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Abstract 

Background

It has been hypothesized but seldom tested that the winter excess in cardiovascu-

lar disease (CVD) is related to hypovitaminosis D. The present study examined the 

association between CVD and (i) seasonality of 25-hydroxyvitamin D (25[OH]D) and 

(ii) individual 25(OH)D concentrations.

Methods and findings

Harmonized 25(OH)D data were obtained from the Biomarkers for Cardiovascular 

Risk Assessment in Europe (BiomarCaRE) project, including 79,570 participants 

examined between 1984 and 2010. One 25(OH)D measurement was available 

per participant. Primary endpoints were CVD incidence (coronary heart disease or 

stroke; n = 6006) and CVD mortality (n = 2985). To study (i), Poisson regression- 

derived rate ratios were compared according to two-month categories, ordered by 
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baseline 25(OH)D concentrations. To study (ii), Cox regression-derived hazard 

ratios were compared according to quarters of baseline 25(OH)D concentrations. 

With respect to (i), despite a median 25(OH)D concentration ratio of 1:1.79, the 

trough months of 25(OH)D in March and April had a similar CVD incidence as 

the peak months of 25(OH)D in August and September (rate ratio: 1.07, 95% CI: 

0.98–1.17). CVD mortality was slightly higher in the trough months compared to the 

peak months (rate ratio: 1.27, 95% CI: 1.12–1.44) but not compared to the other 

months (despite median 25[OH]D concentration ratios up to 1:1.62; p ≥ 0.077). The 

CVD mortality peak in January preceded the 25(OH)D trough, not adhering to the 

temporality criterion of Bradford Hill. With respect to (ii), compared to the lowest 

quarter, the highest quarter of 25(OH)D was associated with lower CVD incidence 

(hazard ratio: 0.82, 95% CI: 0.76–0.89) and CVD mortality (hazard ratio: 0.64, 95% 

CI: 0.57–0.72).

Conclusion

The present study does not support the hypothesis that seasonal increases in CVD 

are driven by short-term reductions in 25(OH)D. As in most observational studies, 

higher 25(OH)D concentrations were inversely associated with CVD.

Introduction

Spurred by the inverse association of 25-hydroxyvitamin D (25[OH]D) status with 
a large number of cardiovascular diseases (CVD) in observational data [1–7], the 
role of 25(OH)D in the primary and secondary prevention of CVD has been heavily 
debated during the last decades. The initial enthusiasm has, however, been less-
ened by the inconsistent findings from Mendelian randomization studies on the 
association between genetically-predicted 25(OH)D concentrations and CVD out-
comes [8–15] and by the null findings from randomized clinical trials on the associa-
tion between vitamin D supplementation and CVD outcomes [16–20].

25(OH)D concentrations are largely affected by sunlight exposure [21], leading 
to a seasonal difference between late summer and early spring that might exceed 
100% [22,23]. In 1981, in response to the long-lasting observation of a winter 
excess in CVD outcomes [24,25], it was hypothesized by Scragg that the seasonal 
variability in CVD was driven by hypovitaminosis D [26]. This ecological hypothesis 
stood untested until 2015, when the following seasonality postulates were tested 
in the Scottish Heart Health Extended Cohort (SHHEC) [27]: (i) outcome variability 
is inversely associated with the seasonal fluctuation in 25(OH)D and (ii) outcome 
variability is accentuated in persons with “low” 25(OH)D concentrations, since they 
should experience more hypovitaminosis D during the winter. Both of those pos-
tulates were rejected in the SHHEC, thereby questioning a causal link between 
short-term changes in 25(OH)D and seasonality of CVD. First, there was no peak 
or trough in CVD incidence and the peak and trough in CVD mortality occurred near 
the solstices, preceding the extremes of 25(OH)D by at least two months. Second, 
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there was no increased CVD susceptibility during the 25(OH)D trough in persons with 
below-median 25(OH)D concentrations. To the best of our knowledge, no subsequent 
study has examined the seasonal variation of CVD in relation to that of 25(OH)D.

Using harmonized 25(OH)D data from almost 80,000 participants in the Bio-
markers for Cardiovascular Risk Assessment in Europe (BiomarCaRE) project, we 
conducted a detailed analysis on the association of CVD outcomes with seasonal 
variation in 25(OH)D and with individual 25(OH)D concentrations among different 
latitude populations.

Materials and methods

Writing and reporting was conducted in accordance with the Strengthening the 
Reporting of Observational Studies in Epidemiology (STROBE) statement (S1 
Checklist) [28].

Study population

The BiomarCaRE project, which is an extension of the Monitoring of Trends and 
Determinants in Cardiovascular Disease (MONICA) Risk, Genetics, Archiving, and 
Monograph (MORGAM) project [29,30], was established in the early 2010s with the 
purpose to harmonize between-cohort data on CVD biomarkers [31]. Eight Biomar-
CaRE cohorts have been subjected to 25(OH)D measurements and were included in 
the present study (i.e., MONICA Northern Sweden, FINRISK 1997, SHHEC, MON-
ICA/Cooperative Health Research in the Region of Augsburg [KORA], MONICA Bri-
anza, Malattie Aterosclerotiche Istituto Superiore di Sanità [MATISS], Moli-sani, and 
MORGAM/MONICA-Catalonia; see S1 Table for detailed cohort descriptions).

Ethical considerations. Written informed consent was obtained from all study 
individuals. The MONICA Northern Sweden study was approved by the Regional 
Ethical Committee at Umeå University, Sweden. The FINRISK 1997 study was 
approved by the Ethical Committee of the National Public Health Institute, Finland. 
The SHHEC was approved by the then Privacy Advisory Committee and Chief 
Scientist Committee of the Scottish Home and Health Department and, subsequently, 
by approximately 30 individual local research ethics committees in Scotland. The 
MONICA/KORA study was approved by the local authorities in southern Germany 
and conducted in accordance with the data protection regulations. The KORA 
study was further approved by the Ethics Committee of the Bavarian Chamber of 
Physicians, Germany. The MONICA Brianza study was approved by the Comitato 
Etico Azienda Ospedaliera San Gerardo-Monza, Italy. The Moli-sani study was 
approved by the Rome Catholic University Ethical Committee, Italy. The MATISS 
study was approved by the Ethical Committee of the Istituto Superiore di Sanità-
ISS, Italy. The MORGAM/MONICA-Catalonia study was approved by the Board of 
the former Institute of Health Studies, Department of Health and Social Security, 
Generalitat of Catalunya, Spain.

Additional information regarding the ethical, cultural, and scientific considerations 
specific to inclusivity in global research is included in the Supporting information (S2 
Checklist).
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Exposure and covariate assessment

Details of the harmonized 25(OH)D analyses within the BiomarCaRE project have been published elsewhere [22] and 
are outlined in S1 Text. In brief, we used a one-step immunoassay on the ARCHITECT i2000 system (Abbott Diagnostics, 
Abbott Park, IL, USA) [32]. A single 25(OH)D measurement was available for each participant and collected between 1984 
and 2010 (Fig 1).

The following harmonized covariates were available at baseline: age, sex, education, body mass index (BMI), smoking 
status, systolic and diastolic blood pressure, antihypertensive medication, total cholesterol concentration, creatinine- 
estimated glomerular filtration rate (crea-eGFR; based on the Chronic Kidney Disease Epidemiology Collaboration equa-
tion shown in S1 Text), N-terminal pro-B-type natriuretic peptide concentration, high-sensitive troponin I concentration, and 
history of diabetes, coronary heart disease, stroke, heart failure, atrial fibrillation, and diabetes. (Nota bene: Data on edu-
cation were not collected in MATISS, data on prevalent heart failure were not collected in MONICA Brianza and MATISS, 
and data on prevalent atrial fibrillation were not collected in MONICA/KORA, MONICA Brianza, and MATISS.)

Endpoint assessment

CVD endpoints (i.e., coronary heart disease, stroke, heart failure, atrial fibrillation, and CVD mortality) were measured in 
each cohort by standardized follow-up procedures (visit, report, register, etc.; S1 Table). Definitions of the endpoints, includ-
ing their availability by cohort at baseline and during follow-up, are shown in S2 Table. Coronary heart disease incidence, 
stroke incidence, and CVD mortality were assessed in all cohorts, while heart failure incidence and atrial fibrillation incidence 
were assessed in a subset of cohorts (Fig 1). Due to their cohort-wide availability, the primary endpoints were (i) a composite 

Fig 1. Participant flow chart. The calendar years specified below each cohort name indicate the time period for the baseline examinations.

https://doi.org/10.1371/journal.pone.0319607.g001

https://doi.org/10.1371/journal.pone.0319607.g001
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of coronary heart disease incidence and stroke incidence (hereinafter referred to as CVD incidence) and (ii) CVD mortality. 
Incident cases of coronary heart disease, stroke, heart failure, and atrial fibrillation were used as secondary endpoints. Prev-
alent cases of each endpoint at baseline were excluded from the incidence analyses but not from the mortality analyses.

Statistical analysis

Statistical significance was set at a two-sided P-value less than 0.05 and all analyses were performed in Stata version 14 
(StataCorp LP, College Station, TX, USA). The statistical code is available from the corresponding author upon request.

Cross-sectional analyses. A total of 79,570 participants were eligible for cross-sectional analyses (Fig 1). To study 
the cohort-specific associations between 25(OH)D status and covariates, we used quantile regression models adjusted 
for sex, age (continuous using four-knot restricted cubic splines at the fifth, 35th, 65th, and 95th percentile, years), and 
calendar season of sampling (winter, spring, summer, and fall).

Study populations and follow-up data in prospective analyses. The number of eligible participants in time-to-event 
analyses varied by endpoint and ranged from 56,888 participants in the heart failure analysis to 79,570 participants in the 
CVD mortality analysis (Fig 1). Time-at-risk for an incident endpoint was censored at the date of that endpoint, the date 
of death, or the end of the follow-up period (with separate models for each endpoint). For composite endpoints, time-at-
risk was censored at the date of the first endpoint (if multiple endpoints had occurred), the date of death, or the end of 
the shortest follow-up period (if endpoints had different follow-up periods, as they had in Moli-sani and MONICA/KORA). 
Time-at-risk for CVD mortality was censored similarly, ignoring non-fatal endpoints.

Seasonality of CVD outcomes and 25(OH)D status. Poisson regression models were used to calculate the 
incidence and mortality rates of CVD by calendar month. A detailed description of the case and person-year calculation 
is given in S1 Text, but, in brief, we split the follow-up time for each participant on the last day of each calendar month 
throughout the entire follow-up period (creating up to 12 million observations, depending on the endpoint). To examine 
whether the seasonal variation in CVD corresponded with that of 25(OH)D, we then calculated sex-, attained age-, and 
cohort-adjusted rate ratios according to two-month calendar periods. The calendar periods were, in turn, ranked from 
highest to lowest according to baseline 25(OH)D concentrations using the sex- and age-adjusted median values: August, 
September, July, October, November, June, December, January, May, February, March, and April. As such, the 25(OH)D 
ranking of calendar months was based on cross-sectional rather than prospective data (see S1 Fig for unadjusted 25[OH]
D data). In sensitivity analyses, the calendar periods were re-arranged according to three-, four-, and six-month groups. 
Subgroup analyses were performed on persons with “low” and “high” baseline 25(OH)D concentrations, using the sex-, 
cohort-, and calendar month-specific median value as cut-off value, with the purpose to test for a heterogeneous seasonal 
variation of CVD outcomes by individual 25(OH)D concentrations. Subgroup analyses were also performed by attained 
age (≤70/>70 years), sex (men/women), and cohort (eight levels) (S1 Text).

Association between 25(OH)D exposure and CVD outcomes. Cox regression models, with attained age as the time 
scale, were used to calculate hazard ratios (HRs) of CVD endpoints by quarters of individual 25(OH)D concentrations 
and, in a sensitivity analysis, by tenths of individual 25(OH)D concentrations. To account for within- and between-cohort 
differences in the calendar month of blood sampling, as well as the very large variation in 25(OH)D by sunlight exposure, 
the categories of 25(OH)D were sex-, cohort-, and calendar month-specific. We chose this methodology since it is 
reasonable to assume that individuals who are (i) ranked high according to percentiles during the winter also are ranked 
high during the summer and (ii) of the same sex and from the same geographical area are likely to have a similar sunlight 
exposure. For the same reasons, 25(OH)D status was not analyzed as a continuous variable. The standard assumption of 
proportional hazards along the time scale was evaluated by modeling the possible interaction between the time scale and 
the categorical exposure variable (S1 Text) [33].

The basic model was adjusted for sex (men/women), cohort (eight levels), and calendar week of blood sampling 
(continuous). The multivariable model was further adjusted for BMI (continuous, kg/m2), smoking status (no/yes), systolic 



PLOS One | https://doi.org/10.1371/journal.pone.0319607 April 24, 2025 6 / 18

blood pressure (continuous, mmHg), antihypertensive medication (no/yes), total cholesterol concentration (continuous, 
mmol/L), crea-eGFR (continuous, ml/min/1.73 m2), history of diabetes (no/yes), and history of CVD (no/yes; only included 
in the mortality analysis). Continuous covariates were modeled using four-knot restricted cubic splines at the fifth, 35th, 
65th, and 95th percentile. Sex, smoking status, antihypertensive medication, and history of diabetes and CVD were 
accounted for by stratification of the baseline hazard function, because they did not always meet the proportional hazards 
assumption.

Missing data on 25(OH)D and covariates in the primary endpoint analyses were handled using multiple imputation by 
chained equations. Endpoint data were not imputed. The percentages of missing data by endpoint and analytical model 
are shown in S3 Table, and a detailed description of the multiple imputation method is reported in S1 Text. In a sensi-
tivity analysis, we repeated the analysis using complete case data. In a first extension of the complete case model, in 
which participants from MATISS and subcohort 4 of MONICA/KORA were excluded due to lack of education data (n = 
6924 and 7559 participants for CVD incidence and mortality, respectively), we further adjusted the multivariable model 
for education (three levels). In further extensions of the complete case model, which aimed to account for exposure 
misclassification over time and for long baseline examination periods in some cohorts, we restricted the follow-up time 
to a maximum of five years and re-categorized the exposure variable according to calendar year of examination (S1 
Text). To avoid repeated imputations—and since results based on imputed and complete case data were almost identi-
cal for CVD incidence and mortality—the Cox regression models of secondary endpoints were only based on complete 
case data.

To examine reverse causality bias, we constructed three separate models with different baseline exclusions in another 
sensitivity analysis (S1 Text). Separate models by sex (men/women) and cohort (eight levels) were also performed as 
subgroup analyses (S1 Text).

Results

Cross-sectional analyses

A total of 79,570 participants from eight cohort studies were included for cross-sectional analyses (48.9% men; median 
age 50.7 years; examination period 1984–2010) (Fig 1). Baseline characteristics by cohort are presented in S4 Table. 
Most cohorts had examined participants throughout the calendar year, except in the Swedish and Finnish cohort, which 
had examined participants almost exclusively from winter to spring. The median 25(OH)D concentration ranged from 32.4 
nmol/L in Finland (due to the winter-to-spring examination period) to 45.2 nmol/L in Sweden (despite the winter-to-spring 
examination period).

The cohort-specific associations between 25(OH)D status and other variables are shown in Table 1. Older participants 
had markedly lower 25(OH)D concentrations than younger participants in Germany, Italy, and Spain; in contrast, the 
opposite was found in Sweden and Finland (see S2 Fig for the cohort-specific shape of the 25[OH]D-by-age association). 
Except in the Swedish cohort, male participants had higher 25(OH)D concentrations than female participants. Examina-
tion during late summer and early autumn led to strikingly higher 25(OH)D concentrations, with a peak-to-trough swing of 
79–185% in cohorts with a four-season examination period. In general, 25(OH)D status had an inverse association with 
smoking and obesity and a positive association with education. Prevalent CVD, hypertension, diabetes, and hypercho-
lesterolemia were associated with lower 25(OH)D concentrations, while prevalent chronic kidney disease was associated 
with higher 25(OH)D concentrations (see S3 Fig for a detailed analysis of the 25[OH]D-by-kidney function association).

Prospective analyses

Study populations and follow-up data. As can be seen in Fig 1, the number of included cohorts in time-to-event 
analyses varied by CVD endpoint. The total number of participants, person-years, and cases for each endpoint are shown 
in Table 2. The incidence rate per 10,000 person-years ranged from 54.7 cases for coronary heart disease to 24.6 cases 
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for stroke; and the mortality rate was 30.0 cases per 10,000 person-years. (Nota bene: The cohort-specific incidence 
and mortality rates are given in S5 Table, conditional on age, sex, and decade; and the co-occurrence of endpoints is 
presented S6 Table.)

Seasonality of CVD outcomes and 25(OH)D status. There was a large difference in the median 25(OH)D 
concentration by calendar month, with the peak observed in August and the trough observed in March (+48 and -18%, 
respectively, compared to the full year estimate) (Fig 2). For CVD incidence, the observed rates were rather stable over the 
calendar year except for a trough in July and August (trough and peak difference of -14 and +7% compared to the full year 
estimate). A more variable pattern was observed for CVD mortality, with a trough that started in May and reached a minimum 
in September and with a peak in January (trough and peak difference of -19 and +21% compared to the full year estimate).

Table 1. Sex-, age-, and season-adjusted median differencea in 25(OH)D status (nmol/L) by baseline characteristics in the study population 
with complete data on 25(OH)D (n = 75,808) and according to cohortb.

Cohort

Characteristics MONICA North-
ern Sweden

FINRISK 
1997

SHHEC MONICA/ 
KORA

MONICA 
Brianza

Moli-
sani

MATISS MORGAM/ 
MONICA- 
Catalonia

Age (90th vs. tenth percentile)c 3.22 12.10 0.19 -7.20 -11.24 -8.81 -18.73 -4.89

Male vs. female sex -1.34 2.88 4.47 4.82 6.61 8.14 13.13 3.87

Calendar month (peak vs. trough)d 8.72 2.34 27.18 34.67 24.37 30.68 43.76 29.09

Highest vs. lowest third of educatione 0.26 1.82 2.19 2.42 -0.32 0.50 — 2.95

BMI ≥ 30 vs. <25 kg/m2 -9.78 -3.77 -2.81 -5.68 -3.40 -5.27 -1.89 -2.48

Daily vs. non-daily smoking -1.18 -2.50 -6.05 -5.16 -3.75 -4.77 -4.42 -3.29

Comorbidities (yes vs. no)

 Cardiovascular diseasef -1.73 -1.05 -2.31 -3.50 -5.31 -3.73 -0.50 0.12

 Hypertensiong -1.58 -0.90 -1.60 -2.69 -1.52 -3.49 -1.49 -1.87

 Diabetes -1.99 -1.94 -3.53 -2.71 1.07 -3.04 -3.80 -1.81

 Hypercholesterolemiah 0.89 -4.43 -3.47 -3.80 -5.17 -2.84 -0.62 -1.19

 CKD stage two to fivei 12.63 2.39 2.39 4.01 7.16 1.70 5.14 7.44

25(OH)D, 25-hydroxyvitamin D; BMI, body mass index; CKD, chronic kidney disease; KORA, Cooperative Health Research in the Region of Augsburg; 
MATISS, Malattie Aterosclerotiche Istituto Superiore di Sanità; MONICA, Monitoring of Trends and Determinants in Cardiovascular disease; MORGAM, 
MONICA Risk, Genetics, Archiving, and Monograph; SHHEC, Scottish Heart Health Extended Cohort
aEstimated from quantile regression models and adjusted for sex, age (continuous using four-knot restricted cubic splines, years), and season of sam-
pling (winter, spring, summer, and fall). Bold text denotes statistically significant findings (p < 0.05). The number of participants in each cohort is shown in 
S4 Table. All calculations were based on complete data (see S3 Table for cohort-specific percentages of missing data)
bThe number of participants with complete data on 25(OH)D status were 10,405 in MONICA Northern Sweden, 7787 in FINRISK 1997, 13,224 in 
SHHEC, 8023 in MONICA/KORA, 4488 in MONICA Brianza, 23,433 in Moli-sani, 3443 in MATISS, and 5005 in MORGAM/MONICA-Catalonia
cExcept in MONICA Brianza, SHHEC, and MORGAM/MONICA-Catalonia (p for non-linearity = 0.17, 0.06, and 0.11, respectively), there was evidence 
of non-linear associations between 25(OH)D status and age in all cohorts (p for non-linearity < 0.05; obtained via the Wald test, testing the second and 
third spline transformation jointly equal to zero)
dComparing the peak month of 25(OH)D status with the trough month of 25(OH)D status. The Swedish and Finnish participants were almost exclusively 
examined between January and April, leading to a small seasonal swing
eCategories of education were derived from population-, sex-, and birth cohort-specific thirds of the distribution of years of education. No data on educa-
tion were available in MATISS and in subcohort 4 of MONICA/KORA (n = 4005)
fCoronary heart disease or stroke
gSystolic blood pressure > 140 mmHg, diastolic blood pressure > 90 mmHg, or use of antihypertensive medication
hTotal cholesterol concentration > 7.0 mmol/L
iCreatinine-estimated glomerular filtration rate < 90 ml/min/1.73 m2

https://doi.org/10.1371/journal.pone.0319607.t001

https://doi.org/10.1371/journal.pone.0319607.t001
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Sex-, attained age-, and cohort-adjusted rate ratios of CVD incidence and mortality by two-month calendar periods, 
ordered by 25(OH)D status, are shown in Table 3 (and by three- to six-month calendar periods in S7 Table). The trough 
months of 25(OH)D in March and April had a similar incidence but a higher mortality of CVD than the peak months of 
25(OH)D in August and September (p for comparison = 0.12 and < 0.001, respectively). There were no differences in CVD 
outcomes between the trough months and the non-peak months of 25(OH)D (despite median concentration differences up 
to 62%; p for comparison ≥ 0.077). (Nota bene: Incidence rate ratios for coronary heart disease and stroke according to 
the same categories are presented in S8 Table, for which there was a difference between the trough and peak months of 
25[OH]D for stroke but not for coronary heart disease.)

The shape of the association between seasonal changes in 25(OH)D and seasonal changes in CVD did not differ 
by low or high baseline 25(OH)D concentrations (p for interaction ≥ 0.10; S4 Fig). The comparison of trough and peak 
months of 25(OH)D was also similar in subgroup analyses by attained age, sex, and cohort (p for interaction ≥ 0.21;  
S5 Fig).

Association between 25(OH)D exposure and CVD outcomes. Cox regression-derived HRs of CVD incidence 
and mortality by quarters and tenths of 25(OH)D status are shown in Table 4 and S6 Fig. In the age-, sex-, and season-
adjusted model, the highest quarter of 25(OH)D had a strong inverse association with CVD incidence and mortality: the 
HR was reduced by 31 and 49%, respectively, compared to the lowest quarter (Table 4). In the multivariable-adjusted 
model, the inverse associations were largely attenuated but remained strong with HR reductions of 18% for CVD 
incidence and 36% for CVD mortality. HRs of secondary endpoints are presented in S9 Table. In brief, coronary heart 
disease, stroke, and heart failure had inverse associations with 25(OH)D status and atrial fibrillation had a null association 
with 25(OH)D status.

Table 2. Follow-up data in time-to-event analyses.

Follow-up data

Endpoint No. of participants No. of person-yearsa No. of casesa Crude rateb

Incidence

 Coronary heart diseasec 76,434 845,157 4619 54.7 (53.1 to 56.3)

 Strokec 77,204 952,626 2345 24.6 (23.6 to 25.6)

 Heart failure 56,888 719,060 3226 44.9 (43.3 to 46.4)

 Atrial fibrillation 58,975 739,365 2848 38.5 (37.1 to 40.0)

Mortality

 Cardiovascular disease 79,570 994,145 2985 30.0 (29.0 to 31.1)
aThe number of cohort-specific person-years and cases ranged from:

Coronary heart disease: 269,785–33,447 person-years (Scottish Heart Health Extended Cohort [SHHEC] and Malattie Aterosclerotiche Istituto Superiore 
di Sanità [MATISS], respectively) and 2117–79 cases (SHHEC and MATISS, respectively)

Stroke: 281,674–33,699 person-years (SHHEC and MATISS, respectively) and 845 to seven cases (SHHEC and Monitoring of Trends and Determinants 
in Cardiovascular disease [MONICA] Risk, Genetics, Archiving, and Monograph [MORGAM]/MONICA-Catalonia, respectively)

Heart failure: 286,810–100,514 person-years (SHHEC and FINRISK 1997, respectively) and 1201–458 cases (Moli-sani and MONICA Northern Sweden, 
respectively)

Atrial fibrillation: 285,511–23,186 person-years (SHHEC and MORGAM/MONICA-Catalonia, respectively) and 1045–12 cases (Moli-sani and MORGAM/
MONICA-Catalonia, respectively)

Cardiovascular disease mortality: 290,813–34,208 person-years (SHHEC and MATISS, respectively) and 1547–42 cases (SHHEC and MORGAM/ 
MONICA-Catalonia, respectively)
bPer 10,000 person-years (95% CI)
cWhen using coronary heart disease and stroke as a composite endpoint, the number of participants was 74,867, the number of person-years was 
821,774, the number of cases was 6006, and the crude rate was 73.1 (95% CI: 71.3–75.0)

https://doi.org/10.1371/journal.pone.0319607.t002

https://doi.org/10.1371/journal.pone.0319607.t002
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Fig 2. Seasonal variation of (i) cardiovascular disease (CVD) incidence and mortality during follow-up and (ii) 25-hydroxyvitamin D (25[OH]D) 
at baseline. Hollow circles and capped spikes represent point estimates and 95% CI for Poisson regression-derived rates (left y-axis). Bars and capped 
spikes represent point estimates and 95% CI for quantile regression-derived median concentrations (right y-axis). The dashed lines represent point 
estimates for the entire calendar year.

https://doi.org/10.1371/journal.pone.0319607.g002

Table 3. Rate ratios of CVD incidence and mortality by two-month calendar periods (ordered by 25[OH]D status).

Two-month calendar period (ordered by increasing differences in 25[OH]D concentration)a

August, September July, October June, November January, December February, May March, April

CVD incidenceb

 No. of cases 957 966 1051 1041 995 996

 No. of person-years 138,484 140,938 136,507 138,615 131,493 135,943

 Rate ratio (95% CI)c 1.00 (reference) 0.99 (0.91 to 1.09) 1.12 (1.02 to 1.22) 1.09 (1.00 to 1.19) 1.11 (1.01 to 1.21) 1.07 (0.98 to 1.17)

CVD mortality

 No. of cases 434 501 484 568 467 531

 No. of person-years 167,434 170,389 165,020 167,815 159,194 164,510

 Rate ratio (95% CI)c 1.00 (reference) 1.14 (1.00 to 1.29) 1.13 (1.00 to 1.29) 1.31 (1.16 to 1.49) 1.15 (1.01 to 1.31) 1.27 (1.12 to 1.44)

25(OH)D, 25-hydroxyvitamin D; CVD, cardiovascular disease
aOrdered by the baseline and median regression-derived 25(OH)D concentrations in the data (sex- and age-adjusted ranking, from highest to lowest: Au-
gust, September, July, October, November, June, December, January, May, February, March, April). The ratio of the median 25(OH)D concentration was 
1.00 (August, September; reference), 1.10 (July, October), 1.37 (June, November), 1.54 (January, December), 1.66 (February, May), and 1.79 (March, 
April)
bCoronary heart disease or stroke
cEstimated from Poisson regression models and adjusted for sex, attained age, and cohort

https://doi.org/10.1371/journal.pone.0319607.t003

https://doi.org/10.1371/journal.pone.0319607.g002
https://doi.org/10.1371/journal.pone.0319607.t003
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The results did not markedly change in sensitivity analyses based on complete case data, irrespective of further 
adjustment for education, restriction of the follow-up time, or re-categorization of the exposure variable (S10 Table). There 
seemed to be a small degree of reverse causality in the association of 25(OH)D status with CVD mortality, especially 
when excluding prevalent cases of CVD, but not in the association with CVD incidence (relative differences in HR of 6.3 
and 1.2%, respectively, in the models excluding the first three years of follow-up; S11 Table).

There was no evidence of an interaction between 25(OH)D status and attained age or sex in relation to CVD incidence 
(p for interaction ≥ 0.17; S7 and S8 Figs), with multivariable-adjusted HRs of 0.83 (95% CI: 0.75–0.92) and 0.80 (95% 
CI: 0.70–0.91) in men and women, respectively, for the comparison of extreme quarters. In contrast, there was evidence 
of an interaction by attained age for CVD mortality in the highest 25(OH)D category (p for interaction = 0.020 for quar-
ter four compared to quarter one), with deviation from the time scale-fixed HR in participants above 80 years of age (S7 
Fig). In the same quarter, CVD mortality also differed by sex (p for interaction = 0.019 compared to quarter one), with 
multivariable-adjusted HRs of 0.59 (95% CI: 0.51–0.68) in men and 0.76 (95% CI: 0.62–0.93) in women (S8 Fig). The 
exposure-endpoint associations by cohort are shown in S9 Fig, for which there was no clear evidence of between-cohort 
heterogeneity (p for interaction ≥ 0.052).

Discussion

In this study, which included almost 80,000 participants from eight European cohorts, we have conducted detailed analy-
ses on the association between seasonal changes in 25(OH)D and seasonal changes in CVD outcomes as well as on the 
association between individual 25(OH)D concentrations and CVD outcomes.

Cross-sectional analyses

See S1 Text for a discussion of the cross-sectional findings.

Table 4. HRs of CVD incidence and mortality, based on multiple imputed data and according to quarters of 25(OH)D status.

Quarters of 25(OH)D concentration (nmol/L)a

Endpoint One (lowest) Two Three Four (highest)

CVD incidenceb

 No. of casesc 1570 1499 1296 1195

 No. of person-yearsc 190,377 193,335 197,723 194,527

 HR, model one (95% CI)d 1.00 (reference) 0.92 (0.85 to 0.98) 0.75 (0.70 to 0.81) 0.69 (0.64 to 0.75)

 HR, model two (95% CI)e 1.00 (reference) 0.98 (0.91 to 1.05) 0.85 (0.79 to 0.92) 0.82 (0.76 to 0.89)

CVD mortality

 No. of casesc 876 757 613 488

 No. of person-yearsc 230,630 235,295 238,691 235,082

 HR, model one (95% CI)d 1.00 (reference) 0.82 (0.74 to 0.90) 0.64 (0.57 to 0.71) 0.51 (0.45 to 0.56)

 HR, model two (95% CI)e 1.00 (reference) 0.89 (0.81 to 0.98) 0.75 (0.67 to 0.83) 0.64 (0.57 to 0.72)

25(OH)D, 25-hydroxyvitamin D; CVD, cardiovascular disease HR, hazard ratio
aSex-, cohort- and calendar month-specific quarters. The ratio of the median 25(OH)D concentration was 1.00 (quarter one; reference) 1.50 (quarter 
two), 1.98 (quarter three), 2.86 (quarter four)
bCoronary heart disease or stroke
cThe number of cases and person-years do not sum up to the entire study population in each analytical cohort, because of different exposure distribu-
tions across the imputed data sets (n = 20). Reported numbers are based on the participants who had complete data on 25(OH)D status
dEstimated from Cox regression models and adjusted for attained age, sex, cohort, and calendar week of blood sampling
eEstimated from Cox regression models and adjusted for attained age, sex, cohort, calendar week of blood sampling, body mass index, smoking, systolic 
blood pressure, use of antihypertensive drugs, total cholesterol, creatinine-estimated glomerular filtration rate, and history of CVD (i.e., coronary heart 
disease or stroke; only for mortality) and diabetes

https://doi.org/10.1371/journal.pone.0319607.t004

https://doi.org/10.1371/journal.pone.0319607.t004
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Prospective analyses

Seasonality of CVD outcomes and 25(OH)D status. An often overlooked aspect of 25(OH)D in relation to health 
outcomes is the Earth’s axis deviation and angular rotation, which leads to a never-ending natural experiment with 
oscillating 25(OH)D concentrations on a season-to-season basis, at least in the Northern hemisphere. In 1981, it 
was hypothesized by Scragg that hypovitaminosis D was a major contributor to the observed winter excess in CVD 
outcomes, either via direct or indirect effects on thrombosis formation [26]. Since then, short-term reductions in 25(OH)
D concentrations have in fact been associated with different measures of arterial stiffness and vascular dysfunction in 
observational data [34]. One feature that Scragg found especially attractive with his ecological hypothesis was that it 
was “testable”. When it finally was tested, some 34 years later in the SHHEC (n = 13,224), there was no evidence that 
seasonal variation in 25(OH)D had a large impact on seasonal variation in CVD outcomes [27]. Despite a 2:1 ratio of 
25(OH)D concentrations between August and March, there was no peak or trough in CVD incidence, and the peak and 
trough in CVD mortality occurred near the solstices, preceding the extremes of 25(OH)D by at least two months. In 
addition, there was no increased outcome variability in persons with “low” 25(OH)D status, defined by below-median 
25(OH)D concentrations; that is, persons who should experience more hypovitaminosis D during the winter. As such, 
Scragg’s hypothesis was rejected by the authors, given that any underlying mechanism explaining a seasonal variation in 
CVD outcomes must occur acutely (as acknowledged by Scragg himself [26]).

Our study was an extension of the original SHHEC paper, in which Scragg’s hypothesis was examined once again but 
with data from several geographical regions and with a larger number of participants, person-years, and CVD cases. As 
expected, there was a large difference in the median 25(OH)D concentration by calendar month, with the peak observed 
in August and the trough observed in March (1.79:1 ratio). The peak-to-trough ratio was also diluted by the Swedish 
cohort, which had the highest median 25(OH)D concentrations despite a non-full year (winter-to-spring) examination 
period (1.93:1 ratio, if that cohort had been excluded). Nonetheless, the trough months of 25(OH)D in March and April 
had a similar CVD incidence as the peak months of 25(OH)D in August and September. CVD mortality was slightly higher 
in trough months compared to peak months but not compared to other non-peak months of 25(OH)D, leading to a rather 
nonsensical trend across categories with increasing differences in median 25(OH)D concentrations. Importantly, the peak 
in CVD mortality in January preceded the trough in 25(OH)D by two to three months, not adhering to the cause-must-
precede-outcome criterion of the Bradford Hill criteria [35]. The trough in CVD mortality also started in May, in adjacent to 
the trough in 25(OH)D. Finally, similar to the SHHEC study, there was no evidence of an increased susceptibility of CVD 
outcomes during the trough months of 25(OH)D in persons with “low” baseline 25(OH)D status, defined by a 25(OH)D 
concentration below the sex- and calendar month-specific median value in each cohort.

All in all, and based on the findings from our study and the previous SHHEC study, we feel comfortable to reject 
Scragg’s hypothesis that short-term reductions in 25(OH)D concentrations are a major contributor to seasonal increases 
in CVD outcomes. While a winter excess of CVD cannot be denied, more so for mortality than for incidence in our data, 
the underlying cause is likely multifactorial and not due to one single factor (e.g., temperature, air pollution, and respira-
tory infections) [24,25,36]. In analogy, we do believe that a lack of sunlight exposure during the winter plays a role, but to 
reduce that role to a mere 25(OH)D pathway is an oversimplification.

Association between 25(OH)D exposure and CVD outcomes. The existing literature of observational studies 
on the association between 25(OH)D status and CVD outcomes is extremely large, to the point where it is almost 
hard to get an overview. Previous studies have reported an increased mortality of CVD [1–3], as well as an increased 
incidence of coronary heart disease [4], stroke [5], heart failure [6], and atrial fibrillation [7], in persons with low 25(OH)
D concentrations. Similar findings have also been observed in persons with comorbid conditions like diabetes [37,38]. 
Our study does not add novelty to the overall body of observational data but confirms most of the previous findings, with 
rather strong but surprisingly similar associations of 25(OH)D status with mortality of CVD and with incidence of coronary 
heart disease, stroke, and heart failure. Except for an interaction by age and sex on the highest 25(OH)D quarter in the 
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CVD mortality analysis, with a weaker association in old and female participants, the exposure-outcome associations 
were also consistent across multiple sensitivity and subgroup analyses. In contrast, we did not observe an association 
between 25(OH)D status and incidence of atrial fibrillation. In a meta-analysis by Liu et al, which included data from six 
studies (n = 5503 cases; N = 66,139 participants), vitamin D deficiency (< 50 nmol/L) was associated with an increased 
incidence of atrial fibrillation [7]. However, as discussed by Gaksch et al [3], most meta-analyses on 25(OH)D status and 
CVD outcomes have been hampered by between-study variations in the assay method of 25(OH)D, an issue to which the 
meta-analysis by Liu et al is no exception.

Whether the observational associations between 25(OH)D concentrations and CVD outcomes are causal have been 
debated for many years. The HRs in our study were largely attenuated by multivariable adjustment, notwithstanding 
that we could not adjust for a number of potential confounders (e.g., diet, alcohol, and physical activity). A causal role of 
25(OH)D has not been supported by randomized clinical trials, in which vitamin D supplementation has neither reduced 
incidence and mortality of CVD [16–20,38] nor improved different biomarkers of glycaemia, inflammation, and lipids [39]. 
It should, however, be noted that vitamin D supplementation has been associated with an improved cardiac function in 
patients with heart failure (by reducing the left ventricular end-diastolic diameter and increasing the left ventricular ejection 
fraction) [40].

Up until recently, there was no evidence from Mendelian randomization studies of an association between  
genetically-predicted 25(OH)D concentrations and incidence or mortality of CVD [8–11]. However, three Mendelian ran-
domization studies published in 2021 and 2022 (all based on the UK Biobank and utilizing a so-called non-linear random-
ization) did observe an inverse association with CVD incidence [12,13] and CVD mortality [12,14], especially in subgroup 
analyses of persons with low 25(OH)D concentrations. In addition, another Mendelian randomization study found an 
inverse association with heart failure incidence [15]. Since then, the methods and model assumptions of non-linear Men-
delian randomization studies have been under great scrutiny [41]. Subsequently, one of the aforementioned studies was 
recently retracted and republished with an altered conclusion, no longer supporting a causal relationship between  
genetically-predicted 25(OH)D concentrations and CVD outcomes [12,42].

Despite methodological issues, the above-mentioned Mendelian randomization studies have re-ignited the debate on 
vitamin D supplementation and to whom such supplementation should be focused on. However, given that more than 40 
years have passed since the publication of Scragg’s hypothesis, the scientific and medical community must at some point 
decide on the importance of 25(OH)D in the primary and secondary prevention of CVD.

Strengths and limitations

The strengths of our study include the prospective design, the large sample size recruited from six European countries, 
and the use of harmonized data on 25(OH)D (i.e., analyzed in the same lab and with the same assay method). In addition, 
the MORGAM Data Centre has a long-standing expertise in data harmonization, leading to the best possible between-
study alignment of outcomes and covariates. Finally, the detailed analysis of short-term changes in 25(OH)D in relation to 
seasonal variation in CVD adds novelty to the existing scientific literature.

Some limitations must be mentioned apart from the previously discussed possibility of unmeasured confounding. First, 
the 25(OH)D concentrations were estimated with a one-step immunoassay and not a high-performance liquid chroma-
tography with tandem mass spectrometry [43]. In our own validation, the methods differed in magnitude of 25(OH)D 
concentrations but had a good correlation in terms of rank (S1 Text). Therefore, and since we did not use a Vitamin D 
Standardization Program protocol [44], the observed values of 25(OH)D could not be used to categorize participants as 
vitamin D sufficient, deficient, or insufficient (and we encourage others to be careful to use such categorization, espe-
cially if 25[OH]D is measured with an immunoassay). For the same reason, and to minimize the effect of within- and 
between-cohort differences in the calendar month of blood sampling, we did not analyze the exposure as a continuous 
variable in the Cox regression models. Second, there was a large difference in the pre-analytical storage time between 
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cohorts (median time ranging from seven to 26 years). However, previous studies have shown that blood metabolites 
of 25(OH)D seem stable to storage duration [45] as well as to handling [46] and multiple freeze-thaw cycles [47]. Third, 
we only had a single 25(OH)D measurement for each participant (collected between 1984 and 2010), which, inevitably, 
led to some degree of exposure misclassification. The ranking of calendar months as peak or trough months of 25(OH)
D in the Poisson regression models should be robust, considering the consistency of such ranking over time and in 
different countries, with the peaks in late summer to early autumn and the troughs in late winter to early spring [22,23]. 
In contrast, the ranking of individual 25(OH)D concentrations is more vulnerable to misclassification at baseline and 
during follow-up, mainly affecting the percentile-based categorization in the Cox regression models. It should, however, 
be noted that a single 25(OH)D measurement has been shown to have a similar long-term tracking as many other CVD 
risk factors [27,48], with correlation coefficients of 0.61 at a five-year interval [49], 0.57 at a six-year interval [50], and 
0.52 at a 14-year interval [48]. In our study, there was also no evidence of between-cohort heterogeneity, despite large 
differences in the length of follow-up (S1 Table). Fourth, we lacked information on vitamin D supplements and whether 
its use varied over time and by calendar season. Fifth, even though the validation of CVD endpoints was systematic 
and detailed, and mainly based on medical reviews or hospital and mortality registers, some endpoint misclassification 
is likely to have occurred. Finally, our study only included individuals from European countries and its generalisability to 
other regions is unknown.

Conclusion

Our study adds important perspectives to the existing literature on the association between 25(OH)D status and CVD 
outcomes, providing no support for the long-standing hypothesis that the winter excess in CVD is due to short-term 
reductions in 25(OH)D. The CVD-25(OH)D seasonal hypothesis seems overdue for correction but needs to be tested in 
other studies, preferably with repeated measurements of 25(OH)D and among non-Europeans. With respect to individual 
25(OH)D concentrations, we confirmed most of the findings from previous observational studies, with increased CVD inci-
dence and mortality in persons with low 25(OH)D concentrations. Whether these are causal associations are questionable 
given the current evidence from randomized clinical trials and Mendelian randomization studies.
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S4 Fig.  Rate ratios of cardiovascular disease incidence and mortality by two-month calendar periods (ordered 
by 25-hydroxyvitamin D [25(OH)D] status) and according to low or high 25(OH)D status at the start of follow-up 
(using the sex-, calendar month-, and cohort-specific median value as the cut-off value). Circles and spikes repre-
sent point estimates and 95% CI, which were derived from Poisson regression models and adjusted for sex, attained age, 
and cohort. The reported p values for interaction were calculated by including an interaction term between the two-month 
calendar periods and 25(OH)D status in the Poisson regression model and testing its coefficients equal to zero. The p 
value for an overall interaction by testing the coefficients jointly equal to zero was 0.98 and 0.67, respectively, for cardio-
vascular disease incidence and mortality.
(PDF)

S5 Fig.  Rate ratios of cardiovascular disease incidence and mortality for the trough (March, April) compared to 
the peak (August, September) months of 25-hydroxyvitamin D status and according to attained age, sex, and 
cohort. Circles and capped spikes represent point estimates and 95% CI, which were derived from Poisson regression 
models and adjusted for sex, attained age, and cohort (where appropriate). The p values refer to interaction effects (see 
S1 Text for details on how the tests for interaction were conducted).
(PDF)

S6 Fig.  Hazard ratios of cardiovascular disease incidence and mortality by tenths of 25-hydroxyvitamin D 
(25[OH]D) status. Circles and spikes represent point estimates and 95% CI, which were based on multiple imputed data, 
derived from Cox regression models, and adjusted for the same covariates as in Table 4.
(PDF)

S7 Fig.  Time-varying hazard ratios of cardiovascular disease incidence (page A) and mortality (page B) for the 
second to fourth quarter of 25-hydroxyvitamin D (25[OH]D) status compared to the first quarter, according to 
attained age during follow-up (time scale). The solid and long dashed lines represent time-varying estimates and 95% 
CI, which were based on complete case data and derived from a Cox regression model that included an interaction term 
between 25(OH)D status (in quarters) and attained age (as a continuous variable, modeled using four-knots restricted 
cubic splines). The short dashed lines represent the time-fixed estimate based on complete case data. All estimates were 
adjusted for the same covariates as in Table 4. The reported p values for interaction were calculated by testing the second 
and third spline transformation jointly equal to zero.
(PDF)

S8 Fig.  Hazard ratios of cardiovascular disease incidence and mortality by quarters of 25-hydroxyvitamin D 
(25[OH]D) status and according to sex. Circles and spikes represent point estimates and 95% CI, which were based 
on multiple imputed data, derived from Cox regression models, and adjusted for the same covariates as in Table 4. The 
reported p values for interaction were calculated by including an interaction tern between 25(OH)D status and sex in the 
Cox regression model and testing its coefficients equal to zero. The p value for an overall interaction (testing the coeffi-
cients jointly equal to zero) was 0.68 and 0.10, respectively, for cardiovascular disease incidence and mortality.
(PDF)

S9 Fig.  Cohort-specific case distribution of cardiovascular disease incidence (page A) and mortality (page B) 
as well as hazard ratios (HRs) and 95% CI for the second to fourth quarter of 25-hydroxyvitamin D status com-
pared to the first quarter. HRs and 95% CI were based on multiple imputed data and derived from Cox regression 
models, which were adjusted for the same covariates as in Table 4. The dashed lines represent the point estimates in the 
pooled analysis. The reported p values for interaction were calculated using the Cochran Q test from a random-effects 
meta-analysis.
(PDF)
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