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TopEC: prediction of Enzyme Commission
classes by 3D graph neural networks and
localized 3D protein descriptor

Karel van der Weg 1, Erinc Merdivan2, Marie Piraud 2 & Holger Gohlke 1,3

Tools available for inferring enzyme function from general sequence, fold, or
evolutionary information are generally successful. However, they can lead to
misclassification if a deviation in local structural features influences the
function. Here, we present TopEC, a 3D graph neural network based on a
localized 3D descriptor to learn chemical reactions of enzymes from enzyme
structures and predict Enzyme Commission (EC) classes. Using message-
passing frameworks, we include distance and angle information to sig-
nificantly improve the predictive performance for EC classification (F-score:
0.72) compared to regular 2D graph neural networks. We trained networks
without fold bias that can classify enzyme structures for a vast functional space
(>800 ECs). Our model is robust to uncertainties in binding site locations and
similar functions in distinct binding sites. We observe that TopEC networks
learn from an interplay between biochemical features and local shape-
dependent features. TopEC is available as a repository on GitHub: https://
github.com/IBG4-CBCLab/TopEC and https://doi.org/10.25838/d5p-66.

Proteins are at the basis of all cellular life. Since the first protein
structure was elucidated in 1958, knowledge about the 3D structure
has been instrumental in understandingmolecular biology1. The shape
of a protein occurs from specific interactions between atoms and their
spatial relationship. These spatial relationships and chemical interac-
tions give rise to the specific function of the protein. The Protein Data
Bank2 (PDB), the worldwide repository of experimental information
about the 3D structure of biomolecules, contained 185,539 crystal
structures at the end of 2021, of which 25,190 are non-redundant
structures of enzymes, the focus of this study. Recent developments in
protein structure prediction3–5 massively improved the prediction of
structural models of enzymes and led to the generation of large
structural databases6,7. Yet, a predicted structural model is available
only for 60%of all enzyme functions as proposed by theNomenclature
Committee of the International Union of Biochemistry and Molecular
Biology (IUMBMB)6. Hence, accurately annotating molecular function
to enzymes from (predicted) enzyme structures remains challenging.
Determining enzyme function experimentally for many sequences is

time-consuming, often enzyme function cannot be deduced directly
from the structural representation, or the wrong enzyme function has
been annotated to the sequence in databases8. Computational meth-
ods using enzyme structures as input can close this gap and allow for
high-throughput enzyme function prediction.

Recently, deep learning and, especially, graph neural networks
(GNNs) have gained in popularity and are used for a variety of chemical
tasks, such as drug discovery9, affinity prediction10, protein interface
prediction11 and protein function prediction12. GNNs are a popular
method for structural protein function prediction as most imple-
mentations are equivariant and translationally invariant13. On top of
this, graphs closely relate to chemical representations9. However,
representing a protein structure as a 3D graph is difficult,memory- and
time-consuming14. To get around such limitations, often the graph is
constructed containing only information from a projection of 3D to
linear space15,16. Recent developments in GNNs allow us to encode the
positions, distances, and angles between atoms in message-passing
networks tested for smallmolecules17–20. In this study,we implemented
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the message-passing networks SchNet18 and DimeNet++20 for larger
protein structures and used them for protein function classification
(Fig. 1a, full details in “Methods”).

Here, protein function relates to the specific reaction catalyzed by
an enzyme as described by Enzyme Commission (EC) numbers21. EC
numbers are represented by four hierarchical digits, specifying the
main, sub-, and sub-subclass functions, as well as the specific enzyme
function designation. For example, receptor protein-tyrosine kinase
with EC number 2.7.10.1 is a transferase (2) transferring phosphorus-
containing groups (2.7) as a protein-tyrosine kinase (2.7.10).

We intended to learn how to predict EC numbers from structure
exploiting molecular recognition properties. While EC number pre-
diction with machine learning is not new22–25, relatively few structure-
based methods explicitly encoding 3D information exist to predict EC
numbers12,26. In EnzyNet26, an abstraction of the protein to the 3D
backbone information is used, and in DeepFRI12, a graph is constructed
from the 2D contactmap created from the protein structure to reduce
memory requirements compared to explicitly encoding 3D informa-
tion. Furthermore, modern structure prediction methods, resulting,
e.g., in the creation of the AF2 database7, provided enough training
samples to study structural enzyme function prediction at all four
levels of classification.

Here, we present TopEC, a software package using GNNs for
enzyme function prediction. TopEC can encode the 3D positions,
distances, and angles between atoms and residues in graphs using a
localized approach. We encode the atoms and residues following the
atom type definitions in the force field ff19SB, allowing the network to
learn different local chemical environments for one element. This

allows us to investigate the differences between atom and residue-
based enzyme function prediction (Fig. 1b) from a structural point of
view. By encoding positional information and using predicted enzyme
structures, we obtain an F1-score of 0.72 for predicting the EC desig-
nation when training on a fold split dataset using experimental and
computationally generated structures. TopEC is trained without prior
knowledge if a protein is an enzyme or not. This allows the user to scan
proteins not classified as enzymes for enzymatic activity. For example,
ABC transporters hydrolyze ATP27 and G proteins hydrolyze GTP28.
TopEC is a framework for rapidly devising, training, and testing deep-
learning experiments based on protein structures. The software is
written such that users can control the experiments from simple
parameter files. Users can use TopEC to create their own function
prediction tools or test different graph models with our pipeline for
enzyme function prediction. TopEC is available as a repository,
including accompanying data, on GitHub: https://github.com/IBG4-
CBCLab/TopEC29 and https://doi.org/10.25838/d5p-66.

Results
Overall strategy
Predicting EC numbers based on structural information without fold
bias is challenging. While the fold of an enzyme generally determines
function, even minor mutations can drastically alter function30,31. For
example, TIM barrels and Rossman folds are groups with similar
supersecondary structures but catalyzemany different reactions32,33. If
we solely took the overall shape (fold) into account, we would neglect
the minor differences leading to different functions. We call this the
fold bias. Typically, fold bias is removed by clustering the training,

Fig. 1 | Protein input to the neural network and network architecture. a A
schematic overview of the network architectures used. The orange path and blocks
are unique to the DimeNet++ architecture, blue path and blocks are unique to the
SchNet architecture, and gray blocks indicate commonality between both meth-
ods. In both methods, the atomic numbers (Z1,…,Zn) are embedded similarly in the
network. Radial Bessel filters (RBFs) are used to encode radial distances (|ri − rj|)
between atoms, while Spherical Fourier Bessel (SBF) filters are used to encode
distances (|ri – rk|) and angles θ(ij, jk) between atoms {i, j, k}. Instead of a linear layer
and shifted Softplus activation layer, DimeNet++ sums over all embedding and
interaction blocks to generate the prediction. For more details on the network

blocks see refs. 22, 24. Anon-overlayversion is available inSupplementary Fig. 1.bA
schematic overview of the different resolutions tested in our localized 3D
descriptor. In the residue view, all atoms besides the Cα positions are discarded and
the nodes are encoded by amino acid type. In the all-atom view, each heavy atom is
encoded as a node, and theyare codedaccording to thechemical environment. The
full scheme for atom encoding is available in the SI. Residues colored in blue are
selected for the input, whereas those in red are discarded. c In the count repre-
sentation, we expand from a point in space identified as a center of the binding site
by the n-closest residues. d In the distance representation, we expand from a point
in space and keep all residues within the radius r.
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validation, and test splits by 30% sequence similarity34,35. Hence, we call
our split “fold split”. Deep neural network methods tend to perform
poorly (F-score: 0.3–0.4) when fold bias is removed from the training
dataset12,26.

To solve both the issue of computational requirements and fold
bias, we introduce a localized 3D descriptor based on the binding sites
of enzymes. To identify the region where the chemical transformation
likely takes place, we use experimental evidence, homology annota-
tion, and the prediction method P2Rank36. From this region, we base
the enzyme function classification on the closestn atoms (Fig. 1c) or all
atomswithin a defined radius r (Fig. 1d).We compare EC predictions at
two resolutions of the enzyme structure (Fig. 1b). At residue resolution,
we create a graph node for each Cα atom position of the enzyme
backbone. At atom resolution, we create a graph node for each heavy
atom position of the protein. The regional representations offer two
advantages to a full structure representation: (1) We focus the network
attention on learning the enzyme function from the binding site of the
protein. (2) We reduce the GPUmemory footprint as atomistic graphs
of single enzymes do not fit on a NVIDIA A100 40Gb GPU. We use the
regional representations for the 3D-aware message-passing networks
SchNet andDimeNet++ (Fig. 1a) to create TopEC-distances and TopEC-
distances + angles. TopEC-distances is based on SchNet and used for
creating localized 3D descriptors for atom and residue resolution.
TopEC-distances + angles is basedonDimeNet++ and used for creating
localized 3D descriptors for residue resolution. We did not obtain
satisfactory results for TopEC-distances + angles at atomic resolution
due to memory constraints in the GPUs. The construction of atomic
and residue resolution graphs is explained in the “Methods”.

To evaluate the function prediction performance, we use the
protein-centric F-score (F1) as used for similar tasks in DeepFRI12. The
balanced F-score measures accuracy as a function of the harmonic
meanof precision and recall. The overall performance is averaged over
all enzymes in the test set as in DeepFRI. All statistics are calculated
using the PyCM37 package.Whilewe showadetailedbreakdownbelow,
we report only the highest performer over the parameter combination
of network, size, and resolution in the Figures. Complete statistical
reports with confusionmatrixes are available in Supplementary Data 1
for each combination tested.

Datasets used
Due to the high EC redundancy in the PDB38 and the resulting low
amount of diverse enzyme functions with experimentally known
binding sites, we trained the networks on a combination of datasets
with experimental and predicted protein structures. We now describe
the datasets (Table 1) that are contained in the TopEnzyme6 database
we released earlier.

First, we used experimental structures. For this, we filtered the
Binding MOAD39 for enzyme structures with an associated EC
and binding interface. This results in 21,333 experimentally deter-
mined enzymes covering 1625 different enzyme functions. We call this
filtered set the BindingMOADdataset. To supplement it, we generated
homology models with TopModel. This yielded 8904 predicted
enzyme structures covering 2416 enzyme functions. This is the initial
TopEnzyme dataset. We chose this approach as it provides experi-
mentally determined binding sites from the Binding MOAD and
accurately derived binding sites inferred from homologous templates
used for structure prediction. We tested two data splits on Binding
MOAD and TopEnzyme: the temporal split and the fold split as in
ECPred23. For the fold split, we used MMseqs2 to cluster our database
at 30% sequence identity. All data sets are split over training, valida-
tion, and test sets in approximately 80%/10%/10% ratios.We also tested
the combination of BindingMOAD and TopEnzyme and called this the
Combined dataset.

To gain access to a larger andmore diverse structure database for
training, we supplemented the experimental dataset with predicted

binding site information. We filtered the PDB keeping only EC desig-
nations with at least 50 structures using a fold split, for a total of 300
enzyme classes across 56,058 structures, resulting in the PDB300
dataset. The binding sites are obtained with P2Rank when we lack any
experimental information. Again, we use MMseqs2 to cluster our
database by 30% sequence identity with approximately 80%/10%/10%
training, validation, and test set ratios.

With the release of the AF2 database7 (AF2 DB), we further sup-
plemented the computational dataset with enzyme structures gener-
ated by the end-to-end method AF2. To fully utilize predicted enzyme
structures, we expanded TopEnzyme by incorporating AF2 structures
available from the AF2 DB and released it as a separate database6. We
filtered the UniprotKB/Swiss-Prot database for proteins with an asso-
ciated EC. After binding site prediction with P2Rank, we removed all
enzymes without a predicted binding site, yielding 201,107 enzymes
covering 703 unique ECs with at least 50 different computational
structures, resulting in the AF703 dataset.

To obtain biochemical insights into the performance of the net-
work models, we introduce two benchmark datasets. The first is a
modified Price dataset. The Price40 dataset refers to instances where
the SEED41 or KEGG42 databases had prior instances of either mis-
annotation or inconsistent annotation43 based on predictions derived
from sequence information. Second, the ProSPECCTs dataset is divi-
ded into ten different (sub)categories (DS1-DS7, subcategories: DS1.2,
DS5.2, DS6.2) benchmarking various properties of enzyme binding
sites44. Details of the content of each dataset are available in Supple-
mentary Table 1. After removing ECs we did not train with the AF703
and PDB300 datasets, we are left with 5543 structures. These classes
were removed from training for not containing at least 50 samples.

Finally, we adapted the Catalytic Site Atlas (CSA) dataset along
with all binding residues from BioLiP45. Again, we removed all ECs we
did not train with the AF703 dataset. We did not test the CSA with
networks trained on the PDB300. As the CSA exists as a database
within the PDB, therewould not be enough training examples left after
properly separating the data into train and test sets. This gave 364
enzymes with experimental structures spanning 295 ECs for which we
have the full binding information. The filtered Price, ProSPECCTs, and
CSA datasets are reported in Supplementary Data 2.

Local information from the binding site is sufficient to classify
Enzyme Commission numbers
Initially, we tested the prediction performance for the seven main
classes of enzyme functions according to EC using the localized 3D
distance descriptor. We trained the networks with oversampling to
reduce bias for the more populated main classes (Supplementary
Fig. 2). For comparison, we re-trained EnzyNet, a 3D-CNN, and Deep-
FRI, a GCNN, on the data sets using the best settings asdescribed in the
respective publications. Additionally, we also re-trained EnzyNet and
DeepFRI on the localized descriptor with a radius cut-off of 16 Å
around the binding site. The results are shown in Table 2A. As EnzyNet
returns results for multiple modes, we show the full results in Sup-
plementary Fig. 3.

In five of the six tests, TopEC-distances + angles at residue reso-
lution outperforms all other neural networks with an average increase
of the F-score of 0.04 compared to TopEC-distances and, more
markedly, 0.13 to EnzyNet andDeepFRI. Only on the combined dataset
for the temporal split, TopEC-distances at residue resolution outper-
forms the rest. Generally, the topology (fold) of an enzyme is thought
to be the major determinant of the given function30,31. This leads to
higher performanceon the temporal split asmany identical topologies
are present in both the training and test sets. In the case of the fold
split, the data is separated by 30% sequence identity with no common
folds in either the training, validation, or test sets. Thus, the network
cannot learn a function from topology, which reduces the bias for
proteins with a similar topology but a different function. This ability is
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important for applying enzyme function classification in enzyme dis-
covery or engineering synthetic enzyme cascades46.

The performance on the TopEnzyme dataset is markedly lower
than on the Binding MOAD dataset. The TopEnzyme section of com-
parative models likely does not contain enough samples to learn local
chemistry from the training set: In this TopEnzyme section, there are
on average 2–3 training models for each test model as to a specific EC
number. Thus, the TopEnzyme section contains a large variety of
chemistry at the local level, but only a few examples for each case. This
is likely also the reason why the performance on the combined dataset
is lower thanon theBindingMOADdataset, even though combinations
of experimental and predicted structures have been shown to improve
results12.

In EnzyNet, the enzyme information is reduced to a topological
view. It performs better on the Binding MOAD dataset with a tem-
poral split than on datasets with less topology overlap. DeepFRI,
where enzyme information is created from a 2D contact map, gen-
erally performs the worst. Our local descriptor performs better
than EnzyNet andDeepFRI for all datasets, likely because it implicitly
directs the networks into the more relevant regions for enzyme
function. Only on the temporal dataset, EnzyNet outperforms
the local representation, as here it can learn from the topologi-
cal view.

Next, we evaluated the performance of the networks when pre-
dicting the full hierarchy of EC numbers using the combined dataset.
We show the results for TopEC-distances and TopEC-distances +
angles against DeepFRI and EnzyNet with the local descriptor in
Table 2B. For the temporal data split, TopEC-distances + angles per-
formed the best, while for the fold data split, TopEC-distances per-
formed the best, with an average increase of 0.06 and 0.29 of the F-
scores compared to EnzyNet andDeepFRI, respectively.We also tested
the influence of the graph count and location of the localized 3D
descriptor on the performance (Supplementary Fig. 4). The

performance starts to plateau around 75–100 nodes per enzyme graph
depending on the model. TopEC-distances + angles performs worse
with larger graphs as we start to encounter out-of-memory issues on
the usedGPUs.Whenwe choose randomcenters for defining a binding
site for the localized 3D descriptor, themodels performworse. For the
hierarchical classification, as for the main classification, representing
the local chemistrywell to steer thenetwork implicitly into the relevant
region is likely more important than the overall topology-function
relationship. In other full-structure methods, saliency maps of the
network overlap with experimental binding sites12,47. In TopEC, struc-
tural information is encoded explicitly compared to EnzyNet and
DeepFRI (see above). Our results indicate that encoding structural
information explicitly is important when classifying enzyme functions
without considering topology-function relationships.

Finally, we trained our networks using experimental binding sites
from the Binding MOAD or binding sites predicted by P2Rank36 on
experimental structures with a fold split (Table 2C). Although binding
site predictors are not perfect, some structural noise could make the
machine learning method more robust to uncertain information48–50.
The predictive performance is similar for both of our networks and
both binding site origins. Hence, we will use P2Rank to obtain binding
site information in larger databases when experimental information is
lacking.

Expanding the chemical space with computationally generated
enzyme structures improves the predictive performance of the
networks
Before we test for computationally generated enzyme structures, we
want to obtain a baseline performance. We created a fold split for
experimentally determined enzyme structures using predicted bind-
ing sites for more training samples, the PDB300 dataset. The area
under the precision-recall curve (AUPR) for each EC is shown as a
distribution in Fig. 2a. The F-score for this dataset is low with 0.66 for

Table 2 | Prediction performance (F-score) for the networks tested on multiple data setsa

(A) Main class classification

Networks

Dataset TopEC-
distances (atoms)

TopEC-distances
(residues)

TopEC-distances + angles
(residues)

EnzyNet EnzyNet(local) DeepFRI DeepFRI
(local)

Temporal split:

Binding
MOAD

0.73 0.73 0.75 0.71 0.63 0.57 0.58

TopEnzyme 0.52 0.49 0.53 0.41 0.42 0.40 0.41

Combined 0.75 0.76 0.73 0.52 0.53 0.54 0.56

Fold split:

Binding
MOAD

0.60 0.62 0.66 0.52 0.55 0.59 0.57

TopEnzyme 0.45 0.44 0.51 0.37 0.44 0.36 0.35

Combined 0.62 0.60 0.63 0.52 0.53 0.54 0.56

(B) Hierarchical class classification

Networks

Dataset: Combined TopEC-distances TopEC-distances + angles EnzyNet EnzyNet (local) DeepFRI DeepFRI (local)

Temporal split 0.75 0.76 0.73 0.65 0.43 0.61

Fold split 0.57 0.55 0.51 0.53 0.20 0.25

(C) Hierarchical class classification with experimental or predicted binding sites

Network

Binding site originb TopEC-distances TopEC-distances + angles

Binding MOAD 0.57 0.56

P2Rank 0.59 0.53
aThe best-performing networks are highlighted in bold.
bThese are the same structures as for Binding MOAD in Table 2A, except that the center location of the binding site for the localized 3D descriptor is determined by P2Rank instead of experimental
evidence.
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main-, 0.53 for sub-, 0.45 for sub-subclass, and 0.39 for the designa-
tion level.

There are a few issues we encountered when training with the
PDB300. Many classes are poorly predicted as we have limited sam-
ples. For example, for translocases (F-score: 0), we only have 228
experimental structures for training, validation, and testing. Further-
more, while experimental evidence is regarded as the ground truth
when creating prediction models, the PDB has known issues such as
redundancy51 or enzyme-inhibitor complexes marked as enzyme-
substrate complexes52–54. For serine endopeptidase La (EC: 3.4.21.53),
none of the eight test PDBs are correctly predicted. Notably, one is
described to have no activity (4fwh), three are characterized in com-
plex with inhibitors (4fw9, 4fwd, 4fwg), and the other four are from a
mutation study where they mutated the catalytic dyad residues (7ev4,
7euy, 7ev6, 7eux)53,54. Yet, these structures are all marked as having
enzymatic activity with EC classification 3.4.21.53 in the PDB.

Next, we trained our networks with structural models generated
by homology modeling from TopEnzyme or structures from the AF2
database (AF2 DB) for identical Uniprot IDs (Supplementary Fig. 5,
7924 structures). For the networks trained at atomic resolution,
AF2 structures generally increase the predictive performance (t-test,
n = 7.924: p value = 0.041). For networks trained at residue resolution,
performances are more similar. The results indicate that comparative
models and models generated by an end-to-end method perform
equally in TopEC. An advantage of homology models is that we can
utilize crystal structure homologs to refine the binding site prediction.

This procedure is described in the “Methods” subsection “Bind-
ing sites”.

The performance of the fold-split network on AF2 structures is
shown in Fig. 2b and compared to the best fold-split network obtained
with the combined dataset of experimental structures and compara-
tive models (Table 2B). Using the AF2 dataset majorly improves the F-
score on the main (+0.18), sub (+0.28), sub-subclass (+0.33), and des-
ignation (+0.33) levels. Also, the number of designations spanning the
seven main classes increases from 97 to 703. This leads to a major
AUPR increase for underrepresented classes such as Lyases (+69 new
designations, +0.28), Ligases (+56 new designations, +0.89), and
Translocases (+21 new designations, +0.64). A similar distribution shift
to higher AUPR values is obtained for sub, sub-sub, and hierarchical
classes in Fig. 2b. While the classification results improve as we
decrease the specificity of the enzymatic function, i.e., move from the
designation to the main class, there is no correlation between
the number of structures, folds, pLDDT-score, or designations and the
performance (Supplementary Fig. 6).

We also tested a random data split using the AF703 dataset.
Despitemost classes being perfectly predicted due to the high overlap
of training and test data, the networkwas not able topredict any type II
site-specific deoxyribonucleases. While the network is likely biased
toward the overall fold, the folds for this EC are highly divergent
(Supplementary Fig. 7). Interestingly, the fold-split network correctly
predicted half of them, indicating that information canbe gainedusing
the local descriptor if fold bias is reduced.

Fig. 2 | The predictive performance of TopEC networks is shown by the dis-
tribution of AUPR for each EC class at residue resolution. a–c The dotted line
represents the average AUPR score over all proteins for the TopEC networks. We
show the distribution of AUPR for each hierarchy of EC numbers. a The predictive
performance for the best TopEC network trained on the PDB300 dataset using a
fold split. b Similar to a, but we used the AF703 dataset. The gray distribution
represents the best network from Table 2. c Similar to b, but we combined the

PDB300 and AF703 datasets to yield 826 EC classes. d The predictive performance
for the best fold-split TopEC network trained on AF2 structures; only the full des-
ignation is displayed. This is a reduced versionof the Price and ProSPECCTsdataset
as not every entry has an annotated EC present. For a description of each dataset,
see the “Dataset” section. The yellow diamond indicates the F1 score. Source data
are provided as a Source Data file.
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Finally, we tested the performance of the network using the com-
bined AF703 and PDB300 datasets with a fold split for a total of
257,165 structures covering 826 EC designations. The overall perfor-
mance is slightly worse compared to the network trained on solely AF2
models (main class: ±0.00, subclass: −0.02, sub-subclass: −0.02, desig-
nation: −0.01). However, by combining the datasets, we can predict a
larger variety of classes (826 vs. 703) and improve the prediction per-
formance onexperimental structures.We reached an F1-score of0.72 for
the combined dataset at the designation level. We tested this dataset on
EnzyNet and CLEAN55 and obtained F1-scores of 0.50 and 0.74, respec-
tively. We were not able to obtain satisfying results for DeepFRI as this
method optimizes for both positive and negative probabilities, which
tends to overfit on the negative probabilities in the case of a large
number of classes. Compared to the network trained on PDB300, the F-
score increases on experimental structures for main classes (+0.09),
subclasses (+0.14), sub-subclasses (+0.17), and designations (+0.28)
whenusing the combineddatasets. To further evaluate the impact of the
fold bias on the network’s performance, we generated an additional test
set using Foldseek clustering. For initially comparing the Foldseek clus-
tering to the MMSeqs2-based clusters, the Jaccard similarity was calcu-
lated for each enzyme pair present in the clusters. The similarity is 0.43,
indicating how the clusters formed by Foldseek are distinct from the
MMSeqs2 clusters. After the removal of all Foldseek clusterswith overlap
with the training and validation sets from the original test set (Fig. 2), the
F-score is 0.69 for the main class, 0.61 for the subclass, 0.57 for the sub-
subclass, and 0.52 for the designation classification. Note that the net-
work was not retrained on a training and validation set following Fold-
seek criteria but theperformance assessmentwas limited to the enzymes
that are clustered according to Foldseek. The result suggests that a 30%
sequence identity cut-off may not fully eliminate fold bias.

Benchmarking the price and ProSPECCTs datasets
We tested the performance of the AF2 fold-split network on the mod-
ified Price40 and ProSPECCTs44 datasets (Fig. 2d). The results show the
AUPR curve for the designation level of EC with the F1 score overlaid.
While the average AUPR for the enzymes in Price are low, the network is
more confident in the correct predictions (0.87 confidence score) than
in incorrect predictions (0.56 confidence score). Interestingly, the
confidence score is still high for cases where the first three digits of EC
are correct (0.71 confidence score) compared to cases where 2 ormore
digits are incorrect (0.44 confidence score). These datasets are
designed to be difficult, i.e., the availability of structural enzyme data
for these ECs from other folds is low, leading to lower results due to
limited training samples. Enzymes of the Price dataset are less con-
served, andmany of the enzymes have been previouslymisclassified by
in silico methods40. Similarly to ProteInfer, we try to recover the new
corrected classifications. Compared to ProteInfer, we predict more
enzymes correctly, but also more enzymes wrongly, as ProteInfer
contains a mechanism to not make uncertain predictions.

Generally, for ProSPECCTs, we predict an enzyme class either
completely correct or wrong, leading to the hourglass-shaped AUPR
curves. For the wrongly predicted classes, we lack the diversity in ECs
from distinct folds after removing any training samples with >30%
sequence similarity to ProSPECCTs.

For the ProSPECCTs dataset, we test the performance on struc-
tures with identical sequences (DS1) and containing similar ligands
(DS1.2) (Fig. 2d). Although the overall performance shown in Fig. 2d is
only fair, the performance on structures with identical sequences (DS1)
and similar ligands (DS1.2) shouldbemore akin toDS5 andDS6.Only for
one structural group, the wrong EC was predicted. This group con-
tained significantly more samples, skewing the results. This could be
due to the EC number not being a good representation of the function
in this case. The network predicted all non-chaperonin molecular cha-
peroneATPases (EC: 3.6.4.10) as histidine kinase (EC: 2.7.13.3); however,
by now, 9 of the 13 unique designations of sub-subclass 3.6.4 have been

moved to the Isomerase main class, showing how new understanding
can lead to changes EC assignment. Thus, the EC number of an enzyme
is not always the best representation of function and changes with
better understanding, leading to conflicting information in databases.

The poor performance for DS2 likely arises from this dataset
focusing on flexible NMR structures. Although we train the network
with some translational noise, this is different fromenzymemovements
captured inNMRensembles. Aswedidnot train onNMRensembles, the
network did not learn about such movements. Next, we tested a set of
structures with different physicochemical properties (DS3) and differ-
ent shape properties (DS4) of the binding sites. The performance is low
indicating that our networks do not understand changes in local
chemistry and shape if they have not seen these changes before. In DS5
andDS5.2 (including phosphate binding sites), we test the classification
of proteins that bind to identical ligands and cofactors. As we trained
without the presence of ligands, we expect the network to performwell
here evenwithout any ligandbias. InDS6,we test a set of structureswith
distant relationships between protein binding sites but identical ligands
that have a similar environment; DS6.2 additionally includes cofactors.
In DS7, the recovery of known binding site similarities within a diverse
set of proteins is tested. The networks perform well on DS5-7 (F1 score
>0.6), which all describe similar enzyme functions despite distinct
binding site environments, indicating that the networks are robust with
respect to function prediction in the context of a chemical environ-
ment. A full overview of the performance on the Price and ProSPECCTs
datasets for all tested network types is given in Supplementary Fig. 8.

The network learns from an interplay of chemical interactions
and local shapes
Since we decoupled the overall shape from the enzyme function by
using a fold split along with the localized 3D descriptor, the network
learns from local shape motifs. To scrutinize this, we analyzed our
networks using a modified version of GNNExplainer56, a model-
agnostic tool for investigating graph neural networks. As we already
identify the subgraph structure best describing the enzyme function
(binding pocket), we replace the subgraph identification with a soft-
mask method adapted from GNNExplainer, since we only aim to qua-
litatively describe residue or atom importance. The softmask method
is expected to learn the relative importance of each node to the pre-
diction. First, we applied GNNExplainer to the TopEC network trained
on AlphaFold2 structures with a fold split using only Cα positions of
residues and the CSA dataset. Thereby, we correctly predict 232
functions for all four EC hierarchies. The correctly predicted subset is
used for GNNExplainer to obtain the node importance, which is nor-
malized and mapped onto each residue, providing an overview of
importanceper residue (Fig. 3a and Supplementary Fig. 9). For aspartic
acids, glycines, and threonines, binding site and catalytic residues are
identified to be more important. Yet, important residues are not lim-
ited to the binding site, as seen for cysteine, phenylalanine, proline,
and tryptophan. Glycine is the most important residue across all
quartiles. Since we only consider the Cα positions, glycine is the che-
micallymost completely described residue in the network, whereas for
other residues side chain positioning may be critical.

To test the influence of chemical information arising from the
local shape or expert chemical knowledge, we used the 364 enzymes
obtained from the CSA. The distribution of AUPR for each class is
shown in Fig. 3b. The distribution is broad at zero and one, because
there is often only one enzyme for a specific class in this dataset (295
classes over 364 enzymes). To test the influence of chemistry versus
shape, we computationallymutated all residues to alanine, which does
not alter the protein shape for the residue networks (Fig. 3c). We also
mutated only the catalytic residues to alanine (Fig. 3d). In both cases,
the network performance drops markedly. We tested how many resi-
dues we can randomly mutate before we lose chemical knowledge for
accurate predictions (Fig. 3e). While the average AUPR slowly
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decreases with more mutations, the median AUPR plummets as soon
as we mutate ~20% of the residues, indicating that local side chain
information is critical to the learningprocess. To test howmuchwecan
disturb the shape representation, we randomly translated residue
positions from 0.0 to 2.5 Å (Fig. 3f). Translations starting from 0.75 Å
decreasenetwork performance,which corresponds to a resolution of a
crystal structure of ~4.5 Å57.

For five correctly predicted threonine-tRNA ligase domains from
different PDB structures, catalytic residues are colored according to
the normalized importance from GNNExplainer (Fig. 3g, larger size
available in Supplementary Figs. 10–14). While the structures have the
same fold, the sequence similarity is ~35–60% over these five struc-
tures, except between 3UH0 and 3UGQ (100%, Supplementary
Table 2). In all five cases, residues on the colored β-strands are alter-
natingly important although the importance does not correspond to
the side chain orientation towards the substrate or not. The impor-
tance difference does increase with increasing distance to the

substrate, pointing to the relevance of local chemical information.
When testing residue stability using Luque58, Thermometer59, Con-
straint Network Analysis60, the AminoAcid Interactions webserver61, or
K-Fold62, we found no correlation between predicted importance and
residue stability (Supplementary Figs. 15–21). We have not checked for
conservation or connectivity as a reason for importance.

Overall, disrupting either local chemistry or shape decreases
network performance. In turn, network performance likely results
from an interplay between biochemical features, such as specific
interactions or conservedmotifs, and local shape, as well as atom type-
dependent features that are more difficult to reconcile with general
protein biochemistry understanding.

Classifying at the atom resolution improves the under-
standability of the neural networks
When using the Cα position in the local descriptor, information on the
position of side chain atoms is lost, as we only encode the Cα position

Fig. 3 | The importance of network nodes for the prediction at residue reso-
lution as determinedwith GNNExplainer. Each network node corresponds to the
Cα position of a residue. All structures are obtained from the PDB, and the residue
positions for catalytic sites are obtained from the catalytic site atlas (CSA). Binding
residue positions are obtained from the BioLiP database. All structures are pre-
dicted with the network trained on AF703 with a fold split using Cα positions for
each residue. PDB structures with ECs not seen in training are removed from the
dataset. a Importance of each network node for catalytic and binding residues
(blue) and other residues (gray) within the localized 3Ddescriptor (n = 232 catalytic
sites). The black bars represent the first and third quartiles, while the white dot
represents themedian value. b AUPR for all tested classes. The red diamond shows
themacro-averaged (unweightedmean) F1 score. Thedotted line shows themedian

score. c Similar to b, except all residues are mutated to alanine in the network.
d Similar to b, except all catalytic residues are mutated to alanine in the network.
e Themean and median AUPR as a function of the percentage of mutated residues
to alanine. The mutated residues are selected randomly. f The mean and median
AUPR as a function of random translation of atom positions. g Five correctly pre-
dicted threonine-tRNA ligases (EC: 6.1.1.3). The gray-colored sections are removed
from the protein when creating the localized 3D descriptor. The ligands are shown
in yellow. The color scale shows the importance as predicted byGNNExplainer. The
catalytic residues are pointed to and colored by importance. The confidence
indicates how certain our network is of the prediction. Source data are provided as
a Source Data file.
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of the backbone labeled with the amino acid type. Our analysis
revealed that specific Cα backbone positions were identified as critical
(Fig. 3g). However, these positions appeared to alternate without a
clear pattern. The alternation does not coincide with the direction of
residues in α-helices and β-sheets that point toward the binding site.
We could not link the identified positions to known chemical or bio-
logical expertise. This suggests for the Cα position in the local
descriptor that the model may rely on structural features not easily
interpretable with established biochemical knowledge. Alternatively,
the patterns might result from GNNExplainer highlighting noisy pat-
terns that arise from the complex interplay of graph features in the
network.

To investigate this further, we adapted GNNExplainer to investi-
gate a TopEC network trained on AlphaFold2 structures with a fold
split and the closest 150 heavy atoms to the binding center with the
same CSA dataset as in the previous section. The performance
decreases from 232 to 142 correct predictions when using the higher-
resolution atomistic descriptor. This drop likely reflects the increased
complexity of the graph representation, which could obscure the
signal for enzymatic function already encoded in the local 3D position
of the amino acid chain. For example, CLEAN achieves impressive
performance using only sequence information and the ESM base
model. Adding more atoms to the graph may introduce noise, making
it harder for the model to isolate functionally relevant features. We
tested the influence of the small binding site representation by pre-
dicting these 90 incorrect cases with residue resolution limited to the
positions in the atom resolution. For all 90, we did not obtain correct
predictions with this residue resolution model.

However, we do obtain interesting insights into the network’s
local properties. For correctly predicted enzymes, we found that bio-
logically relevant atoms, such as those participating in educt stabili-
zation and the catalytic reaction tended to have high importance
values. We exemplified this for three serine endopeptidases at residue
(Fig. 4a–c: left) and atomic resolution (Fig. 4a–c: right), repressor
LexA63, type 1 signal peptidase64, and GlpG65.

For repressor LexA (Fig. 4a) at residue resolution, residues around
the binding site are more important for the prediction. At atomic
resolution, Gly117 is of low importance, except for the backbone
interaction together with Asp 127 to form the oxyanion hole63. The
backbone and Oγ atoms in Ser119 together with Lys159 are important
for the prediction. Interestingly, the Nζ position of Lys159 is less
important than the hydrophobic side chain, which can result from the
hydrophobic packing interactions ofMet120 and Ile179 as described in
ref. 63. Conversely, the Sγ and Cε positions ofMet120 that pack against
the Lys159 side chain are considered important. By contrast, for Ile179,
the importance is low. One reason could be that the network did not
see the full side chain as some atoms were not part of the localized 3D
descriptor due to the cutoff or that the information is contained in the
neighboring Lys159 embeddings.

For type 1 signal peptidase (Fig. 4b), the catalytic Lys145 is the
most important residue, and its Nζ atom is themost important atom at
atom resolution. At atomic resolution, multiple serine residues with
importance values related to functional relevance are in an interaction
range to Lys145: Ser90 initiates the nucleophilic attack on the ligand
with its Oγ

64, which is found to be most important; the Oγ of Ser278 is
within range for hydrogen bonding with the Nζ of Lys145

64, although
only Cβ is found to be important; Ser88 is involved in oxyanion hole
formation64, which is concordant with the Ser88 side chain being
marked as unimportant. Phe133 is found to be highly important and is
in van der Waals contact with the Lys145 side chain. The Tyr143 Cγ, Cδ,

andCε atoms are also in van derWaals contact, with the first two atoms
being more important.

The rhomboid protease GlpG (Fig. 4c) is an interesting case, as
at residue level it is predicted as a translocase but at atom resolution
it is classified as a serine endopeptidase. This misclassification

highlights the importance of decoupling the overall fold from the
catalytic interactions, as this serine endopeptidase is found within
the membrane but is not a translocase65. The Ser201 Oγ interacts
with His254 through a strong hydrogen bond65 characterized as the
most important interaction by the network. His254 also stacks on
Tyr205, which is considered important for the function of the
dyad65. Gly199 is found to be important, too, and contributes to the
oxyanion binding65. Asn154 is positioned too far away to form a
catalytic triad instead of a dyad65; its Oδ1 and Nδ2 atoms are classified
as less important, although the rest of the side chain is found to be
important. Interestingly, depending on the context of the reaction,
this asparagine can participate in catalysis, which can explain the
importance of the nonpolar side chain atoms. Asn154 is also in the
interaction range with His14565, indicating why His145 is classified as
more important.

One limiting aspect of the importance explanation is separating
atoms participating in catalysis and binding from the rest of the
localized 3D descriptor. The importance range for non-catalytic and
-binding atoms is broadly distributed (Supplementary Fig. 23). Still, the
high importance of catalytic and interacting atoms agrees with expert
knowledge. To understand this finding, we looked at the importance
distribution for the most common catalytic residues in the CSA
(Fig. 4d). We show howmany atoms we have seen for every explained
residue type. We grouped and colored the residues by type, charged
(blue), polar (red), aromatic (yellow), and hydrophobic (purple). The
residues in the last group are usually not associated with catalysis,
however, they can serve as scaffolding residues in some catalytic
reactions. Hence, theymay bemarked as important for catalysis in the
CSA. The distribution for the other catalytic residues is shown in
Supplementary Fig. 23. Although the importance distribution varies
considerably, the network lays more importance on atoms partici-
pating in catalytic reactions. For histidine, importance values are
higher for the Cε1, Nδ1, andNε2 atoms; for aspartic acid, this is so for the
Oδ1 and Oδ2 atoms and for glutamic acid for Oε1 atoms; unexpectedly,
Oε2 of glutamic acid is less important. The difference between Nδ1 and
Nε2 atoms in histidine could arise from its different positions in the
imidazolyl ring and the respective role in enzyme function66–68. In
arginine, the Cζ position is more important than the Nη1 or Nη2 atoms,
which might indicate that the Cζ embedding is updated from the
location of the Nη1 and Nη2 atoms. Furthermore, the Cζ atom often
participates in π-stacking interactions69. For lysine, besides the Nζ

atoms, the Cα, Cβ, Cδ atoms are important, which can participate in
hydrophobic interactions70; Cε and Cγ also participate in hydrophobic
packing, although found not to be important by the network. This
could be because the position of the side chain, and thus the hydro-
phobic packing, is already largely defined by the positions of the Cβ

and Cδ atoms. In tyrosine, the Cζ and Oη atoms are the most impor-
tant ones; Oη can be involved in hydrogen bonding and change the
protonation state. For serine, we expected to see more importance
on Sγ andOγ atoms. The absencemight be explained due to the small
residue size, as other atom positions are close enough to share
embedding updates.

We also obtained the importance for each catalytic and binding
residue for all cases wrongly predicted at atomistic resolution
(Supplementary Fig. 24). The importance of side-chain atoms is
generally higher than for backbone atoms. However, the importance
is less prominent for the interacting atoms than in the correctly
predicted results. Using the importance results for a refinement step
with a learning objective of matching the importance of atoms
participating in catalysis according to experiment may improve the
predictive performance but this remains to be tested. This might
lead to a closer match of importance prediction and function pre-
diction performance, which might be useful for finding and
designing new enzymes and deciphering how enzyme function
prediction networks learn.
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Overall, these results show that within catalytic and binding resi-
dues, the atoms most often involved in catalytic reactions are more
important for prediction, indicating that the networks at atomic
resolution can learn important information from specific chemical
interactions. We are not able to test if this improvement in under-
standability is due to amore increased focus on the binding site rather
than a result of including additional heavy atoms. Using random
binding site locations, we will not get correct predictions to measure
the explainability of the catalytic atoms. Using the full protein at ato-
mistic resolution is not possible with the current GPUs and this model.

Discussion
Our method presents several significant advantages and accomplish-
ments in the realm of structure-based enzyme function prediction.
First, wemanaged to significantly improve EC classification prediction
(F-score: 0.72) without fold bias at residue and atomic resolutions.
Importantly, our approach eliminates the need for abstraction of the
3D structure, that way preserving intricate details of the binding site
region. Second, we trained networks that can classify both experi-
mental and computationally generated enzyme structures for a vast
functional space (>800 ECs). Notably, the model proves robust to

Fig. 4 | The importance of network nodes for the prediction at atomic resolu-
tion as determined with GNNExplainer. Each network node corresponds to the
atom position within a residue. The network model is trained and tested on the
same data as in Fig. 3a–g. a–c Three examples of serine endopeptidases are shown,
on the left, the structure and importance as determined from theCα position of the
residues, on the right, the importance at atom level for residues involved in sub-
strate binding as extracted from literature. a Repressor LexA, the catalytic Ser-Lys
dyad (Ser119, Lys159), oxyanion hole (Asp127, Gly117) and hydrophobic packing
residues (Ile179, Met120) are shown. b Signal peptidase I with a beta-lactam inhi-
bitor (1PN) in complex. The network did not see the ligand. The Ser-Lys dyad
(Ser90, Lys145) is shown along with the rest of the binding site residues.

c Rhomboid protease, the catalytic Ser-His dyad (Ser201, His254) is shown along
with the rest of the binding site residues and the stabilizing waters as purple
spheres. d The importance for all heavy atoms within the most frequent catalytic
and binding residues from the CSA (Asp, His, Arg, Glu, Ser, Tyr, Lys). The bar plot
shows how many atoms we have seen for every explained residue type (n = 142
catalytic sites). The other catalytic residues are shown in Supplementary Fig. 22.
The importance of all non-catalytic and non-binding residues is shown in Supple-
mentary Fig. 23. The box plot shows the interquartile range with the median indi-
catedbya horizontal line. Thewhiskers represent theouter 25%of data pointswhile
the dots are the outliers. The confidence indicates howcertain our network is of the
prediction. Source data are provided as a Source Data file.
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uncertainties in binding site locations, ensuring reliable performance.
Lastly, the localized 3Ddescriptor optimizesmemory consumption for
3D atomistic graphs and is suited for per-atom explainability, allowing
for in-depth interrogation and revealing the significance of an atom or
residue position in the prediction process. While sequence-based
methods such as CLEAN can perform slightly better (F-score: 0.74),
TopEC offers an alternative structural view. It has been shown that
sequence-based methods can be less sensitive71–73. TopEC here offers
an alternative tool to the enzyme function prediction toolbox, because
the networks are robust with respect to function prediction in the
context of a chemical environment.

To achieve these results, we implemented a localized 3D
descriptor to improve structure-based enzyme function prediction
with GNNs. Using the localized 3D descriptor reduces fold bias and
lowers the computational requirements compared to using the full
enzyme structure. Still, the localized 3D descriptor becomes too
memory intensive on an Nvidia A100 40 GB GPU when including
more than the nearest 150–200 atoms around the binding site for
training, reaching training speeds of 2.5 s per iteration using a batch
size of 256. With datacenter GPUs that will contain more GPU
memory and faster memory bandwidth, this shall become less of an
issue. The GPU requirement is only an issue for training newmodels.
For generating predictions with trained models, no specialized
hardware is needed.We tested the predictive speed on aworkstation
with an Intel Core I7-10700 @ 2.90 GHz using residue-based and
atomistic graphs. We can predict 100 samples with 150 nodes in only
a few seconds. Full details on the performance are available in
Supplementary Table 4.

The applicability of the localized 3D descriptor depends on find-
ing the location of thebinding site.With randombinding site locations,
the network performancedrops.Notably, using contemporarybinding
site prediction tools, the network performance remains similar to
using experimentally determined binding sites. Furthermore, we
showed (Supplementary Fig. 3) that it is sufficient that the binding
information is contained within the localized 3D descriptor by
increasing the size of the randomly selected binding site locations.
Additionally, deepneural networks as usedhere are generally robust to
some noise in the dataset. A possible future solution could be a two-
stage network: As GNNs learn to recognize local regions at residue
resolution using the full enzyme object, one could use such networks
as input for a higher-resolution, more localized enzyme object. This
would allow us to create a network where fold information is not dis-
carded, while it still distinguishes local molecular recognition infor-
mation in the second stage.

We included AF2 structures in the TopEnzyme database to obtain
more samples (>200kenzymes) over a large functional space (>5.800EC
classifications, 703 EC classifications with >50 structures). Although
generally these models are of good quality, using them will introduce
noise, as AF2 can overestimate the quality of its models6 and produces
lower-quality models with shallow MSA74. Using predicted enzyme
models may lead to focusing on a single conformational state only, i.e.,
theonemost likely represented in the PDB3. This can reduce thenetwork
information, as we would only see atoms for a specific molecular
recognition from these static objects. By contrast, in the PDB, an enzyme
can be represented in multiple conformational and binding states. On
the other hand, information from the PDB might suffer from ambi-
guities, e.g., when an inhibitor is crystallized with an enzyme or enzyme
variants in which catalytically relevant residues have been mutated are
deposited albeit labeled with the EC number of the functional enzyme.
Recent methods such as AlphaFlow75 or MSA tuning76,77 would allow for
the creation of databases with multiple conformations for an enzyme
basedonvarious states of proteins. Trainingmethodson suchdatabases
might improve the predictive quality.

Our results highlighted the importance of eliminating fold infor-
mation with fold splits for the sake of generalization capabilities, even

though it decreases network performance compared to when fold bias
remains included. Decoupling fold information from function is also
important for downstream tasks involving small local changes, such as
in enzyme engineering. There are tools available for inferring enzyme
function from general sequence, fold, or evolutionary information78.
Although they are frequently successful, these methods may also
propagate errors in biological databases: Recently, a study79 showed
that enzymes with EC 1.1.3.15 have beenmisclassified by suchmethods
because, for certain sequences, a deviation in local structural features
influences the function. Overall, this points to the need for a method
such as TopEC that can discard global enzyme information and learn
from local information.

Finally, we aimed to scrutinize how our networks learn informa-
tion on enzyme function and what we can infer from it. We used
GNNExplainer, which calculates for a GNN how important each node is
for the prediction.We simulate the removal of chemical information at
nodes with nodemasks. As in our model graph, edges are constructed
based on the neighborhood radius and not on chemical bonds, gen-
erating an explanation for graph edges would not be interpretable in
terms of the underlying chemical system. Thus, we disregarded edge
information in our analysis.

At residue resolution, GNNExplainer reveals no differences
between binding and non-binding residues related to expert knowl-
edge based on the residues’ role in function. By contrast, when clas-
sifying at atomic resolution, which contains side chain information on
molecular recognition, GNNExplainer shows large differences for
atomswithin catalytic residues. Usually, the importance distribution of
interacting atoms in catalytic residues is shifted to higher values. These
results highlight the importance of including side chain positions in
the graphs.

These results demonstrate howwe can improve structure-based
enzyme function classification with GNNs. An important contribu-
tion is the localized 3D descriptor, which allows us to reduce fold
bias and reduces computational costs, allowing us to classify at
higher resolution. Furthermore, the inclusion of predicted enzyme
models allows us to cover a larger functional space and increases
prediction performance. Finally, current explainable AImethods can
be used for 3D graphs to understand how the network learns,
revealing that this involves an interplay of biochemical features,
such as specific interactions or conserved motifs, and local shape-
dependent features.

TopEC should be a useful tool to add to the bioinformatics
toolbox, especially for challenges where decoupling function from
fold is important. E.g. TIM barrel structures have different functions
because important residues are located on loops. TopEC could be
used to investigate the importance of loop residues and make pre-
dictions based on the local chemistry. TopEC might also be a good
tool for enzymes created by divergent evolution. Since these
enzymes reach a similar function from different scaffolds, we should
be able to classify the function if we have seen it before in different
enzymes. Furthermore, TopEC can be used to screen for new
enzymes in silico, e.g., by steering directed evolution methods to
generate new enzymes from previous scaffolds, using TopEC to
predict the change in function. Lastly, TopEC offers an alternative
method for EC prediction. Our tool offers a structural view, trained
specifically for cases where the enzymes might be similar in
sequence and fold but different in function. This is important as
many enzymes can evolve their function across enzyme hierarchies
with minute changes to the structure and sequence. While the exact
error rate of annotations in current databases is unknown, we have
over 30million predicted enzyme functions in the TrEMBL database.
These are mainly predicted by sequence-based methods. With the
advent of high throughput structure generation, TopEC can com-
plement such predictions and possibly lower the error rate of EC
annotations.
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Methods
Data sources and enzyme classification annotation
The enzyme structures used for the networks come from various
sources. Crystal structures are obtained fromboth the BindingMother
of All Databases (Binding MOAD, release 2020)39 and the Protein Data
Bank (PDB)2. From the Binding MOAD, we obtained 21,333 experi-
mentally determined enzyme structures with an identified binding site
and enzyme classifications. From the PDB, we obtained all structures
submitted before 23 March 2022 where at least one chain has an
enzyme classification. We do not separate the PDB structures into
multiple chains, such that our localized descriptor includes informa-
tion on the local chemistry from nearby chains. Furthermore, for
computationally generated structures, we used the TopEnzyme data-
base (release 2022)6. We developed this database to create a link
between UniProt IDs, enzyme classifications, and known structures for
enzymes.We removedDNA chains and only kept ATOM recorddata to
reduce the file sizes. Crystal structures obtained from the Binding
MOAD are prefixed with “BM_” before the PDB identifier. Crystal
structures obtained from the PDB contain no prefix. Computational
structures obtained from the AlphaFold2 DB7 are prefixed with “AF2_”
followed by the UniProt identifier. Computational structures gener-
ated by TopModel5 are prefixed with “TopM_” followed by the UniProt
identifier.

Data partitioning
When studyingmain class classification, we use all obtained structures
with an enzyme annotation. In the hierarchical classification experi-
ments, we follow the procedure fromDeepFRI12: we remove all enzyme
classes with less than 50 structures to have sufficient samples for a
training, validation, and test split. Training, validation, and test ratios
were kept to approximately 80%/10%/10% for all splits. To test our
networks in realistic use cases, we test two different data splits. First,
we used a temporal data split, where the structures are partitioned by
the deposition date in the PDB. In the case of the computational
structures, there is no PDB deposition date. Instead, we use the
deposition date of the homolog. In the case of the AlphaFold2 DB
structures, we have no access to theMSA alignment or homologs used
in model creation. For these structures, we do not perform a temporal
data split. Second, we used a fold split. Using MMSeqs280, we cluster
the sequence for each structure with a minimum sequence identity of
30%. Any cluster containing multiple enzyme classifications is sepa-
rated by EC number. When we obtain three or more clusters per
enzyme classification, we separate the clusters over the training, vali-
dation, and test sets. When we obtain two clusters, one cluster is used
for the test set, while the other one is divided over the training and
validation set. For enzyme classifications with only one cluster, we
divide the structures such that we keep the 80%/10%/10% ratio. For
each data split a.csv file is added to the repository (see “Data avail-
ability”) for reproducibility. Furthermore, the repository contains a
single.csv file with metadata for each enzyme used in this study.

Binding sites
For crystal structures obtained from Binding MOAD, the binding site
location based on experimental evidence is included. For crystal
structures from the PDB and computationally generated structures
fromAlphaFold2, we find the binding sites with P2Rank. For structures
generated with TopModel, we follow a different protocol, exploiting
information from the homologs used in the modeling. First, we
superimposehomologswith bound ligands and aTM-align81 score >0.5
to themodeled structure. Second, we filter for common crystallization
ligands and ligands not present in the bindingMOAD. Third, the ligand
locations in the homologs are then transferred to the modeled struc-
ture as binding site locations. The locations are ranked by the number
of overlapping ligands. We take only the top 1 location as this gave the
best performance. TopEC extracts the local region around the binding

site from the protein structure within the network. This allows for full
customizability of the extracted region without having to edit PDB
files. Currently, three methods are implemented: (1) No cutting. The
full enzyme object is used in the network. This option will lead to
crashes on large networks if the GPUmemory is too small (<40GB). (2)
Circular cut. Every residue or atom within a configurable radius from
the given binding site center is kept. (3) Count cut. The selection of
atoms or residues is expanded from the closest to the furthest away
from the binding site center until a defined number of atoms or resi-
dues is reached. Users can add custom extraction routines without
having to make changes in the network code. An example of introdu-
cing a custom routine is given in the README file of the repository.

Atom and residue annotation
To distinguish the chemical space among atom and residue types,
respectively, we annotate each atom or residue based on the ff19SB
forcefield from AMBER82. We furthermore extend this for heavy atoms
and hydrogens into 21 annotations for residues, 31 annotations for
heavy atoms, and 20annotations for hydrogens.Weplanned touse the
hydrogen positions for classification, however, decided against it to
reduce memory consumption. Nevertheless, we kept the imple-
mentation available for users. The annotations are listed in Supple-
mentary Table 3.

Graph neural networks
The largest difference compared to typical Graph Convolutional
Neural Networks (GCNN) is the implementation of the radial Bessel
filter (RBF) in SchNet andDimeNet++ and spherical Fourier Besselfilter
(SBF) in DimeNet++ (Fig. 1a), which encode the relative distances and
angles between atoms in these message-passing networks. In SchNet,
the atom positions are embedded in the network while RBFs are used
to update the atomic representation based on themolecular geometry
in the interaction blocks. The embeddings are passed throughmultiple
interaction blocks before reaching a linear layer (also known as a fully
connected layer) and a shifted Softplus activation layer before dropout
and classification. In DimeNet++, the embeddings are updated in
multiple interaction blocks, where each block passes the resulting
embedding to an output block that transforms and sums up the out-
put. The outputs of all embedding and interaction blocks are summed
up to generate the prediction. Both models calculate probabilities for
enzyme functions to be in a specific EC class represented by four
hierarchical numbers.

SchNet. We created a SchNet implementation for proteins. Originally,
SchNet was developed as a deep learning architecture for modeling
quantum interactions in molecules18. SchNet introduced continuous
filters that do not rely on discretized atom positions. Here, we briefly
explain the method according to Schütt et al.18. Given a feature
representation of n objects Xl = xl1, . . . , x

l
n

� �
with xl

i 2 RF at locations
R= r1, . . . , rn

� �
with ri 2 RD, the continuous-filter convolutional layer l

requires a filter-generating function Wl : RD ! RF that maps from a
position to the corresponding filter values. The output xl + 1

i for the
convolution layer at position ri is then given by:

xl + 1i =
X

j

xl
j °W

l ri � rj
� �

ð1Þ

We use a similar molecular representation as described in Schütt
et al. We describe n atoms with specific atom types Z = Z 1, . . . ,Zn

� �

and atomic positions R = r1, . . . , rn
� �

, which can be described as a tuple
(xl

i = Zi, ri
� �

) of features Xl = xl1, . . . , x
l
n

� �
with xl

i 2 RF . Furthermore,
Schuett et al. introduced atom-wise layers, which recombine the fea-
ture maps. These are dense layers that are applied separately to the
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representation xli of atom i, with bl being the atom-wise layer:

xl + 1
i =Wlxl

i +b
l ð2Þ

The filter-generating networks used in the continuous-filter con-
volutional layer in Schuett et al. are restricted to satisfy rotational
invariance conditions.The rotational invariance isobtainedbyutilizing
interatomic distances dij = k ri � rj k expanded with a radial basis
function:

ek ri � rj
� �

= exp �γ k dij � μkk2
� �

ð3Þ

located at centers 0Å≤μk ≤ 30Å every 0.1 Åwith γ = 10 Å. Thedistances
are fed into dense layerswith a softplus activation to compute thefilter
weights W ri � rj

� �
.

DimeNet++. In DimeNet, equivariant directional embeddings are intro-
duced by Gasteiger et al.19. DimeNet and DimeNet++ were originally
developed for modeling quantum interactions in molecules similar to
SchNet. Directional information associated with angles
α kj, jið Þ =ffmkmjmi is leveraged when aggregating the neighboring
embeddingsmkj ofmji. Each atom i receives a set of incomingmessages
mji,

P
j2Ni

mji, and updatesmessagemji based on the incomingmessage
mkj . The update function for the message embeddings then becomes:

m l + 1ð Þ
ji = f update ð4Þ

where e jið Þ
RBF denotes the radial basis function as shown in Eq. (3). In

DimeNet++, improvements are made to the directional message pas-
sing blocks in the architecture20. The bilinear layer for transformation
between the basis representations e jið Þ

RBF , α
kj, jið Þ
SBF , and the embeddings

mkj are replacedby aHadamardproduct. To compensate for the loss in
expressiveness, multilayer perceptrons are introduced for the basis
representations.

Model training and hyper parameter tuning
Similarly, as in Gligorijević et al.12, the neural networks are trained to
minimize theweighted cross-entropy loss function, which gives higher
weights to EC terms with fewer training examples:

l x, yð Þ= L= l1, . . . , lN
� �T , ln = �

XC

c= 1

ωclog
exp xn, c

� �

PC
i= 1exp xn, i

� � yn, c ð5Þ

where x is the input, y is the target, ω is the weight, C is the number of
classes, and N spans the minibatch dimension. Hyper-parameter
optimization is performed using theOptuna sweeper83 availablewithin
the Hydra framework84. The Hydra framework allows the creation of
simple configuration files for experiments with complex settings. The
search space for Optuna is configured to perform a grid search within
the parameter space. To avoid overfitting, we use an early stopping
criterion with a validation/accuracy patience of 10. That is, we stop
training the networks if the accuracy on the validation set does not
increase after 10 epochs. As hyperparameter trends tend to generalize
to new datasets85,86, we perform the optimization on the networks by
combining the BindingMOAD andTopEnzymedata to reduce the time
spent on hyperparameter optimization. This dataset covers both
experimental and computational structures with accurate binding
sites. We use the Adam optimizer with lr =0.001, β1 = 0.9 and
β2 = 0.999. We randomly translate atom positions by 0.05 Å in the
training set to improve the networkperformance. Thedropout is set to
0.25. In the SchNet implementation, we use a six-layer network with
128 graph embeddings and filters. The hidden embedding size is set to
128.We use 50Gaussians with 32maximumneighbors per node. In the
DimeNet++ implementation, we use 128 graph embeddings with a
hidden embedding size set to 128. A total of seven spherical harmonics

and six radial basis functions are used to build the Fourier-Bessel filters
as described in Gasteiger et al. The network consists of four building
blocks (embedding + interaction blocks) where the basis embedding is
eight and the interactionblockembedding is 64.Within the interaction
block, the size of the output embedding is 256. The batch size varies
permethod, from the smallest to the largest localized 3Ddescriptorwe
can increase the graph size hundred-fold.Weuse thehighestbatch size
in a geometric sequence with a common ratio of two fitting alongside
the model on an Nvidia A100 40 GB GPU. The entire method has been
implemented using the PyTorch87, PyTorch Lightning88, and PyTorch
geometric89 libraries.

GNNExplainer. As described in Ying et al.56, GNNExplainer generates
an explanation of important nodes for the correct classification by
identifying the most influential subgraph and subset of node features
in the model prediction. As we already identify the subgraph structure
best describing the enzyme function (binding pocket), we forgo this
step in GNNExplainer. To generate an explanation, GNNExplainer
learns an edge mask M and a feature mask F by optimizing the fol-
lowing objective function:

I y, ŷ
� �

+α1 Mj jj j+α2H Mð Þ+β1 ð6Þ

where l is the loss function, y is the original model prediction, ŷ is the
model prediction with the edge and featuremask applied.H is defined
as the entropy function (a detailed explanation is available in Ying
et al.). α1, α2, β1, β2 are tunable parameters. Higher α1 and α2 values will
make the explanation edge masks more sparse by decreasing the sum
of the edge mask and the entropy of the edge mask, respectively.
Higher β1 and β2 values will make the explanation node feature masks
more sparse by decreasing themean of the node featuremask and the
entropy of the node feature mask, respectively. We do not encode
edgemasks as our graph edges donot represent chemical bonds in the
system. Instead, we optimize the following objective function:

I y, ŷ
� �

+β1 ð7Þ

where the parameters are similar as in Eq. (6) with the entropy
function:

H = � FlogðF + cÞ � ð1� FÞlogð1� F + cÞ ð8Þ

where c is a small positive constant to avoid a log of 0.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw PDB files, a hierarchical data format (HDF5) of the structures,
source data for this paper, and the trained networks used in this study
are available in researchdata.hhu.de under accession code https://doi.
org/10.25838/d5p-6690. Source Data are available with this paper as a
Source Data file.

Code availability
All code is available at https://github.com/IBG4-CBCLab/TopEC under
a CC BY-NC-SA 4.0 license. The code is also deposited in researchda-
ta.hhu.de at https://doi.org/10.25838/d5p-6690 for archiving purposes,
to make the code citable and to improve reproducibility.
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