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Abstract

We consider blind ptychography, an imaging technique which aims to reconstruct
an object of interest from a set of its diffraction patterns, each obtained by a local
illumination. As the distribution of the light within the illuminated region, called
the window, is unknown, it also has to be estimated as well. For the recovery, we
consider gradient and stochastic gradient descent methods for the minimization of
amplitude-base squared loss. In particular, this includes extended Ptychographic
Iterative Engine as a special case of stochastic gradient descent. We show that all
methods converge to a critical point at a sublinear rate with a proper choice of step
sizes. We also discuss possibilities for larger step sizes.

Keywords: blind ptychography, gradient descent, stochastic gradient descent,
extended Ptychographic Iterative Engine.

MSC Codes: 78A46, 78M50, 47J25, 90C26.

1 Introduction

In recent years, ptychography [1] became a prominent technique in diffractive imaging.
Instead of a single illumination of the object of interest, multiple local illuminations of the
different parts of the object are performed and for each the diffraction pattern is captured
by a detector placed in the far field. Consequently, the object must be reconstructed from
the obtained diffraction patterns. Furthermore, it is often the case that the distribution
of light called the probe or the window, is also not known and has to be estimated as
well. In this case, the corresponding recovery problem is sometimes referred to as blind
ptychography.
The locality of illuminations allows to achieve better resolution and recently even reach
a sub-Ångström scale [2]. This led to a rise in popularity among practitioners and its
numerous applications in fields such as crystallography [3, 2], biology [4, 5] and material
science [6, 7]. At the same time, an interest in ptychography sparked the development of
efficient reconstruction methods. One proposed technique, Ptychographic Iterative Engine
(PIE) [8] and its extended version (ePIE) for blind ptychography [9, 10] became especially
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popular among practitioners. Over the years, it has been adapted for other measurement
scenarios such as multislice objects [11], multimodal illumination [12] and tomographic
ptychography [13]. An apparent reason for ePIE’s success is its simple explanation, imple-
mentation and computational complexity as the algorithm iteratively updated the object
and the probe by processing a single diffraction at the time. However, ePIE is still not
supported by a mathematical convergence analysis, which makes its success seem like a
miracle.

On the other hand, there has been a lot of progress in understanding ptychography as an
inverse problem. When the window is known, it can be seen as a special case of phase
retrieval with the short-time Fourier transform measurements [14, 15, 16]. In the past
decade, there has been a series of studies on the uniqueness and stability of ptychographic
phase retrieval both in continuous [14, 17, 18] and discrete cases [19, 20, 15, 21, 16], i.e., the
object is a function or a vector, respectively. Most of these works to some extent depend on
the Wigner distribution deconvolution [22, 23, 24], the representation of the ptychographic
measurements as a convolution of the Wigner transform of the object convolved with the
Wigner transform of the window. This procedure leads to the constructive noniterative
procedure for the reconstruction of the object [24, 25, 26, 27, 28, 29]. Besides, there
are many iterative algorithms [30, 31, 32, 33, 34, 35, 36], which can be applied to solve
phase retrieval. The most prominent group is algorithms that pose the recovery as an
optimization problem, and among them - are gradient methods. It includes famous Error
Reduction [37, 38, 39], Wirtinger [40, 41] and Amplitude [42, 43] Flows and the above-
mentioned PIE, which can be seen as the stochastic gradient descent [44].

In contrast, blind ptychography is much less discussed in the literature. In [45] the authors
study the ambiguities resulting from regular scanning grids and search for possible cures.
The uniqueness of reconstruction can be guaranteed for generic objects and windows [46,
47]. With few exceptions, reconstruction algorithms for blind ptychography exploit an idea
of alternating minimization [48, 49, 50, 51]. That is the object or the window is fixed, while
the other unknown is being optimized and after some iterations the fixed and optimized
unknowns are swapped. In this way, the recovery problem reduces to consequent phase
retrieval problems, which are well-understood. In [52], Wigner distribution deconvolution
is combined with blind deconvolution. Some algorithms [9, 10, 53, 54] perform joint
optimization of the object and the window, however, the convergence of such methods is
not guaranteed.

In this paper, we study gradient methods for joint optimization of the object and the
window. We show that with carefully selected step sizes gradient descent and stochastic
gradient descent converge to a critical point of the loss function at a sublinear rate. The
second result is particularly valuable in the context of ePIE, which, just as PIE, can be
seen as a stochastic gradient descent. To our knowledge, this is the first result in the
literature regarding the convergence of ePIE.

We start with preliminaries in Section 2. That includes a mathematical description of the
measurements and the choice of the loss function in Section 2.2 as well as an overview
of ePIE and its connection to the stochastic gradient Section 2.3. Then, our results are
presented in Section 3 and we also discuss the possibility of larger step sizes in Section 3.1.
All proofs can be found in Section 4 followed by a short conclusion.
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2 Preliminaries

2.1 Notation

The set of d-dimensional complex vectors is denoted by Cd and d1 × d2 matrices by
Cd1×d2 . For a complex number z, its real, imaginary parts and absolute value are denoted
by Re z, Im z, |z|, respectively. For v ∈ Cd let v, vT and v∗ denote the complex conjugate,
transpose and complex conjugate transpose, respectively. The entrywise (Hadamard)
product is denoted by ◦. Notation ‖v‖p, 1 ≤ p ≤ ∞ denotes the ℓp-norm of the vector

v ∈ Cd.
For a vector v ∈ Cd, the diagonal matrix diag(v) ∈ Cd×d contains entries diag(v)j,j = vj
on the main diagonal and zeros elsewhere. Let F be the discrete Fourier transform matrix
with entries Fj,k = e−2πijk/d. The shift operator Sr, r ∈ Z can be treated either as circular
shift (Srv)j = vj−rmod d or as noncircular shift (Srv)j = vj−r for 0 ≤ j − r ≤ d and
(Srv)j = 0 otherwise. The only equation, where its definition is used explicitly is (30) and
the bound holds in both cases. The identity matrix is I ∈ Cd×d. For a matrix A, ‖A‖
denotes its spectral norm, ‖A‖ = max‖v‖2=1 ‖Av‖2.
We set min{a, b/0} = a for the step sizes below, e.g., in (15).
For a function f : Cd × Cd → R : (z, v) 7→ f(z, v), the notation ∇f = (∇zf,∇vf)
denotes its generalized Wirtinger gradient. While this superficial definition is sufficient
for understanding our results below, we also provide a proper definition and selected
properties in Section 4.1.

2.2 Mathematical model, losses and gradients

To describe the ptychographic measurements mathematically, let us introduce the nota-
tion. We denote the object and the window as x ∈ C

d and w ∈ C
d, respectively. Each

of the illuminated regions corresponds to a shift of the window Srw by some r and the
set of all shifts is R with R elements. The interaction between the object and shifted
window is modeled by entrywise multiplication, resulting in the exit wave x ◦ Srw. The
propagation of the exit wave to the far field corresponds to an application of the discrete
Fourier transform F . Finally, the intensity of the captured wave is given by a square of
its absolute value. The resulting measured noisy intensities are described by the following
equation

yr,k = Noisy(|[F (x ◦ Srw)]k|2), r ∈ R, k = 1, . . . , d. (1)

Consequently, our goal is to recover x and w from the measurements yr,k. We note
that unique recovery is understood up to several ambiguities naturally arising from the
measurements (1).

Theorem 2.1 (General ambiguities arising in blind ptychography [45]). Consider x, w ∈
Cd and the corresponding ptychographic measurements (1). Then,

1. (global phase ambiguity) for all a, b such that |a| = |b| = 1 the pair ax, bw produces
the same measurements (1),

2. (linear phase ambiguity) for all ρ ∈ R the pair z, v ∈ Cd with zk = e−iρkxk and
vk = eiρkwk. k = 1, . . . , d, produces the same measurements (1),
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3. (scaling ambiguity) for all γ ∈ C\{0} the pair γx, w/γ produces the same measure-
ments (1).

Furthermore, other ambiguities may arise depending on the set of shifts R, e.g., when R
forms a regular grid [46].
In order to pose the recovery problem as an optimization problem we consider the loss

Lε(z, v) =
∑

r∈R

d
∑

k=1

[

√

|[F (z ◦ Srv)]k|2 + ε−
√

yr,k + ε
]2

, ε ≥ 0. (2)

If the measurements are noiseless, we get Lε(x, w) = 0 and Lε(z, v) ≥ 0, so that the pair
x, w is a global minimum of Lε. However, as the loss function (2) is nonconvex, its global
optimization is a nontrivial task. Moreover, we would only consider a convergence to a
critical point ∇Lε = 0, with the gradients of (2) given by

∇zLε(z, v) :=
∑

r∈R

diag(Srv)F
∗



I − diag





{ √
yr,k + ε

√

|[F (z ◦ Srv)]k|2 + ε

}d

k=1







F (z ◦ Srv),

∇vLε(z, v) :=
∑

r∈R

diag(z)S−rF
∗



I − diag





{ √
yr,k + ε

√

|[F (z ◦ Srv)]k|2 + ε

}d

k=1







F (z ◦ Srv),

where in the case ε = 0 and F (z ◦ Srv)k = 0 the fraction F (z ◦ Srv)/|F (z ◦ Srv)| is set to
zero.
Intuitively, the squared error between the simulated and measured intensities would be the
first choice, i.e., without additional square roots as in (2). Our choice is motivated by the
three following facts. The function (2) with ε = 0 is a second-order Taylor approximation
of the maximum likelihood function for Poisson noise [55, 56]. The minimization of L0

is also equivalent to finding a barycenter of positive-semidefinite matrices with respect to
the Bures-Wasserstein distance [57]. Lastly, the partial gradients ∇zLε and ∇vLε admit
Lipschitz-like properties, which is essential for the analysis of the convergence of the
gradient methods [48, 43, 39, 44]. A nonzero smoothing parameter ε makes the gradient
Lipschitz continuous, which is mostly needed as a technical step in the analysis [43, 49, 39],
but it also has an impact on the convergence to a critical point for stochastic gradient
descent [44].
Note the loss function (2) is prone to the ambiguities described in Theorem 2.1. The first
two ambiguities only affect the phases of the object and the window and the scaling ambi-
guity also affects their norms. As the gradients of Lε are not scale invariant, it is possible
to make ∇zLε arbitrarily large and ∇vLε proportionally small and vice versa, while the
loss function remains constant. This later complicates the analysis of the convergence.
A possible cure to the scaling problem is to impose a constraint on the norm of z and
v. This can be done explicitly by adding constraints to the optimization problem, for
instance, see [48] or Section 4.2.4 of [29]. An alternative is to impose the norm constraint
implicitly by including the Tikhonov regularization,

J (z, v) := J (z, v; ε, αT , βT ) = Lε(z, v) + αT ‖z‖22 + βT ‖v‖22 , (3)
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for some αT , βT ≥ 0 with gradients

∇zJ (z, v) = ∇zLε(z, v) + αT z, ∇vJ (z, v) = ∇vLε + βTv.

It was shown that the norms of the iterates of Alternating Amplitude Flow for J [51] are
bounded and we will use a similar argument in our proofs later.
For the minimization of (3), we employ the gradient descent scheme

zt+1 = zt − µt∇zJ (zt, vt), vt+1 = vt − νt∇vJ (zt, vt), (4)

with initial guesses z0, v0 and step sizes µt, νt. While it is simple and not the most efficient
optimization method, understanding its convergence is the first step toward the analysis
of more involved methods such as [54] or ePIE.

2.3 Extended Ptychographic Iterative Engine

Extended Ptychographic Iterative Engine (ePIE) is an iterative algorithm which extends
the idea of Error Reduction [37] for blind ptychography. Starting with initial guesses
z0, v0, to construct the next iterates for an iteration it selects a single region rt ∈ R and
computes the exit wave zt ◦ Srtv

t. Then, a single Error Reduction iteration is performed,
which gives a corrected exit wave. Finally, new object zt+1 and the window vt+1 are
decoupled from the two exit waves. The detailed iteration is summarized in Algorithm 1.

Algorithm 1: ePIE iteration, version of [9]

Input: Measurements y, previous iterates iterates zt, vt ∈ Cd, step sizes
αt, βt > 0.

1. Select a shift position rt ∈ R.
2. Construct an exit wave ψ = zt ◦ Srtv

t.
3. Compute its Fourier transform Ψ = Fψ.
4. Correct the magnitudes of Ψ as Ψ′

k =
√
yrt,kΨk/|Ψk|.

5. Find an exit wave ψ′ corresponding to Ψ′ via ψ′ = F−1Ψ′

6. Return

zt+1 = zt +
αt diag(Srtv

t)

‖vt‖2∞
[ψ′ − ψ], vt+1 = vt +

βtS−rt diag(z
t)

‖zt‖2∞
[ψ′ − ψ].

Parameters αt and βt are often set to a constant value for all iterations, e.g., αt = βt =
0.05. There are two common ways to choose rt, either as a neighboring position to rt−1

or it loops through the set R, which is randomly shuffled after each loop.
As it follows from Algorithm 1, an iteration of ePIE only performs two Fourier transforms
and accesses one diffraction pattern {yrt,k}dk=1, which makes it extremely efficient.
There are several interpretations of ePIE in the literature [58, 10] and the one in [48,
Section 4.1.2], [54, Section F.1] or [29, Section 4.3] is particularly useful and links ePIE
to the function Lε. For this, let us consider supplementary error functions

Lr,ε :=
d
∑

k=1

[

√

|[F (z ◦ Srv)]k|2 + ε−
√

yr,k + ε
]2

, r ∈ R,
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corresponding to the squared error for r-th illuminated region. Then, the ePIE iteration
can be interpreted as a gradient step

zt+1 = zt − αt

d ‖vt‖2∞
∇zLrt,0(z

t, vt), vt+1 = vt − βt

d ‖zt‖2∞
∇vLrt,0(z

t, vt). (5)

While representation (5) connects ePIE to L0, in this form is not convenient to analyze
ePIE as a gradient method for L0.
Let us assume that that each rt is sampled independently at random from some distribu-
tion p ∈ (0, 1)R over R. Then, we are able to reinterpret ePIE as a stochastic gradient
descent for L0. First, let us formally introduce the stochastic gradient.
Consider a function f : Cd × Cd → R with decomposition f =

∑

r∈R fr and generalized
Wirtinger gradients ∇fr. Fix K ∈ N to be the number of summands to be sampled
and let p ∈ (0, 1)R be a distribution over R. Then, the stochastic gradient g[f ](z, v) is
constructed as

g[f ](z, v) :=
1

K

K
∑

k=1

1

prk
∇frk(z, v) with g[f ](z, v) =

[

g[f ]z(z, v)
g[f ]v(z, v)

]

, (6)

where indices r1, . . . , rK are sampled independently with replacement from p. When work-
ing with iterations, we would write gt with independent indices rt,1, . . . , rt,K to indicate
the dependence on t. Note that for K = 1 the equation (6) simplifies to

g[f ](z, v) =
1

pr
∇fr(z, v).

for a sampled index r. Consequently, we can rewrite (5) as

zt+1 = zt − αtprt

d ‖vt‖2∞
gtz[L0](z

t, vt), vt+1 = vt − βtprt

d ‖zt‖2∞
gtv[L0](z

t, vt). (7)

Thus, ePIE can be understood and analyzed as a stochastic gradient descent for L0. This
motivated us to study the convergence properties of stochastic gradient descent for J ,

zt+1 = zt − µtg
t
z[J ](zt, vt), vt+1 = vt − νtg

t
v[J ](zt, vt), (8)

were the decomposition of J =
∑

r∈RJr is given by

Jr(z, v; ε, αT , βT ) := Lr,ε(z, v) + αT pr ‖z‖22 + βTpr ‖v‖22 . (9)

From now on, we would use a shorter notation g instead of g[J ].
As the stochastic gradients are random, their convergence can be only guaranteed in
probabilistic terms. Let us briefly introduce a few notions from probability theory, while
more details on the topic can be found in [59]. Consider the probability space (S,F ,P)
induced by the random indices {rt,k}∞,K

t=0,k=1. Let F0 be the trivial σ-algebra and for t ≥ 1

let Ft be the σ-algebra generated by {rs,k}t−1,K
s=0,k=1. By construction, F0 ⊆ F1 ⊆ . . .F

so that {Ft}t≥0 is a filtration. We say that a sequence of random variables {Xt}t≥0 is
adapted to filtration {Ft}t≥0 if for each t Xt is Ft measurable. Essentially, all random
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variables which are Ft-measurable can be expressed in terms of {rs,k}t−1,K
s=0,k=1. In particular,

zt, vt are Ft-measurable and, consequently, J (zt, vt) and ‖∇J (zt, vt)‖2 are adapted to the
filtration {Ft}t≥0. Note that {g(zt, vt)}t≥0 is not adapted as it also depends on {rt,k}Kk=1.
We say that a random event is almost surely (a.s.) true if its probability is one. We
would denote expectation by E and conditional expectation with respect to σ-algebra Ft

by E[ · | Ft ]. With this, we are ready to state our results.

3 Our contribution

Let us start first with the analysis of the gradient descent (4). It was shown that the
suitable minimal requirement for the convergence of gradient methods for nonconvex
optimization is the so-called descent lemma [60, Assumption 3], which controls the change
in the loss function in terms of the change in the argument. In fact, it can be seen as a
weaker version of Lipschitz continuity of the gradient. For J we are able to establish the
following version of the descent lemma

Lemma 3.1 (Descent lemma for J ). Let ε, αT , βT ≥ 0. For all z, v ∈ Cd and u, h ∈ Cd

we have

J (z + u, v + h) ≤ J (z, v) + 2Re(u∗∇zJ (z, v)) + 2Re(h∗∇vJ (z, v))

+ ‖u‖22
[

αT + d
(

10
3
‖v‖22 + 5

4
‖h‖22 + 2

3
‖z‖22 + 1

4
‖u‖22 + ‖y/d‖1/21

)]

+ ‖h‖22
[

βT + d
(

10
3
‖z‖22 + 5

4
‖u‖22 + 2

3
‖v‖22 + 1

4
‖h‖22 + ‖y/d‖1/21

)]

.

Unlike the standard decent lemma [61, Lemma 5.7], we observe the fourth-order terms
appearing in Lemma 3.1. This can be explained by viewing J as an “almost” fourth-
order polynomial. That is z◦Srv is a quadratic polynomial and

√

|[F (z ◦ Srv)]k|2 + ε is an
“almost” quadratic polynomial, which gives total quartic dependency on the arguments.
For further convenience, let us define

B(z, v) := 3d
[

10
3
‖z‖22 + 10

3
‖v‖22 + ‖y/d‖1/21

]

+ 3max{αT , βT}. (10)

and
J inf := inf

z,v∈Cd
J (z, v). (11)

With Lemma 3.1, we are able to choose the step sizes µt, νt such that the gradient descent
provably converges.

Theorem 3.2 (Convergence of the gradient descent for blind ptychography). Let ε, αT , βT ≥
0. Consider a sequences {zt}t≥0, {vt}t≥0 generated by (4) with arbitrary starting points
z0, v0 ∈ Cd and the step sizes

µt, νt ≤ min
{

B−1(zt, vt), (15
4
d)−1/3

∥

∥∇zJ (zt, vt)
∥

∥

−2/3

2
, (15

4
d)−1/3

∥

∥∇vJ (zt, vt)
∥

∥

−2/3

2

}

,

(12)

Then, we have

J (zt+1, vt+1) ≤ J (zt, vt)− µt

∥

∥∇zJ (zt, vt)
∥

∥

2

2
− νt

∥

∥∇vJ (zt, vt)
∥

∥

2

2
, t ≥ 0,

7



If αT , βT > 0 and, additionally, µt and νt are precisely equal to the minimums in (12),
then

∥

∥∇J (zt, vt)
∥

∥

2
→ 0 as t→ ∞

and

min
t=0,...,T−1

∥

∥∇J (zt, vt)
∥

∥

2

2
≤ max

{

C1T
−1[J (z0, v0)− J inf ],

(

C1T
−1[J (z0, v0)− J inf ]

)3/2
}

,

where C1 = C1(z
0, v0, d, y, αT , βT ) is given by

C1 := max
{

d
[

20(α−1
T + β−1

T )J (z0, v0) + 6 ‖y/d‖1/21

]

+ 2max{αT , βT}, (15d)1/3
}

. (13)

In contrast to the nonblind case [43], in which the step size is constant, in Theorem 3.2
the step sizes have to be chosen adaptively and depend on the norm of the gradient.
This is a consequence of the much more volatile behavior of J described in Lemma 3.1.
Note that similar choices of step sizes with partial gradient normalization are necessary
to guarantee convergence of the gradient descent for certain classes of loss functions [41].
With the convergence results for gradient descent established, we can turn to stochas-
tic gradient descent (8). Using ideas from [62, 63] and [44], we are able to establish a
convergence result for scheme (8). To state the results, we introduce two new bounds.

Lemma 3.3. Define

Bz(z, v) := (15
4
d)1/2

[

d ‖v‖2√
Kminr∈R pr

(

‖z‖2 ‖v‖2 + ‖y/d‖1/21

)

+ αT ‖z‖2
]

, (14)

Bv(z, v) = (15
4
d)1/2

[

d ‖z‖2√
Kminr∈R pr

(

‖z‖2 ‖v‖2 + ‖y/d‖1/21

)

+ βT ‖v‖2
]

.

Then, for any z, v ∈ Cd we have

15
4
d ‖gz(z, v)‖22 ≤ B2

z(z, v) and 15
4
d ‖gv(z, v)‖22 ≤ B2

v(z, v).

Now, we can state the main result regarding the convergence of the stochastic gradient
descent.

Theorem 3.4. Let ε, αT , βT ≥ 0, 0 ≤ θ < 1 and κ < θ/(1 + θ). Consider a sequences
{zt}t≥0, {vt}t≥0 generated by (8) with arbitrary starting points z0, v0 ∈ Cd and define

µmax
t := min

{

(1 + t)−1+κB− 1

1−θ (zt, vt), B
− 2

3−θ
z (zt, vt), B

− 2

3−θ
v (zt, vt), (1− 1

K
)−1/θ

}

. (15)

1. If the step sizes µt and νt are adapted to the filtration {Ft}t≥0 and satisfy µt, νt ≤
µmax
t then, the sequence J (zt, vt) converges a.s.

2. If αT , βT , θ > 0, κ ≥ 0 and the step sizes are given by µt = µ ·µmax
t and νt = ν ·µmax

t

for some 0 < µ, ν ≤ 1, then

min
t=0,...,T−1

∥

∥∇J (zt, vt)
∥

∥

2

2
≤
{

κC2

min{µ,ν}[(1+T )κ−1]
, κ > 0,

C2

min{µ,ν} ln(1+T )
, κ = 0,

a.s.,

for an a.s. finite random variable C2 and

inf
t≥0

∥

∥∇J (zt, vt)
∥

∥

2

2
= 0 a.s.
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3. If, in addition to assumptions in 2, ε > 0, then ‖∇J (zt, vt)‖2 → 0 as t→ ∞ a.s.

Let us elaborate on the statement of Theorem 3.4. In comparison to Theorem 3.2 two
additional parameters κ and θ appear. The first parameter κ controls the decay of the
step sizes over time and the speed at which the minimal gradient converges to zero. This
is similar to the stochastic gradient descent convergence properties observed for PIE in
nonblind ptychography [44] and stochastic gradient in general [62]. The second, θ, controls
the power of the partial gradient normalization by the step sizes. In view of bounds in
Lemma 3.3, the second and the third cases in (15) correspond to the norms of stochastic

gradients, ‖gz(zt, vt)‖−2/(3−θ)
2 and ‖gv(zt, vt)‖−2/(3−θ)

2 . If θ is set to zero, the power −2/3
would precisely correspond to the same powers in Theorem 3.2. However, for stronger
convergence guarantees 2 and 3 of Theorem 3.4, we require a slightly stronger scaling
θ > 0. In the literature [60, 62, 44], θ is commonly chosen as one. Yet, in our case, this
leads to small updates in (8),

∥

∥zt+1 − zt
∥

∥

2
= µt

∥

∥gz(z
t, vt)

∥

∥

2
≤ 1,

∥

∥vt+1 − vt
∥

∥

2
= νt

∥

∥gv(z
t, vt)

∥

∥

2
≤ 1,

and motivates the restriction 0 ≤ θ < 1.
Similarly to the nonblind case [44], we observe that the convergence speed of the stochastic
gradient descent (8) is much slower than the gradient descent (4). This is compensated
by a much larger computational complexity for the latter as the full gradient has to be
evaluated. We also observe that smoothing ε > 0 is necessary to guarantee that the
gradient vanishes.
Coming back to ePIE, we showed in (7) that it can be seen as stochastic gradient descent
with steps sizes µt = αTprt/d ‖vt‖2∞ and νt = αTprt/d ‖zt‖2∞. Note that they depend on rt

unless p is a uniform distribution over R. In such a case, we are able to apply Theorem 3.4
by choosing parameters αt and βt appropriately. This would only provide the weakest
convergence that the loss function eventually stops at a certain level. Hence, a stronger
convergence properties can be obtained for ePIE by including Tickhonov regularization
and smoothing ε > 0.

3.1 Existence of larger step sizes

The main criticism of our results above is the choice of step sizes, which have to be
sufficiently small to control the right-hand side in Lemma 3.1. However, the bound in
Lemma 3.1 significantly simplifies if one of the variables remains fixed.

Theorem 3.5 (Version of [51]). Let ε, αT , βT ≥ 0. Consider z+ = z −L−1
v ∇zJ (z, v) and

v+ = v − L−1
z ∇vJ (z, v) with Lv and Lz given by

Lv = d max
j=1,...,d

∑

r∈R

|(Srv)j|2 + αT ≤ d ‖v‖22 + αT , (16)

Lz = d max
j=1,...,d

∑

r∈R

|(S−rz)j |2 + βT ≤ d ‖z‖22 + βT .

Then,

J (z+, v) ≤ J (z, v)− L−1
v ‖∇zJ (z, v)‖22 and J (z, v+) ≤ J (z, v)− L−1

z ‖∇vJ (z, v)‖22 .

9



The step sizes L−1
v and L−1

z are much larger than their counterparts in (12). Therefore,
alternating minimization procedures for blind ptychography such as in [48, 49, 51, 29] are
more efficient than joint optimization. This naturally leads to a question if the step sizes
for joint optimization (4) can be chosen larger, preferably as in Theorem 3.5. Since J is
continuous, it attains its minimum on the closed interval connecting (z+, v) and (z, v+)
consisting of the points {(z(γ), v(γ)) : γ ∈ [0, 1]} given by

z(γ) = z + γ(z+ − z) = z − γL−1
v ∇zJ (z, v), (17)

v(γ) = v+ + γ(v − v+) = v − (1− γ)L−1
z ∇vJ (z, v).

Hence, there exists γ∗ ∈ [0, 1] that for a point (z(γ∗), v(γ∗)) the values J (z(γ∗), v(γ∗)) ≤
min{J (z+, v),J (z, v+)} and, consequently, both inequalities in Theorem 3.5 hold. If the
iterates are selected this way, we obtain the following convergence guarantees.

Theorem 3.6. Let ε ≥ 0, αT , βT > 0. Consider the sequences {zt}t≥0 and {vt}t≥0 to
be the sequences where pair zt+1, vt+1 is constructed via (17) with z = zt, v = vt and γ
chosen such that

J (zt+1, vt+1) = J (z(γ), v(γ)) ≤ min{J (z+, v),J (z, v+)}. (18)

Then, we have

J (zt+1, vt+1) ≤ J (zt, vt)− 1
2
L−1
zt

∥

∥∇zJ (zt, vt)
∥

∥

2

2
− 1

2
L−1
vt

∥

∥∇vJ (zt, vt)
∥

∥

2

2
, t ≥ 0,

‖∇J (zt, vt)‖22 → 0 as t→ ∞ and

min
t=0,...,T−1

∥

∥∇J (zt, vt)
∥

∥

2

2
≤ T−1

[

dmax{α−1
T , β−1

T }J (z0, v0) + max{αT , βT}
]

·
[

J (z0, v0)− J inf
]

.

Proof. The first inequality follows from (18) and Theorem 3.5. The rest of the proof is
similar to the proof of Theorem 3.2 or Theorem 3.4 in [51].

Theorem 3.6 is similar to Theorem 3.4 in [51], but it allows for simultaneous change of zt

and vt unlike the alternating minimization procedure in in [51]. However, it comes with
extra computational costs resulting from a search for γ at each iteration. The minimal
increase is two times as γ can be chosen as γ = 1 if J (z+, v) > J (z, v+) and γ = 0
otherwise, which requires two evaluations of the loss J instead of single evaluation in
[51]. An additional outcome is that the continuity of the gradient is not necessary, i.e., ε
can be zero, unlike in [51].
This idea could potentially be used for stochastic gradient descent. However, in this case,
the evaluation of the function value is costly and is almost the same as the computation
of the full gradient, which negates the computational speed-up of the stochastic gradient.

4 Proofs

4.1 Wirtinger derivatives and derivation of descent lemmas

The proof of descent lemma consists of several steps. Firstly, we rewrite Lε from (2) in a
more general form

Lε(z, v) =
m
∑

j=1

[

√

|zTQjv|2 + ε−
√

yj + ε

]2

. (19)

10



In order to do so, let us first define vectors fk with fk
ℓ = e2πikℓ/d, ℓ ∈ [d]. Then, we can

rewrite

[F (z ◦ Srv)]k = (fk)∗(z ◦ Srv) = (fk)∗ diag(z)Srv = (diag(z)fk)TSrv

= (diag(fk)z)TSrv = zT diag(fk)Srv =: zTQr,kv. (20)

Hence, with the indexing j = (r, k), r ∈ R, k ∈ [d] and m := dR, we can instead work
with (19).
The analysis of Lε is based on the Wirtinger calculus, which becomes handy for the
optimization of real-valued functions of complex variables. Note that the class of such
functions is not holomorphic [64, Proposition 4.0.1]. Let us consider a differentiable (in
the real sense) function f : C → R with an argument z = Re z + i Im z. Then, the
Wirtinger derivatives are defined as

∂f

∂z
:=

1

2

∂f

∂ Re
− i

2

∂f

∂ Im
,

∂f

∂z
:=

1

2

∂f

∂ Re
+
i

2

∂f

∂ Im
.

They are a linear transformation of the derivatives with respect to real and imaginary
parts Re z and Im z and, hence, the standard results such as derivation rules, extension to
the multivariate case and etc. hold for Wirtinger derivatives. In addition, the conjugation
rule applies,

∂f

∂z
=
∂f

∂z
. (21)

Now, let us consider f : Cd → R with Wirtinger derivatives

∂f

∂z
=

(

∂f

∂z1
, . . . ,

∂f

∂zd

)

and
∂f

∂z
=

(

∂f

∂z1
, . . . ,

∂f

∂zd

)

.

The differential of f is given by

df =

d
∑

j=1

[

∂f

∂αj
dαj +

∂f

∂βj
dβj

]

=

d
∑

j=1

[

∂f

∂zj
dzj +

∂f

∂zj
dzj

]

=
∂f

∂z
dz+

∂f

∂z
dz = 2Re

[

∂f

∂z
dz

]

,

where (21) and real-valuedness of f were used in the last step. Consequently, the direction
of the steepest ascend dz is aligned with the conjugate transpose of ∂f

∂z
, which is why

Wirtinger gradients in direction of z and z are defined as

∇zf :=

(

∂f

∂z

)∗

=

(

∂f

∂z

)T

and ∇zf := ∇zf.

Furthermore, for twice differentiable f we would need the second-order Taylor expansion

f(z + s) = f(z) + 2Re(s∗∇zf(z)) +

[

s
s

]∗ ∫ 1

0

(1− t)∇2f(z + ts)dt

[

s
s

]

, (22)

where z, s ∈ C
d and ∇2f is the Hessian matrix

∇2f =







∇2
z,zf ∇2

z,zf

∇2
z,zf ∇2

z,zf






=







∂
∂z
∇zf

∂
∂z
∇zf

∂
∂z
∇zf

∂
∂z
∇zf






=







∂
∂z
∇zf

∂
∂z
∇zf

∂
∂z
∇zf

∂
∂z
∇zf






,
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where the last equality follows from (21). Consequently, the second-order term in (22)
simplifies to

[

s
s

]∗

∇2f(z)

[

s
s

]

= 2Re
(

s∗∇2
z,zf(z)s + s∗∇2

z,zf(z)s
)

. (23)

The descent lemma is generally established by bounding from above the second-order
term in (22) and (23) is a convenient representation to work with.

Returning to Lε and J , we start with the case ε > 0 so that Lε is twice continuously
differentiable. Since the argument of Lε is two variables z and v we will use notation

∇Lε := ∇(z,v)Lε =

[

∇zLε

∇vLε

]

and ∇(z,v)Lε = ∇Lε.

In the case ε = 0, L0 is not differentiable at points where zTQjv = 0 for at least one
j ∈ [m]. Thus, for L0 we define the generalized Wirtinger gradient as pointwise limit

∇L0(z, v) = lim
ε→0+

∇Lε(z, v).

Following this logic, for the case ε > 0 we split the blocks of the Hessian matrix into
subblocks as

∇2
(z,v),(z,v)Lε =







∇2
z,zLε ∇2

v,zLε

∇2
z,vLε ∇2

v,vLε






and ∇2

(z,v),(z,v)
Lε =







∇2
z,zLε ∇2

v,zLε

∇2
z,vLε ∇2

v,vLε






.

Consequently, the vector s in (23) splits into two parts, s := (u, h) corresponding to
change (z + u, v + h). Hence, (23) becomes

[

s
s

]∗

∇2Lε(z, v)

[

s
s

]

= 2Re

([

u
h

]∗

∇2
(z,v),(z,v)Lε(z, v)

[

u
h

]

+

[

u
h

]∗

∇2
(z,v),(z,v)

Lε(z, v)

[

u

h

])

.

(24)

The next lemma summarizes the computation for both summands on the right-hand side
and provides a suitable lower and upper bounds.

Lemma 4.1. For all s = (u, h) ∈ C2d we have

[

s
s

]∗

∇2Lε(z, v)

[

s
s

]

≤ 2
m
∑

j=1

|uTQjv + zTQjh|2 + 4 [Lε(z, v)]
1/2 ·

[

m
∑

j=1

|uTQjh|2
]1/2

.

and

[

s
s

]∗

∇2Lε(z, v)

[

s
s

]

≥ −4 [Lε(z, v)]
1/2 ·

[

m
∑

j=1

|uTQjh|2
]1/2

− 2(‖y + ε‖1/2∞ ε−1/2 − 1)
m
∑

j=1

|uTQjv + zTQjh|2.
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Proof. In order to reduce technical computations, we make use of the results for phase
retrieval [43]. That is, let us consider supplementary functions

fa(z) :=

m
∑

j=1

[√

|a∗jz|2 + ε−
√

yj + ε
]2

and fb(v) :=

m
∑

j=1

[√

|b∗jv|2 + ε−
√

yj + ε
]2

.

Note that Lε(z, v) = fa(z) with aj = Qjv and Lε(z, v) = fb(v) with bj = QT
j z. Hence, we

can use the computations in [43, pp.26-27] to obtain

∇zLε(z, v) = ∇zfa(z) =

m
∑

j=1

[

1−
√
yj + ε

√

|zTQjv|2 + ε

]

zTQjv ·Qjv,

∇vLε(z, v) = ∇vfb(v) =

m
∑

j=1

[

1−
√
yj + ε

√

|zTQjv|2 + ε

]

zTQjv ·QT
j z,

and

∇z,zLε(z, v) = ∇z,zfa(z) =

m
∑

j=1

[

1− ε
√
yj + ε

(|zTQjv|2 + ε)3/2
−

√
yj + ε|zTQjv|2

2(|zTQjv|2 + ε)3/2

]

Qjv(Qjv)
T ,

∇z,zLε(z, v) = ∇z,zfa(z) =
m
∑

j=1

√
yj + ε(zTQjv)

2

2(|zTQjv|2 + ε)3/2
Qjv(Qjv)

T ,

∇v,vLε(z, v) = ∇v,vfb(v) =

m
∑

j=1

[

1− ε
√
yj + ε

(|zTQjv|2 + ε)3/2
−

√
yj + ε|zTQjv|2

2(|zTQjv|2 + ε)3/2

]

QT
j z(Q

T
j z)

T ,

∇v,vLε(z, v) = ∇v,vfb(v) =

m
∑

j=1

√
yj + ε(zTQjv)

2

2(|zTQjv|2 + ε)3/2
QT

j z(Q
T
j z)

T .

Now, we have to compute the cross-variable derivatives using the product and the chain
rules. More precisely,

∇v,zLε(z, v) =
∂

∂v
∇zLε(z, v) =

m
∑

j=1

[

1−
√
yj + ε

√

|zTQjv|2 + ε

]

Qjv ·
∂(zTQjv)

∂v

−
m
∑

j=1

√

yj + ε(zTQjv)Qjv ·
∂(|zTQjv|2 + ε)−1/2

∂|zTQjv|2 + ε

∂(zTQjvz
TQjv)

∂v

=
m
∑

j=1

[

1−
√
yj + ε

√

|zTQjv|2 + ε
+

√
yj + ε|zTQjv|2

2(|zTQjv|2 + ε)3/2

]

Qjv(Q
T
j z)

T

=

m
∑

j=1

[

1− ε
√
yj + ε

(|zTQjv|2 + ε)3/2
−

√
yj + ε|zTQjv|2

2(|zTQjv|2 + ε)3/2

]

Qjv(Q
T
j z)

T ,
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and

∇v,zLε(z, v) =
m
∑

j=1

[

1−
√
yj + ε

√

|zTQjv|2 + ε

]

zTQjv ·
∂(Qjv)

∂v

−
m
∑

j=1

√

yj + ε(zTQjv)Qjv ·
∂(|zTQjv|2 + ε)−1/2

∂|zTQjv|2 + ε

∂(zTQjvzTQjv)

∂v

=

m
∑

j=1

[

1−
√
yj + ε

√

|zTQjv|2 + ε

]

(zTQjv)Qj +

m
∑

j=1

√
yj + ε(zTQjv)

2

2(|zTQjv|2 + ε)3/2
Qjv(Q

T
j z)

T .

The last two derivatives are computed analogously,

∇z,vLε(z, v) =

m
∑

j=1

[

1− ε
√
yj + ε

(|zTQjv|2 + ε)3/2
−

√
yj + ε|zTQjv|2

2(|zTQjv|2 + ε)3/2

]

QT
j z(Qjv)

T ,

∇z,vLε(z, v) =

m
∑

j=1

[

1−
√
yj + ε

√

|zTQjv|2 + ε

]

(zTQjv)Qj
T
+

m
∑

j=1

√
yj + ε(zTQjv)

2

2(|zTQjv|2 + ε)3/2
QT

j z(Qjv)
T .

With derivatives computed, we can now turn to the quadratic terms in (24). The first
summand is given by

[

u
h

]∗

∇2
(z,v),(z,v)Lε(z, v)

[

u
h

]

= u∗∇z,zLε(z, v)u+ u∗∇v,zLε(z, v)h + h∗∇z,vLε(z, v)u+ h∗∇v,vLε(z, v)h

=

m
∑

j=1

[

1− ε
√
yj + ε

(|zTQjv|2 + ε)3/2
−

√
yj + ε|zTQjv|2

2(|zTQjv|2 + ε)3/2

]

×

×
[

|uTQjv|2 + uTQjv · zTQjh+ zTQjh · uTQjv + |zTQjh|2
]

=

m
∑

j=1

[

1− ε
√
yj + ε

(|zTQjv|2 + ε)3/2
−

√
yj + ε|zTQjv|2

2(|zTQjv|2 + ε)3/2

]

|uTQjv + zTQjh|2. (25)

For the second summand, we analogously obtain

Re

([

u
h

]∗

∇2
(z,v),(z,v)

Lε(z, v)

[

u

h

])

= Re(u∗∇z,zLε(z, v)u+ u∗∇v,zLε(z, v)h+ h∗∇z,vLε(z, v)u+ h∗∇v,vLε(z, v)h)

= 2

m
∑

j=1

[

1−
√
yj + ε

√

|zTQjv|2 + ε

]

Re(zTQjv · uTQjh)

+ Re

(

m
∑

j=1

√
yj + ε(zTQjv)

2

2(|zTQjv|2 + ε)3/2

[

(uTQjv)
2 + 2uTQjv · zTQjh + (zTQjh)

2
]

)

= 2
m
∑

j=1

[

1−
√
yj + ε

√

|zTQjv|2 + ε

]

Re(zTQjv · uTQjh) (26)

+

m
∑

j=1

√
yj + ε

2(|zTQjv|2 + ε)3/2
Re
(

(zTQjv)
2(uTQjv + zTQjh)

2
)
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To complete the upper bound in (24), we make the following observations. Firstly, the
second summands in (25) are nonpositive,

−
m
∑

j=1

ε
√
yj + ε

(|zTQjv|2 + ε)3/2
|uTQjv + zTQjh|2 ≤ 0.

Secondly, the third summands in (25) and the second sum in (26) added together admit

Re
(

(zTQjv)
2(uTQjv + zTQjh)

2
)

− |zTQjv|2|uTQjv + zTQjh|2 ≤ 0.

Since
√
yj + ε/(|zTQjv|2 + ε)3/2 > 0, the above inequality applies for the whole sum.

Thirdly, we bound the first sum in (26) by the Cauchy-Schwarz inequality as
∣

∣

∣

∣

∣

m
∑

j=1

[

1−
√
yj + ε

√

|zTQjv|2 + ε

]

Re(zTQjv · uTQjh)

∣

∣

∣

∣

∣

≤
m
∑

j=1

∣

∣

∣

∣

∣

1−
√
yj + ε

√

|zTQjv|2 + ε

∣

∣

∣

∣

∣

|zTQjv||uTQjh|

≤
[

m
∑

j=1

∣

∣

∣

∣

√

|zTQjv|2 + ε−
√

yj + ε

∣

∣

∣

∣

2 |zTQjv|2
|zTQjv|2 + ε

]1/2

·
[

m
∑

j=1

|uTQjh|2
]1/2

≤ [Lε(z, v)]
1/2 ·

[

m
∑

j=1

|uTQjh|2
]1/2

. (27)

Combining these inequalities with (24) yields

[

s
s

]∗

∇2Lε(z, v)

[

s
s

]

≤ 2
m
∑

j=1

|uTQjv + zTQjh|2 + 4 [Lε(z, v)]
1/2 ·

[

m
∑

j=1

|uTQjh|2
]1/2

.

For the lower bound, we return to (26). The absolute value of the first summand was
already bounded in (27). The second summand can be bounded using

Re
(

(zTQjv)
2(uTQjv + zTQjh)

2
)

≥ −|zTQjv|2|uTQjv + zTQjh|2.

This gives

Re

([

u
h

]∗

∇2
(z,v),(z,v)

Lε(z, v)

[

u

h

])

≥ −2 [Lε(z, v)]
1/2 ·

[

m
∑

j=1

|uTQjh|2
]1/2

−
m
∑

j=1

√
yj + ε|zTQjv|2

2(|zTQjv|2 + ε)3/2
|uTQjv + zTQjh|2.

Thus, by (24) and (25), we obtain

[

s
s

]∗

∇2Lε(z, v)

[

s
s

]

≥ −4 [Lε(z, v)]
1/2 ·

[

m
∑

j=1

|uTQjh|2
]1/2

+ 2

m
∑

j=1

[

1− ε
√
yj + ε

(|zTQjv|2 + ε)3/2
−

√
yj + ε|zTQjv|2

(|zTQjv|2 + ε)3/2

]

|uTQjv + zTQjh|2
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The last step is to note that

1− ε
√
yj + ε

(|zTQjv|2 + ε)3/2
−

√
yj + ε|zTQjv|2

(|zTQjv|2 + ε)3/2
= 1−

√
yj + ε

(|zTQjv|2 + ε)1/2
≥ 1−

√
yj + ε√
ε

.

The term ε−1/2(yj + ε)1/2 − 1 is nonnegative, which gives

[

s
s

]∗

∇2Lε(z, v)

[

s
s

]

≥ −4 [Lε(z, v)]
1/2 ·

[

m
∑

j=1

|uTQjh|2
]1/2

− 2(‖y + ε‖1/2∞ ε−1/2 − 1)

m
∑

j=1

|uTQjv + zTQjh|2.

With Lemma 4.1 we are able to derive the descent lemma for J .

Proof of Lemma 3.1. Let us start by deriving a descent lemma for Lε with ε > 0 first.
Then, Lε is twice differentiable and the result can be derived from the second-order Taylor
expansion (22) combined with the bound on the Hessian provided by Lemma 4.1. More
precisely, with s = (u, h)

Lε(z + u, v + h) = Lε(z, v) + 2Re(u∗∇zLε(z, v)) + 2Re(h∗∇vLε(z, v))

+

[

s
s

]∗ ∫ 1

0

(1− t)∇2Lε(z + tu, v + th)dt

[

s
s

]

.

Let us focus on the second-order term for now. By Lemma 4.1, we get

[

s
s

]∗ ∫ 1

0

(1− t)∇2Lε(z + tu, v + th)dt

[

s
s

]

(28)

≤ 2

∫ 1

0

(1− t)

m
∑

j=1

|uTQj(v + th) + (z + tu)TQjh|2dt

+ 4

∫ 1

0

(1− t) [Lε(z + tu, v + th)]1/2 ·
[

m
∑

j=1

|uTQjh|2
]1/2

dt. (29)

The next step is to simplify integrands. By (20) and properties of the discrete Fourier
Transform, for any z, v ∈ Cd we have

m
∑

j=1

|zTQjv|2 =
∑

r∈R

d
∑

k=1

|F (z ◦ Srv)k|2 =
∑

r∈R

‖F (z ◦ Srv)‖22

= d
∑

r∈R

‖z ◦ Srv‖22 = d
∑

r∈R

d
∑

k=1

|zk|2|vk−r|2 = d

d
∑

k=1

|zk|2
∑

r∈R

|vk−r|2 ≤ d ‖z‖22 ‖v‖
2
2 . (30)
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Consequently, using |α+ β|2 ≤ 2|α|2 + 2|β|2, the first integral in (29) simplifies to

2

∫ 1

0

(1− t)
m
∑

j=1

|uTQj(v + th) + (z + tu)TQjh|2dt

≤ 4d ‖u‖22
∫ 1

0

(1− t) ‖v + th‖22 dt+ 4d ‖h‖22
∫ 1

0

(1− t) ‖z + tv‖22 dt.

Furthermore, both of the obtained integrals can be bounded as

∫ 1

0

(1− t) ‖v + th‖22 dt =
∫ 1

0

(1− t) ‖v‖22 + 2(1− t)tRe(v∗h) + (1− t)t2 ‖h‖22 dt (31)

= 1
2
‖v‖22 + 1

3
Re(v∗h) + 1

12
‖h‖22 ≤ 1

2
‖v‖22 + 1

6
‖v‖22 + 1

6
‖h‖22 + 1

12
‖h‖22 = 2

3
‖v‖22 + 1

4
‖h‖22 ,

which gives

2

∫ 1

0

(1− t)
m
∑

j=1

|uTQj(v + th) + (z + tu)TQjh|2dt

≤ 4d ‖u‖22 [ 2
3
‖v‖22 + 1

4
‖h‖22 ] + 4d ‖h‖22 [ 2

3
‖z‖22 + 1

4
‖u‖22 ]. (32)

For the second integral in (29), note that by inequalities

|α− β|2 ≤ α2 + β2 for α, β ≥ 0, and |
√

α2 + γ2 −
√

β2 + γ2| ≤ |α− β|, for α, β, γ ∈ R,

the values of Lε(z, v) are bounded by

Lε(z, v) =

m
∑

j=1

∣

∣

∣

∣

√

|zTQjv|2 + ε−
√

yj + ε

∣

∣

∣

∣

2

≤
m
∑

j=1

∣

∣|zTQjv| −
√
yj
∣

∣

2

≤
m
∑

j=1

|zTQjv|2 + ‖y‖1 ≤ d ‖z‖22 ‖v‖
2
2 + ‖y‖1 (33)

Hence, the triangle inequality with (31) gives

4

∫ 1

0

(1− t) [Lε(z + tu, v + th)]1/2 ·
[

m
∑

j=1

|uTQjh|2
]1/2

dt

≤ 4
√
d ‖u‖2 ‖h‖2

∫ 1

0

(1− t)

√

d ‖z + tu‖22 ‖v + th‖22 + ‖y‖1dt

≤ 4
√
d ‖u‖2 ‖h‖2

∫ 1

0

(1− t)
√
d ‖z + tu‖2 ‖v + th‖2 + ‖y‖1/21 (1− t)dt

≤ [‖u‖22 + ‖h‖22]
∫ 1

0

(1− t)d[‖z + tu‖22 + ‖v + th‖22] + 2
√
d ‖y‖1/21 (1− t)dt

≤ [‖u‖22 + ‖h‖22]
[

d [2
3
‖z‖22 + 1

4
‖u‖22 + 2

3
‖v‖22 + 1

4
‖h‖22] +

√
d ‖y‖1/21

]

.
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Returning to (29), the above inequality and (32) combined yield
[

s
s

]∗ ∫ 1

0

(1− t)∇2Lε(z + tu, v + th)dt

[

s
s

]

≤ d ‖u‖22
[

10
3
‖v‖22 + 5

4
‖h‖22 + 2

3
‖z‖22 + 1

4
‖u‖22 + ‖y/d‖1/21

]

+ d ‖h‖22
[

10
3
‖z‖22 + 5

4
‖u‖22 + 2

3
‖v‖22 + 1

4
‖h‖22 + ‖y/d‖1/21

]

.

Substituting this into the Taylor approximation concludes the proof for ε > 0,

Lε(z + u, v + h) ≤ Lε(z, v) + 2Re(u∗∇zLε(z, v)) + 2Re(h∗∇vLε(z, v))

+ d ‖u‖22
[

10
3
‖v‖22 + 5

4
‖h‖22 + 2

3
‖z‖22 + 1

4
‖u‖22 + ‖y/d‖1/21

]

+ d ‖h‖22
[

10
3
‖z‖22 + 5

4
‖u‖22 + 2

3
‖v‖22 + 1

4
‖h‖22 + ‖y/d‖1/21

]

.

The case ε = 0 follows by taking the limit ε → 0+.
Turning to J , we extend the above bound using Lemma 2.5 of [51]. Let T (z, v) :=
αT ‖z‖22 + βT ‖v‖22. By Lemma 2.5 of [51], for s = (u, h), we have

[

s
s

]∗

∇2T
[

s
s

]

≤ 2αT ‖u‖22 + 2βT ‖h‖22 .

Applying this error bound to the second-order Taylor expansion (22) of T gives

T (z + u, v + h) = T (z, v) + 2Re(u∗∇zT (z, v)) + 2Re(h∗∇vT (z, v))

+

[

s
s

]∗ ∫ 1

0

(1− t)∇2T (z + tu, v + th)dt

[

s
s

]

≤ T (z, v) + 2Re(u∗∇zT (z, v)) + 2Re(h∗∇vT (z, v)) + αT ‖u‖22 + βT ‖h‖22 .
Since J = Lε + T , combining two inequalities together yields the desired result.

Note that for our specific Qj the inequality (30) holds and, in general for arbitrary Qj ,
the sum

∑m
j=1 |zTQjv|2 can always be bounded as

m
∑

j=1

|zTQjv|2 ≤
m
∑

j=1

‖z‖22 ‖Qj‖2 ‖v‖22 ≤ ‖z‖22 ‖v‖
2
2

m
∑

j=1

‖Qj‖2 ,

where ‖·‖ denotes the spectral norm of a matrix.

4.2 Convergence of gradient descent

In this section, we derive convergence result for the gradient descent algorithm (4).

Proof of Theorem 3.2. Using Lemma 3.1 with z = zt, v = vt, u = µt∇zJ (zt, vt), h =
νt∇vJ (zt, vt) and the definition (10) of B. We get

J (zt+1, vt+1) ≤ J (zt, vt)− 2µt

∥

∥∇zJ (zt, vt)
∥

∥

2

2
− 2νt

∥

∥∇vJ (zt, vt)
∥

∥

2

2

+ µt

∥

∥∇zJ (zt, vt)
∥

∥

2

2

[

1
3
µtB(zt, vt) + d

4
µ3
t

∥

∥∇zJ (zt, vt)
∥

∥

2

2
+ 5d

4
µtν

2
t

∥

∥∇vJ (zt, vt)
∥

∥

2

2

]

+ νt
∥

∥∇vJ (zt, vt)
∥

∥

2

2

[

1
3
νtB(zt, vt) + 5d

4
νtµ

2
t

∥

∥∇zJ (zt, vt)
∥

∥

2

2
+ d

4
ν3t
∥

∥∇vJ (zt, vt)
∥

∥

2

2

]

.
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Recall that the step sizes µt and νt are as in (12). The first case of the minimums yields

µtB(zt, vt) ≤ 1, νtB(zt, vt) ≤ 1.

The second case leads to

1
4
dµ3

t

∥

∥∇zJ (zt, vt)
∥

∥

2

2
≤ 1

15
≤ 1

3
and 1

4
dν3t

∥

∥∇vJ (zt, vt)
∥

∥

2

2
≤ 1

15
≤ 1

3
,

From the last inequalities and the last case for µt we deduce that

5
4
dµtν

2
t

∥

∥∇vJ (zt, vt)
∥

∥

2

2
= (5

4
d)1/3µt

∥

∥∇vJ (zt, vt)
∥

∥

2/3

2
·
(

5
4
dν3t

∥

∥∇vJ (zt, vt)
∥

∥

2

2

)2/3

≤ 1
3
,

and, analogously, 5
4
µ2
tνt ‖∇zJ (zt, vt)‖22 ≤ 1/3. Combining these inequalities gives the

standard descent lemma for gradient descent [61, Lemma 5.7],

J (zt+1, vt+1) ≤ J (zt, vt)− µt

∥

∥∇zJ (zt, vt)
∥

∥

2

2
− νt

∥

∥∇vJ (zt, vt)
∥

∥

2

2
≤ J (zt, vt). (34)

To show the convergence of the gradient, we assume that µt and νt are equal to the
minimums in (12) and sum up the above inequality for t = 0, . . . , T − 1,

T−1
∑

t=0

µt

∥

∥∇zJ (zt, vt)
∥

∥

2

2
+ νt

∥

∥∇vJ (zt, vt)
∥

∥

2

2
≤ J (z0, v0)− J (zT , vT ) ≤ J (z0, v0)−J inf .

This implies that the series
∑∞

t=0 µt ‖∇zJ (zt, vt)‖22+νt ‖∇vJ (zt, vt)‖22 are convergent and
its summand

µt

∥

∥∇zJ (zt, vt)
∥

∥

2

2
+ νt

∥

∥∇vJ (zt, vt)
∥

∥

2

2
→ 0 as t→ ∞. (35)

Let us show that the gradient

∇J (zt, vt) =

[

∇zJ (zt, vt)
∇vJ (zt, vt)

]

,
∥

∥∇J (zt, vt)
∥

∥

2

2
=
∥

∥∇zJ (zt, vt)
∥

∥

2

2
+
∥

∥∇vJ (zt, vt)
∥

∥

2

2
(36)

vanishes. First, for αT , βT > 0 we observe that

αT

∥

∥zt
∥

∥

2

2
≤ Lε(z

t, vt) + αT

∥

∥zt
∥

∥

2

2
+ βT

∥

∥vt
∥

∥

2

2
= J (zt, vt) ≤ J (z0, v0),

so that ‖zt‖22 ≤ J (z0, v0)/αT and, analogously, ‖vt‖22 ≤ J (z0, v0)/βT .
Now, we are ready to prove the convergence of the gradient to zero. Let us first consider
the case ‖∇zJ (zt, vt)‖2 ≥ ‖∇vJ (zt, vt)‖2, which gives

∥

∥∇zJ (zt, vt)
∥

∥

2

2
≥ 1

2

(

∥

∥∇zJ (zt, vt)
∥

∥

2

2
+
∥

∥∇vJ (zt, vt)
∥

∥

2

2

)

= 1
2

∥

∥∇J (zt, vt)
∥

∥

2

2
,

∥

∥∇zJ (zt, vt)
∥

∥

4/3

2
=
(

∥

∥∇zJ (zt, vt)
∥

∥

2

2

)2/3

≥ 1
22/3

∥

∥∇J (zt, vt)
∥

∥

4/3

2
.

and
‖∇zJ (zt, vt)‖22
‖∇vJ (zt, vt)‖2/32

≥
∥

∥∇zJ (zt, vt)
∥

∥

4/3

2
≥ 1

22/3

∥

∥∇J (zt, vt)
∥

∥

4/3

2
.
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Then, we have

µt

∥

∥∇zJ (zt, vt)
∥

∥

2

2
≥ min







‖∇zJ (zt, vt)‖22
3d
[

(10
3
α−1
T + 10

3
β−1
T )J (z0, v0) + ‖y/d‖1/21

]

+max{αT , βT}
,

4
1

3 ‖∇zJ (zt, vt)‖
4

3

2

(15d)
1

3

,
4

1

3 ‖∇zJ (zt, vt)‖22
(15d)

1

3 ‖∇vJ (zt, vt)‖2/32

}

≥ C−1min
{

∥

∥∇J (zt, vt)
∥

∥

2

2
,
∥

∥∇J (zt, vt)
∥

∥

4/3

2

}

,

where C is defined as in (13). In the opposite case, ‖∇zJ (zt, vt)‖2 < ‖∇vJ (zt, vt)‖2,
exactly the same inequality is satisfied for νt ‖∇vJ (zt, vt)‖22. Thus, in any case, we get

µt

∥

∥∇zJ (zt, vt)
∥

∥

2

2
+ νt

∥

∥∇vJ (zt, vt)
∥

∥

2

2
≥ C−1min

{

∥

∥∇J (zt, vt)
∥

∥

2

2
,
∥

∥∇J (zt, vt)
∥

∥

4/3

2

}

.

Combining it with (35) gives,

C−1min
{

∥

∥∇J (zt, vt)
∥

∥

2

2
,
∥

∥∇J (zt, vt)
∥

∥

4/3

2

}

→ 0 as t→ ∞,

which is only possible if ‖∇J (zt, vt)‖2 → 0 as t→ ∞. Finally, to quantify the convergence
rate we note that

min

{

min
t=0,...,T−1

∥

∥∇J (zt, vt)
∥

∥

2

2
,

[

min
t=0,...,T−1

∥

∥∇J (zt, vt)
∥

∥

2

2

]2/3
}

= min
t=0,...,T−1

min
{

∥

∥∇J (zt, vt)
∥

∥

2

2
,
∥

∥∇J (zt, vt)
∥

∥

4/3

2

}

≤ C min
t=0,...,T−1

[

µt

∥

∥∇zJ (zt, vt)
∥

∥

2

2
+ νt

∥

∥∇vJ (zt, vt)
∥

∥

2

2

]

≤ C

T

T−1
∑

t=0

[

µt

∥

∥∇zJ (zt, vt)
∥

∥

2

2
+ νt

∥

∥∇vJ (zt, vt)
∥

∥

2

2

]

≤ C

T
[J (z0, v0)− J inf ].

Thus, using that for all a, b ≥ 0 the inequality

min{a, a2/3} ≤ b ⇔ a ≤ b or a ≤ b3/2 ⇔ a ≤ max{b, b3/2}

holds, we obtain

min
t=0,...,T−1

∥

∥∇J (zt, vt)
∥

∥

2

2
≤ max

{

CT−1[J (z0, v0)− J inf ], C3/2T−3/2[J (z0, v0)− J inf ]3/2
}

.

4.3 Convergence of stochastic gradient descent

In this section, we derive Theorem 3.4. The proof follows the steps of Theorem 3.7 of [44].
However, the difference between the standard descent lemma and Lemma 3.1 affects the
proof, which has to be carefully adjusted.
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Let us start with a brief overview of the proof. The idea is similar to Theorem 3.2.
That is, we would like to show that the sequence {J (zt, vt)}t≥0 is convergent and the
sequence {‖∇J (zt, vt)‖2}t≥0 vanishes. Yet, as these sequences are determined by indices

{rt,k}∞,K
t=0,k=1, they are random.

Our goal is to apply the next result by Robbins and Siegmund [65] with random sequences

Yt = J (zt, vt)− J inf , and Xt = µt

∥

∥∇zJ (zt, vt)
∥

∥

2

2
+ νt

∥

∥∇zJ (zt, vt)
∥

∥

2

2
.

Theorem 4.2 ([65, Theorem 1]). Let {Xt}t≥0, {Yt}t≥0 and {Zt}t≥0 be three sequences of
nonnegative random variables that are adapted to a filtration {Ft}. Let ηt be a sequence
of nonnegative real numbers such that

∑∞
t=0 ηt <∞. Suppose that

E[Yt+1 | Ft ] ≤ (1 + ηt)Yt −Xt + Zt, for all t ≥ 0, (37)

and
∑∞

t=0 Zt < ∞ almost surely. Then,
∑∞

t=0Xt < ∞ almost surely and Yt converges
almost surely.

Thus, the proof is split into three parts. In the first part, we derive (37) based on
Lemma 3.1. In the second part, we apply Theorem 4.2 to obtain convergence of {J (zt, vt)}t≥0.
Then, we deduce that with a proper choice of step sizes, there exists a subsequence {tk}k≥0

such that ‖∇J (ztk , vtk)‖2 → 0 as k → ∞. The third part follows ideas of [63] to deduce
‖∇J (zt, vt)‖2 → 0 using Lipschitz continuity of the gradient.

Throughout this section, steps of the proof are separated into lemmas. For each, the
requirements on the step sizes are stated separately to highlight how they change as the
proof progresses.

4.3.1 First half: preparations for Theorem 4.2

Let us start by establishing the inequality (37). The first step is to combine Lemma 3.1
with updates (8).

Lemma 4.3. Let ε, αT , βT ≥ 0 and 0 ≤ θ < 1. If the step sizes satisfy

µt, νt ≤ min
{

B− 1

1−θ (zt, vt),
(

15d
4

)− 1

3−θ
∥

∥gz(z
t, vt)

∥

∥

− 2

3−θ

2
,
(

15d
4

)− 1

3−θ
∥

∥gv(z
t, vt)

∥

∥

− 2

3−θ

2

}

,

(38)

then we have

J (zt+1, vt+1) ≤ J (zt, vt)− 2µtRe(g
∗
z(z

t, vt)∇zJ (zt, vt))− 2νtRe(g
∗
v(z

t, vt)∇vJ (zt, vt))

+ µ1+θ
t

∥

∥gz(z
t, vt)

∥

∥

2

2
+ ν1+θ

t

∥

∥gv(z
t, vt)

∥

∥

2

2
.

Proof. The proof is analogous to the proof of Theorem 3.2 from the beginning to the
equation (34).

Comparing the result of Lemma 4.3 with (37), the next step is to compute the conditional
expectation, which would require the following properties of the stochastic gradient.

21



Lemma 4.4. Consider the sequences {zt}t≥0 and {vt}t≥0 defined by (8) with stochastic
gradients g(zt, vt) given by (6). Then, we have E[ g(zt, vt) | Ft ] = ∇J (zt, vt), and

E[
∥

∥gz(z
t, vt)

∥

∥

2

2
| Ft ] ≤ γzt [J (zt, vt)− J inf ] + ρ

∥

∥∇zJ (zt, vt)
∥

∥

2

2
+ δzt ,

E[
∥

∥gv(z
t, vt)

∥

∥

2

2
| Ft ] ≤ γvt [J (zt, vt)− J inf ] + ρ

∥

∥∇vJ (zt, vt)
∥

∥

2

2
+ δvt ,

where J inf is defined in (11) and

γzt :=
d ‖vt‖22

Kminr∈R pr
+
αT

K
, ρ := 1− 1

K
, δzt := γzt [J inf −

∑

r∈R

inf
z,v∈Cd

Jr(z, v)],

γvt :=
d ‖zt‖22

Kminr∈R pr
+
βT
K
, δvt := γvt [J inf −

∑

r∈R

inf
z,v∈Cd

Jr(z, v)],

Proof. The first inequality is shown by direct computation,

E[ g(zt, vt) | Ft ] =
1

K

K
∑

k=1

E

[ ∇Jrt,k(z
t, vt)

prt,k

∣

∣

∣

∣

Ft

]

=
1

K

K
∑

k=1

∑

r∈R

∇Jr(z
t, vt) = J (zt, vt).

For the last two inequalities, we adjust the proof of Proposition 3 in [60]. That is, the
equation (41) in [60] gives

E[
∥

∥gz(z
t, vt)

∥

∥

2

2
| Ft ] ≤ ρ

∥

∥∇zJ (zt, vt)
∥

∥

2

2
+
∑

r∈R

(Kpr)
−1
∥

∥∇zJr(z
t, vt)

∥

∥

2

2
.

Note that Jr can be seen as a copy of J with R′ = {r} and α′
T = αTpr. Thus, by

Theorem 3.5, we have

∥

∥∇zJr(z
t, vt)

∥

∥

2

2
≤ (d

∥

∥vt
∥

∥

2

2
+ αTpr)[Jr(z

t, vt)− Jr(z
t+1, vt)]

≤ (d
∥

∥vt
∥

∥

2

2
+ αTpr)[Jr(z

t, vt)− inf
z,v∈Cd

Jr(z, v)].

This leads to

E[
∥

∥gz(z
t, vt)

∥

∥

2

2
| Ft ] ≤ ρ

∥

∥∇zJ (zt, vt)
∥

∥

2

2
+
∑

r∈R

d ‖vt‖22 + αTpr
Kpr

[Jr(z
t, vt)− inf

z,v∈Cd
Jr(z, v)]

≤ ρ
∥

∥∇zJ (zt, vt)
∥

∥

2

2
+

[

d ‖vt‖22
Kminr∈R pr

+
αT

K

]

[J (zt, vt)−
∑

r∈R

inf
z,v∈Cd

Jr(z, v)]

= ρ
∥

∥∇zJ (zt, vt)
∥

∥

2

2
+ γzt [J (zt, vt)− J inf ] + δzt .

The last inequality is analogous.

At this point, we also prove Lemma 3.3 as we would require it for the next step.

Proof of Lemma 3.3. Using the definition of the stochastic gradient (6), we observe that

‖gz(z, v)‖2 =
∥

∥

∥

∥

∥

1

K

K
∑

k=1

p−1
rk
∇zJrk(z, v)

∥

∥

∥

∥

∥

2

≤ 1

K

K
∑

k=1

p−1
rk

‖∇zJrk(z, v)‖2 .
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Let us bound ‖∇zJr(z, v)‖2 for each r ∈ R and z, v ∈ Cd. Separating regularizer gives

‖∇zJr(z, v)‖2 ≤ ‖∇zLr,ε(z, v)‖2 + αTpr ‖z‖2 = max
‖u‖

2
=1

|u∗∇zLr,ε(z, v)|+ αTpr ‖z‖2 .

By construction, Lr,ε can be seen as a copy of Lε with the set R′ = {r}. Thus, it can
be written in the form (19) with matrices Qr,k, k = 1, . . . , d as in (20). Therefore, the
absolute value above can be bounded by repeating the computations in (27) and (30),
which yields

|u∗∇zLr,ε(z, v)| =
∣

∣

∣

∣

∣

d
∑

k=1

[

1−
√
yr,k + ε

√

|zTQr,kv|2 + ε

]

zTQr,kv · uTQr,kv

∣

∣

∣

∣

∣

≤ [Lr,ε(z, v)]
1/2 ·

[

d
∑

k=1

|uTQr,kv|2
]1/2

≤ d1/2 [Lr,ε(z, v)]
1/2 ‖v‖2 ‖u‖2 .

Consequently, we get

‖∇zJr(z, v)‖2 ≤ d1/2 [Lr,ε(z, v)]
1/2 ‖v‖2 + αTpr ‖z‖2

and

‖gz(z, v)‖2 ≤
1

K

K
∑

k=1

p−1
rk
d1/2 ‖v‖2

[

Lrk,ε(z, v)
]1/2

+
1

K

K
∑

k=1

αT ‖z‖2

≤ d1/2 ‖v‖2
K

[

K
∑

k=1

Lrk,ε(z, v)

]1/2 [ K
∑

k=1

p−2
rk

]1/2

+ αT ‖z‖2

≤ d1/2 ‖v‖2√
Kminr∈R pr

[Lε(z, v)]
1/2 + αT ‖z‖2 .

Then, using (33), we conclude that

‖gz(z, v)‖2 ≤
d1/2 ‖v‖2

K1/2 minr∈R pr
[d ‖z‖22 ‖v‖

2
2 + ‖y‖1]1/2 + αT ‖z‖2

≤ d ‖v‖2
K1/2 minr∈R pr

[‖z‖2 ‖v‖2 + ‖y/d‖1/21 ] + αT ‖z‖2 .

Multiplying two sides by (15
4
d)1/2 concludes the proof for the first bound. The second

bound is analogous.

Now, we combine the results of the previous two lemmas to get the bound of the form
(37).

Lemma 4.5. Let ε, αT , βT ≥ 0 and 0 ≤ θ < 1. Assume that the step sizes are adapted to
the filtration {Ft}t≥0 and satisfy

µt, νt ≤ min

{

B− 1

1−θ (zt, vt), B
− 2

3−θ
z (zt, vt), B

− 2

3−θ
v (zt, vt), (1− 1

K
)−1/θ

}

. (39)
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Then, we have

E[J (zt+1, vt+1)− J inf | Ft ] ≤ (1 + γzt µ
1+θ
t + γvt ν

1+θ
t )[J (zt, vt)− J inf ]

− µt

∥

∥∇zJ (zt, vt)
∥

∥

2

2
− νt

∥

∥∇vJ (zt, vt)
∥

∥

2

2
+ µ1+θ

t δzt + ν1+θ
t δvt ,

with γzt , γ
v
t , δ

z
t , δ

v
t as in Lemma 4.4.

Proof. Note that the inequality (39) combined with Lemma 3.3 implies that the step sizes
satisfy (38) and, therefore, Lemma 4.3 can be used. Taking the conditional expectation
with respect to Ft and using the fact that step sizes are adapted gives

E[J (zt+1, vt+1) | Ft ] ≤ J (zt, vt)− 2µtRe(E[ g
∗
z(z

t, vt) | Ft ]∇zJ (zt, vt))

− 2νtRe(E[ g
∗
v(z

t, vt) | Ft ]∇vJ (zt, vt))

+ µ1+θ
t E[

∥

∥gz(z
t, vt)

∥

∥

2

2
| Ft ] + ν1+θ

t E[
∥

∥gv(z
t, vt)

∥

∥

2

2
| Ft ].

Next, Lemma 4.4 is applied,

E[J (zt+1, vt+1) | Ft ] ≤ J (zt, vt)− 2µt

∥

∥∇zJ (zt, vt)
∥

∥

2

2
− 2νt

∥

∥∇vJ (zt, vt)
∥

∥

2

2

+ µ1+θ
t [γzt [J (zt, vt)− J inf ] + ρ

∥

∥∇zJ (zt, vt)
∥

∥

2

2
+ δzt ]

+ ν1+θ
t [γvt [J (zt, vt)− J inf ] + ρ

∥

∥∇zJ (zt, vt)
∥

∥

2

2
+ δvt ].

If ρ = 1 −K−1 = 0, the corresponding terms can be discarded and a trivial bound gives
−2µt ≤ −µt and −2νt ≤ −νt. Otherwise, by (39), µθ

tρ ≤ 1, νθt ρ ≤ 1, which gives

−2µt + µ1+θ
t ρ ≤ −µt and − 2νt + ν1+θ

t ρ ≤ −νt.

Subtracting J inf on both sides and grouping the terms concludes the proof.

Note that if the step sizes were not adapted, it would be not possible to separate them
from the stochastic gradients when computing the conditional expectation. Furthermore,
to ensure that µt and νt do not depend on g(zt, vt) explicitly as in (38) we used the
bounds Bz and Bv introduced in Lemma 3.3. In this way, the right-hand side of (39) is
also adapted with {Ft}t≥0.

4.3.2 Applying Theorem 4.2 and establishing convergence

Finally, Theorem 4.2 can be applied, which gives us the first claim of Theorem 3.4.

Lemma 4.6. Let ε, αT , βT ≥ 0, 0 ≤ θ < 1 and κ < θ/(1 + θ). Assume that the step sizes
are adapted to the filtration {Ft}t≥0 and satisfy µt, νt ≤ µmax

t with µmax
t as in (15). Then,

the sequence J (zt+1, vt+1) converges a.s. Furthermore,

∑

t≥0

µt

∥

∥∇zJ (zt, vt)
∥

∥

2

2
+ νt

∥

∥∇vJ (zt, vt)
∥

∥

2

2
<∞ a.s.

Proof. Since µt, νt ≤ µmax
t and κ < θ/(1 + θ) ≤ 1, it holds that (1 + t)−1+κ ≤ 1 for

t ≥ 0 and the condition (39) is satisfied. Hence, Lemma 4.5 can be used. As it was
mentioned before, our goal is to apply Theorem 4.2 for sequences Yt = J (zt, vt) − J inf
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and Xt = µt ‖∇zJ (zt, vt)‖22 + νt ‖∇vJ (zt, vt)‖22. By looking at Lemma 4.5, it is only
natural to pick ηt as γ

z
t µ

1+θ
t + γvt ν

1+θ
t and Zt as δ

z
t µ

1+θ
t + δvt ν

1+θ
t . However, the sequence

ηt has to be deterministic, which is not true for γzt µ
1+θ
t +γvt ν

1+θ
t as they depend on zt and

vt. Thus, we first bound γzt µ
1+θ
t + γvt ν

1+θ
t by a deterministic term. That is, by (15) we

have

γzt µ
1+θ
t + γvt ν

1+θ
t ≤ (γzt + γvt )(µ

max
t )1+θ ≤ γzt + γvt

(1 + t)(1−κ)(1+θ)B
1+θ
1−θ (zt, vt)

≤ d(‖zt‖22 + ‖vt‖22)(minr∈R pr)
−1 + αT + βT

(1 + t)(1−κ)(1+θ)K
[

3max{αT , βT}+ 3d
(

10
3
‖zt‖22 + 10

3
‖vt‖22 + ‖y/d‖1/21

)]
1+θ
1−θ

.

We can split the power (1 + θ)/(1− θ) in the denominator as 1 and 2θ/(1− θ). The first
term gives us

d(‖zt‖22 + ‖vt‖22)(minr∈R pr)
−1 + αT + βT

3d
(

10
3
‖zt‖22 + 10

3
‖vt‖22 + ‖y/d‖1/21

)

+ 3max{αT , βT}

≤ 10d(‖zt‖22 + ‖vt‖22) + 3max{αT , βT}minr∈R pr

1.5minr∈R pr

[

10d ‖zt‖22 + 10d ‖vt‖22 + 3d ‖y/d‖1/21 + 3dmax{αT , βT}
]

≤ 1

1.5minr∈R pr
,

where we used in the last inequality that pr ≤ 1 for all r ∈ R. For the second term, we
observe that

3d
(

10
3

∥

∥zt
∥

∥

2

2
+ 10

3

∥

∥vt
∥

∥

2

2
+ ‖y/d‖1/21

)

+ 3max{αT , βT} ≥ 3
√
d ‖y‖1/21 + 3max{αT , βT}.

(40)
Combining these two bounds yields

γzt µ
1+θ
t + γvt ν

1+θ
t ≤ (1 + t)−(1−κ)(1+θ)

1.5minr∈R pr[3
√
d ‖y‖1/21 + 3max{αT , βT}]

2θ
1−θ

=: ηt. (41)

Note that the denominator of ηt is a constant. Furthermore, since κ < θ/(1+ θ), we have

(1− κ)(1 + θ) = 1 + θ − κ(1 + θ) > 1 + θ − θ = 1,

and the series
∑

t≥0 ηt are convergent. The sequence Zt := δztµ
1+θ
t + δvt ν

1+θ
t is adapted to

{Ft}t≥0 and admits

Zt = (γzt µ
1+θ
t + γvt ν

1+θ
t )[J inf −

∑

r∈R

inf
z,v∈Cd

Jr(z, v)] ≤ ηt[J inf −
∑

r∈R

inf
z,v∈Cd

Jr(z, v)]. (42)

Thus, the condition
∑

t≥0 Zt <∞ is also satisfied. Also, by Lemma 4.5, we have

E[ Yt+1 | Ft ] ≤ (1 + γzt µ
1+θ
t + γvt ν

1+θ
t )Yt −Xt + Zt ≤ (1 + ηt)Yt −Xt + Zt.

Hence, by Theorem 4.2, J (zt, vt) − J inf converges a.s. and
∑

t≥0 µt ‖∇zJ (zt, vt)‖22 +
νt ‖∇vJ (zt, vt)‖22 <∞ a.s. This implies that J (zt, vt) converges a.s. as well.
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The next step is to shift our focus on the convergence of the gradient and to prove the
second claim of Theorem 3.4.

Lemma 4.7. Let ε ≥ 0, αT , βT > 0, 0 < θ < 1 and 0 ≤ κ < θ/(1 + θ). Consider the step
sizes µt = µ · µmax

t and νt = ν · µmax
t for some 0 < µ, ν ≤ 1 and µmax

t as in (15). Then we
have

min
t=0,...,T−1

∥

∥∇J (zt, vt)
∥

∥

2

2
≤
{

κC2

min{µ,ν}[(1+T )κ−1]
, κ > 0,

C2

min{µ,ν} ln(1+T )
, κ = 0,

a.s.,

and
inf
t≥0

∥

∥∇J (zt, vt)
∥

∥

2

2
= 0 a.s.

Proof. Since µ, ν ≤ 1, the step sizes satisfy conditions of Lemma 4.6, which gives
∑

t≥0

µt

∥

∥∇zJ (zt, vt)
∥

∥

2

2
+ νt

∥

∥∇vJ (zt, vt)
∥

∥

2

2
=: C3 <∞ a.s.

Thus, we get

min
t=0,...,T−1

∥

∥∇J (zt, vt)
∥

∥

2

2
≤ 1

min{µ, ν} min
t=0,...,T−1

[

µ
∥

∥∇zJ (zt, vt)
∥

∥

2

2
+ ν

∥

∥∇vJ (zt, vt)
∥

∥

2

2

]

≤
∑T−1

t=0 µt ‖∇zJ (zt, vt)‖22 + νt ‖∇vJ (zt, vt)‖22
min{µ, ν}

∑T−1
t=0 µ

max
t

=
C3

min{µ, ν}∑T−1
t=0 µ

max
t

.

Let us show that the series
∑T−1

t=0 µ
max
t diverges a.s. By Lemma 4.6, we also obtained that

{J (zt, vt)}t≥0 converges a.s. Hence, it is bounded and let us denote the upper bound by
J sup, such that J sup < +∞ a.s. Since αT > 0, we get

αT

∥

∥zt
∥

∥

2

2
≤ Lε(z

t, vt) + αT

∥

∥zt
∥

∥

2

2
+ βT

∥

∥vt
∥

∥

2

2
= J (zt, vt) ≤ J sup, (43)

so that ‖zt‖22 ≤ α−1
T J sup and, analogously ‖vt‖22 ≤ β−1

T J sup. Consequently, we can bound

B(zt, vt) = 3d
(

10
3

∥

∥zt
∥

∥

2

2
+ 10

3

∥

∥vt
∥

∥

2

2
+ ‖y/d‖1/21

)

+ 3max{αT , βT}

≤ d
(

10(α−1
T + β−1

T )J sup + 3 ‖y/d‖1/21

)

+ 3max{αT , βT} =: C4,1,

and

Bz(z
t, vt) = (15

4
d)1/2

[

d ‖vt‖2√
Kminr∈R pr

(

∥

∥zt
∥

∥

2

∥

∥vt
∥

∥

2
+ ‖y/d‖1/21

)

+ αT

∥

∥zt
∥

∥

2

]

≤ (15
4
d)1/2

[

d
√
J sup

√
βTKminr∈R pr

[α
−1/2
T β

−1/2
T J sup + ‖y/d‖1/21 ] + α

1/2
T

√
J sup

]

=: C4,2,

Bv(z
t, vt) = (15

4
d)1/2

[

d ‖zt‖2√
Kminr∈R pr

(

∥

∥zt
∥

∥

2

∥

∥vt
∥

∥

2
+ ‖y/d‖1/21

)

+ βT
∥

∥vt
∥

∥

2

]

≤ (15
4
d)1/2

[

d
√
J sup

√
αTKminr∈R pr

(

α
−1/2
T β

−1/2
T J sup + ‖y/d‖1/21

)

+ β
1/2
T

√
J sup

]

=: C4,3.
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Hence,

µmax
t ≥ min

{

(1 + t)−1+κC
− 1

1−θ

4,1 , C
− 2

3−θ

4,2 , C
− 2

3−θ

4,3 , (1− 1
K
)−1/θ

}

(44)

≥ (1 + t)−1+κmin

{

C
− 1

1−θ

4,1 , C
− 2

3−θ

4,2 , C
− 2

3−θ

4,3 , (1− 1
K
)−1/θ

}

=: (1 + t)−1+κC4 > 0 a.s.,

and

min
t=0,...,T−1

∥

∥∇J (zt, vt)
∥

∥

2

2
≤ C3

C4min{µ, ν}
∑T−1

t=0 (1 + t)−1+κ
. (45)

As 0 ≤ κ, the inequality 1 − κ ≤ 1 holds and the series
∑

t≥0(1 + t)−1+κ diverges. This
implies that

inf
t≥0

∥

∥∇J (zt, vt)
∥

∥

2

2
= 0.

In order to transform the bound in (45) in terms of T , we consider cases κ = 0 and κ > 0
separately. For the case κ > 0, we have

T−1
∑

t=0

(1 + t)−1+κ =

T−1
∑

t=0

∫ t+1

t

(1 + t)−1+κds ≥
T−1
∑

t=0

∫ t+1

t

(1 + s)−1+κds

=

∫ T

0

(1 + s)−1+κds = κ−1 [(1 + T )κ − 1] .

Therefore, we have

min
t=0,...,T−1

∥

∥∇J (zt, vt)
∥

∥

2

2
≤ κC3

C4min{µ, ν}[(1 + T )κ − 1]
.

If κ = 0, then
T−1
∑

t=0

(1 + t)−1 ≥
∫ T

0

(1 + s)−1ds = ln(1 + T )

and

min
t=0,...,T−1

∥

∥∇J (zt, vt)
∥

∥

2

2
≤ C3

C4min{µ, ν} ln(1 + T )
.

Setting C2 = C3/C4, which is finite a.s., concludes the proof.

Note that while θ = 0 was allowed in Lemma 4.6, it leads to unfeasible condition 0 ≤ κ < 0
in Lemma 4.7 and has to be excluded.

4.3.3 From the convergence of a subsequence to the convergence of sequence

Lemma 4.7 only provides that inft≥0 ‖∇J (zt, vt)‖22 = 0, which is equivalent to existence
of a subsequence {tk}k≥0 such that ∇J (ztk , vtk) vanishes as k → ∞, see Corollary 3.9 of
[44]. In order to get that ∇J (zt, vt) as t→ ∞, we follow the arguments of Theorem 2 in
[63]. The cornerstone of their argumentation is the following lemma.
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Lemma 4.8 ([63, Lemma 1]). Let {ξt}t≥0 and {µt}t≥0 be two nonnegative sequences and
{qt}t≥0 be a sequence in Cd. Assume that

∞
∑

t=0

µtξ
p
t <∞,

∞
∑

t=0

µt = ∞ and

∥

∥

∥

∥

∥

∞
∑

t=0

µtq
t

∥

∥

∥

∥

∥

<∞,

for some p ≥ 1 and some norm ‖·‖. If there exists L ≥ 0 such that for all t, k ≥ 0 the
inequality

|ξt+k − ξt| ≤ L
t+k−1
∑

s=t

µsξs + L

∥

∥

∥

∥

∥

t+k−1
∑

s=t

µsq
s

∥

∥

∥

∥

∥

holds, then limt→∞ ξt = 0.

Applying Lemma 4.8 for ξt := ‖∇zJ (zt, vt)‖2 + ‖∇vJ (zt, vt)‖2 gives the desired conver-
gence. Note that in [63], L is the Lipschitz constant of the gradient. However, J only
has locally Lipschitz continuous gradient as stated by the next lemma.

Lemma 4.9. Let ε > 0. For arbitrary z1, z2, v1, v2 ∈ Cd, we have

‖∇J (z1, v1)−∇J (z2, v2)‖2
≤
√

2L2(z1, z2, v1, v2) + 2max{α2
T , β

2
T}[‖z1 − z2‖22 + ‖v1 − v2‖22]1/2,

with

L(z1, z2, v1, v2) := d[‖y/d‖1/21 +max{5
4
, ‖y + ε‖1/2∞ ε−1/2− 3

4
}[‖z1‖22+‖z2‖22+‖v1‖22+‖v2‖22]].

Proof. We start by showing the local Lischitz continuity of ∇Lε. Denote by ∂
∂ Re

and
∂

∂ Im
standard derivatives with respect to real and imaginary parts of the argument of

a function. Moreover, let ∇2
Re,Im be a Hessian of the function with respect to these

derivatives. By computations in the proof of Lemma 2.1 on p.17 of [39] it holds that

‖∇Lε(z1, v1)−∇Lε(z2, v2)‖2 =
1

2

∥

∥

∥

∥

∥

[

( ∂Lε

∂ Re
)T (z1, v1)

( ∂Lε

∂ Im
)T (z1, v1)

]

−
[

( ∂Lε

∂ Re
)T (z2, v2)

( ∂Lε

∂ Im
)T (z2, v2)

]∥

∥

∥

∥

∥

2

.

Furthermore, by the fundamental theorem of calculus
∥

∥

∥

∥

∥

[

( ∂Lε

∂ Re
)T (z1, v1)

( ∂Lε

∂ Im
)T (z1, v1)

]

−
[

( ∂Lε

∂ Re
)T (z2, v2)

( ∂Lε

∂ Im
)T (z2, v2)

]∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥

∥

∥

(
∫ 1

0

∇2
Re,ImLε(z1 + t(z2 − z1), v1 + t(v2 − v1))dt

)









Re(z2 − z1)
Re(v2 − v1)
Im(z2 − z1)
Im(v2 − v1)









∥

∥

∥

∥

∥

∥

∥

∥

2

≤
∥

∥

∥

∥

(
∫ 1

0

∇2
Re,ImLε((1− t)z1 + tz2), (1− t)v1 + tv2)dt

)∥

∥

∥

∥

∥

∥

∥

∥

[

z2 − z1
v2 − v1

]∥

∥

∥

∥

2

≤
∫ 1

0

∥

∥∇2
Re,ImLε((1− t)z1 + tz2, (1− t)v1 + tv2)

∥

∥ dt

∥

∥

∥

∥

[

z2 − z1
v2 − v1

]∥

∥

∥

∥

2

,
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where ‖·‖ denotes the spectral norm of the matrix. The calculations on page 16 of [39]
yield the following formula for the spectral norm

∥

∥∇2
Re,ImLε(z, v)

∥

∥ = max
s∈C2d,‖s‖

2
=1

∣

∣

∣

∣

[

s
s

]∗

∇2Lε(z, v)

[

s
s

]∣

∣

∣

∣

.

Thus, we have

‖∇Lε(z1, v1)−∇Lε(z2, v2)‖2 (46)

=
1

2

∫ 1

0

max
s∈C2d,‖s‖2=1

∣

∣

∣

∣

[

s
s

]∗

∇2Lε((1− t)z1 + tz2, (1− t)v1 + tv2)

[

s
s

]∣

∣

∣

∣

dt

∥

∥

∥

∥

[

z2 − z1
v2 − v1

]∥

∥

∥

∥

2

.

Let s = (u, h) ∈ Cd be arbitrary. Recall that by Lemma 4.1, we have

∣

∣

∣

∣

[

s
s

]∗

∇2Lε(z, v)

[

s
s

]∣

∣

∣

∣

≤ 2Lε

m
∑

j=1

|uTQjv + zTQjh|2 + 4 [Lε(z, v)]
1/2 ·

[

m
∑

j=1

|uTQjh|2
]1/2

,

with Lε := max{1, ‖y + ε‖1/2∞ ε−1/2 − 1}. Using (30) and (33), it is further bounded as

∣

∣

∣

∣

[

s
s

]∗

∇2Lε(z, v)

[

s
s

]∣

∣

∣

∣

≤ 4Lε

m
∑

j=1

[|uTQjv|2 + |zTQjh|2] + 4 [Lε(z, v)]
1/2 ·

[

m
∑

j=1

|uTQjh|2
]1/2

≤ 4dLε[‖u‖22 ‖v‖
2
2 + ‖z‖22 ‖h‖

2
2] + 4

[

d ‖z‖22 ‖v‖
2
2 + ‖y‖1

]1/2
d1/2 ‖u‖2 ‖h‖2

≤ 4dLε[‖u‖22 + ‖h‖22] · [‖z‖
2
2 + ‖v‖22] + 2d

[

‖z‖2 ‖v‖2 + ‖y/d‖1/21

]

· [‖u‖22 + ‖h‖22]

≤ d
[

(4Lε + 1)[‖z‖22 + ‖v‖22] + 2 ‖y/d‖1/21

]

· ‖s‖22 .

Therefore, we obtain

max
s∈C2d,‖s‖

2
=1

∣

∣

∣

∣

[

s
s

]∗

∇2Lε(z, v)

[

s
s

]∣

∣

∣

∣

≤ d
[

(4Lε + 1)[‖z‖22 + ‖v‖22] + 2 ‖y/d‖1/21

]

.

Next, we substitute z = (1 − t)z1 + tz2 and v = (1 − t)v1 + tv2, apply convexity of ‖·‖22
and integrate for t ∈ [0, 1],

∫ 1

0

d[(4Lε + 1)[‖(1− t)z1 + tz2‖22 + ‖(1− t)v1 + tv2‖22] + 2 ‖y/d‖1/21 ]dt

≤
∫ 1

0

d[(4Lε + 1)[(1− t) ‖z1‖22 + t ‖z2‖22 + (1− t) ‖v1‖22 + t ‖v2‖22] + 2 ‖y/d‖1/21 ]dt

= d[1
2
(4Lε + 1)[‖z1‖22 + ‖z2‖22 + ‖v1‖22 + ‖v2‖22] + 2 ‖y/d‖1/21 ].

By combining the above inequalities with (46), we obtain

‖∇Lε(z1, v1)−∇Lε(z2, v2)‖2
≤ d

[

(Lε +
1
4
)[‖z1‖22 + ‖z2‖22 + ‖v1‖22 + ‖v2‖22] + ‖y/d‖1/21

]

∥

∥

∥

∥

[

z2 − z1
v2 − v1

]∥

∥

∥

∥

2

,
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with the coefficient being precisely L(z1, z2, v1, v2) defined in the statement of the lemma.
Turning to J , we have

‖∇zJ (z1, v1)−∇zJ (z2, v2)‖22 = ‖∇zLε(z1, v1) + αT z1 −∇Lε(z2, v2)− αT z2‖22
≤ 2 ‖∇zLε(z1, v1)−∇zLε(z2, v2)‖22 + 2α2

T ‖z1 − z2‖22 .

and, analogously,

‖∇vJ (z1, v1)−∇vJ (z2, v2)‖22 ≤ 2 ‖∇vLε(z1, v1)−∇vLε(z2, v2)‖22 + 2β2
T ‖v1 − v2‖22 .

Combined, it gives

‖∇J (z1, v1)−∇J (z2, v2)‖22
≤ 2 ‖∇Lε(z1, v1)−∇Lε(z2, v2)‖22 + 2α2

T ‖z1 − z2‖22 + 2β2
T ‖v1 − v2‖22

≤ (2L2(z1, z2, v1, v2) + 2max{α2
T , β

2
T})[‖z1 − z2‖22 + ‖v1 − v2‖22].

However, despite the gradient being Lipschitz continuous only locally, we are still able to
show that the gradients vanish.

Lemma 4.10. Let ε, αT , βT > 0, 0 < θ < 1, 0 ≤ κ < θ/(1 + θ). Consider the step sizes
µt = µ ·µmax

t and νt = ν ·µmax
t for some 0 < µ, ν ≤ 1 and µmax

t as in (15). Then, we have

lim
t→∞

∥

∥∇J (zt, vt)
∥

∥

2

2
= 0 a.s.

Proof. Let us start by establishing the inequality in Lemma 4.8 for ξt := ‖∇zJ (zt, vt)‖2+
‖∇vJ (zt, vt)‖2. For any t ≥ 0 and k > 0, by the reverse- and triangle inequalities and
Lemma 4.9, we have

∣

∣

∥

∥∇zJ (zt+k, vt+k)
∥

∥

2
+
∥

∥∇vJ (zt+k, vt+k)
∥

∥

2
−
∥

∥∇zJ (zt, vt)
∥

∥

2
−
∥

∥∇vJ (zt, vt)
∥

∥

2

∣

∣

≤
∥

∥∇zJ (zt+k, vt+k)−∇zJ (zt, vt)
∥

∥

2
+
∥

∥∇vJ (zt+k, vt+k)−∇vJ (zt, vt)
∥

∥

2

≤
√
2
∥

∥∇J (zt+k, vt+k)−∇J (zt, vt)
∥

∥

2

≤ 2
√

L2(zt+k, zt, vt+k, vt) + max{α2
T , β

2
T}[
∥

∥zt+k − zt
∥

∥

2

2
+
∥

∥vt+k − vt
∥

∥

2

2
]1/2

≤ 2
√

L2(zt+k, zt, vt+k, vt) + max{α2
T , β

2
T}[
∥

∥zt+k − zt
∥

∥

2
+
∥

∥vt+k − vt
∥

∥

2
].

Next, we show that the square root is bounded from above for all t and k. Since the
assumptions of Lemma 4.6 are satisfied there exists a random variable J sup < +∞ a.s.
and by the arguments in the proof of Lemma 4.7 (see (43)) we have

∥

∥zt
∥

∥

2

2
≤ α−1

T J sup and
∥

∥vt
∥

∥

2

2
≤ β−1

T J sup for all t.

Consequently, the constant L(zt+k, zt, vt+k, vt) from Lemma 4.9 is bounded by

L(zt+k, zt, vt+k, vt) ≤ d[2J sup max{5
4
, ‖y + ε‖1/2∞ ε−1/2 − 3

4
}[α−1

T + β−1
T ] + ‖y/d‖1/21 ].
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Let us set Lsup > 0 as

(Lsup)2 := 4d2[2J sup max{5
4
, ‖y + ε‖1/2∞ ε−1/2− 3

4
}[α−1

T +β−1
T ]+‖y/d‖1/21 ]2+4max{α2

T , β
2
T},

which leads to
∣

∣

∥

∥∇J (zt+k, vt+k)
∥

∥

2
−
∥

∥∇J (zt, vt)
∥

∥

2

∣

∣ ≤ Lsup
[∥

∥zt+k − zt
∥

∥

2
+
∥

∥vt+k − vt
∥

∥

2

]

.

Furthermore, by construction

∥

∥zt+k − zt
∥

∥

2
=

∥

∥

∥

∥

∥

t+k−1
∑

s=t

zs+1 − zs

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

t+k−1
∑

s=t

µsgz(z
s, vs)

∥

∥

∥

∥

∥

2

≤
t+k−1
∑

s=t

µs ‖∇zJ (zs, vs)‖2 +
∥

∥

∥

∥

∥

t+k−1
∑

s=t

µs [gz(z
s, vs)−∇zJ (zs, vs)]

∥

∥

∥

∥

∥

2

,

and, analogously,

∥

∥vt+k − vt
∥

∥

2
≤

t+k−1
∑

s=t

νs ‖∇vJ (zs, vs)‖2 +
∥

∥

∥

∥

∥

t+k−1
∑

s=t

νs [gv(z
s, vs)−∇vJ (zs, vs)]

∥

∥

∥

∥

∥

2

.

Define qs, s ≥ 0, for Lemma 4.8 as

qs :=

[

µgz(z
s, vs)− µ∇zJ (zs, vs)

νgv(z
s, vs)− ν∇vJ (zs, vs)

]

∈ C
2d. (47)

The corresponding norm in Lemma 4.8 is the Euclidean norm and by (a+ b)2 ≤ 2a2+2b2

we have
∥

∥

∥

∥

∥

t+k−1
∑

s=t

µs [gz(z
s, vs)−∇zJ (zs, vs)]

∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

t+k−1
∑

s=t

νs [gv(z
s, vs)−∇vJ (zs, vs)]

∥

∥

∥

∥

∥

2

≤
√
2

∥

∥

∥

∥

∥

t+k−1
∑

s=t

µmax
s qs

∥

∥

∥

∥

∥

2

.

Now, we combine the last few steps together and use that µt = µ ·µmax
t , νt = ν ·µmax

t and
µ, ν ≤ 1,

|ξt+k − ξt| ≤ Lsup
t+k−1
∑

s=t

[µs ‖∇zJ (zs, vs)‖2 + νs ‖∇vJ (zs, vs)‖2] +
√
2Lsup

t+k−1
∑

s=t

µmax
s qs

≤
√
2Lsup

t+k−1
∑

s=t

µmax
s ξs + Lsup

∣

∣

∣

∣

∣

t+k−1
∑

s=t

µmax
s qs

∣

∣

∣

∣

∣

.

Let us now show that the rest of the conditions in Lemma 4.8 hold for the constructed
sequences. For the first condition with p = 2, by Lemma 4.6, we get

∑

t≥0

µmax
t ξ2t =

∑

t≥0

µmax
t

(∥

∥∇zJ (zt, vt)
∥

∥

2
+
∥

∥∇vJ (zt, vt)
∥

∥

2

)2

≤ 2

min{µ, ν}
∑

t≥0

µt

∥

∥∇zJ (zt, vt)
∥

∥

2

2
+ νt

∥

∥∇vJ (zt, vt)
∥

∥

2

2
<∞ a.s.
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The series
∑

t≥0 µ
max
t diverges a.s. by the comparison test and the lower bound (44). For

the last condition, we consider a sequence

M0 := 0, Mt :=
t−1
∑

s=0

µmax
s qs, t ≥ 1.

By construction, it is adapted to the filtration {Ft} and by construction of µmax
t and

Lemma 4.4 admits

E[Mt+1 | Ft ] =Mt + µmax
t

[

µE[ gz(z
s, vs) | Ft ]− µ∇zJ (zs, vs)

νE[ gv(z
s, vs) | Ft ]− ν∇vJ (zs, vs)

]

=Mt.

Hence, Mt is marginal. Its increments µmax
t qt satisfy

E[ ‖µmax
t qt‖22 | Ft ]

= E[µ2
t

∥

∥gz(z
t, vt)−∇zJ (zt, vt)

∥

∥

2

2
+ ν2t

∥

∥gv(z
t, vt)−∇vJ (zt, vt)

∥

∥

2

2
| Ft ]

= µ2
tE[
∥

∥gz(z
t, vt)−∇zJ (zt, vt)

∥

∥

2

2
| Ft ] + ν2t E[

∥

∥gv(z
t, vt)−∇vJ (zt, vt)

∥

∥

2

2
| Ft ].

Let us expand the first expectation. By Lemma 4.4, we get

E[
∥

∥gz(z
t, vt)−∇zJ (zt, vt)

∥

∥

2

2
| Ft ] = E[

∥

∥gz(z
t, vt)

∥

∥

2

2
| Ft ]−

∥

∥∇zJ (zt, vt)
∥

∥

2

2

≤ γzt [J (zt, vt)− J inf ]−K−1
∥

∥∇zJ (zt, vt)
∥

∥

2

2
+ δzt ,

and the second expectation is analogous. Thus, the tower property yields

E ‖µmax
t qt‖22 = E[E[ ‖µmax

t qt‖22 | Ft ] ] ≤ 2E[(µ2
tγ

z
t + ν2t γ

v
t )[J (zt, vt)− J inf ]

−K−1[µ2
t

∥

∥∇zJ (zt, vt)
∥

∥

2

2
+ ν2t

∥

∥∇vJ (zt, vt)
∥

∥

2

2
] + (µ2

t δ
z
t + ν2t δ

v
t )].

Consequently, by [59, Problem 13.27], the expected squared norm of Mt is bounded by

E ‖Mt‖22 =
t−1
∑

s=0

E ‖µmax
s qs‖22 ≤ 2

t−1
∑

s=0

E
[

(µ2
tγ

z
t + ν2t γ

v
t )[J (zt, vt)− J inf ]

]

(48)

− 2K−1
t−1
∑

s=0

E

[

µ2
t

∥

∥∇zJ (zt, vt)
∥

∥

2

2
+ ν2t

∥

∥∇vJ (zt, vt)
∥

∥

2

2

]

+ 2
t−1
∑

s=0

E[µ2
t δt + ν2t ρt].

We recall that by construction and (40),

µt, νt ≤ µmax
t ≤ [3

√
d ‖y‖1/21 + 3max{αT , βT}]−

1

1−θ =: µsup.

Also, recall the definition (41) of ηt from the proof of Lemma 4.6. Then, by the inequality
(41) we have

t−1
∑

s=0

E
[

(µ2
tγ

z
t + ν2t γ

v
t )[J (zt, vt)−J inf ]

]

≤
t−1
∑

s=0

E
[

µ1−θ
sup (µ

1+θ
t γzt + ν1+θ

t γvt )[J sup − J inf ]
]

≤ µ1−θ
sup [EJ sup − J inf ]

t−1
∑

s=0

ηs
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and, similarly, by (42), the inequality

t−1
∑

s=0

E[µ2
t δt + ν2t ρt] ≤ µ1−θ

sup [J inf −
∑

r∈R

inf
z,v∈Cd

Jr(z, v)]

t−1
∑

s=0

ηs,

holds. The second summand in (48) can be bounded from above by zero. This gives

E ‖Mt‖22 ≤ 2µ1−θ
sup [EJ sup −

∑

r∈R

inf
z,v∈Cd

Jr(z, v)]

t−1
∑

s=0

ηs.

Since J sup < +∞ a.s. and the series
∑

s≥0 ηs is convergent, E ‖Mt‖22 < ∞. By the
Jensen’s inequality [59, Proposition 6.2.6], each of its coordinates (Mt)j, j = 1, . . . , d,
admits

sup
t≥0

E[max{(Mt)j , 0}] ≤ sup
t≥0

E|(Mt)j | ≤ sup
t≥0

E ‖Mt‖2 ≤ sup
t≥0

√

E ‖Mt‖22 <∞.

Thus, by [59, Theorem 13.3.2], there exists a random vector M such that E|Mj | < ∞
for all j = 1, . . . , d, which implies Mj < ∞ almost surely. Therefore, we obtain the last
condition of Lemma 4.8,

∥

∥

∥

∥

∥

∞
∑

s=0

µsqs

∥

∥

∥

∥

∥

2

=
∥

∥

∥
lim
t→∞

Mt

∥

∥

∥

2
= ‖M‖2 =

[

d
∑

j=1

|Mj |2
]1/2

<∞ a.s.

Hence, by Lemma 4.8, limt→∞ ξt = 0 a.s. This gives

0 ≤ lim
t→∞

∥

∥∇zJ (zt, vt)
∥

∥

2

2
+
∥

∥∇vJ (zt, vt)
∥

∥

2

2

≤ lim
t→∞

[
∥

∥∇zJ (zt, vt)
∥

∥

2
+
∥

∥∇vJ (zt, vt)
∥

∥

2
]2 = lim

t→∞
ξ2t = 0.

Remark 4.11. If indices rt,k, k = 1, . . .K are sampled from some other sampling scheme
with ρ > 1 in Lemma 4.4, we can no longer discard the second sum in (48). Instead,
consider the sequence Ht :=

∑t−1
s=0 µs ‖∇zJ (zs, vs)‖22+νt ‖∇vJ (zs, vs)‖22. Then, the second

term in (48) is bounded by
∑

s≥0

E[µ2
t

∥

∥∇zJ (zt, vt)
∥

∥

2

2
+ ν2t

∥

∥∇vJ (zt, vt)
∥

∥

2

2
] ≤ µsup lim

t→∞
E[Ht].

The sequence Ht is nonnegative, nondecreasing and by Lemma 4.6 converges to a finite
value

∑

s≥0 µt ‖∇zJ (zt, vt)‖22 + νt ‖∇vJ (zt, vt)‖22 a.s. Therefore, the monotone conver-
gence theorem [59, Theorem 2.3.4] states that there exists a limit

lim
t→∞

EHt = E

[

∑

s≥0

µt

∥

∥∇zJ (zt, vt)
∥

∥

2

2
+ νt

∥

∥∇vJ (zt, vt)
∥

∥

2

2

]

=: EH∞,

and E[H∞] <∞. Consequently, E ‖Mt‖22 is finite and the rest of the proof of Lemma 4.10
remains the same.

Finally, we summarize all results together.

Proof of Theorem 3.4. Each of three claims follow from Lemmas 4.6, 4.7 and 4.10 respec-
tively.
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5 Conclusions

In this paper, we analyzed the convergence of gradient descent and stochastic gradient
descent with the motivation to understand the performance of extended Ptychographic
Iterative Engine [9]. While we were able to derive its first convergence guarantees, there
are still a lot of open questions left to answer. For instance, the common practical scenario
is when αt, βt are constant. This somewhat links ePIE to stochastic gradient descent with
constant step sizes, which current state-of-the-art optimization literature is not able to
explain without additional assumptions on the objective J [66, 67, 68]. Considering the
discussion in Section 3.1 we naturally ask ourselves if it is possible to find larger steps
sizes for gradient methods without involving too many additional computations. Another
interesting direction of future research is to consider regularized PIE (rPIE) [10] and
extend our analysis for it.
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