue Expression (GTEx) V8 for annotation/enrichment analysis and
result comparison: https://www.gtexportal.org/home/datasets, Human Ageing Geno-
mic Resources (HAGR) for known human aging genes: https://genomics.
senescence.info/genes/human_genes.zip, National Center for Biotechnology Infor-
mation (NCBI) for GRCh37/hg19 reference genome of the index-patient rare variant
dataset: http://www.ncbi.nlm.nih.gov/assembly/2758/, Psychiatric Genomics Consor-
tium (PGC) for GWAS summary statistics of psychiatric disorders: https://
www.med.unc.edu/pgc/, Social Science Genetic Association Consortium (SSGAC) for
the educational attainment (EA) GWAS summary statistic: https://www.thessgac.org/
data, Web-based Cell-type-Specific Enrichment Analysis (WebCSEA): https://
bioinfo.uth.edu/webcsea/.
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