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Aberrant gene expression prediction across
human tissues

Florian R. Hölzlwimmer 1, Jonas Lindner1, Georgios Tsitsiridis1, Nils Wagner 1,2,
Francesco Paolo Casale1,3,4, Vicente A. Yépez 1 & Julien Gagneur 1,2,5,6

Despite the frequent implication of aberrant gene expression in diseases,
algorithms predicting aberrantly expressed genes of an individual are lacking.
To address this need, we compile an aberrant expression prediction bench-
mark covering 8.2 million rare variants from 633 individuals across 49 tissues.
While not geared toward aberrant expression, the deleteriousness score CADD
and the loss-of-function predictor LOFTEE showmild predictive ability (1–1.6%
average precision). Leveraging these and further variant annotations, we next
train AbExp, a model that yields 12% average precision by combining in a
tissue-specific fashion expression variability with variant effects on isoforms
and on aberrant splicing. Integrating expressionmeasurements from clinically
accessible tissues leads to another two-fold improvement. Furthermore, we
show on UK Biobank blood traits that performing rare variant association
testing using the continuous and tissue-specific AbExp variant scores instead
of LOFTEE variant burden increases gene discovery sensitivity and enables
improved phenotype predictions.

Aberrant gene expression, gene expression levels outside the physio-
logical range, is a frequent cause of diseases. Aberrant under-
expression of tumor suppressor genes and aberrant overexpression of
oncogenes are hallmarks of oncogenesis1,2. Moreover, aberrant gene
expression is a frequent cause of rare inheritable disorders3–8 and
contributes to risks for common disease-associated traits9.

Statistical methods to call expression outliers from RNA-seq
data10–13 applied to large cohorts have enabled investigating the
genetic basis of aberrant expression. Rare variants have been found to
be associated with expression outliers14. Specifically, rare variants
including rare structural variants and rare variants likely triggering
nonsense-mediated decay such as premature stop codons, frameshift,
and splice-disrupting variants are enriched among underexpression
outliers6,14,15. Moreover, rare structural variants, notably gene duplica-
tion, were found enriched among overexpression outliers14,15.

Building on these findings, algorithms have been developed to
prioritize which variants may be the genetic cause of an expression

outlier identified in an RNA-seq sample given thematched genome14,15.
However, there is no algorithm predicting aberrant expression caused
by genetic variants. A model predicting aberrant expression in multi-
ple tissues and generalizing to unseen variants could improve our
ability to identify high-impact rare variants in large genomic cohorts
which in turn would aid in the identification of disease-associated
genes and pinpointing disease-causal variants.

To address this unmet need, we here establish a benchmark for
rare-variant based prediction of aberrant gene expression across
human tissues (Fig. 1). While underexpression outliers can be assumed
to have strongly impaired or entirely lost function, the functional
consequence of an overexpression outlier is less clear, as it could as
well result in a gain of function.We therefore primarily focussed in this
study on underexpression outliers and developed AbExp, a machine
learning model predicting aberrant underexpression in multiple tis-
sues from an individual’s rare genetic variants. By integrating various
variant annotations with tissue-specific isoform proportions and
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expression variability, AbExp significantly outperforms other loss-of-
function annotators that were not explicitly developed for aberrant
underexpression prediction. We demonstrate how AbExp can be used
in rare-variant association testing as well as phenotype prediction on
the UK Biobank dataset using 40 blood traits. Finally, we show that
when gene expressionmeasurements from clinically accessible tissues
are available, AbExp scores can be integrated to improve the predic-
tion of aberrant expression in non-accessible tissues.

Results
A benchmark dataset of underexpression outliers across 49
human tissues
We first set out to predict which protein-coding genes are aberrantly
underexpressed in which tissues given an individual’s genome. We
focussed on protein-coding genes because they represent the vast
majority of transcripts implicated in human disease. Moreover, the
degradation mechanisms of messenger RNAs, which are strongly cou-
pledwith translationnotably via nonsense-mediateddecay, substantially
differ from the degradation mechanisms of non-coding RNAs, a very
heterogenous class of transcripts16 whose degradation involves a large
variety of mechanisms17–19. To this end, we created a benchmark dataset
using the aberrant expression caller OUTRIDER11 on 11,215 RNA-seq
samples with paired whole-genome sequencing data of the Genotype-
Tissue Expression dataset20 (GTEx v8), spanning 49 tissues and 633
individuals. For the whole-genome sequencing data, we selected GTEx
version 7 since, unlike for version 8, structural variant calls were avail-
able. Although the choice against GTEx version 8 reduced thenumber of
underexpression outliers by 20%, it allowed us to consider structural
variants, which are important determinants of aberrant expression15. In
each tissue,we restricted the analysis to all protein-coding geneswith an
average read-pair count of at least 450, an estimated minimal coverage
required to detect 50%-reduction outliers6. Overall, 18,171 protein-
coding genes out of 18,563 (97.9%) showed sufficient average coverage
in at least one tissue.

We defined a gene to be aberrantly underexpressed if OUTRIDER
reported a false discovery rate (FDR) lower than 0.05 and the
expression was lower than expected (Methods). We further removed
samples with more than 20 outliers since such a high number of out-
liers could reflect an unreliable fit of OUTRIDER due to technical rea-
sons, for instance low sequencing depth11, or biological reasons, for
instance an ancestry underrepresented in the cohort6. This exact cut-
off combination on FDR and on the number of outliers per sample was
selected among 12 possible combinations based on the generalization
performance of simple outlier predictors trained on established
outlier-associated features15 (Supplementary Fig. 1). Application of
these cutoffs led to a benchmark dataset of 11,200 underexpression
outliers occurring in 3240 genes and 10,999 samples (Supplementary
Fig. 2), amounting to nearly one underexpression outlier per sample
on average. With 99 million non-outliers in the dataset (gene-sample
pairs assessed by OUTRIDER but not identified as outliers), the pro-
portionof underexpression outliers is extremely low at just 0.01%. This
creates a highly imbalanced prediction task. A detailed overview of
dataset statistics including how many samples and genes remained
after each filtering step can be seen in Supplementary Table 1.

Integrating rare variant annotations to predict underexpression
outliers across tissues
We considered predicting aberrant expression for all 49 tissues for any
protein-coding gene from rare variants, here defined as variants
occurring in at most two GTEx individuals and with a gnomAD minor
allele frequency of less than 0.1%. We reasoned that above 0.1% minor
allele frequency, variants are unlikely to cause an expression outlier
since the average frequency across samples of underexpression out-
liers among genes with sufficient RNA-seq coverage is about 0.01%.
Following observations from Ferraro and colleagues15, we focussed on
single-nucleotide variants and short insertions and deletions located
within the gene and up to 5000bp around the gene to fully cover
promoter and transcription termination regions. Moreover, we

11,200 underexpression outliers

8.2 million rare variants

49 tissues

Precision versus Recall

a

b

Fig. 1 | Study design. a We aimed to predict whether protein-coding genes are
aberrantly underexpressed across 49 human tissues based on DNA and, optionally,
RNA-seq data of clinically accessible tissues. Therefore, we created a benchmark for
aberrant underexpression prediction by processing 11,215 RNA-seq samples from
633 individuals across 49 tissues from GTEx. This yielded 11,200 underexpression
outliers out of 99million assessable gene-sample pairs (0.01%). The violin plots are
cartoons qualitatively describing the signal we aim to model. b Assessing various

variant and tissue annotations, we found that predictions could be significantly
improved by weighting variant effects with tissue-specific isoform proportions and
incorporating the expression variability of a gene. Further integration of expression
measurements from clinically accessible tissues led to another two-fold improve-
ment. The precision versus recall curve is a cartoon depicting themain take-homes
of the study. Created inBioRender. Hölzlwimmer, F. (2025) https://BioRender.com/
n29t312.
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considered structural variants up to 1megabase 5’ of the gene15. We do
not exclude that some single nucleotide variants and short indels
could also have strong effects when located further than 5000bp of a
gene. However, we did not consider this class of variants because
sequence-basedmodels capturing distal enhancer effects are lacking21.

We first investigated whether existing variant annotation tools,
that were not developed for predicting aberrant underexpression,
showed informative signals. Among the variant consequences anno-
tated by Ensembl VEP, we found frameshifts, variants affecting start
and stop codons, and splicing variants to be strongly enriched among
underexpression outliers, consistent with previous reports6,14,15

(Fig. 2a, Supplementary Fig. 3). Variants including frameshifts, splice-
variants, and stop-gains, which introduce premature stop codons are
known tobe strongly enrichedwithin geneunderexpressionoutliers as
theseoften trigger nonsense-mediateddecay (NMD)14. LOFTEE is a tool
that predicts a high-confidence subset of loss-of-function associated
variants, notably variants likely to triggerNMD, by implementingfilters
such as removing stop-gained and frameshift variants that are within
50 bpof the endof the transcript, or variants that affect splicingonly in
UTRs22. In GTEx more than 23% of the aberrantly underexpressed

genes had a LOFTEE variant, compared to non-outliers that had a
LOFTEE variant in less than 0.1% of the cases (Fig. 2a).

Moreover, we hypothesized that the deleteriousness score CADD23

could also be predictive of aberrant gene expression. The advantage of
CADD, which was trained to distinguish between simulated de novo
variants and variants that have arisen and become fixed in human
populations, is that it provides a score for any variant.We found that the
median CADD score of rare GTEx variants was ~17 times higher among
underexpressed genes than among non-outliers (Fig. 2b).

Despite these enrichments, LOFTEE and CADD by themselves
showed limitedpredictive value. Using the sole LOFTEE-positive variants
recalled 23.2% of the underexpression outliers at a precision of 7.1%
(Fig. 2c). Besides a small spike to 11.6% precision at 0.2% recall, CADD
never reached the sameprecisionnor the samerecall as LOFTEE (Fig. 2c).
Next, we trained a non-linear model that integrated all the above-
mentioned features to quantitatively predict the OUTRIDER z-score
(Methods). Predicting the underlying quantitative z-scores turned out to
lead to better classifiers than directly predicting the binary classes of
outliers and non-outliers. Moreover, ranking based on the predicted z-
scores uniformly outperformed ranking based on CADD scores on held-

Fig. 2 | Integrating rare variant annotations to predict underexpression out-
liers across tissues. a Proportion of 11,200 underexpressed outliers (red), and
99,434,253 non-outliers (gray) with a rare variant of a given annotation (rows,
Methods). Error barsmark95%binomial confidence intervals. Notably, rare variants
likely to trigger nonsense-mediated decay are strongly represented in under-
expressed genes. b Distribution of CADD scores in different outlier classes. The
number of gene-sample pairs with a CADD score are labeled for each box.

c Precision-recall curve for all tissues combined. LOFTEE shows up as a single point
because it is a binary filter. d Distribution of average precision (AUPRC) across 27
GTEx tissue types (Methods). P values were obtained using a paired two-sided
Wilcoxon test. A non-linear model based on LOFTEE, CADD, and VEP annotations
significantly outperforms existing methods. For all boxplots: Center line, median;
box limits, first and third quartiles; whiskers span all data within 1.5 interquartile
ranges of the lower and upper quartiles.
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out data (Fig. 2c). The integrative model reached the same precision at
the same recall as filtering for LOFTEE variants with the added value of
providing a continuous score, thereby allowing for applying more
stringent cutoffs to yield ahigherprecision (up to 11%, Fig. 2c). Lastly, the
advantage of the integrative model over CADD and LOFTEE was
observed in aggregate (Fig. 2c) as well as across individual tissues
according to the average precision (measured by the area under the
precision-recall curve here and elsewhere, AUPRC, Fig. 2d).

Additionally, we adaptedWatershed, amethod that was originally
designed to identify themost likely variant responsible for anobserved
expression outlier, to fit our task15. Watershed is a Bayesian approach
that relies on strong modeling assumptions. In particular, Watershed
represents the outlier status as a categorical variable and models var-
iant features independently. Using the Watershed features, we found
that predicting tissue-specific z-scores with a non-linear model largely
outperforms the Watershed-derived outlier predictor (Supplementary
Fig. 4). Altogether, these investigations demonstrate that outlier pre-
diction benefits from a direct and quantitative treatment and from
flexible, non-linear machine learning models.

Accounting for tissue-specific isoform expression improves
predictions
By construction, the predictions of this first model were independent of
the tissue as neither the variant annotations nor the considered tran-
script isoforms were tissue-specific. However, since the transcript

isoforms of a gene are often expressed at different proportions across
tissues, variants can have tissue-dependent effects24. For example,
ENST00000358514, the canonical transcript of PSMB1025, was estimated
to generate only about 4% of PSMB10 total gene expression in putamen
(Methods). The vast majority (91%) of PSMB10 gene expression in
putamen was attributed to another transcript, ENST00000570985.
Conversely, in fibroblasts, the canonical transcript contributed to nearly
48% of the total gene expression. Exon 4 is not included in the transcript
ENST00000570985 but is included in the canonical transcript
ENST00000358514, explaining why a frameshift variant in exon 4 was
associatedwith a high impact on gene expression in cultured fibroblasts
but showed a limited effect in putamen (Fig. 3a, b).

Generally, we found that only 30% of the canonical transcripts
contributedmore than 90% of the total expression for their respective
genes and that asmuch as 18% of the canonical transcripts contributed
to less than 10% of the total expression for their respective genes
(Supplementary Fig. 5). Therefore, relevant information is lost when
considering the variant consequence assigned to a single isoform, even
if it is annotated as the canonical one. To address this issue, we cal-
culated the isoform composition in every tissue and weighted the VEP
consequences and LOFTEE classification of each variant by the pro-
portion of affected transcripts per gene and tissue (Methods). Training
the model using these tissue-specific weighted annotations increased
the average precision by 58% to reach 3.2% in median across tis-
sues (Fig. 4a).

Fig. 3 | Variants can have a tissue-dependent effect on gene expression.
a Sashimi plot of PSMB10 for two individuals, one carrying no rare variant in this
region (control, upper tracks), and one carrying a heterozygous frameshift variant
(dashed line and lower tracks), in cultured fibroblasts (top) and putamen (bottom).
The frameshift variant is located on exon 4 which is included on the canonical
transcript (ENST00000358514) but not on transcript ENST00000570985. On the
right, the bar plots show the transcript expression proportions on each tissue on
average across GTEx. In fibroblasts, the rare variant is associated with an

approximately 25% reduction of RNA-seq coverage in this window whereas in
putamen no major RNA-seq coverage change is observed. b Fold change of gene
expression against normalized gene expression rank for PSMB10 in fibroblasts and
putamen (basal ganglia) brain tissues. PSMB10 is an expression outlier (red) in
individual 2 in fibroblast but not in putamen, consistent with the rare variant trig-
gering nonsense-mediated decay and leading to a strong gene expression reduc-
tion in the tissue for which the exon 4-containing transcript is the major isoform.
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Incorporating the tissue-specific gene expression variability
further improves predictions
Similar toother statisticalmodels forRNA-seqdata,OUTRIDER includes a
measure of gene expression variability called the biological coefficient of
variation11,26. The biological coefficient of variation is used instead of the
plain coefficient of variation to account for sampling noise, which parti-
cularly affects low RNA-seq read counts26. In our benchmark dataset, the
biological coefficient of variation captures the expression variability of
genes per tissue across the GTEx population.We reasoned that the same
expression fold changes couldcauseanexpressionoutlier for agenewith
low expression variability but not for a gene with high expression varia-
bility. Indeed, we observed that the minimal fold-change among
expression outliers decreased with the biological coefficient variation
(Supplementary Fig. 6). Therefore, a given relative reduction in gene
expression can lead to aberrant expression in one gene or tissue but not
necessarily in another. For instance, a 30% reductionof the gene LTBP3 in
tibial artery expression resulted in an outlier. In contrast, a 30% expres-
sion reduction in blood ofOR2W3would not lead to an outlier asOR2W3

shows a very large gene expression variation in blood ranging between
10% and 230% (Fig. 4b). It is not surprising that OR2W3, one of the over
800 human olfactory receptor genes27 for which dysfunction is likely
benign, exhibits more expression variability than LTBP3, a gene whose
dysfunction is associated with dental anomalies and short stature28.

Next, we aimed to improve our underexpression outlier predictor
by adjusting for expression variability. We first considered modeling
expression fold-changes from variants and then converting the pre-
dicted fold-changes into a z-score, under the assumption that variants
affect gene expression fold-changes independently of the expression
variability. Using variants likely triggering NMD to test this assump-
tion, we noticed however that the same class of variants associated
with lower fold-changes among geneswith lower expression variability
(Fig. 4c, Supplementary Fig. 7), perhaps because genes with low
expression variability are subject to regulatory buffering
mechanisms29,30. Therefore, we opted for a more general modeling
approach in which the biological coefficient of variation is provided as
an input feature along with variant annotations to a non-linear model

Fig. 4 | Tissue-specific features improve the model prediction. a Left: Distribu-
tion of average precision (AUPRC) across 27 GTEx tissue types. P-values were
obtainedusing thepaired two-sidedWilcoxon test. AbExp combines various variant
and tissue annotations to predict aberrant gene expression and outperforms
LOFTEE by about sevenfold. Right: Precision-recall curve for all tissues combined.
b Fold change of gene expression against normalized gene expression rank for
LTBP3 in tibial artery, an autosomal recessive gene whose defect can lead to dental
anomalies and short stature28, and for OR2W3 in blood, an olfactory gene whose
defect should not impair the viability of an individual27. Expression outliers are
highlighted in red. LTBP3 is tightly regulated with a fold change range of ±20%
among non-outliers. The individual marked in red carries a heterozygous frame-
shift variant that associates with 30% reduction and which is detected as an outlier.

In contrast, OR2W3 shows very large variations where individuals with 30% reduc-
tions are not outliers. c Distribution of gene expression fold changes for 1295
underexpression outliers (red) and 20,655 non-outliers (gray) harboring a frame-
shift variant per decile of expression variability (biological coefficient of variation).
d Left: Proportion of underexpressed outliers (red; n = 2051), non-outliers (gray;
n = 2,749,843), and overexpressed outliers (blue; n = 1177) with a rare variant within
a certain distance of the transcription start site (TSS), normalized by the length of
each distance interval. Error bars mark 95% binomial confidence intervals. Right:
Distribution of Enformer scores in different outlier classes among rare variants
within a certain distance of the TSS. For all boxplots: Center line, median; box
limits, first and third quartiles; whiskers span all data within 1.5 interquartile ranges
of the lower and upper quartiles.
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predicting the z-score. Thismodel increased the performance bymore
than 63% to 5.0% average precision (median across tissues, Fig. 4a).
Altogether, these results show that gene expression variabilitymust be
taken into account when predicting aberrantly expressed genes, and
that predicting z-score rather than fold-change is more relevant for
variant interpretation.

Contribution of aberrant splicing variants, core promoter var-
iants, and structural variation
Aberrant splicing isoforms often contain a premature termination
codon and as a consequence, yet not always, are degraded by NMD31.
Our model already included splice site information, as it was based on
LOFTEE, CADD, and tissue-specific isoform weighting of VEP annota-
tions. However, these features ignored splice sites that are not part of
the genome annotations upon which these tools are built. We have
recently developed a model called AbSplice that predicts aberrant
splicing across tissues using amore comprehensivemapof splice sites,
including unannotated weak splice sites, and their tissue-specific
usage32. We found that AbSplice scores were inmedian 10 times higher
among underexpression outliers than among non-outliers (Supple-
mentary Fig. 8a). Integrating AbSplice scores significantly increased
the performance to 5.9% average precision inmedian across tissues. In
contrast, adding SpliceAI did not show any significant improvement
(Supplementary Fig. 8b), in agreement with AbSplice improving over
SpliceAI for predicting tissue-specific aberrant splicing32.

To better capture variants affecting transcription, we considered
Enformer33, a state-of-the-art deep learning model that predicts thou-
sandsof transcription-relatedgenome-wide assays including635CAGE
tracks of the ENCODE project, based on a 200-kb sequence context.
Building on previous work21, we mapped Enformer-predicted CAGE
tracks to gene expression for the 49 GTEx tissues with regularized
linear regression models (Methods). We found that using elastic net
models, rather than ridge regression, and modeling effects on cano-
nical isoforms, rather than on mixtures of tissue-specific isoforms,
resulted in the best median AUPRC across tissues (Supplementary
Fig. 9a, b). This Enformer-based model was predictive for expression
outliers in the correct direction but only in the close vicinity of the
transcription start site (−50bp to +200bp, Fig. 4d and Supplementary
Fig. 9c, d). On the one hand, this observationmay reflect the biology of
genetic determinants of aberrant expression, whereby variants with
extreme effects on gene expression may primarily lie in the core pro-
moter, which extends to 50bp on either side of the transcription start
site in eukaryotes34. Consistently, we found a higher proportion of
outlier-associated variants in the core promoter region, independently
of Enformer predictions (Fig. 4d). On the other hand, the poor preci-
sion of Enformer beyond this narrowwindow around the transcription
start sitemay reflect the difficulty that Enformer has in capturing long-
range effects21. Despite the strong enrichment in underexpressed
outliers, adding Enformer to the AbExp feature set increased the
median AUPRC only minimally to 6.0% across tissues, albeit
significantly.

We next considered the inclusion of structural variants over-
lapping transcripts (Methods). Transcript ablations, which could be
inferred in GTEx from the structural variant deletion calls, were espe-
cially predictive of underexpression. Overall, 33 out of the 43 GTEx
individuals harboring transcript ablations also showed an expression
outlier in at least one tissue. Including structural variants into the
model resulted in a large gain in precision among the top-ranked
predictions and increased the average precision to 10.2% in median
across tissues (Fig. 4a). We also considered structural variants up to 1
megabase 5’ of the transcription start site, which were enriched for
expression outliers in agreement with Ferraro et al.15 (Supplementary
Fig. 10a). However, as the integration of these variants did not lead to a
significant improvement (Supplementary Fig. 10b)we did not consider
the distant structural variants further.

In the following, we refer to the model which integrates all sig-
nificant features mentioned so far as AbExp. AbExp takes as input a set
of variants within 5000bp of any annotated transcript of a protein-
coding gene and returns a predicted z-score for each of the 49 tissues.
For user convenience, we furthermore suggest a high-confidence
cutoff (AbExp < −3.84) corresponding to 50% precision and 7.8% recall
on our benchmark data, and a low-confidence cutoff (AbExp < −1.64)
corresponding to 20% precision and 21.5% recall. The high-confidence
cutoff leads to about 1 positive prediction every 6 GTEx samples,
whereas the low-confidence cutoff leads to about 1.2 positive predic-
tions per GTEx sample, which is approximately the number of outliers
per sample (1.02). AbExp performs especially well in predicting the
impact of NMD-associated variants, outperforming other methods in
these thanks to a more effective ranking (Supplementary Fig. 11).
However, AbExp cannot reliably predict the impact of variants in
categories rarely associated with expression outliers in GTEx, such as
missense and UTR variants. Larger datasets and complementary
models will be needed to improve on these variant categories.

Although our primary focus was on predicting underexpression
outliers, we leveraged the fact that AbExp quantitatively predicts
z-scores to assess its performance for overexpression outliers (Sup-
plementary Fig. 12). We found that the performance for over-
expression outlier prediction was substantially lower compared to
underexpression outliers (median AUPRC 3.4% across tissues). By far,
the major predictive features were structural variants, yet Enformer
and isoform proportions also contributed significantly. Not surpris-
ingly, LOFTEE, CADD, AbSplice, and other loss-of-function associated
variant effects were not predictive for overexpression. These results
align with the variant category enrichments reported by Ferraro et al.,
which showed that duplications and variants near the TSS were the
only categories specifically enriched among overexpression outliers,
but not among underexpression outliers15. Altogether, these results
show that AbExp can also be employed for over-expression outlier
prediction, yet with a much lower performance than for under-
expression outliers.

AbExp replicates on independent datasets
We next assessed how AbExp performance replicated on two inde-
pendent datasets. The first dataset consisted of 295 individuals sus-
pected to be affected by a mitochondrial disorder6 with whole-exome
sequencing data paired with RNA-seq from fibroblasts. The second
dataset consisted of 233whole-genome sequencing sampleswith RNA-
seq from iPSC-derived motor neurons from the AnswerALS research
project35. Structural variant calls, and thus transcript ablation calls,
were not available on either dataset. Also, we did not compute Enfor-
mer scores due to computational constraints and its limited added
value for outlier prediction. Moreover, we observed that the recall for
allmethodswas twice as lowon theALSdataset than inGTEx and in the
mitochondrial disorder dataset (Supplementary Fig. 13), perhaps
because of poorer expression outlier calls, a stronger role of epige-
netic and trans-regulatory effects, or combinations thereof. Taking
these differences into account, our results on those two independent
datasets were in agreement with the evaluation on GTEx. We found
that AbExp without transcript ablation annotation significantly out-
performed LOFTEE and CADD by two to three times larger average
precision (Supplementary Fig. 13). Here too, AbExpwithout structural
variants and Enformer allowed for slightly better precision at the same
recall than LOFTEE filtering, while offering a continuous score allowing
for reaching much higher precisions.

One concern of having used the biological coefficient of variations
in the GTEx benchmark is that they were computed on the very same
RNA-seq data as those used to compute the ground truth expression
outliers. Nevertheless, including the biological coefficient of variation
computed on GTEx significantly improved the predictions on the
mitochondrial disorder dataset and was on par on the ALS dataset
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(Supplementary Fig. 13), showing that the biological coefficient of var-
iation contributes with independent information to outlier prediction.

AbExp prioritizes deleterious variants
Having established and independently validated AbExp as an aberrant
expression predictor, we next assessed its potential for identifying
deleterious variants. To this end, we first considered the capacity of
AbExp at distinguishing pathogenic from benign and likely benign
variants as reported in the ClinVar database (Methods). For each var-
iant, we retained the minimum AbExp score, i.e., the most impactful
underexpression prediction across all tissues. We found that AbExp
improved over CADD, LOFTEE, and AbExp without biological coeffi-
cient of variation in the high precision range with precision exceeding
99% up to 47% recall (Fig. 5a). However, at lower precision and higher
recall both CADD and LOFTEE outperformed AbExp.

One limitation of this benchmark is that ClinVar submitters are
using established bioinformatics tools including LOFTEE and CADD to
identify pathogenic variants, introducing a bias in favor of those tools.
To circumvent this issue, we next examined a dataset devoid of human

annotations that could indicate that AbExp allows prioritizing dele-
terious variants. Reasoning that more frequent variants in the human
population are less likely to be deleterious, we stratified all possible
variants within 5 kb of protein-coding genes into four frequency
categories: absent in gnomAD, singletons (found only once), rare
(more than once but less than 0.1%) or common (more than 0.1%).
AbExp was significantly and more strongly associated with these var-
iant categories than LOFTEE, CADD, and AbExp without biological
coefficient of variation (Fig. 5b). Moreover, focussing on variants
absent in gnomAD, AbExp high-impact variants were more sig-
nificantly enriched than alternative methods among highly genetically
constrained genes22, i.e., for those genes for which one can expect the
strongest phenotypic impact (first LOEUF deciles, Fig. 5c). Notably,
when the biological coefficient of variation was not accounted for in
AbExp, the relative enrichment on constrained genes was reduced
(Fig. 5c). This is consistent with our observation that more genetically
constrained genes showed lower expression variability (Fig. 5d),
aligning with previous findings in primates36. This interpretation was
also consistent when performing the enrichment analyses against

Fig. 5 | AbExp prioritizes deleterious variants. a Precision-recall curve of AbExp
(trained with and without using the biological coefficient of variation), CADD, and
LOFTEE on distinguishing pathogenic from benign and likely begin variants in
ClinVar. LOFTEE as a binarypredictor is shown as a single point. The dashed vertical
bars denote the high and low confidence cutoffs of AbExp. b Odds-ratio of high-
impact variants among 4,921,131,336 absent, 62,134,299 singleton, 38,474,061 rare
(MAF<0.1%), and 14,438,258 common SNVs in gnomAD for the models shown in
(a). The analysis is restricted to variants within 5 kb of protein-coding genes. Error
bars show Wald 95% confidence intervals from logistic regression fits. The high-

impact cutoffs for CADD and AbExp without BCV were set to match the quantile of
the high-impact cutoff of AbExp. c As in (b) among SNVs absent in gnomAD as a
function of gene LOEUF decile22. Genes with a high LOEUF aremore tolerant to loss
of function. Error bars as in (b). d BCV versus LOEUF across all genes and tissues.
The black line shows a running median between LOEUF and BCV highlighting the
two genes from Fig. 2d. The autosomal recessive gene LTBP3 has a low LOEUF,
denoting a low loss-of-function tolerance. In contrast, the olfactory gene OR2W3
has a high LOEUF, denoting a large loss-of-function tolerance.
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LOEUF for further allele frequency categories. At the extreme, com-
mon variants classified as high-impact by AbExp were depleted in the
first LOEUF decile and enriched in the last LOEUF decile (Supplemen-
tary Fig. 14). Intermediate behaviors were observed for singletons
(variants observed only once in gnomAD) and rare variants (non-sin-
gleton gnomAD variants with MAF <0.1%). Altogether, these results
indicate thatAbExp canbe used as an informative variant prioritization
algorithm.

AbExp improves rare variant association testing and phenotype
prediction
The rise of large exome-sequencing and genome-sequencing cohorts
empowers rare variant association testing (RVAT) which helps pinpoint
causal genes for traits37,38 and enables improved phenotype predictions,
particularly among individuals showing extreme phenotypes39. RVAT
consists of identifying genes within which the occurrence of likely high-
impact variants are associated with a trait40,41. To this end, accurate
prediction of high-impact variants can be advantageous, suggesting that
AbExpmay have the potential to improve RVAT. To test this hypothesis,
we considered 40 continuous blood traits including high-density lipo-
protein cholesterol, glucose, and urate levels (Supplementary Data 1)
from the UK Biobank 200k exome release42. We chose blood traits for
this proof-of-concept investigation since they are well-studied and fre-
quently measured to diagnose and monitor chronic disease conditions.
Moreover, RVAT methods are typically better calibrated on continuous
traits as opposed to binary traits43,44.

To ease comparisons between variant annotations, we used linear
regression as a common framework for rare variant association testing
(RVAT). As a realistic baseline, we considered RVAT based on LOFTEE
variants, similar to the Genebass study, a phenome-wide study lever-
aging UK Biobank data38. For this baseline model, gene-trait associa-
tion was tested by regressing the trait against the number of LOFTEE
variants. The second model leveraged that AbExp is both quantitative
and tissue-specific. To this end, we considered the lowest AbExp z-
score across all rare variants for each of the 49 tissues. The gene-trait
association was tested by regressing the trait against the resulting 49
values. Two further models were considered by regressing against the
minimum and against the median of the 49 values. To adjust for other
relevant factors and effects due to common genetic variation, all four
models included as covariates sex, age, the first 20 genetic principal
components, a polygenic risk score predicting the trait, and common
variants reported to be associated with the trait and located
250,000bp around the gene (Methods). We fitted everymodel on two
thirds of the dataset for gene-trait association discovery. Phenotype
permutation analysis indicated that all models were calibrated (Sup-
plementary Fig. 15).

UsingAbExppredictions for the49 tissues,we identified in total 30%
more gene-trait associations compared to the LOFTEE-based model
(Fig. 6a), showing that AbExp can significantly (P= 5.2 × 10−4) improve
RVAT-basedgenediscovery.Notably, association testingusing the tissue-
specific predictions outperformed aggregated forms of the AbExp score
in most cases by finding more gene-trait associations (Supplementary
Fig. 16). In some instances, we could rationalizewhich tissues showed the
most significant associations. This was the case for the gene encoding
Apolipoprotein B, a major constituent of triglyceride-rich lipoproteins
synthesized in the liver andwhosepredictedaberrantunderexpression in
the liver was found to be negatively associated with blood triglyceride
levels (Supplementary Data 2). However, the high correlation between
theAbExpscorespergeneacross tissues canmake theestimationof each
individual tissue-specific coefficient unstable, and, therefore, their
interpretation should be done with caution.

Having shown that AbExp can improve the gene-discovery sensi-
tivity of RVAT, we next assessed its utility in phenotype prediction. To
this end,weused the remaining thirdof thedatasetwhichwas not used
for gene-trait association discovery. Specifically, we fitted gradient

boosted trees models predicting the traits given the AbExp scores on
the one hand or the number of LOFTEE variants on the other hand, of
the genes discovered on the first two thirds of the data. Compared to
linear regression models, gradient boosted trees can capture non-
linear relationships through an ensemble of decision trees. These
models were controlled for sex, age, the first 20 genetic principal
components, and a polygenic risk score predicting the trait (Methods).
The predictions rarely differed between the common variant-based
model and the model further including AbExp scores of rare variants,
as exemplified for the Alanine aminotransferase blood levels (Fig. 6b).
For this trait, predictions for less than 0.5% of all individuals differed
between the two models by more than 1 standard deviation of the
population trait distribution (Fig. 6b). Remarkably, the trait values of
those differing individuals tended to deviate largely from the popu-
lation average, suggesting that the model integrating AbExp scores
especially improves the predictions of individuals with extreme phe-
notypes that common variants cannot explain (Fig. 6c).

On held-out data, the phenotype prediction model based on
AbExp scores significantly increased the amount of explained variation
(R²) over the model based on LOFTEE in 45% of the traits and never
significantly decreased R² (Fig. 6d). Considering the number of indi-
viduals differing by more than 1 standard deviation to the common-
variant basedmodel, the AbExp basedmodel improved the prediction
of 816 individuals across the 40 blood traits, while the LOFTEE-based
model only improved the prediction of 264 individuals (Fig. 6e).
Moreover, the advantage of using AbExp scores were similarly
observed when predicting phenotypes with regularized linear regres-
sion instead of gradient boosted trees (Supplementary Fig. 17a, b), yet
yielding less accurate phenotype predictions (Supplementary Fig.
17c). These results using regularized linear regression, amethodwhich
like gradient boosted tree allows for robust fitting compared to stan-
dard linear regression but that does not model non-linearities, further
confirm the added value of the tissue-specific predictions of AbExp for
rare variant association testing.

Altogether, these results show that AbExp provides useful variant
annotation for gene-trait association discovery by rare variant asso-
ciation testing and for building improved genetic risk scores.

Incorporating RNA-seq from clinically accessible tissues (CATs)
boosts prediction performance
RNA sequencing is becoming increasingly popular for rare disease
diagnostics as a complementary assay to genome or exome sequen-
cing as it allows the direct measurement of aberrant gene
regulation4–6,45–47. However, many rare disorders are suspected to ori-
ginate from tissues that can only be very invasively sampled such as the
brain or the heart. We and others6,48 have shown that clinically acces-
sible tissues (CATs), notably skin fibroblasts and to a lesser extent
whole blood, share a substantial fraction of expressed genes with non-
CATs and, therefore, are likely to capture aberrant expression occur-
ring in non-CATs. The GTEx dataset – a dataset of post-mortem sam-
ples – offers a unique opportunity to test the validity of this
assumption as it provides matched samples for CAT and non-CAT
tissues. We found that the mere ranking of genes according to their
OUTRIDER z-score in fibroblast RNA-seq samples led to an average
precision in predicting underexpression outliers in non-CATs of 20.1%
(median across tissues), significantly larger than the genome-based
predictor AbExp (10.1%, P = 1.6 × 10−6, Fig. 7a). Next, we developed a
model taking as input AbExp, whether the gene is expressed in a CAT
and, if so, its OUTRIDER z-score. Using RNA-seq from skin fibroblasts
to predict aberrant underexpression in all other tissues, this model
reached an average precision of 23.8% in median across tissues
(Fig. 7a). Consistent with previous work based on shared expressed
genes6,48 and our work on aberrant splicing prediction32, fibroblasts
turned out be more informative than whole blood (median average
precision 9.3% using RNA-seq only and 17.5% when integrating AbExp,
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Fig. 7b), owing tobloodexpressing less genes thanfibroblasts (See e.g.,
ref. 6). Altogether, we have established a method integrating direct
measurements of aberrant expression from RNA-seq data in a CAT
along with genomic variant annotations to predict aberrant under-
expression in other tissues. Doing so, we showed that integrating RNA-
seq from fibroblasts yields a substantial improvement as it doubles the
average precision over using genomic variants alone.

Discussion
Altogether, we established a benchmark dataset for aberrant gene
underexpression prediction in 49 human tissues, addressing an unmet
need in the area of high-impact variant effect prediction. We devel-
oped AbExp, a machine learning model predicting aberrant under-
expression across tissues by integrating existing variant annotations
with tissue-specific gene expression variability and transcript isoform

±
1
 S

D

Fig. 6 | AbExp improves rare variant association testing and phenotype pre-
diction. aNumber of genes associatingwith different traits using amodel based on
LOFTEE or AbExp. b Alanine aminotransferase level predicted using a model solely
based on common variants (y-axis) against predictions using a model based on
common variants and AbExp scores (x-axis). Individualswhose predictions differed
bymore than 1 standarddeviation of the population trait distribution aremarked in
orange. c Alanine aminotransferase measurements against predictions based on
common variants and AbExp scores. Orange data points as in (b). d Relative R²
increase between AbExp-based and LOFTEE-based predictions across traits. Traits

with a significant difference between both models are marked red (two-sided
paired t-test, nominal P <0.05). Error bars show the standard deviation among 5
cross-validation folds. e Positive bars show the number of individuals with an error
reduced by at least one standarddeviation in the trait scale and therefore improved
prediction, negative bars show thenumber of individualswith an error increasedby
at least one standard deviation in the trait scale and therefore worse prediction of
the AbExp-based model (green) and the LOFTEE-based model (gray). All data pre-
sented in (b–e) are computed on held-out folds of a 5-fold cross-validation within a
third of the UKBB data not used for the gene discovery shown in (a).
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composition. AbExp outperformed existing variant annotation tools
by up to 7-fold in average precision. Enhanced enrichments for
pathogenic variants and for variants not yet observed in gnomAD,
particularly among mutationally constrained genes, indicate that
AbExp is a promising tool for variant prioritization in clinical diag-
nostics. Using UK Biobank blood traits, we demonstrated that the
continuous and tissue-specific AbExp scores provide added informa-
tion over the state-of-the-art putative loss of function classifier LOFTEE
for rare variant gene association testing as well as for phenotype pre-
diction. Finally, we showed that AbExp scores can be combined with
gene expression measurements from clinically accessible tissues to
predict aberrant expression in other tissues yielding an increased
prediction performance by 2-fold over AbExp.

Refining the predictor, while our primary objective, also shed light
into the biology of underexpression outliers. We found that gene
expression variability plays a dual role in this context. On the one hand,
altering expression of a gene is more likely to result in an outlier if the
expression of the gene varies little in the population than if it varies
largely. On the other hand, each variant category was associated with
milder fold-changes for genes with lower expression variability, indi-
cating the involvement of regulatory mechanisms that confer robust-
ness to genetic perturbations. We modeled the outcome of these two
counteracting phenomena with a non-linear model trained from the

data. Future biophysical investigations unraveling these buffering
mechanisms could help improving the predictions andmore generally
improve variant interpretation. Our work also confirmed the impor-
tance of nonsense-mediated decay, which underpins a substantial
proportion of the outliers, and the need to take tissue-specific tran-
script isoform into account when interpreting splice-affecting and
nonsense variants as pioneered by Cummings and colleagues24.

This study has limitations. A basic assumption of AbExp is that an
underexpression outlier is caused by a rare variant. However, it is
possible that a rare combination of frequent genetic variants causes an
expression outlier. Also, damage caused by one variant might be
recovered by another variant, e.g., a second frameshift variant reco-
vering the frame after a first frameshift variant. AbExp does not eval-
uate combinations of variants, which would require more complex
modeling in particular by taking phasing into account. Moreover,
AbExp covers the variants up to 5 kb away from transcript boundaries,
missingmiddle-range and long-range enhancers. Integrating structural
variants located further 5’ of the transcription start did not lead to
significant performance improvement. Future work could expand to
distal variants, for instance if sequence-based models of gene
expression improved at this task21. Also, this work was focused on cis-
acting regulation by considering only variants located within or near
the genes. The effect of trans-acting gene regulation, which would

Fig. 7 | Combining RNA-seq measurements from clinically accessible tissues
with AbExp further improves the prediction performance. a Left: Distribution
per predictor (rows) of average precision (AUPRC) across 26 tissue types excluding
skin tissues (Methods). Center line, median; box limits, first and third quartiles;
whiskers span all data within 1.5 interquartile ranges of the lower and upper

quartiles. P-values were obtained using the paired two-sided Wilcoxon test. The
“Gene expression (CAT)” predictor ranks genes according to their OUTRIDER z-
score in fibroblasts RNA-seq data. Right: Precision-recall curve aggregated across
the sameGTEx tissues as in the left panel. LOFTEE asa binarypredictor is shown as a
single point. b as in (a) usingWhole blood as CAT and all other tissues as non-CAT.
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need a very different modeling paradigm than investigating here in
order to capture regulatory networks, remains to be addressed. Fur-
thermore, AbExp outputs a point estimate in the form of a predicted
tissue-specific z-score but it does not report uncertainty estimates.
Future work could expand the model to provide uncertainties in form
of variance estimates or confidence intervals which may help better
prioritizing variants.

The current recall remains modest. However, this can be an
underestimation of the true recall since it is unclear how many of the
outliers that we aim to predict are artifacts, due to mosaicism, non-
genetic causes, or because they are measurement errors. Moreover, it
is unclear whether a gene expression outlier is caused by a change of
transcript length or transcript abundance. Indeed, our outlier classifi-
cations are based on read counts across annotated exons, which may
include shorter transcripts among down-regulated outliers6. Given
that GTEx data relies on short-read sequencing, accurately determin-
ing transcript length is challenging. Perhaps the advance of long-read
RNA-sequencing will allow to disambiguate these cases in the future.
Finally, we have used here an outlier calling method that was applied
for each tissue separately and that could not leverage statistical evi-
dence across tissues. Future aberrant expression predictors may be
improved with better outlier calls.

The assessment of the improvements of AbExp for rare variant
association testing was somewhat underpowered. Many traits had less
than a handful of associated genes. Also we only analysed 200,000
whole exome sequencing datasets. The analysis of the latest UK Bio-
bank release for nealy half a million whole genome sequencing data-
sets, including structural variant calls, intergenic and deep intronic
variants has the potential to better leveraging AbExp predictions.

Predicting gene expression from sequence is a long-standing goal
of computational biology that is still far fromcompletion.While existing
sequence-based models of cis-regulation are trained across the whole
range of expression levels33,49,50, we have proposed here to focus on
extreme expression variations. Extremes may not well be captured by
models trained to globally predict gene expression, as evident from the
limited contribution of Enformer33 to our model. Also, the biological
mechanisms underpinning extreme expression variations may differ
from those governing moderate expression variations. However, the
relevance of extreme expression for clinical diagnostics and research is
high. We hope that the benchmark and algorithms we have developed
will foster further research in this direction and aid in the development
and validation ofmethods predicting the impact of large-effect variants
on the human transcriptome.

Methods
Ethics approval and consent to participate
No new data was generated for this study. The different ethics
approvals can be found in the corresponding publications (GTEx51,
AnswerALS35, mitochondrial disease6). The UK Biobank was approved
by the North West Multi-center Research Ethics Committee (21/NW/
0157). Our reference number approved by the UK Biobank is 25214. All
UK Biobank study participants gave written informed consent.

The research conformed to the principles of the Declaration of
Helsinki.

Consent for publication. All individuals included or their legal guar-
dians provided written consent to share pseudonymized patient data
and analysis data, as described in the original publications.

Underexpression outlier benchmark dataset
GTEx dataset. We downloaded the GTEx RNA-seq read alignment files
in the BAM format from dbGaP (phs000424.v8.p2). We excluded tis-
sues with less than 60 RNA-seq samples due to insufficient statistical
power11. This filter discarded bladder, endocervix, ectocervix, fallopian
tube, and kidney medulla, leaving 49 tissues.

Weobtained SNPs and small indels from theGTEx hg19 variant calls
from the file GTEx_Analysis_2016-01-15_v7_WholeGenomeSeq_635Ind_
PASS_AB02_GQ20_HETX_MISS15_PLINKQC.vcf.gz from the dbGap entry
phg000830.p1. Structural variants were obtained from Ferraro and
colleagues15.

Expression outliers. Gene expression outlier analysis was performed
following the aberrant expression module of DROP v1.1.052 based on
OUTRIDER11. To this end, we used as reference genome the GRCh38
primary assembly release 34 of the GENCODE project53. A fragment
(reads pair) was assigned to a gene if and only if both reads were entirely
aligned within the gene, allowing for fragments to be assigned to more
than one gene. On each tissue separately, genes with an FPKM less than 1
in 95% or more of the samples were considered to be not sufficiently
expressed in the tissue and filtered out, as previously described11. Since
the variants were aligned to the hg19 reference genome, whereas the
RNA-seq data was aligned to hg38, we lifted the gene expression counts
by their Ensembl gene IDs over to hg19, relying on GENCODE53 gene
mappings. Overall, the liftover had a minimal impact with only 76 out of
19,682genesand294outof87,748 transcripts thatcouldnotbemapped.

OUTRIDER is anexpression outlier caller that uses an autoencoder
to model RNA-seq fragment count expectations with a negative bino-
mial distribution. Specifically, OUTRIDERmodels the probability of the
observed fragment count xs,g for every gene g in a sample s as:

P xs, gjμs, g,θt sð Þ, g
� �

=NB xs, gjμs, g, θt sð Þ, g
� �

ð1Þ

where:
– µs,g is the expected fragment count
– θt(s),g is the dispersion parameter for the gene g in the tissue of

sample s t(s)

OUTRIDER further outputs:
– the biological coefficient of variation

BCVt sð Þ, g =
1ffiffiffiffiffiffiffiffiffiffiffiffi
θt sð Þ, g

q ð2Þ

– the log2-transformed fold-change of the observed fragment count
compared to the expected fragment count:

log2FC= log2 xð Þ � log2 μð Þ ð3Þ

– the nominal p-value

– the False Discovery Rate using the Benjamini-Yekutieli method54

The resulting table was subsetted to individuals with an available
whole genome sequencing and to protein-coding genes. Some of the
data points could not be detected as outliers due to lack of statistical
power. To reduce the proportion of these insufficiently powered data
points in our benchmark, we discarded observations with an expected
fragment count µs,g less than 450, a minimal value that was empirically
estimated to allow recovering half of the two-fold reduction outliers
transcriptome-wide upon a FDR cutoff of 5%6. We labeled as gene
expression outliers all observations with an FDR less than 5%. Lastly,
RNA-seq samples that containedmore than 20 outliers were discarded
because samples with numerous outliers may be samples for which
OUTRIDER could not adequately fit the data or for which gene
expression is globally affected, resulting in widespread expression
aberrations throughout the genome that cannot be predicted from
local sequence variation.
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OUTRIDER z-score computation. We quantile-mapped the
OUTRIDER-fitted negative binomial distributions (Eq. 1) to the stan-
dard normal distribution as follows:

z =CDF�1
N 0, 1ð Þ CDFNB xjμ,θð Þ� �

, ð4Þ

where CDF�1
N 0, 1ð Þ is the inverse cumulative distribution function of the

standard normal distribution and CDFNB xjμ,θð Þ the negative-binomial
cumulative distribution function.

Precision-recall. We evaluated models using precision-recall curves
due to the small proportion of outliers and summarized themwith the
area under the precision-recall curve (AUPRC) as implemented in
‘average_precision_score’ function of the scikit-learn package v1.3.2:

P =
TP

TP + FP

R=
TP

TP + FN

AP =
XN
n= 1

Rn � Rn�1

� �
Pn, ð5Þ

where TP is the number of true positives, FP is the number of false
positives, FN is the number of false negatives, and Pn and Rn are the
precision and recall at the nth top prediction. The AUPRC is the aver-
age precision for each cutoff weighted by the recall difference.

The averageprecisionwas computedon all held-out data together
on the one hand, and on held-out data for each of the 27 GTEx tissue
types on the other hand. The GTEx tissue types group together highly
similar tissues, notably many regions of the brain. By calculating per-
formancewithin tissue types instead of reporting highly similar tissues
separately, we avoid biasing our evaluation for overrepresented
tissue types.

Variant filtering, annotation, and gene-level aggregation
Filtering for rare high-quality variants. We considered a variant to be
rare if it had aminor allele frequency in the general population ≤0.001
based on the Genome Aggregation Database (gnomAD v2.1.1) and was
found in at most 2 individuals within GTEx. Variants had to be sup-
ported by at least 10 reads and had to pass the conservative genotype-
quality filter of GQ> 30. For structural variants, we only filtered for the
number of occurrences in the GTEx dataset (less than in 2 individuals).

Variant annotation with VEP and AbSplice. We used Ensembl VEP55

v108 to calculate variant consequences, LOFTEE loss-of-function
annotation, as well as CADD v1.6 scores. Tissue-specific aberrant spli-
cing predictions were generated with AbSplice32.

Definition of gene-level features. For each combination of gene,
individual, and tissue, we required a set of features to predict the
underexpression outlier label. Therefore, we constructed a set of fea-
tures starting from the annotations of the underlying rare variants.
CADD predictions were max-aggregated per gene across the rare
variants. For AbSplice, we kept the maximum absolute score in the
corresponding gene and tissue.

Isoform-specific variant annotations, namely LOFTEE and VEP
consequences, were aggregated differently depending on whether
isoform proportions should be taken into account. When disregarding
isoform proportions (i.e., the model “LOFTEE +CADD+con-
sequences”), we only incorporated variants affecting the canonical
transcript (canonical according to VEP). The genewas assumed to have
an annotation (LOFTEE classification and each VEP consequence, e.g.,

stop-gained) when any of the variants in the gene had this annotation.
Since the VEP canonical transcript does not differ between tissues, all
tissues end up with the same set of gene-level features for these
annotations.

For all models incorporating isoform proportions, isoform-
specific variant annotations were first weighted by the total propor-
tion of isoforms i in tissue t that they affect:

wv =
Xisoforms gð Þ

i

proportion i, tð Þ � δv affects; i ð6Þ

where δv affects i is 1 if the variant affects the isoform, otherwise 0, the
proportion of an isoform i in a tissue t was estimated as the median
TPM proportion across individuals among all isoforms of the same
gene g:

proportion i, tð Þ=medians2individuals
TPM i, t, sð ÞP

j2isof orms gð Þ TPM j, t, sð Þ

 !
; ð7Þ

and where TPM i, t, sð Þ is the transcript-level TPM obtained from GTEx
v8 (dbGaP Accession phs000424.v8.p2). All resulting variant annota-
tions were then max-aggregated per gene and tissue across variants.

Enformer variant effect prediction. We used Enformer33 to evaluate
the ability of deep-learning models to predict rare variant effects in
promoters. Given a transcript, we first extracted three 393,216 nt DNA
sequences, one centered at the transcription start site (TSS) and two
others shifted by 43 nt upstream and downstream of the TSS. Subse-
quently, Enformer was applied to each sequence, and we extracted
predictions for various subsets out of the 5313 human assay tracks on
the three central bins fromeach sequence.We denote p as the number
of selected tracks. To ensure that regulatory elements falling on bin
boundaries were accounted for, we averaged the predictions over the
sequence shifts k and central bins l:

uðseqÞ=meank2sequence�shifts, l2central�binsEðXðseq, k, lÞÞ ð8Þ
Here, the p-dimensional vector u seqð Þ contains the aggregated

Enformer scores over the central bins and shifts for all the p tracks, the
matrix X seq, k, lð Þ is the one-hot encoding of the shifted sequence k
centered on bin l, and E is the Enformer model. Since Enformer does
not directly predict RNA-seq coverage for GTEx tissues, we trained
different linear regression models (e.g., ElasticNet, Ridge) taking the
aggregated Enformer scores u seqð Þ defined above as input to predict
the expression level for each GTEx tissue averaged across all GTEx
individuals, as previously21.

Specifically, we introduced

yi, t := log10 1 +means2individual TPM i, t, sð Þð Þ� � ð9Þ

where t is the tissue, i is the transcript, TPM i, t, sð Þ is the transcript-level
TPM from GTEx v8 of individual s, and aimed at predicting yi, t linearly
from the aggregate scores. Hence, we modeled

yi, t =β
>
t log10 1 +u seqi

� �� �
+ ϵi, t ð10Þ

and estimated the coefficients βt with different regularized linear
regression schemes (e.g., ElasticNet, Ridge).

Having fitted this model, we now have a function

ŷ seq, tð Þ := β̂>
t log10 1 +u seqð Þð Þ ð11Þ

that predicts gene expression from sequence for each tissue. We
employed two different methods to obtain a variant effect score for a
given gene. First, we estimated the effect of the variant on the
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canonical transcript of the gene, if the variant was in close proximity to
its promoter, as follows:

score canonical g, v, tð Þ= ŷ alt, tð Þ � ŷ ref, tð Þ
log10 2ð Þ ð12Þ

Here, v is the variant of interest, t is the tissue, g is the gene of
interest, and alt and ref are the alternative and reference sequences of
the canonical transcript respectively. Second,weweighted all isoforms
of the gene by their isoform proportions, using the following score:

score weighted g, v, tð Þ= log2

Pisoforms gð Þ
i proportion i, tð Þ � 10ŷ alti , tð ÞPisoforms gð Þ
i proportion i, tð Þ � 10ŷ refi , tð Þ

ð13Þ
Here, v is the variant of interest, t is the tissue, g is the gene of

interest, alti and ref i are the alternative and reference sequences of
transcript i respectively, and isoforms gð Þ returns the isoforms of g that
are located in close proximity to the variant.

For each GTEx individual, tissue, and gene combination, we took
the signedmaximumabsolute variant effect across all relevant variants
as the variant effect score. Finally, we performed cross-validation to
optimize (1) the subset of Enformer tracks, (2) the linear model para-
meters (e.g., L1 and L2 regularization), (3) the variant-effect function
(i.e., weighted or canonical isoforms), and (4) the shortest interval
around the TSS, for which Enformer is predictive (Supplementary
Fig. 9).

Variant type enrichment in underexpression outliers
To obtain the proportion of underexpression outliers explained by
different classes of variants, we first identified the variant con-
sequences each gene-individual-tissue combination is affected by. We
then assigned each gene-individual-tissue combination to be caused
by the most impactful consequence among the following con-
sequences: Downstream variant, Inframe CDS (inframe deletion,
inframe insertion, missense variant), Intron, NMD-like (NMD escaping,
Frameshift, Start lost, Stop gained, Stop lost), Promoter (Upstream
gene variant), Splicing disruption (Splice acceptor/donor/region var-
iant), Structural ablation (Transcript ablation), Synonymous, UTR
(3’ UTR, 5’ UTR). The order of assignment was determined by per-
forming a Fisher’s exact test for each variant consequence against the
underexpression outlier class and ordering the classes by decreasing
significance. Afterward, the proportion of underexpression outliers
explainable by each variant typewas calculated (Supplementary Fig. 3).

Model training
All 633 individuals were split into six cross-validation groups with
approximately equal numbers of underexpression outliers and tissues.

The DNA-based models were trained to predict the OUTRIDER z-
scores. To this end, we used gradient-boosted trees56 from the
LightGBM57 framework with default parameters: boosting_type: gbdt,
learning_rate: 0.1, max_depth: -1, min_child_samples: 20, min_child_-
weight: 0.001, min_split_gain: 0, n_estimators: 100, num_leaves: 31,
reg_alpha: 0, reg_lambda: 0, subsample: 1, subsample_for_bin: 200000,
subsample_freq: 0.

For training the model integrating CAT RNA-seq data, the same
cross-validation scheme was used as for the DNA-based models while
excluding the CAT and highly related tissues thereof from the pre-
dicted tissues. When using fibroblasts as CAT, we excluded the non
sun-exposed suprapubic skin, sun-exposed lower leg skin, and cul-
tured fibroblasts. When using whole blood as CAT, we excluded whole
blood and EBV-transformed lymphocytes from the predicted tissues.
Unlike the DNA-based models, this model was trained to predict
underexpressed outliers using a logistic regression taking as input (i) a
binary variable indicatingwhether the gene is expressed in theCAT, (ii)

the OUTRIDER z-score of the gene in the CAT, (iii) the AbExp predic-
tion for the target tissue, and all 3 interaction terms between those 3
variables.

To compare Watershed with other machine learning methods,
we trained Watershed models using the following features: CADD,
LOFTEE (high-confidence), LOFTEE (low-confidence), 5’ UTR variant,
3’ UTR variant, downstream gene variant, intron variant, missense
variant, non-coding transcript exon variant, splice acceptor variant,
splice donor variant, splice region variant, stop gained, synonymous
variant, upstream gene variant, sift score, polyphen score. As the
dataset was too large to be fitted in total with Watershed, we sub-
sampled the non-outliers to ten times the number of outliers. This
change in class balance affects the posterior by constant but not their
ranking. Afterwards, we extracted the conditional probabilities P(Z |
G) instead of the standard posterior of P(Z | G,E) to predict the like-
lihood of an expression outlier on the validation folds. Z is the latent
variable, G is the vector of genomic annotations, and E is the outlier
status.

Replication in independent datasets
In the two replication datasets, variants were filtered for genotype
quality ≥30 and read depth ≥10 reads. Moreover, rare variants were
subsetted based on the gnomAD population with minor allele fre-
quency ≤0.001. Those high-quality and rare variants were used as
candidates for outlier prediction. Gene expression outliers were
obtained with OUTRIDER and filtered for a sufficiently large expected
number of fragments (µ > 450). Samples with more than 20 outliers
were removed.

The mitochondrial disease dataset6 consisted of 311 whole-exome
sequencing samplespairedwithRNA-seq fromfibroblasts. Afterfiltering,
this dataset contained 808underexpression outliers across 295 samples.
A detailed overview of how many samples, genes, etc. remained after
each filtering step can be seen in Supplementary Table 2.

For the amyotrophic lateral sclerosis (ALS) dataset, we down-
loaded 253 transcriptomes with matched whole-genome sequencing
data from https://dataportal.answerals.org35. RNA-seq measurements
were obtained from iPSC-derived spinal motor neurons. After filtering,
the dataset contained 653 underexpression outliers across 233 sam-
ples (195 cases and 38 controls). The corresponding overview of how
many samples, genes, etc. remained after each filtering step can be
seen in Supplementary Table 3.

Prediction of ClinVar pathogenic variants
To assess the efficacy of AbExp in distinguishing pathogenic from
benign variants, we annotated known pathogenic, likely benign, and
benign variants from the ClinVar databasewith both AbExp andCADD.
Importantly, we used the official CADD pipeline to annotate all var-
iants, including those with missing pre-computed scores. Variants
classified as both likely benign and benignwere retained solely as likely
benign within the dataset. Furthermore, for each variant, we retained
only the minimum predicted AbExp score across all tissues.

GnomAD variant enrichments
For all possible SNVs within 5 kb of 19,018 protein-coding genes, we
computedAbExp scoreswith andwithout using theBCV,CADD scores,
and LOFTEE high-impact loss of function annotations. High-impact
predictions of CADD and AbExp without BCV were identified by
matching score cutoffs to the quantile of the high-impact cutoff of
AbExp. Using logistic regression fits, we then computed the odds-ratio
of high-impact variants among absent, singleton, rare (MAF <0.1%),
and common SNVs in gnomAD for these models. Moreover, we cal-
culated odds-ratios for these variant types and methods as a function
of gene LOEUF decile. The loss-of-function observed/expected upper
bound fraction (LOEUF) scores were downloaded from https://
gnomad.broadinstitute.org/downloads.
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UK Biobank rare variant association testing and phenotype
prediction
We analyzed data from 200,593 European ancestry unrelated indivi-
duals in the UK Biobank (using field 22011 and labeled as Caucasian in
field 22006), all of whom had genotypes available from exome-
sequencing andmicroarrays as well as blood and urinemeasurements.
A detailed list of used phenotypes can be found in Supplementary
Data 3. For every trait, trait values were inverse rank normal trans-
formed, as in the Genebass study38.

Identification of lead trait-associated variants. To control for com-
mon variants in the vicinity of each gene, trait-associated variants were
obtained from the PanUKBB study58. Using plink v1.959, variants with a
p ≤0.0001 were clumped in a 250-kb window with an LD-cutoff of
r² < 0.5 to identify independent lead variants for every trait. The
imputed genotypes were then subsetted for these lead variants in a
250-kb window around each gene.

Application of polygenic risk scores. Polygenic risk scores were
selected from the study by Privé et al.60. if available and otherwise from
the study by Tanigawa et al.61. (SupplementaryData 3). Score files were
obtained from the PGS catalog database62 and applied to the imputed
genotypes using plink v2.063.

Calculation of AbExp and LOFTEE scores. The UKBB whole-exome
sequencingdatawas subsetted for variantswith aminor allele frequency
≤0.001 based on gnomAD v3.1.1 and filtered for genotype quality ≥30
and read depth ≥10 reads. The remaining variants were then annotated
using Ensembl VEP55 v108 with the LOFTEE plugin22 and AbExp.

Rare variant association testing. Gene association was tested using a
likelihood ratio test between a restricted linear regression model
containing only covariates and four linear regression models with
additional predictor variables as described in Table 1.

The following covariates were used for all models: sex, age, age²,
age times sex, age² times sex, the 20 first genetic principal compo-
nents (field 22009), lead associated variants in 250-kb window around
the gene of interest, and a polygenic risk scorepredicting the trait. The
polygenic risk scores and lead variants were based on the whole UK
Biobank dataset. This mild data leakage may have led to model over-
fitting. However, since these features were used as covariates in both
restricted and full models, the comparison between models remained
valid. P value calibration of the models was assessed by permuting the
phenotype once. Identification of significantly trait-associated genes
was performed on two thirds of the dataset.

Phenotype prediction. For the common-variant-based phenotype
predictionmodel, the following features were used: sex, age, age², age
times sex, age² times sex, the 20 first genetic principal components
(field 22009), and a polygenic risk score predicting the trait. In con-
trast to the rare variant association testing, we did not include lead
variants of the associating genes, as these would lead to a too large
number of predictor variables.

We compared two phenotype prediction models integrating rare
and common variants. Both are nonlinearmodels. To this end, we used
gradient-boosted trees56 from the LightGBM57 framework with default

parameters: boosting_type: gbdt, learning_rate: 0.1, max_depth: -1,
min_child_samples: 20, min_child_weight: 0.001, min_split_gain: 0,
n_estimators: 100, num_leaves: 31, reg_alpha: 0, reg_lambda: 0, sub-
sample: 1, subsample_for_bin: 200000, subsample_freq: 0. Both mod-
els include the same features as the common-variant based prediction
models. The AbExp phenotype prediction model further included the
AbExp scores of significantly trait-associated genes in 49 tissues, while
the LOFTEE phenotype prediction model included the number of
LOFTEE pLoF variants of significantly trait-associated genes. For each
trait, the two models can have a different set of significantly trait-
associated genes as identified by their corresponding RVATs. The
phenotype predictionmodelswere trainedwith 5-fold cross-validation
on the remaining third of the dataset. All evaluations were performed
on the hold-out folds.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
No primary data were generated for this study. Rare variants from
gnomAD v.2.1.1 are publicly available at https://gnomad.
broadinstitute.org. The GTEx v8 dataset is available under dbGaP
protection at https://gtexportal.org/home. The ALS dataset is available
at http://dataportal.answerals.org after a registration and approval
process. The gene expression counts of the mitochondrial disorder
dataset are published on Zenodo, as described by Yépez et al6.. Raw
data of the mitochondrial disorder dataset are not available because
the patient consent does not allow raw data to be shared. The UK
Biobank dataset is available at https://biobank.ndph.ox.ac.uk/ukb/
after a registration and approval process. We provide the aberrant
expression benchmarkdataset, isoformproportions, and the expected
gene expression inGTEx v8 as open-access in the Zenodo repository64.

Code availability
A Snakemake pipeline to calculate AbExp predictions can be found at
https://github.com/gagneurlab/AbExp65. The source code of Water-
shed adapted for underexpression prediction can be found at https://
github.com/gagneurlab/Watershed66. The source code for the UK
Biobank rare-variant association study and phenotype prediction can
be found in the following repositories: Main analysis pipeline: https://
github.com/gagneurlab/abexp-ukbb-trait-analysis67. Variant clumping:
https://github.com/gagneurlab/abexp-ukbb-variant-clumping68. Poly-
genic risk score calculation: https://github.com/gagneurlab/abexp-
ukbb-prs69.
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