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Abstract
Background  Differentiating chondroid tumors is crucial for proper patient management. This study aimed to 
develop a deep learning model (DLM) for classifying enchondromas, atypical cartilaginous tumors (ACT), and high-
grade chondrosarcomas using CT images.

Methods  This retrospective study analyzed chondroid tumors from two independent cohorts. Tumors were 
segmented on CT images. A 2D convolutional neural network was developed and tested using split-sample 
and geographical validation. Four radiologists blinded to patient data and the DLM results with various levels of 
experience performed readings of the external test dataset for comparison. Performance metrics included accuracy, 
sensitivity, specificity, and area under the curve (AUC).

Results  CTs from 344 patients (175 women; age = 50.3 ± 14.3 years;) with diagnosed enchondroma (n = 124), ACT 
(n = 92) or high-grade chondrosarcoma (n = 128) were analyzed. The DLM demonstrated comparable performance 
to radiologists (p > 0.05), achieving an AUC of 0.88 for distinguishing enchondromas from chondrosarcomas and 0.82 
for differentiating enchondromas from ACTs. The DLM and musculoskeletal expert showed similar performance in 
differentiating ACTs from high-grade chondrosarcomas (p = 0.26), with an AUC of 0.64 and 0.56, respectively.

Conclusions  The DLM reliably differentiates benign from malignant cartilaginous tumors and is particularly useful 
for the differentiation between ACTs and Enchondromas, which is challenging based on CT images only. However, 
the differentiation between ACTs and high-grade chondrosarcomas remains difficult, reflecting known diagnostic 
challenges in radiology.
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Background
Cartilaginous bone tumors, characterized by tumor cells 
that produce a chondroid matrix, are divided into benign 
enchondromas and malignant chondrosarcomas. Chon-
drosarcomas, the most common primary malignant bone 
tumors, are classified into various histological grades and 
subtypes [1, 2]. According to the World Health Organi-
zation classification system, Chondrosarcomas grade 
1, located in the appendicular skeleton, are now termed 
“atypical cartilaginous tumors” (ACT) [3]. While enchon-
dromas usually do not require any treatment, ACTs and 
chondrosarcomas necessitate curettage and/or wide 
resection [4]. Accurate classification of these tumors is 
therefore crucial for appropriate treatment.

The final diagnosis of cartilaginous tumors is based 
on a combination of clinical findings, histopathological 
results, and imaging studies, and is ideally performed at 
centers specialized in the treatment of musculoskeletal 
tumors [5, 6]. While biopsy remains essential in the diag-
nostic pathway of malignant cartilaginous tumors, the 
final diagnosis often relies on consensus reached through 
interdisciplinary tumor board discussions, integrating 
clinical history, histopathological findings, and radiologi-
cal assessments [7, 8].

Several studies have investigated imaging parameters to 
improve the differentiation, especially between ACTs and 
enchondromas [9–11]. Murphey et al. showed that cor-
tical destruction, periosteal reaction and endosteal scal-
loping (> 2/3 of cortical thickness) significantly increased 
the likelihood of an ACT compared to an enchondroma 
[12]. Nevertheless, radiological differentiation between 
enchondromas and ACTs remains challenging and highly 
variable depending on the radiologist’s expertise.

To improve diagnostic accuracy, a deep learning-based 
approach capable of precisely categorizing cartilaginous 
tumors as benign or malignant based on CT images only, 
may be useful for clinical routine. Recently, studies have 
shown that deep learning models (DLM) reliably assess 
and detect a variety of musculoskeletal diseases based on 
medical imaging data [13–15].

More recent studies have extended these findings by 
incorporating multimodal imaging approaches, such as 
combining X-ray, CT, and MRI, to enhance classifica-
tion performance [16]. Additionally, radiomics-based 
machine learning models have demonstrated promising 
results in distinguishing enchondromas from atypical 
cartilaginous tumors (ACTs) and low-grade chondrosar-
comas [17, 18].

Therefore, the aim of this study was to develop a DLM 
specifically designed to differentiate between enchondro-
mas, ACTs, and high-grade chondrosarcomas based on 
CT images.

Methods
Approval of the Institutional Review Boards had been 
obtained prior to this study (Institutional Review Board 
of the Technical University of Munich, approval num-
ber 393/20, and the Ludwig-Maximilian University of 
Munich, approval number 21–0282). Written informed 
consent was waived for this retrospective analysis of rou-
tinely acquired imaging and clinical data. All analyses are 
in line with the declaration of Helsinki.

Data sets
In this study we evaluated cartilaginous tumors on CT 
images of patients from two university hospitals (Tech-
nical University of Munich and the Ludwig-Maximilian 
University of Munich) treated between 2011 and 2020. 
These patients had a final diagnosis of either an enchon-
droma, an ACT or a high-grade chondrosarcoma and 
preoperative CT images available in the respective pic-
ture archiving and communication systems (PACS). The 
diagnoses were determined based on the consensus of the 
respective local interdisciplinary tumor board consisting 
of specialized pathologists, radiologists, and orthope-
dic tumor surgeons. Patients with enchondroma, ACT 
or high-grade chondrosarcoma of the hand or foot were 
excluded from this study. The internal dataset from the 
Technical University of Munich included 244 patients, 
divided using split-sample validation into training/valida-
tion/hold-out testing sets of 60% (n = 146)/ 20% (n = 49)/ 
20% (n = 49). The external test set using geographical 
validation was obtained from Ludwig-Maximilian Uni-
versity for further, independent testing with a total of 100 
(29.07% of the entire dataset) patients. In total, 344 CT-
imaging datasets were extracted of patients diagnosed 
with enchondromas (n = 124), ACTs (n = 92), and high-
grade chondrosarcomas (n = 128).

For comparison of diagnostic performance between 
radiologists and DLM, two radiologic residents with 4 
years of experience, one musculoskeletal fellow and one 
musculoskeletal attending radiologist with 10 and 30 
years of experience, respectively, classified the tumors of 
the external dataset.

Portable Network Graphics-files were extracted from 
Digital Imaging and Communications in Medicine files 
for further image processing. For the training dataset, 
segmentations of the tumors were performed by L.K. 
and F.G.G. and reviewed by a musculoskeletal fellow-
ship trained radiologist (A.S.G) using the open-source 
software 3D Slicer (version 4.7; www.slicer.org). The radi-
ologists were blinded to the histopathological and clini-
cal data. Segmentations were performed using the entire 
datasets and all slices on which the tumor was depicted. 
Figure  1 shows exemplary images of the segmentations 
of an enchondroma and an ACT. The image containing 
the largest tumor area was selected, followed by image 

http://www.slicer.org
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cropping around the tumor based on the segmentation 
mask provided by expert radiologists. Thus, a 2D model 
was designed for image analysis.

Model architecture and model training
A 2D convolutional neural network (CNN) was trained 
for classification. For hyperparameter selection, an 
empirical grid search has been performed, with each 
model being trained for 100 epochs. The final best 
model consisted of three convolutional layers of size 16, 
32 and 64, each followed by a max pooling layer with a 
stride of 2 × 2, ending in a fully connected layer of size 
128 followed by a single output neuron. Furthermore, 
an optimal learning rate of 0.001 and a batch size of 32 

have been identified. Convolutional and pooling layers 
featured a kernel size of 3 × 3. Labels of 0.0, 0.5 and 1.0 
were assigned to the three classes, reflecting the increase 
in severity. The mean squared error loss was used for 
optimization.

Statistical analysis
Calculations of model metrics and model evaluations 
were performed using Stata version 18.0. The perfor-
mance of the models was evaluated with the area under 
the curve (AUC) obtained from the receiver operat-
ing characteristic (ROC) analysis on both the validation 
set and the independent hold-out test set. Furthermore, 
final model performance was evaluated using accuracy, 

Fig. 1  Axial CT Images of patients with an enchondroma (A, B) and a high-grade chondrosarcoma (G2) (C, D) with (B, D) and without the respective 
segmentations (A, C)
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sensitivity, specificity and AUC on the independent test-
set as defined previously [19]. For performance compari-
son McNeil’s test was used, and statistical significance 
was defined as p < 0.05. Model training and evaluation 
was performed by D.L. (5 years’ experience in data analy-
sis) and S.B. (12 years’ experience in data analysis). The 
intra- and interreader agreement of CT readings was 
assessed with Fleiss’ κ. To assess the intrareader reliability 
of the tumor segmentations, ten patients were randomly 
selected from the internal data set. One radiologist (L.K.) 
repeated the segmentations three months after the initial 
segmentation, blinded to the previous results. Segmenta-
tions were compared using the dice score.

Results
Patient characteristics and data sets
This study included 344 patients (mean age 50.3 ± 14.3 
years; 175 women). There were no significant differences 
in age (p = 0.33) or sex (p = 0.36) between the internal and 
external datasets. Based on the consensus of the inter-
disciplinary tumor board, the internal dataset comprised 
108 patients (44%) with enchondromas, 58 patients (24%) 
with ACTs, and 78 patients (32%) with high-grade chon-
drosarcomas. The external dataset included 16 patients 
(16%) with enchondromas, 35 patients (35%) with ACTs, 
and 49 patients (49%) with high-grade chondrosarcomas. 
Patient characteristics are summarized in Table 1.

In total, 101 tumors (29.4%) were located in the upper 
extremity, 130 tumors (37.8%) in the lower extremity, 
62 (18%) in the pelvis, and 61 (17.7%) in the remaining 
trunk.

Performance of the DLM and the radiologists on the 
external test set
For comparison of diagnostic performance, the DLM as 
well as the four radiologists performed an analysis of the 
external test set. All results are summarized in Table 2.

Differentiation enchondromas vs. chondrosarcomas (G1 - G3)
The DLM achieved a sensitivity, specificity, and accu-
racy of 97.0%, 32.4%, and 75.0% with an AUC of 0.88 for 
the differentiation between benign and malignant car-
tilaginous tumors on CT images. The overall sensitiv-
ity, specificity, accuracy of the residents’ readings were 
92.4%, 47.1%, and 77.0%, and 92.4%, 67.6%, and 84.0%, 
respectively, with AUC values of 0.81 and 0.89. For the 
fellowship trained radiologist and the musculoskeletal 
attending radiologist, the overall sensitivity, specificity, 
accuracy were 98.5%, 64.7%, and 87.0%, and 97.0%, 76.5%, 
and 90.0%, respectively, with AUC values of 0.91 and 
0.93. There was no significant difference found between 
the performance of the DLM and the musculoskeletal fel-
lowship-trained radiologist (p = 0.19). Figure 2 shows the 
ROC analysis for the differentiation between benign and 
malignant chondroid tumors.

Differentiation enchondromas vs. ACTs
For the differentiation between enchondromas and ACTs 
the DLM achieved an overall sensitivity, specificity, and 
accuracy of 91.3%, 32.4%, and 56.1% with an AUC of 
0.82. The overall sensitivity, specificity, and accuracy of 
the residents’ readings was 95.7%, 47.1%, and 66.7%, and 
91.3%, 67.6%, and 77.2%, respectively, with AUC values of 
0.81 and 0.87. The fellowship trained radiologist and the 
musculoskeletal attending radiologist achieved an overall 
sensitivity, specificity, and accuracy of 95.7%, 64.7%, and 
77.2%, and 95.7%, 76.5%, and 84.2%, respectively, with 
AUC values of 0.87 and 0.92. There was no significant 
difference between the performance of the DLM and the 
four radiologic readers (p = 0.96, 0.33, 0.41, and 0.82). 
Figure  3 shows the ROC analysis for the differentiation 
between enchondromas and ACTs.

Differentiation ACTs vs. high-grade chondrosarcomas
Regarding the differentiation between ACTs and high-
grade chondrosarcomas the DLM achieved a sensitiv-
ity, specificity, and accuracy of 53.5%, 60.9%, and 56.1% 
with an AUC of 0.64. The overall sensitivity, specific-
ity, and accuracy of the residents’ readings were 55.8%, 
52.2%, and 54.5%, and 55.8%, 52.2%, and 54.4%, respec-
tively, with an AUC of 0.53 and 0.54. The overall sensi-
tivity, specificity, and accuracy of the fellowship-trained 
radiologist and the musculoskeletal radiology attending 
were 95.3%, 30.4%, and 72.7%, and 86.0%, 26.1%, and 
65.2%, respectively, with AUCs of 0.63 and 0.56. No sig-
nificant difference was found between the performance 
of the DLM and the musculoskeletal attending radiolo-
gist (p = 0.26). Figure 4 shows the AUC curve for the dif-
ferentiation between ACTs and enchondromas.

Table 1  Patient characteristics
Internal 
dataset
(n = 244)

External 
dataset
(n = 100)

All
(n = 344)

p-
value

Sex
  Women 128 47 175 0.36
  Men 116 53 169
Age [years] 49.8 ± 14.6 51.5 ± 15.3 50.3 ± 14.8 0.33
Grading
  Enchondroma 108 16 124 < 0.001
  ACT 58 34 92
  HGCS 78 50 128
ACT = atypical cartilaginous tumor; HGCS = High-grade Chondrosarcomas
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Inter-observer and intra-observer reliability
The inter-observer reliability was substantial to almost 
perfect for all criteria (κ = 0.76–1.00) and the intra-
observer reliability was excellent (κ = 0.87–0.96), respec-
tively. The dice score for the intrareader reliability was 
0.97.

Discussion
The differentiation of chondroid tumors, especially 
between enchondromas and ACTs, is challenging on CT 
images yet crucial for determining appropriate therapeu-
tic treatment and ensuring optimal patient outcomes. 
ACTs require a curettage as well as clinical and imag-
ing follow-ups, whereas enchondromas typically do not 
require surgical intervention, unless symptomatic, and 
less frequent follow-ups. Therefore, this study aimed to 
develop a DLM for differentiating benign, intermediate 
and malignant chondroid tumors on CT images, compar-
ing its diagnostic performance with that of radiologists. 

The DLM demonstrated a comparable performance to 
the experienced musculoskeletal radiologists.

To our knowledge, this is the first study showing the 
feasibility of using a DLM for the differentiation of chon-
droid tumors. In the past several studies have evaluated 
the diagnostic value of different imaging features for the 
differentiation of chondroid tumors [9–11]. Murphey et 
al. showed that cortical destruction, periosteal reaction, 
and endosteal scalloping (> 2/3 of cortical thickness) sig-
nificantly increase the likelihood of a chondrosarcoma 
compared to an enchondroma [12]. Additionally, Crim et 
al. and Douis et al. identified tumor size, cortical break-
through, periosteal reaction and matrix calcifications as 
key differentiating criteria [9, 10]. Nevertheless, differen-
tiating enchondromas from ACTs radiologically remains 
challenging and varies with the radiologist’s expertise.

In our study, we used CT images for development of 
the DLM, although MRI can provide additional infor-
mation. A recent study demonstrated that both CT and 
MRI show suggestive signs which can help to adequately 

Table 2  Performance parameters of the four readers and the deep learning algorithm for the differentiation between enchondromas 
vs. chondrosarcomas (G1-G3), enchondromas vs. acts as well as acts vs. High-Grade chondrosarcomas on the external dataset
Enchondromas vs. Chondrosarcomas (G1 - G3)

Resident 1 Resident 2 Fellowship Expert Algorithm
Accuracy 0.770 0.840 0.870 0.900 0.750
Positive Predictive Value 0.772 0.847 0.844 0.889 0.736
Negative Predictive Value 0.762 0.821 0.957 0.929 0.846
Sensitivity 0.924 0.924 0.985 0.970 0.970
Specificity 0.471 0.676 0.647 0.765 0.324
Balanced Accuracy 0.697 0.800 0.816 0.867 0.647
F1-Score 0.841 0.884 0.909 0.928 0.837
AUC 0.810 0.891 0.910 0.932 0.884
Enchondromas vs. ACTs

Resident 1 Resident 2 Fellowship Expert Algorithm
Accuracy 0.667 0.772 0.772 0.842 0.561
Positive Predictive Value 0.550 0.656 0.647 0.733 0.477
Negative Predictive Value 0.941 0.920 0.957 0.963 0.846
Sensitivity 0.957 0.913 0.957 0.957 0.913
Specificity 0.471 0.676 0.647 0.765 0.324
Balanced Accuracy 0.714 0.795 0.802 0.861 0.618
F1-Score 0.698 0.764 0.772 0.830 0.627
AUC 0.812 0.872 0.868 0.919 0.816
ACT vs. High-Grad Chondrosarcoma

Resident 1 Resident 2 Fellowship Expert Algorithm
Accuracy 0.545 0.545 0.727 0.652 0.561
Positive Predictive Value 0.686 0.686 0.719 0.685 0.719
Negative Predictive Value 0.387 0.387 0.778 0.500 0.412
Sensitivity 0.558 0.558 0.953 0.860 0.535
Specificity 0.522 0.522 0.304 0.261 0.609
Balanced Accuracy 0.540 0.540 0.629 0.561 0.572
F1-Score 0.615 0.615 0.820 0.763 0.613
AUC 0.525 0.541 0.630 0.561 0.637
Reader 1 and 2 = residents; Reader 3 = fellowship trained radiologist; Reader 4 = musculoskeletal attending radiologist; AUC = area under the receiver operating characteristic. 
curve
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differentiate enchondromas from ACTs in long bones. 
However, these features are rare, and a combination of 
CT and MRI features does not substantially improve the 
diagnostic performance [20].

Previous studies have shown the feasibility of using 
DLMs to differentiate between benign and malignant 
musculoskeletal tumors across various imaging modali-
ties. Von Schacky et al., Liu at al., and He et al. devel-
oped CNN-based DLMs for the classification of benign, 
malignant, and intermediate primary bone tumors on 
radiographs in cohorts of 934, 643, and 1536 patients, 
respectively, achieving an AUC of up to 0.916 [15, 21, 
22]. Several deep learning methods have been developed 
for detecting and classifying bone tumors using CT and 
MR images. For instance, a DLM based on radiomics 
in CT images and clinical parameters for discriminat-
ing between benign and malignant sacral tumors in 459 
patients achieved an AUC of 0.83 [23]. Another DLM 
by Eweje et al. based on routine MR images and patient 
demographics achieved for the classification of benign 
and malignant bone lesions an AUC of 0.79 [24]. The 

performance of our DLM, with an AUC of 0.88 for differ-
entiating between enchondromas and chondrosarcomas 
and an AUC of 0.82 for differentiating between enchon-
dromas and ACTs, is comparable to those previous stud-
ies [23, 24].

In this study, a 2D CNN was employed, optimized via a 
mean squared error loss function, to facilitate the differ-
ential diagnosis of chondroid tumors utilizing CT data. 
The performance of the model, as demonstrated by the 
AUC scores, closely paralleled the diagnostic accuracy of 
experienced musculoskeletal radiologists. Such compa-
rable efficacy across distinct patient cohorts underscores 
the potential of the model for generalization, an essential 
criterion for clinical translatability. The incorporation 
of this DLM into the diagnostic protocol may offer sub-
stantial clinical value, particularly as a supportive tool for 
radiologists with varying levels of expertise or experts in 
other fields aside from oncological or bone imaging. It 
can act as a supplementary computational consultation, 
thereby streamlining the diagnostic process and poten-
tially impacting patient management strategies. Future 

Fig. 2  ROC-Analysis of the radiologists and the algorithm for the differentiation of enchondromas and chondrosarcomas (G1-G3). Reader 1 and 2 = res-
idents; Reader 3 = fellowship trained radiologist; Reader 4 = musculoskeletal attending radiologist; ROC = receiver operating characteristic; AUC = area 
under the curve
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research could explore model refinement through the 
integration of multimodal imaging variables and relevant 
clinical parameters.

While this study utilized a 2D CNN for tumor clas-
sification, future research could explore the potential 
advantages of 3D CNN architectures. A 3D CNN could 
leverage volumetric information from CT scans, poten-
tially enhancing feature extraction and improving clas-
sification accuracy [25]. Prior studies have demonstrated 
that 3D deep learning models can be beneficial in various 
medical imaging tasks, particularly for segmenting and 
analyzing complex anatomical structures [26]. However, 
the increased computational cost, need for larger anno-
tated datasets, and potential challenges in clinical inter-
pretability must be considered. Furthermore, current 
radiological workflows predominantly rely on 2D slice-
based assessments, making our approach more aligned 
with real-world clinical practice. Future studies could 
evaluate the feasibility of 3D CNNs in this setting and 
compare their performance against 2D approaches.

In addition to deep learning-based classification, 
advanced imaging modalities such as SPECT/CT 
radiomics have also shown potential in differentiating 
enchondromas from ACTs [27]. By extracting quantita-
tive imaging features from functional imaging data, these 
approaches may complement conventional CT-based 
models. Future studies could explore the integration of 
SPECT/CT-based radiomics with deep learning models 
to enhance diagnostic accuracy.

One key finding of this study is the notable difference in 
classification performance between the differentiation of 
enchondromas from ACTs and high-grade chondrosar-
comas, and the differentiation of ACTs from high-grade 
chondrosarcomas. This reflects a well-known challenge 
in musculoskeletal radiology, as these tumor types share 
overlapping imaging features on CT, particularly in terms 
of matrix mineralization and cortical involvement. Addi-
tionally, tumor heterogeneity within ACTs and high-
grade chondrosarcomas may contribute to variability in 
their imaging presentation, further complicating clas-
sification. Previous studies have suggested that MRI, 

Fig. 3  ROC-Analysis of the radiologists and the algorithm for the differentiation of enchondromas and atypical chondroid tumors. Reader 1 and 2 = res-
idents; Reader 3 = fellowship trained radiologist; Reader 4 = musculoskeletal attending radiologist; ROC = receiver operating characteristic; AUC = area 
under the curve
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particularly contrast-enhanced and diffusion-weighted 
sequences, may offer additional diagnostic value in dif-
ferentiating these entities. Future studies could explore 
multimodal deep learning approaches that integrate MRI 
data or employ radiomics-based feature extraction to 
enhance classification performance.

This study has limitations. Firstly, there has been a sig-
nificant difference in the composition of the internal and 
external data set with a relatively low number of enchon-
dromas in the external data set. Nevertheless, the overall 
number of patients in this study, to the authors knowl-
edge, is the highest number of patients published in a sin-
gle study [9, 10]. Secondly, in this study only patients with 
biopsy proven lesions were included, which may cause a 
bias towards more malignant looking lesions on the CT 
images. And lastly, our study did not include clinical 
parameters due to the retrospective design and large time 
frame of this study which was necessary to achieve such 
a big data set. Future studies may include clinical data as 

well as a combination of CT and MR images. And lastly, 
one of the main challenges in this study was the differ-
entiation between ACTs and high-grade chondrosarco-
mas, where the model demonstrated lower performance 
compared to other classifications. This is consistent with 
prior studies reporting that even experienced musculo-
skeletal radiologists struggle with this distinction based 
on CT images alone. The overlapping imaging charac-
teristics of ACTs and high-grade chondrosarcomas con-
tribute to this difficulty. Future studies could explore 
the integration of MRI features or clinical parameters to 
enhance diagnostic accuracy.

Conclusions
In conclusion, the DLM reliably differentiates benign, 
intermediate, and malignant cartilaginous tumors, par-
ticularly enchondromas and ACTs, which are often diffi-
cult to distinguish based on CT imaging alone. However, 
its performance in differentiating ACTs from high-grade 

Fig. 4  ROC-Analysis of the radiologists and the algorithm for the differentiation of atypical chondroid tumors and high-grade chondrosarcomas. Reader 
1 and 2 = residents; Reader 3 = fellowship trained radiologist; Reader 4 = musculoskeletal attending radiologist; ROC = receiver operating characteristic; 
AUC = area under the ROC curve
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chondrosarcomas was more limited, in line with known 
diagnostic challenges.
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