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Metabolic syndrome (MetS) and type 2 diabetes mellitus (T2D) are associated with inflammation and the
accumulation of macrophages in peripheral nerves, which increases the risk of developing peripheral neuropathy
(PN). We have previously investigated that macrophage infiltration in the peripheral nerves of animals with T2D
(leptin-deficient ob/ob mice, leptin receptor-deficient db/db) correlated with PN, whereas this process in animals
with MetS (Wistar Ottawa Karlsburg W (RT1u) WOKW rat) did not lead to neuropathic changes. Additional data
presented in this study suggest an association between increased mRNA expression of the anti-inflammatory
marker IL-10 and autophagy in the prevention of neuropathy.

Obesity, hypertension, hyperinsulinemia, and impaired glucose
tolerance (IGT), diagnosed in patients with the MetS and diabetes are
predictors which activate inflammatory processes in adipose tissue
(Wellen and Hotamisligil, 2005; Andersen et al., 2016). Chronic
inflammation in diabetes simultaneously leads to secondary complica-
tions such as peripheral neuropathy, nephropathy and retinopathy.
However, clinical studies confirm that IGT and inflammation are already
risk factors for the development of peripheral neuropathy (PN), even in
the absence of manifest diabetes (Miscio et al., 2005; Gordon Smith and
Robinson Singleton, 2006). Thus, patients with MetS develop a pe-
ripheral neuropathy phenotype similar to that diagnosed in patients
with manifest diabetes, including decreased motor and sensory nerve
responses, pain, microvascular dysfunction, damage of the small nerve
fibers, accompanied by macrophage infiltration into endo/perineum
(Ziegler et al., 2009; Zhou et al., 2011). Similarly, our research group
showed extensive autonomic nerve dysfunctions, affecting both

parasympathetic and sympathetic nervous systems with damage of
thinly myelinated and C unmyelinated fibers already in the obese chil-
dren without diabetes (Baum et al., 2013).

Notably, the activation of macrophages in the inflammation process
could occur bidirectional (Pop-Busui et al., 2016). Whereas the classi-
cally activated macrophages (M1) express a specific set of
pro-inflammatory mediators, alternatively activated macrophages (M2)
exhibit an anti-inflammatory phenotype (Osonoi et al., 2022). The
expression of pro-inflammatory mediators like interleukin —18 and-6
(IL-1pB, IL-6), tumor necrosis factor alpha (TNFa) and monocyte che-
moattractant protein-1 (MCP-1) of obese individuals is among the
biomarker for the diagnosis of PN (Pop-Busui et al., 2016; Sommer et al.,
2018) Recently, a successful anti-inflammatory treatment with M2
polarized macrophages in the peripheral nerves have been demonstrated
(Huang et al., 2020). Similarly, switching from M1 to M2 with niacin
administration in patients with Parkinson’s disease or ex vivo
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administration of M2 macrophages in patients with stroke showed a
positive therapeutic effect (Chernykh et al., 2016; Wakade et al., 2018).
Both, the stimulation and inactivation of inflammation are distinctly
regulated by the process of autophagy (Levine et al., 2011). Generally,
autophagy performs a neuroprotective function in the neural tissue by
clearance of aggregated and toxic proteins (Menzies et al., 2017). Ge-
netic studies in human and mouse nerve cells have shown that basal
deficiency or shutdown of autophagy genes like Atg5, Atg7 causes neu-
rodegeneration and cell death (Aman et al., 2021; Sun et al., 2023). The
authors postulated that the mechanistic relationship between autophagy
deficiency and nerve cell death could be the target for therapeutic in-
terventions. Although up-regulation of autophagy has been observed in
post-inflammatory peripheral nerve regeneration (Mohseni, 2011), the
alternation of inflammatory pathways associated with autophagic ac-
tivity is still poorly understood.

These studies complement our previous results by showing a corre-
lation between pro/ anti-inflammatory pathway activation and auto-
phagy in peripheral nerves of animal models with MetS and T2D.

The following animals have been used for experimental studies: ob/
ob leptin-deficient mice with mild type 2 diabetes (B6.V-Lep ob/ob) and
ob/+ healthy control mice (B6.V-Lep ob/J), db/db leptin receptor-
deficient mice with severe type 2 diabetes and db/+ healthy control
mice, Wistar Ottawa Karlsburg W (RT1u) WOKW rats with metabolic
syndrome and healthy LEW.1 W control rats. Ob/ob, ob/+ , db/db and
db/+ mice were obtained from the Taconic Europe (Ry, Denmark) and
WOKW and LEW.1 W rats from the Department of Laboratory Animal
Science of the University of Greifswald (Karlsburg, Germany) and
transferred to Leipzig in 2010. All animals were adjusted to the local
animal facilities and maintained on a 12 h light/dark cycle with free
access to water and were fed with regular food (Global Rodent T.2018.
R12; Harlan Teklad) containing 12 % of calories from fat. Animal studies
were approved by the local authorities of the state of Saxony, Germany,
as recommended by the responsible local animal ethics review board
(Approval No: TVV10/11, TVV25/12, TVV63/12, T01/13, TVV65/15,
T08/16, Landesdirektion Leipzig, Germany). The characteristics of the
metabolic parameters of compared animals have been summarized in
Table 1.

Sciatic nerve tissue samples were collected immediately after
euthanasia by an overdose of isoflurane followed by cervical dislocation,
as previously published (Kosacka et al., 2012, 2013, 2019; Paeschke
et al., 2019). Total RNA was isolated from sciatic nerves (n = 3 per
group) of db/db, db/+ , ob/ob and ob/+ mice, WOKW and LEW.1 W rats
using TRIzol (Life Technologies, Grand Island, NY), and 1 pg RNA was
reverse transcribed with standard reagents (Life Technologies, Grand
Island, NY). Quantitative real-time PCR (qPCR) were performed using
the standard curve method in a fluorescent temperature cycler using the
TagMan assay as previously described (Kosacka et al., 2022). Fluores-
cence was detected on an ABI PRISM 7000 sequence detector (Applied
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Biosystems, Darmstadt, Germany). From RT-PCR, 2 pl was amplified in a
26-pl PCR using the Brilliant SYBR Green QPCR Core Reagent kit from
Stratagene (La Jolla, CA) according to manufacturer’s instructions. The
mouse and rat primers probes, Atg (Mm01187303.ml,
Rn01767063_m1), Atg7 (Mm00512209_m1, Rn01492725_m1), Beclinl
(Mm01265461_ml1, Rn00586976_.ml), IL-6 (Mm00446190_ml,
Rn01410330_m1), IL-10 (Mm01288386_m1, Rn99999012_m1), IL-13
(Mm99999190_m1, Rn00587615ml), MCP-1 (Mm00443258 ml,
Rn00580555_m1), mTOR (Mm00444968_m1, Rn00693900_m1), TNFa
(MmO00443258 m1, Rn99999017_m1) and 18sRNA (Hs99999901 sl1,
endogen reference) were purchased from Life technologies (Darmstadt,
Germany). The quantification of the mRNA was carried out using the
second derived maximum method of the TagMan (Applied Biosystems)
software.

Our previous studies have shown the significant infiltration of
macrophages and T cells in the peripheral nerves of WOKW rats with
MetS (Kosacka et al., 2013), ob/ob and db/db mice with mild and severe
T2D (Kosacka et al., 2012, 2019; Paeschke et al., 2019), respectively.
Whereas, the inflammatory signs in diabetic mice leaded to degenera-
tion of small myelinated A-delta and unmyelinated C nociceptive fibers
of skin and of the large myelinated A proprioceptive, reduction of nerve
conduction velocity (NCV), the WOKW rats do not develop overt neu-
ropathy. The characteristics of neuropathy symptoms of the compared
animals are summarised in Table 2.

Unexpectedly, the significant up-regulated autophagy with atg5 and
atg7 protein expression, increased LC3-1I/LC-I ratio and massive auto-
phagosomes formation, has been determined in sciatic nerves of WOKW
rats as compared to health LEW.1 W control animals (Kosacka et al.,
2013).

It has been proposed that activation of inflammatory signaling
pathway and cytokine production could be stimulated by autophagy
(Rocha et al., 2020). The mechanisms of balance expression of
pro-inflammatory and anti-inflammatory cytokines in peripheral nerves
is still unclear. Here, we investigated whether there is a relationship
between the expression of cytokines and markers of autophagy at the
mRNA level. We detected significantly higher expression of
pro-inflammatory cytokines: IL-6, MCP-1 and TNFa mRNA in sciatic
nerves of ob/ob, db/db and WOKW animals as compared with healthy
controls, respectively (Fig. 1 A). However, the mRNA expression of
anti-inflammatory cytokine, IL-10, has been significantly and about
4-fold upregulated in sciatic nerves of WOKW rats, exclusively vs.
healthy LEW.1 W control animals (Fig. I A). Simultaneously, a signifi-
cant increase in mRNA expression of autophagy marker Atg7 (2.8-fold)
and Beclin-1 (1.8-fold) has been found in peripheral nerves of WOKW
rats as compared with control animals (Fig. 1 B). Similar, but less sig-
nificant tendency was observed in the Atg7 expression (1-fold) in pe-
ripheral nerves of ob/ob mice (mild T2D) vs. healthy ob/+ controls
(Fig. 1 B).

Table 1
Characteristics of study subjects at an age of 3-months (n = 10; mean + SD).
ob/+ ob/ob db/+ db/db LEW.1W WOKW

Body weight (g) 31.1+1.7 50.5 + 6.6 321+ 21 45.4 +£9.3" 503.3 + 12 673.4 + 217"
Blood glucose (mmol/1) 5.8 + 1.4 12.5 £ 0.6 6.1 +£0.7 18.5+1.8" 5.8 + 0.5 6.5 + 0.9NS
HbAlc (%) 3.9+04 6.1+ 15" 42402 8.2 £ 2.0 3.7 +0.3 3.8 +0.2%
Triglyceride 0.8 +0.2 0.6 + 0.1N 1.0 +£ 0.2 1.6 + 0.5 1.8+0.3 54+1.6"
Cholesterol 1.7 4 0.2 45+0.7" 2.4+0.2 4.3+ 0.9* 1.7 +0.2 3.7 £ 0.9*
HDL 1.5+0.1 2.8+ 0.5% 2.0+ 0.3 3.5+ 0.6% 1.3+0.2 3.0 + 0.8%
LDL 0.2+0.1 1.6 + 0.2* 0.3+0.1 0.7 + 0.5™ 0.3+0.1 0.4 +£ 0.1
Serum insulin (ng/ml) 0.9 + 0.4 129 + 417 0.9 + 0.4 1.5+ 0.6™ 1.34+0.5 9.1+06""

Blood glucose concentrations were measured in whole blood taken from the ventral caudal vein using an Opticum Omega glucometer (GlucoMen, Menarini Di-
agnostics, Berlin, Germany). Serum analyses have been performed in the Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics at Leipzig

University.

Ireferences: Type 2 Diabetes mellitus HbAlc > 5. Note that the HDL level in db/db mice, ob/ob mice, and WOKW rats is higher than in control animals, which is different
from patients with T2D. Values represent means + SEM; * p < 0.05, ** p < 0.01, *** p < 0.001, according to the one-way analysis of variance together with Newman-

Keuls test; NS, not significant.
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Table 2
Nerve conduction studies, macrophages distribution in sciatic nerve and intraepidermal nerve fibers density (n > 5; mean + SEM).
ob/+ ob/ob db/+ db/db LEW.1 W WOKW

mNCV (m/s) 46 £ 0.6 34+ 27 478+ 6.7 31+8" 47 £6.5 47 +£10.5™
s/mix aff. NCV (m/s) 57.8+£5 45 + 4.8* 63.8 £ 15.5 547 + 23N8 68.5 £ 10 58.4 + 7NS
IENFD (fibers/mm?) 16+3 7+17 24 +2 18+ 2™ 23+5 21 + 3%
Number of macrophages /mm? 50+ 1" 15 + 2" 9.0 + 1" 17 + 2™ 5.0 + 2 90 + 9™
Degree of PN N/C moderate N/C high N/C N/C

IENFD, intraepidermal nerve fiber density (characterized by PGP9.5 immunostaining of hind foot skin samples), mNCV, motor nerve conduction velocity (performed
on sciatic nerve), s/mix.aff. NCV, sensory/mixed afferent nerve conduction velocity (performed on sciatic nerve), N/C, no changes, PN, peripheral neuropathy. The

number of macrophages in the sciatic nerve was determined by Iba-1" or F4/80" immunostaining. Values represent means + SEM;

* p < 0.05, ** p < 0.0, ***

p < 0.001, according to the one-way analysis of variance together with Newman-Keuls test. NS, not significant.

Adapted from (Kosacka et al., (2013), (2019); Paeschke et al., (2019).

>

12+ *k%k 3 * * * 4 *% * * 8— * *% *
22
S 84 s_ . s
g5 94 =) 1.8 15 QE:D 3 'l' Z5 645
EZ E<2q T < E<
S c (- we 1.9 © c
< o "zLo %o 1.6 v o 29 2.2
= 6 g 1.1 La 21 T 25 4
vg 28 vg 0.7 q,g 1.1 1.0 gg
> » > = 44 0.7 e ¥ Z =
E& 3] 18 = 1.8 2.2 = ."_;2-1_ 0.6 232_ 1.9 20
-9 T < ° Lo &‘” 0.9
} ) - & []
ol—1r 11 : ol—1r -1 : ol—1r 11 : oLl 1 r
SR R (R P e TP (R PP R R\ S L SRR
QIR TSN AT P PR SN O oSN ST S PR SR
® Ve ey SRR P SRR P ¥ Ve ey
v v v v
B 6- 15- *% Fkk g *kk *% 5o X% *k
<
40 < 2
s _ s _ 10.1 z_ 54 % _ 4
=) 4] X5 6 45 ) 3.0 31
EZL 44 4 £< 104 Ex -< 2.2
YHE T 35 F £5°] 22 ]
o o o 3.5 = o .
I T <@ T @ 4 1 Sa | 19 T
° 2 20 4, 8 S Qg 24 T 1.5
£ 1.8 $e 4 g e ® = ’
s Q T s Q 25 28 S a
3 23 18 3.1 T X2 12 1.1 %
@ ol - & -
4 4 L Lg 1.2 & T T E 1
0 T T T T T o T T T ,-I-I T 0 ] T ] T T 0 T T T T T
SAPRSII TR SAPRSIP R (R I IR S P PN
& RO NSNS N Wt &R N O SN Wt &R
$ Ve SO © TS TP & TS T ® T TP
A% A% A% A%

Fig. 1. mRNA expression of pro-inflammatory, anti-inflammatory and autophagy related genes in sciatic nerves of animals with MetS and mild or severe T2D. A:
TNFa, MCP-1 and IL-6 mRNA expression was increased in sciactic nerves in animals with MetS and T2D vs. healthy controls. Anti-inflammatory IL-10 and autophagy
marker Atg7 and Beclin 1 mRNA expression (B) was significantly higher in the sciatic nerves of WOKW rats with MetS as compared to other groups. Data from n = 3

per group are represented as mean + SEM. * p < 0.05, ** p < 0.01, **
test. The individual mean values are presented on the bars.

In addition, the function of inflammatory and autophagy genes in
relation to the development of neuropathy in animals with MetS and
T2D has been investigated using correlation analysis. A positive corre-
lation between up-regulated expression of autophagy markers (Atg7 and
Beclin 1) and anti-inflammatory IL-10 cytokine has been found in sciatic
nerves of WOKW rats with MetS without neuropathy. Simultaneously,
moderate autophagic activity was shown corresponding to moderate
expression of anti-inflammatory cytokines in correlation with mild and
severe T2D with neuropathy compared to healthy controls (no changes).
These results indicate a neuroprotective function of autophagy in pe-
ripheral nerves by regulating the anti-inflammatory signaling pathway
(Fig. 2). Importantly, the mRNA expression of anti-inflammatory and
autophagy marker were significantly higher in the sciatic nerves of
WOKW rats and resulted with healthy nerve phenotype as compared to
other groups.

Although PN is classified as a multifactorial disease, active inflam-
mation appears to be a determining factor in neurodegeneration.
Increased oxidative stress and production of reactive oxygen species
(ROS) lead to macrophage recruitment, induction of their pro-

* p < 0.001, according to the one-way analysis of variance together with the Newman-Keuls

inflammatory M1 phenotype, what is accompanied by neuropathic
pain (Scholz and Woolf, 2007; Rendra et al., 2019). Thus, the total
number of macrophages does not appear to be as important as their
phenotype, e.g., anti-inflammatory (M2) and the mechanisms respon-
sible for the switch (M1/M2). Our results suggest that pro- and
anti-inflammatory mechanisms occurring in peripheral nerves are
dependent on autophagy activity. However, the elevated expression of
the pro-inflammatory cytokines TNFa, MCP-1, and IL-1 was observed in
the sciatic nerve of all animals with MetS (WOKW rats) and in those with
mild and severe T2D (ob/ob and db/db mice). Unexpectedly, high
expression of the anti-inflammatory cytokine IL-10 was found to
accompany increased autophagy levels only in the nerves of WOKW rats,
even when compared to healthy controls. In accordance, the unbalanced
regulation of pro-/anti-inflammatory cytokines with lack of expression
of anti-inflammatory marker, IL-10 in peripheral nerves of mice with
T2D and neuropathy have been confirmed by Yanik and coauthors
(Yanik et al., 2020). The exogenously administration of IL-10 signifi-
cantly reduced the inflammation of peripheral nerves (Yanik et al.,
2020). Although it has been proven that the switch from M1 to M2
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Fig. 2. Correlation analysis of neuronal expression of pro/anti-inflammatory and autophagy markers in MetS without PN (WOKW rats) and in mild and severe T2D
with PN (ob/ob, db/db mice). Correlation matrix based on Pearson analysis with positive correlation in blue and negative correlation in red. Areas of the circle are
proportional to the correlation coefficient. Significance levels are *0.05, **0.01, and ***0.001, with p-values adjusted for multiple testing using Benjamini and

Hochberg (BH); n = 3 per group. Corresponding individual scatter plots colored by animal model.
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Fig. 3. Schematic illustration of prevention / treatment of diabetic and metabolic complications such as peripheral neuropathy. The mechanism and target disease
shown based on our own animal studies and human data, adapted from Levine et al. (Levine et al., 2015). An unknown, alternative mechanism of autophagy
activation, beyond inflammation, in the peripheral nerves of animals with metabolic syndrome may prove crucial in therapy. ER, endoplasmic reticulum, IL-10,

interleukin-10, IL-6, interleukin-6, ROS, reactive oxygen species, TNFa, tumor necrosis factor alpha.
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macrophages in peripheral nerves is promoted by IL-10, other cytokines,
such as IL-13, are also involved in this process, creating a microenvi-
ronment conducive to the repair of damaged neural tissue (Ma et al.,
2015). Our additional studies on IL-13 mRNA expression showed mini-
mal nerve exposure to this cytokine in mice and no expression in rats
(data not shown). Analysis of IL-13 mRNA expression in the sciatic
nerves of ob/ob mice with moderate neuropathy revealed a statistically
significant increase in this group, although the increase was a maximum
of 2-fold compared to control animals. In the peripheral nerves of db/db
mice, a severe neuropathy model, there was an increase in IL-13
expression of approximately 1.5-fold compared to controls, but this
change was not statistically significant.

In our previous works, we have investigated the protective role of
autophagy in adipose tissue (AT) of patients with MetS vs. T2D patients
(Kosacka et al., 2015) and in peripheral nerves of WOKW rats with MetS
(Kosacka et al., 2013). Here, we have shown that autophagy-dependent
regulation of anti-inflammatory cytokine IL-10 correlated with MetS
without neuropathic changes. Conversely, a pro-inflammatory pheno-
type of peripheral nerve due to moderate or impaired autophagic ac-
tivity in ob/ob and db/db, T2D mice with neurodegeneration

Since autophagy can activate an anti-inflammatory response, it is
believed that this process may play the important role in the treatment
of inflammatory diseases (Levine et al., 2015; Rocha et al., 2020).
Currently, autophagy inducers are used in anti-inflammatory therapy,
tested for the form of application and for its side effects. The precise
mechanism of "self-activation" or compensatory alteration of autophagy
gene expression (Fig. 3) in animals with MetS towards tissue protection
requires further explanation.
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