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An accurate spatial representation of protein-protein interaction networks is needed to achieve a
realistic and biologically relevant representation of interactomes. Here, we leveraged the spatial
information included in Proximity-Dependent Biotin Identification (BioID) interactomes of SARS-CoV-
2 proteins to calculate weighted distances and model the organization of the SARS-CoV-2-human
interactome in three dimensions (3D) within a cell-like volume. Cell regions with viral occupancy were
highlighted, along with the coordination of viral proteins exploiting the cellular machinery. Profiling
physical intra-virus and virus-host contacts enabled us to demonstrate both the accuracy and the
predictive value of our 3Dmap for direct interactions, meaning that proteins in closer proximity tend to
interact physically. Several functionally important virus-host complexes were detected, and robust
structural models were obtained, opening the way to structure-directed drug discovery screens. This
PPI discovery pipeline approach brings us closer to a realistic spatial representation of interactomes,
which, when applied to viruses or other pathogens, can provide significant information for infection.
Thus, it represents a promising tool for coping with emerging infectious diseases.

Proteins are the main agents involved in the regulation of biological func-
tions and don’t act alone to mediate and regulate these functions; instead,
they act in concert with other proteins through their interactions1–5. These
protein-protein interactions (PPIs) are involved in the development of
human diseases, either genetic, physiologic or infectious6–8. Therefore,
mapping PPIs is essential to understanding their role in the development of
diseases at the cellular level. Representation of networks of interactions is a
critical component of the analysis, allowing the identification of proteins
involved in similar complexes or pathways. However, PPI networks are
often incomplete and hard to exploit, primarily due to the intrinsic nature of
PPI detection methods and the two-dimensional network representations.
Additionally, most interaction networks only represent a single study,
performed with a single PPI detection method, while a complete network
would require the aggregation of multiple studies. Moreover, distances
within a protein interaction network are often empirical and without bio-
logical meaning, precluding the representation of actual volumes and
regions. Contrasting with the huge increase in PPI detection methods

sensitivity and deepness, little if any progress has been made toward the
spatial representation of PPI networks. The tools developed to extrapolate
distances from PPI networks dating back more than 10 years9,10. The
inference of protein locations from interaction data to generate a spatial
representationof interactionnetworkshas so far remainedout of reach.This
step is yet a prerequisite towards an accurate three-dimensional repre-
sentation of the PPI network within the cell volume.

Current layouts are often used to highlight network structure in two
dimensions (2D) but rarely in three (3D) due to the inherent difficulties in
displaying the actual depth information, resorting to just projections on two
dimensions. However, especially in larger or dense networks, the flattening
distorts the richer 3D structure and inevitably collapses important infor-
mation.Moreover, proteins reside inside an actual, physical cell volume that
is three-dimensional, so any attempt to provide a picture of the spatial
organization of their interactions should take that into account. Here,
motivated by the fact that our experimental PPI detectionmethods capture
spatial proximity information, we set out to develop a methodology to
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provide an approximate placement for the proteins in 3D space. Using prior
ideas from graph layouts extended to suit our purposes11–13, we find that the
amount and quality of the proximal interaction data provide enough
information to efficiently guide the graph 3D layout towards a picture
largely consistent with pre-existing knowledge, as well as other studies, even
orthogonal ones. Below, we report on these findings as applied to the SARS-
CoV-2 virus-host interactome.

COVID-19, the disease caused by the Severe Acute Respiratory Syn-
drome Coronavirus 2 (SARS-CoV-2), has been shown to be intricately
correlated to SARS-CoV-2-host PPIs, which have been extensively studied
using different detectionmethods14–20. However, no studies have aggregated
and represented the complete SARS-CoV-2-host interactome. In this study,
we present a newmethodology to calculate the relative positions of viral and
host proteins in an abstract representation of the cellular space using a
proximity-dependent biotinylation (BioID) dataset as our starting point.
We then modeled the spatial representation of the SARS-CoV-2/human
interactome, revealing the invasion pattern of cell territories by the viral
proteins and reflecting virus coordination to coopt the cell machinery along
the viral cycle. Furthermore, by profiling direct virus-host contacts within
the SARS-CoV-2-human proximal interactome, we have confirmed the
accuracy of the three-dimensional map and demonstrated its predictive
value for direct PPI identification. Functionally important intra-virus and
virus-host PPIs have been detected21–24, and numerous direct virus-host
contacts involving human proteins have contributed to infection. We also
provided robustmodeled structures of virus-host complexes, paving theway
for structure-directed functional exploration or to anti-viral therapeutics
development. Our work lays a foundation for the spatial representation of
interaction maps using BioID datasets. When supplemented by the com-
parative profiling of direct virus-hosts contacts, our approach facilitates the
generation of more sophisticated and informative interaction map.

Results
Modeling thespatial organizationofSARS-CoV-2-hostproteome
from the proximal interactome
Since BioID bait proteins label proximal partners within a volume of
~10–20 nm radius25, proximal interactomics data contain spatial informa-
tion about the proteins’ vicinity. Based on this property, we developed a
methodology to approximate the relative position of viral and host proteins
inside an abstract representation of cellular space (detailed in the Methods
section). We used the SARS-CoV-2-host proximity interaction map of 27
SARS-CoV-2 proteins that we generated by proximity-dependent biotin
identification (BioID)26 (SupplementaryTables 1 and2). Comparisonof our
BioID interactomewith severalmeta-analyses of SARS-CoV-2 interactomes
confirmed the quality of our dataset. Indeed, we detected 143/332 (43%) of
thePPIs identified inmultipleAP-MS studies listed inHoffmann et al.27.We
also recovered 125/298 (42%) and 920/1086 (85%) of the highly filtered
SARS-CoV-2/host PPI detected by AP-MS or by proximal interactomics
respectively and provided in Li et al.28. Last, from the list of 11,755 unique
SARS-CoV2/host PPIs gathered in Sheng et al.29, more than a third (4,051/
11,755) were also present in our BioID data. We started by modeling the
pairwise BioID proximal interactions from the aggregated individual
proximal interactomes26 into a weighted graph structure, fully capturing the
informationof theSARS-CoV-2proximal interactome.We then introduced
additional edges to the graph, corresponding to previously reported host-
host protein interactions, which helps refine the connectivity with already-
known information about the host proteome. By applying a force-directed
graph layout algorithm in three dimensions, we could determine a set of 3D
coordinates representing the positions of viral and host proteins. The
coordinates allowed us to infer relative distances between nodes within our
abstract3Dspace (containedwithin a cubeof [−1,1]x[−1,1]x[−1,1] innon-
physical arbitrary units), compare proximities and observe general regions
of viral interaction (Fig. 1). Integration with other SARS-CoV-2 metadata
and orthogonal interactomics studies supported the accuracy of the targeted
cellular regions and of the viral proteome organization, confirming the

reliability of the 3D modeling. The generated virus-host interaction map is
available via an interactiveweb interface (accessible at http://dev.sars-cov-2-
interactome.org/) and can be used to visualize and explore the SARS-CoV-
2-host proteins spatial organization through various customization options,
such as visualization of the virus/proteome interface based on GO-terms
filtering.While not possible to establish a precise geometric correspondence
between our generated 3D volume and the cell’s physical volume due to
experimental but also graphmodeling limitations (e.g. in the caseofmultiple
protein localizations which cannot be accurately captured by a single node
location), the map provides an approximation of the spatial organization of
viral and host proteins, enabling a sketch of their interplay inside the actual
physical cell volume (see Methods). Importantly, the BioID samples from
the individual proximal interactomes were prepared in the presence of
turbonuclease, a potent DNA and RNA nuclease that cleaves both single
stranded and double stranded nucleic acids. We thus expect the proximal
interactions detected by this technique to be independent of nucleic acids.
The virus-hostnetwork layout revealed a cluster of 13 viral proteins (ORF3a,
ORF3d, M, S, E, NSP3, NSP4, NSP6, ORF8, ORF7a, ORF7b, ORF6 and
ORF9c) concentrated in the same proteome environment, surrounded by
14 viral proteins pulled away by different sets of partners. The viral cluster
consists in organelle-associated proteins that all gather around a dense core
of host factors, someofwhich likely present due to their colocalization in the
same subcellular compartments. To get rid of asmuchof such compartment
specific backgroundwithout altering biological insights of theBioIDdataset,
we assessed how filtering out host factors according the their interaction
degreewith the viral proteins affects the fractionofproximal interactionsper
viral factor (Supplementary Fig S1A).We observed that removing from the
BioID dataset the most highly connected host proteins primarily reduced
the proximal interactions of the core viral proteins, without significantly
affecting PPIs detection of the peripheral ones, suggesting that most of the
higher degree host proteins represent compartment-specific background.
Filtering out host proteins with eight or more viral interaction partners
induced the relaxation of the dense core in the 3D map (Fig. 2a, Supple-
mentary Fig. S1A-B). Examining the overall node density of host proteins in
our 3D layout, we observe a sharp decrease with radial distance from the
cluster’s centroid, whereas by restricting to proteins with a maximum of
seven viral interactions, the node density exhibits a peak followed by a
smooth decrease with radial distance (Supplementary Fig. S1C). Using the
radial value corresponding to the density inflection point to define a
threshold for the cluster size (ordense core) enabledus to identify a list of 790
host factors residingwithin the dense core boundary, which are in their vast
majority assigned to membrane-associated categories (Supplementary
Table 3). Membrane-rich organelles are the known primary locations of
nine viral proteins (ORF3a, M, S, E, NSP3, NSP4, NSP6, ORF7a and
ORF7b)30, all of which are included in the dense core. Expectedly, when
removing host proteins with degree 8 or higher, the dense core was relaxed
while keeping membrane-bound host proximal partners of a specific set of
viral proteins. Hence, this operation facilitates the extraction of discrete
proximity-based hypotheses for each viral protein. Regions of pathway-
specific subnetworks can also be captured, revealing their positioning
relative to the SARS-CoV-2 proteins and highlighting the coordination
between viral proteins to exploit host cells (Fig. 2b and Supplementary
Table 2). When intersecting our BioID dataset with SARS-CoV-2-related
CRISPR-Cas9 studies available at BioGRID ORCS, we identified 187 host
factors reported as important for SARS-CoV-2-induced cytotoxicity in ≥3
CRISPR-Cas9 and connected to 27 viral bait proteins through 694 proximal
interactions (Fig. 2c and Supplementary Table 2). The map reveals the
positioning of functionally relevant host proteins within the proximal
landscape of viral polypeptides, which largely follow the overall node radial
distribution (Supplementary Fig. S1D). In all, the 3D SARS-CoV-2-host
mapprovidesunique insights into the intricate host proteomehijacking and
is capable of capturing the spatial distribution of targeted complexes or
processes, including essential ones pertaining to the SARS-CoV-2
proteome.
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Modeling the complete spatial SARS-CoV-2-host contactome
Several SARS-CoV-2-host interactomes produced using different methods
are available in the literature (references in Supplementary Table 2). We
utilized these datasets to obtain a complete picture of the SARS-CoV-2-host
interplay identified to date, employing the same modeling and 3D visuali-
zation approach to augment the map generated by our own study. The
overall shape of the SARS-CoV-2-host 3D map is preserved, indi-
cating that the graph layout approach provides consistent viral-host
neighborhoods across SARS-CoV-2 interactomics studies. Each
released interactome is made separately accessible in the global
SARS-CoV-2-host 3D map, which makes observable the different
features of each dataset, such as the expected underrepresentation of
membrane-associated PPIs obtained in the AP-MS dataset (“Global
comparative view” at http://dev.sars-cov-2-interactome.org/).

We compared the Euclidean distances in our 3D map of the viral-
host protein pairs for every PPI detection method for which datasets
were available in the literature (references in Supplementary Table 2)
(Fig. 2e, Supplementary Table 4). The average distance of virus-host
protein pairs from our own study is lower compared to those of any

other study (mean of 0.21), which is expected since the 3D map has
been created using our study’s proximal dataset. We individually
compared the total distribution of the viral-host protein pairs distances
of each PPI set of data with the subsets present and absent in our
dataset. We observed a bimodal distribution of the viral-host protein
distances for data coming from every PPI detection method but ours.
We found that the most distant peak observed with each other PPI
datasets consists of protein pairs that were not present in our BioID
dataset (Supplementary Fig. S1E–H). Of note, the High Confidence
viral-host protein pairs identified in ≥2 AP-MS studies or in ≥3
Proximity Labeling studies as in Li et al.28, showed an overall median
distance of 0.25 and 0.18 respectively, while the whole PPIs matrix
shows a median distance of 0.52 (Supplementary Fig. S1I). These data
support the robustness of the 3D map to position positive viral-host
interactions to closer distances accurately.

Overall, our proximal interactome-based modeling pipeline provides
the 3D representation of themost complete SARS-CoV-2-host interactome
to date, marking a step towards a more realistic picture of the spatial posi-
tioning of SARS-CoV-2 in the cell proteome while at the same time

Fig. 1 | Illustration of the computational pipeline.
The BioID virus-host proximal interactomics data-
sets are combined and encoded into a weighted
graph data structure. This structure is augmented
with previously reported host-host interactions, and
amulti-stage and force-directed graph layout is used
to generate 3D coordinates of all nodes. The mod-
eled 3D map can be accessed in a web-based inter-
active display, with option for with filtering and
customization features. Further integration with
other available interactomes from a variety of study
types resulting in a global comparative
interactome view.
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significantly advancing the state-of-the-art in the representation of protein-
protein interaction networks in general.

Exploring physical contacts of the viral proteins in the proximity
interactome dataset
Combining orthogonal PPI detection methods is a well-established
approach to increasing both the accuracy and coverage of large-scale PPI
maps. We complemented our BioID proximal interactomics dataset with a
split-nanoluciferase assay, which senses binary PPIs by protein-fragment
complementation of the nanoluciferase enzyme in human cells (mN2H)

and offers excellent detection performance31. PPI screens by mN2H are
systematic (matrix-based) and semi-quantitative (luciferase-based intensity
map of interactions), providing a solid orthogonality to BioID (see meth-
ods). We sampled two sets of factors from our BioID dataset for mN2H-
based PPIs profiling with the SARS-CoV-2 proteins (Fig. 3a) : (i) 144 host
factors highly enriched with less than four viral bait proteins (based on log2
fold change over background and q-value significance); and (ii) 92 host
factors scoring positive in 3+CRISPR-Cas9 screens. The selected host
factors were tested against the 27 viral proteins by mN2H, thereby repre-
senting a complementary PPI screening which will provide comparative
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Fig. 2 | SARS-CoV-2-human proximal network representation. a Global data-
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for proximal interactions. b Spatial localization of functional groups of proteins in
the proximal network relative to the viral proteins (black nodes), as indicated.
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virus-host interaction profiles. The full mN2H matrix interrogated about
6370 viral-host protein pairs for direct interaction (Supplementary
Tables 5 and 6), of which 587 correspond to proximal proteins identified by
BioID (Supplementary Table 6).

Among the tested viral-host protein pairs, regardless of their status in
BioID, 6% (414/6372) showed direct interactions involving 118 host pro-
teins. In the set of protein pairs detected by BioID, 21% (123/587) were
direct, indicating a 3.5-fold enrichment (Supplementary Table 6). To
benchmark the quality of our mN2H dataset, we compared the detection
rates between our exploratory BioID dataset and the previously established
human positive and random (negative) reference sets (PRS and RRS)31. At a
stringent threshold of 0% RRS (i.e. 0% false negative), the % of direct PPI
found within proximal virus/host pairs from the BioID dataset was similar
to the direct PPIs recovery in the PRS datasets (Fig. S2, Supplementary
Table 7). Therefore, the SARS-CoV-2-host direct interactions detected by
mN2H show a quality equivalent to highly studied and curated direct
interactions. In contrast, no significant differencewas observed between the
randomly explored PPI interactions, regardless of their status in BioID, and
the RRS dataset (Supplementary Fig. S2). The mN2H SARS-CoV-2-host
contactome determined in this study is provided in Fig. 3b, uniquely
identifying 151 direct interactions involving 41 host factors essential for
SARS-CoV-2 lethality in 3+CRISPR-Cas9 screens.

Signal intensities detected in split-nanoluciferase assays correlate
with the interaction strength32, allowing comparison of interactions

according to their distance from the positive PPIs threshold. Such a
comparative intensity map (Fig. 4a) informs both on the redundancy of
host factor targeting and the prominent host targets per viral factor, both
characteristics strongly increasing mapping accuracy. The hierarchical
clustering of mN2H PPI profiles of SARS-CoV-2 proteins essentially
reflects the 3D map (Fig. 4b), supporting the idea that direct contacts
shape the virus-host spatial organization. PPI profile-based clustering
separates viral proteins into twomain groups: thefirst one consists ofmost
of the non-structural proteins that each exhibit few contacts with host
proteins, while the second cluster consists of organelles-associated viral
proteins that engage in the majority of direct interactions. The most
striking host cluster corresponds to proteins involved in ER organization,
which is strongly co-opted by a subset (but not all) of viral membrane
proteins (NSP4, NSP6, E, ORF7a, ORF7b). Comparing the interaction
profiles discriminates these viral proteins, with NPS4/NSP6 clustering
together and E, ORF7a and 7b on the other side (Fig. 4b). This is an
example of the precision offered by mN2H PPIs profiling to highlight the
intricate and finely tuned modulation of direct interactions essential for
the functions of viral proteins and their orchestration along the viral cycle.
Other host clusters appear specific to a given viral protein, such as proteins
involved in translation initiation (4 members of the EIF family) or in
phosphatidylinositol processes (FLII and WIPI1) that are especially
associated with NSP1, while mitochondrial proteins are specifically con-
tacting ORF9b (BCL2L13, MFF, MRPL34, NDUFB8 and TMEM242).

Fig. 3 | mN2H orthogonal validation of a subset of
high confidence interactors. a Selection of the
interactors and experimental pipeline for themN2H
validation. b Full SARS-CoV-2-human contactome
network identified in this study by mN2H.
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Fig. 4 | mN2H interaction profiling. a The relative strength of PPIs, given by the
distance of PPI to the positive threshold, is shown for host factors scoring positive
with one or more viral factors. Their corresponding number of CRISPR hits is
indicated (n = 4 biologically independent samples). b Hierarchical clustering of the
SARS-CoV-2 proteins and human host proteins based on their mN2H interaction
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Intraviral interaction profiling substantiates viral proteins’ spatial
positioning
In the course of the virus life cycle, viral proteins cooperate to orchestrate the
reprogramming of the cell machinery. As viral proteins interacting together
are usually localized within the same region of the cell, we sought to map
virus-virus PPIs by mN2H and compare the results with the clusters of
proteins localized together in our 3Dmap. Several known intra-virus binary
PPIs were detected, such as between N and NSP333 or the NSP10-NSP16
dimer34 (Fig. 4d, Supplementary Table 8). In addition, a hub of intra-viral
PPIs emerges within the set of organelles-associated viral factors lying close
together in the 3D network and the hierarchical clusters (NSP3, NSP4 and
NSP6, E, S, M, ORF7a and ORF7b) (Fig. 4d). The intraviral PPI data thus
corroborate the accuracy of the positioning of the viral proteins in
the 3D map.

Predictive value of the BioID-based 3D interaction map
Since proteins localizing close to each other in a cell have higher chances of
directly interacting together, we sought to assess if our 3Dmap could have a
predictive value in identifyingpotential direct interactions.We leveraged the
data obtainedbymN2Htodetermine thepredictive strengthof our 3Dmap.
Remarkably, we observed a striking spatial confinement of mN2H-positive
host proteins around their viral direct partners, as discerned fromtheBioID-
based 3D map (Fig. 5a). We note that mN2H information was not used at
any stage of the 3D layout of the interactome graph, thus maintaining the
orthogonality of the two methods and preventing distortion due to the
partial virus-host PPI coverage by mN2H. We examined the distances
between the viral proteins and host factors based on four categories: (i) non-
interacting, non-proximal proteins (PPIs not detected by either method);
(ii) proximal proteins (PPIs detected by BioID only) (iii) direct-contact
proteinswithin the BioIDdataset (PPIs detected by both BioID andmN2H)
(iv) de-novo identified direct-contact proteins (PPIs detected by mN2H
only). We report that directly interacting proteins detected by mN2H and
identified within the 6372 viral-host protein pairs tested in mN2H were
separated by shorter distances on average than non-interacting proteins
(based on mN2H negative signal). This remained true when restricting to
the subsets of proteins detected by BioID, as well as not detected by BioID:
mN2H-positive interactions showed an average distance lower than
mN2H-negative ones in both cases (Fig. 5b, Supplementary Fig. S3A–C).
While the mN2H-tested matrix showed an average viral-host protein dis-
tance of 0.58 (in normalized map coordinates), pairs identified by mN2H-
only, BioID-only andmN2H&BioIDwere at average distances of 0.45, 0.29
and0.25, respectively (Fig. 5b).Additionally,we calculated theprobability of
interactions to be positive based on their distance to the bait on the 3Dmap.
We show that interactions with closer distances between the bait and the
prey on the 3D map have a higher probability of being positive in mN2H
(Fig. 5c). We also calculated the probability fold change to identify the
distances between bait and prey at which the probability of being positive in
mN2H changes the most. Interestingly, the probability fold change for
interactions negative in BioID and positive inmN2H is 2 at distances of 0.3
and increases to 2.1 at distances of 0.5 before falling rapidly at higher
distances, suggesting that interactions with distances between 0.3 and 0.5
have higher chances of being positive in mN2H (Fig. 5c). It is noteworthy
that at distances shorter than 0.3, most direct PPIs interactions have also
been detected by BioID, and almost no de novo detection of direct PPIs by
N2H are observed (Fig. 5c).

Calculating the precision and recall of mN2H positive interactions
among theBioIDproximal partners basedon thedistancesbetweenbait and
prey, we found that at distances shorter than 0.2, our recall is 90% with a
precision of 20%, meaning that among 20% of the proximal partners
identified in BioID, 90% are positives in mN2H (Fig. 5d). Moreover, we
found that when moving to larger distances, both the precision and recall
decreased, supporting the idea that our 3D map can predict direct inter-
actions based on distances.

These results strongly bolster the predictive power of the 3D network
layout in foretelling volumes enriched in direct PPIs, underscoring the

efficacy of our approach in capturing key interactions critical for viral-host
dynamics.

Modeling of virus-host complexes interaction interfaces
As PPIs play an essential role in regulating biological functions and the
development of diseases such as COVID-19, targeting their interaction
interface for disruption is an interesting strategy. Using the in-silico pre-
diction tool AlphaFold-Multimer35, we assessed the power of our mN2H
matrix of direct interactions to provide virus-host interaction interfaces. On
a selection of 70 virus-host PPIs scoring positive by mN2H, a predicted
structure of acceptable confidencewas provided for 10 (pDockQ>0.23)36 or
about 14% of them (Supplementary Fig. S4, Supplementary Table 9). Both
the number of predicted structures and the pDockQ values are unsurpris-
ingly lower than the ones previously reported for human datasets36 as most
of the viral proteins are known to be challenging to predict due to a lack of
heterologs in the AlphaFold database37.

The interactionwith the highest pDockQscore (0.433)was theNSP13-
USP13 interaction (Fig. 6a), involving the NSP13 viral helicase and the
human deubiquitinase USP1338. This complex was also obtained by
homology-based structural modeling with the human UBP14-PRS7 com-
plex (Fig. 6b), providing a robust interaction interface.

Having successfully modeled structures for several PPIs furnishes a
potent dataset to dissect their role in SARS-CoV-2 infection and pave the
way of anti-viral drug discovery.

Targeting human components of the modeled virus/host com-
plexes to identify potential therapeutics
To estimate the relevance of targeting virus/host complex with PPIs-
disruptive compounds, we need to ensure that the cellular protein plays a
role in infection in SARS-CoV-2, which is particularly required when the
protein partner was not detected in CRISPR screen or other functional
studies, as for USP13. We thus developed a novel assay, called Nano-Fuse
(Supplementary Fig S5A) to measure SARS-CoV-2 infection through
nanoluciferase activity, instead of the classical time consuming and low-
throughput plaque forming assays. In this assay, a co-culture VeroE6 cell
clones stably expressing, on one hand a Large nanoluciferase-derived
fragment deleted from its 13 last residues, and on the another hand the 13 aa
C-terminal peptide of Nanoluciferase. Upon co-culture, SARS-CoV-2-
induced cell fusion leads to the reconstitution of an active luciferase whose
activity correlates with the infectious viral titer (Supplementary Fig S5B).
The specificity and sensitivity of the assay have been thoroughly validated
(Fig. 5b), and we used it to test the effect of the Spautin-1, a previously
reported USP13 inhibitor38. We observed a dose-dependent decrease in
SARS-CoV-2 infection upon Spautin-1 treatment (Fig. 6c). The protease
inhibitor GC376, assessed in the same assay, had a 50% inhibitory con-
centration (IC50) of 1.2 µM, which ascertains that the nanoluciferase
complementation assay properly reflects an active SARS-CoV-2 infection
(Fig. 6c). Spautin-1 inhibited SARS-CoV-2 infection with a calculated IC50
of ~0.8 µMmore efficiently than GC376 while no toxicity of the compound
was observed (Fig. 6c). The dose-response profile suggests that USP13 is
important but non-essential for SARS-CoV-2 replication since the inhibi-
tion plateaued at 80%, which aligns with its lack of detection in the CRISPR
screens. Nevertheless, our findings conclusively validate USP13’s role in
SARS-CoV-2 infection, thus deserving further screening of PPI disruptive
compounds.

Discussion
Since the beginning of protein interaction mapping, one goal has been
to map and localize the interactions inside the cell. However, this
process has been challenging due to the lack of detection methods able
to capture distances between proteins and the limited application of
network layouts in 3D. Our study presents a pipeline to generate a 3D
map modeled from proximal interaction data (BioID). Applying this
pipeline to SARS-CoV-2, we modeled the spatial representation of
the SARS-CoV-2/human interactome within a cell-like volume,
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combining our own BioID SARS-CoV-2 dataset and a set of already
identified host-host interactions. These latter allow a better approx-
imation of the coordinates for each of the viral and host proteins in the
3Dmap. While large interaction networks generally lack accuracy, this
methodology improves the accuracy of large interaction networks
generally making them more accurate due to the availability of data to
finely tune the positioning of nodes.

Several improvements can still be built upon the foundation of this
work. Currently, thework is constructed only using the SARS-CoV-2BioID
dataset, with proteins being represented within a cube, referred to as an
abstract cell volume.Machine learning algorithms could be used to draw an
actual cell volume and transfer the current 3D map layout within this new
volume based on known protein location. The recently developedOpenCell
database, providing a catalog of protein subcellular localization39, will likely

be helpful to achieve a more accurate representation of the viral-host
interactome in the real cellular architecture.

Additionally, the produced 3Dmap, similar to every other interaction
network, is static, while interactions and protein localization are known to
be dynamic. By performing proximity-dependent biotinylation experi-
ments with shorter labeling time, such as TurboID allowing for time points
every 10 or 30min, and using machine learning, a dynamic interaction
network of SARS-CoV-2 inside the cell could be modeled. Moreover, the
integration of other studies will be beneficial for incrementally refining
protein coordinates. Despite these limitations, our pipeline takes us one step
closer to a more reliable and biologically relevant representation of inter-
actomes, which can be applied to complex PPI networks. Applied to the
SARS-CoV-2 virus-host PPI network, this representation provides key
insights by depicting the invasion pattern of cell territories by the viral

N2H(+)
BioID(+)

N2H(+)
BioID(+)

3.71e-32
3.12e-181

6.96e-65

3.66e-04

Fig. 5 | Organization and validation of the BioID and mN2H networks.
a Snapshot of the 3D network depicting spatially resolved and colored regions
enriched in a subset of GO categories. Merged data from the present study and the
literature are graphically coded as described in the legend. b Violin plot of the viral-
host distances in the 3D map according to the PPIs status, as described (Student’s t
test; p-values as indicated in the figure). c Dependence of the probability of mN2H

positive interactions on protein pair distance cutoff (conditioned on BioID detection
status), depicted as absolute numbers and as fold change relative to total (max
cutoff), for bins of approximately equal mN2H+ pair populations. dDependence of
BioID positive status precision and recall on protein pair distance cutoff for pre-
dicting mN2H positive status, for bins of approximately equal mN2H+ pair
populations.
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proteins and by reflecting virus coordination to coopt the cell machinery
along the viral cycle.

Furthermore, using an orthogonal screening of direct virus-host con-
tacts by mN2H, we demonstrated the predictive value of such an approach
in identifying direct PPIs. Host factors located at shorter distances are
enriched in direct partners of viral proteins and can be prioritized for N2H
profiling, increasing the recovery rate of direct host contact identification.
Mapping of intraviral direct interactions bymN2H identified hubs of direct
contacts between viral proteins that were also clustered in the 3D map,
showing the accuracy of our pipeline to position interacting proteins at
shorter distances.

A number of virus/host complexes that we identified have been vali-
dated and functionally characterized recently, such as Spike/TMEM106B
reported as essential for an ACE-2 independent SARS-CoV-2 entry21, N/
G3BP1 involved in viral replication22, NSP3/FXR1mediating stress granule
disruption23 and ORF3A/Rab7A impacting on lysosome function24. These
data highlight the functional significance of intra-virus and virus/host PPIs
discovery and characterization for a better understanding of the viral life
cycle. Overlaying our interactomics data with data from CRISPR screens
provides potent entry points for drug discovery and deep biological
understanding of pathogenesis.

In silico structuralmodeling of SARS-CoV-2-host complexes provided
interaction interfaces, which can be leveraged for structure-directed mole-
cule screening. The humanUSP13 de-ubiquitinase wasmodeled binding to
theNSP13 viral helicase both by structure-based homology andAlphaFold-

Multimer35, andwedemonstrated the involvement ofUSP13 in SARS-CoV-
2 replication, substantiating the functional significance of the virus/host PPI
resource generated.

Additionally, the host-viral protein complexes predicted with Alpha-
Fold can indicate which protein regions are prone to be involved in PPI
interfaces, thus providing insights into potential epitopes for targeting and
disrupting these PPIs. PPIs binding affinities can also be investigated from
AlphaFold models using platforms such as PDBePISA. Moreover, the
combination of BioID and mN2H allows the detection of direct PPIs in a
semi-quantitative manner, wherein the intensity of the luminescence signal
correlates with the interaction intensity32, thereby offering additional indi-
cations about protein binding affinities.

ThisPPIdiscoverypipeline is implementable in a record time just upon
viral genome sequencing, independently of any in-vitro culture system,
which makes it ideally suited to improving preparedness against emerging
viruses.

Methods
Plasmids
SARS-CoV-2 viral proteins coding sequences were cloned by Gateway
recombination system (Life Technologies) into pDEST pcDNA5 FRT/TO
N-ter and C-ter BirA*Flag vectors for the BioID (Coyaud et al.40), and into
pciNeo-N2 or pciNeo-C231 using the collection of Gateway-compatible
entry clones reported in Kim et al.41 (see Supplementary Table 1 for
sequences). ForN2H, cDNAencoding the humanproteins to be testedwere
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Fig. 6 | Structural modeling and validation of the NSP13-USP13 role in SARS-
CoV-2 replication. aModeling of the USP13-NSP13 complex by Alphafold-
Multimer and homology-based prediction (b). c Inhibition curve of SARS-CoV-2
infection in the presence of Spautin-1, using the nanoluciferase complementation
assay. Briefly, a co-culture ofVero E6-NanoLg andVero E6-NanoSm, plated at equal

density the day before infection, was infected at aMOI of 0.01 with theWuhan strain
of SARS-CoV-2. Increasing concentrations of Spautin-1 (red) and GC376 (blue)
were added at the time of infection. Luciferase wasmeasured 24 h post-infection as a
read-out of infection-induced syncytia formation (n = 4 biologically independent
samples).

https://doi.org/10.1038/s42003-025-07933-z Article

Communications Biology |           (2025) 8:501 9

www.nature.com/commsbio


available pDONR vectors from the human ORFeome collection v8.1 from
the Center for Cancer Systems Biology (CCSB) (ORFeome Collaboration,
2016) or inhouse made clones.

Each hORF was introduced into pciNeo-N1 pDEST plasmids by
Gateway reaction. All clones were sequence verified.

Cell lines
HEK293 cells were stably transfected by the different BirA*tag- encoding
plasmids as in (Coyaud et al.40). Briefly, Flp-In™ T-REx™HEK293 cells were
grown in Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco) supple-
mented with 10% fetal bovine serum (FBS, Sigma-Aldrich), GlutaMAX™
and Penicillin-Streptomycin (1x). Using the Flp-In system (Invitrogen),
Flp-In™ T-REx™ HEK293 stably expressing BirA*Flag or FlagBirA* alone
(for control samples), orN- andC-terminally taggedviral bait proteinswere
generated by co-transfecting pOG44 with each pcDNA5 FRT/TO BirA*-
Flag-viral protein encoding plasmid and selected with 200 μg/ml
hygromycin B.

BioID sample generation
BioID samples were prepared from Flp-In™ T-REx™ HEK293 expressing
each BirA*-flagged SARS-CoV-2 protein or BirA*alone as in Coyaud
et al.40. Briefly, three independent replicates of two 150 cm2 plates of sub-
confluent (60%) cells were incubated for 24 h in complete media supple-
mented with 1 μg/ml tetracycline (Sigma), 50 μM biotin (Thermo Fisher
Scientific). Cells were collected and pelleted (300 × g, 3 min), washed twice
with PBS, and dried pellets were snap frozen. Each cell pellet was resus-
pended in 5ml of lysis buffer (50mM Tris-HCl pH 7.5, 150mM NaCl,
1mM EDTA, 1mM EGTA, 1% Triton X-100, 0.1% SDS, 1:500 protease
inhibitor cocktail (Sigma-Aldrich), 1:1,000 Turbonuclease (BPSBioscience)
and incubatedonanend-over-end rotator at 4 °C for 1 h, briefly sonicated to
disrupt any visible aggregates, then centrifuged at 45,000 × g for 30min at
4 °C. Supernatant was transferred to a fresh 15mL conical tube. 25 μl of
packed, pre-equilibrated Streptavidin Ultralink Resin (Pierce) were added,
and themixture incubated for 3 h at 4 °C with rotation. Beads were pelleted
by centrifugation at 300 × g for 2min and transferred with 1mL of lysis
buffer to a fresh eppendORF tube. Beads were washed once with 1mL of
lysis buffer and twice with 1mL of 50mM ammonium bicarbonate (pH =
8.3), then transferred in ammonium bicarbonate to a fresh centrifuge tube
and washed two more times with 1ml of ammonium bicarbonate buffer.
Tryptic digestion was performed by incubating the beads with 1 μg MS-
grade TPCK trypsin (Promega,Madison,WI) dissolved in 200 μl of 50mM
ammonium bicarbonate (pH 8.3) overnight at 37 °C. The following
morning, 0.5 μg MS-grade TPCK trypsin was added to the beads and
incubated 2 additional hours at 37 °C. Following centrifugation at 2000 × g
for 2min, the supernatant was collected and transferred to a fresh eppen-
dORF tube. Two additional washes were performed with 150 μL of 50mM
ammonium bicarbonate and pooled with the first eluate. The sample was
lyophilized and resuspended in buffer A (2%ACN 0.1% formic acid). 1/3rd
of each sample was analyzed per mass spectrometer run.

BioID data acquisition
MS samples were prepared from three biological replicates of each bait
protein fused either with an N-terminal or a C-terminal BirA*Flag epitope
tag in basal condition prior to tetracycline and biotin induction, and ana-
lyzed on a Thermo Q-Exactive mass spectrometer. Samples were separated
by online reversed-phase chromatography using a Thermo Scientific Easy-
nLC1000 system equippedwith a Proxeon trap column (75 μmID× 2 cm, 3
μm,ThermoScientific) and aC18 packed-tip column (AcclaimPepMap, 75
μm ID× 50 cm, 2 μm, Thermo Scientific). The digested peptides were
separated using an increasing amount of acetonitrile in 0.1% formic acid
from2 to 30% for 2 hours at a 300 nL/min flow rate. A voltage of 2.4 kVwas
applied by the liquid junction to electrospray the eluent using the nanospray
source. A high-resolution mass spectrometer Q-Exactive™ Thermo Scien-
tific™ was coupled to the chromatography system to acquire the 10 most
intense ions of MS1 analysis (Top 10) in data-dependent mode. The MS

analyses were performed in positive mode at a resolving power of 70,000
FWHM, using an automatic gain control target of 3e6, the default charge
statewas set at 2 and amaximum injection time at 120ms. For full scanMS,
the scan range was set betweenm/z 300 to 1600. For ddMS2, the scan range
was betweenm/z 200 to 2000, 1 microscan was acquired at 17,500 FWHM,
an AGC was set at 5e4 ions, and an isolation window of m/z 4,0 was used.
The mass spectrometry proteomics data have been deposited to the Pro-
teomeXchange Consortium via the PRIDE42 partner repository with the
dataset identifier PXD033452.

BioID data analysis
The proteins were identified by comparing all MS/MS data with the Homo
sapiens proteome database (Uniprot, release March 2020, Canonical+Iso-
forms, comprising 42,360 entries +viral bait protein sequences added
manually), using the MaxQuant software version 1.5.8.3. The digestion
parameters were defined using trypsin with 2 maximum missed cleavages.
The oxidation of methionine and N-terminal protein acetylation were
defined as variable modifications. The Label-free quantification (LFQ) was
donekeeping the software’s default parameters.As for initialmass tolerance,
6ppmwas selected forMSmode, and20ppmwas set for fragmentationdata
to match MS/MS tolerance. The identification parameters of the proteins
and peptides were performed with a false discovery rate (FDR) at 1%, and a
minimum of 2 unique peptides per protein. The LFQ values from the 30
control runs (regrouping FlagBirA* and BirA*Flag alone samples, from
stable and transiently transfected cell lines, were collapsed to the three
highest values for each given ID. These three values were defined as the
control group for comparison with viral bait proteins triplicates. The sta-
tistical analysis was done by Perseus software (version 1.6.2.3). Briefly, the
LFQ intensity of each sample was downloaded in Perseus, and the data
matrix was filtered by removing the potential contaminants, reverse and
only identified by site. The data were then transformed using the log2(x)
function. Before statistical analysis, 81 groups (27 bait proteins, N-ter and
C-ter each) were defined with 3 replicates per group. Only preys with
detected values in all three replicates of a given viral bait protein were kept
for further analysis. Missing values were then replaced from the normal
distribution separately for each column. Two-sample Student’s T test was
then performed comparing all three biological replicates of each bait and
condition against the three control runs. High-confidence proximal inter-
actors were defined by permutation-based FDR with a cut-off of 0.01.
Perseus output with all experimental values is reported in Supplementary
Table 2 (tab B).

The matrix (Supplementary Table 2) shows the average log2 fold
change against control and the corresponding p- and q-values for each bait
and condition. The InDegrees column depicts the number of bait proteins
detecting a given interactor, regardless of the condition (N-ter or C-ter).
This criterion was chosen to filter out the most connected interactors (8+),
likely to be organelle-specific background not filtered using the BirA* alone
control samples. 2D networks presented in the different figures were gen-
erated using the Cytoscape software (v.3.9.1; https://cytoscape.org/).

Spatial modeling of the virus-host interplay from the BioID
Data set
In order to approximate the regions where proteinsmainly reside in the cell
volume, we employed well-established computational methods for the
layout of graphs in three dimensions. A custom force-directed and multi-
stage algorithmwas used due to its general applicability and capacity for the
generation of high-quality layouts43. Another advantage offered by the class
of force-directed algorithms, making it suitable for our specific case, are the
inherent physical attributes and the flexibility of tuning provided by the
underlyingphysics-inspiredmodel producing the layout coordinates. In this
approach, the observed BioID proximal interactions (when present) mod-
ulate the strength of an attractive force between proximal protein pairs,
while repulsive forces (universal amongall nodepairs) ensure the separation
of regions and the occupation of the available volume. In this way, host
proteins previously known to interact are pulled close to eachother and viral
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proteins with overlapping sets of host interactors are also brought into
relative proximity. Interactors for which there is no pairwise proximal
relation are pushed apart, their placement determined by their own set of
individual proximal interactions. By simultaneously aggregating all the
interactors and their interactions subject to these forces, a global approx-
imatepictureof the relative spatial organizationof viral proteinswith respect
to the host proteome is emerging.

Interactome network setup and visualization
The starting point for constructing the interactome network is the BioID
high confidence PPI data table, each row of the table containing data of a
single bait-target (or viral-host protein) interaction. Aggregating all the PPI
data, we obtained a total of 10,125 interactions involving 27 baits and 2593
targets (total of 2620 nodes). Based on this dataset, we construct a weighted
undirected graph where interactors and interactions are represented by the
graph’s vertices (nodes) and edges (links) respectively. The edge weights
correspond to the strength of interaction as determined by BioID. In
addition to links due to the observed BioID bait-target interactions, we
augment the graph with 3492 edges (of equal weight) corresponding to
known target-target interactions, extracted from the IID orphid database
(https://iid.ophid.utoronto.ca/), as experimentally confirmed in 2+ inde-
pendent studies.We thus obtain a denser graph with a total of 2620 vertices
and 13,617 edges. In this graph we finally append 290 mN2H positive
interactions not detected byBioID– these latter PPIs are not participating in
the layout and therefore do not influence the node coordinates, but are used
for displaying purposes.

To visualize the graph, our objective is to determine an optimum
placement of the nodes in three-dimensional space that would minimize
edge crossings and reveal the interactome’s structure to the best possible
extent. We employ a custom, multi-stage, force-directed graph layout
algorithm in3D,based largely on the spring-electricmodel outlinedbyHu43.
We modulate the strength of the attractive (spring) forces in the corre-
sponding physical model with a factor w given by the combination of the
BioID enrichment ratio (or fold change, fc) according to the formula: w =
[log2 (fc)i] p, where p =½ and i = {N-ter, C-ter}, when present for the
interaction. For reported target-target interactionswhere this information is
not available we set this factor equal to 1. We also ignore the previously
mentioned purely mN2H-positive (non-BioID) interactions in order to
preserve the orthogonality of the two approaches. The node coordinates in
3D obtained byminimizing the energy of the spring-electric physicalmodel
are ingested by a plotting package that generates a 3D visualization of the
network, assigning apoint to eachnode anda line connecting a pair of nodes
when there is an interaction. Our code was written in Python 3.1044 and
makes use of several modules, primarily: NetworkX for graph operations45,
NumPy for numerical computations46, pandas for data manipulation47 and
Plotly for visualization48.

Interactive web application
In order to make our results available to the wider community in a usable
and informativemanner, wehave implemented aweb application accessible
at http://dev.sars-cov-2-interactome.org/. It contains network visualization,
as well asmultiple options for selecting and filtering the dataset to view sub-
networks, providing the ability to focus on particular areas of interest and
explore various levels of detail. The interactive 3D visualization of the
interactome is a main ingredient of the dashboard, as it enables navigation
within a browserwindow, zooming and rotating in space, giving an intuitive
illustration of the relative localizations of proteins. In addition, we integrate
information about the previously reported SARS-CoV-2 status of inter-
actors and interactions, as well as previously reported interactions between
the host proteins (cf. Supplementary Table 2 for details). The network
customization options contain various filters, separated broadly into two
levels: on thefirst level, there are options for: (i) focusing on targets of higher
specificity by filtering out targets with a total number of bait interactions (or
degree) above a configurable threshold (set to 7 by default); (ii) restricting to
targets based on known relevance for SARS-CoV-2 (based on total number

of CRISPR screens an interactor has been identified as functionally
important for SARS-CoV-2 infection); or (iii), selecting particular baits of
interest and their interactions only. When multiple filters are activated at
this level, the resulting dataset is formed by the intersection of the selected
criteria. In addition, at this level, we provide options for displaying the
previously reported target-target interactions, as well as highlighting pre-
viously reported and N2H-validated bait-target interactions. At the second
level, there is the functionality to select any number of annotations of
interest from three main categories (pathways, biological processes, cellular
components) in order to generate an annotated subnetwork, while
remaining subject to the filtering selections from the preceding level. In this
second level, multiple annotation selections are combined so that the
resulting network is the union of the individually annotated subnetworks.
Specific targets of interest can also be selected individually, or added to an
already generated subnetwork. Notably, there is an option to select any
number of annotations for which to display their approximate localization
overlaid on the network, either as 3D density volumes, or as labels posi-
tioned at the volume’s centroids (forming a ‘label cloud’). At any given time,
the interactive visualization reflects the user’s filtering selections, offering an
intuitive view of the particular subset of data under consideration, while the
filtered dataset is also visible in table format below the network and also
downloadable.Finally, there areoptions formostly cosmetic attributes of the
network visualization, such as the ability to toggle text labels and edges,
present a faded view of the full network in the background (thus giving a
better global viewof the locationof nodes and edges in the interactome), and
display 3Dspherical shapes for the interactors (as opposed toflat 2Dcircular
markers), better representing their physical size and actual location in space.
A summary panel of the network with a breakdown of the totals for nodes
and edges is presented alongside the network, as well as a panel displayed
upon clicking on a node or edge with corresponding metadata, including
AlphaFold protein structure predictions. A detailed usage tutorial is also
provided as part of the website. The dashboard web application has been
implemented using the Dash module in Python 3.10.

Mammalian cell-based N2H assay
HEK293T cells were seeded at 6 × 104 cells per well in 96-well, flat-bottom,
cell culture microplates, and cultured in Dulbeccoʼs modified Eagleʼs
medium (DMEM) supplementedwith 10% fetal calf serum at 37 °C and 5%
CO2.Twenty-fourhours later, cellswere transfectedwith 100 ngof eachN1-
and N2/C2-expressing plasmids using linear polyethylenimine (PEI MAX
40000; Polysciences Inc; Cat# 24765) to co-express the protein pairs fused
with complementary NanoLuc fragments, F1 and F231. Twenty-four hours
after transfection, the culture medium was removed, and 30 μL of 100×
diluted NanoLuc substrate49 was added to each well of a 96-well microplate
containing the transfected cells. Luciferase enzymatic activity wasmeasured
using a CentroXS luminometer (Berthold; 2 s integration time). The luci-
ferin substrate used (Q-108) in all the bioluminescence experiments was
obtained in a concentrated solution, from the corresponding O-acetylated
derivative hikarazine-108, following acidic hydrolysis as previously
described50. The binary virus-host PPIs were assessed and were indepen-
dentlyperformed two times, eachmade induplicates toquadruplicates. PPIs
weremonitored using the cellular proteins (CP) fused the F1 nanoluciferase
fragment at theirN-terminus (N1-CP),while the viral proteinswere fused to
the nanoluciferase F2 fused either at N-, their C-terminus or both. Con-
figuration of the virus-host PPIsmatrix was eitherN1N2 or N1C2, and was
selected from the viral bait Bir-A* fusion configuration leading to host
partners identification in BioID.

To score positive PPIs from the tested matrixes, we applied the fol-
lowing pipeline:

1-Log2-transformed averaged RLU signals were normalized to the
mean columns signal and mean row signals (Log2 RLU PPI - mean Log2
column - mean Log2 rows). Column and row averages reflect the overall
level of viral and cellular protein interaction signals. A Z-score (relative to
the mean and standard deviation of the full Normalized PPIs matrix) was
applied on normalized data to obtain normal distribution and to calculate a
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P-value.A significantP-value (<0.05) or equivalently aZ-score upper to 1.64
were scored as positivePPIs. In thisway, positivePPIs are distinguishedover
non-interacting pairs with high stringency, leading to the identification of
high-confidence PPIs.

Hierarchical clustering of virus-host PPIs was performed using the R
software by using euclidean distance parameter of the dist function. Clus-
tering was then performed by ward.Dmethod with R software by using the
pheatmap function.

AlphaFold-Multimer in silico structure prediction
We produced predicted complex structures for the selected pairs of viral-
host proteins by running theAlphaFold source code v2.3.2 (git commit hash
2e6a78f) from https://github.com/deepmind/alphafold in multimer mode
with default parameters and with full databases via the provided Docker
script. For each pair, we ran using input host protein sequence FASTA files
from https://www.uniprot.org/ and generated 5 relaxed structures (from
different randomseeds) for eachof the 5multimermodels.Wekept the top-
ranked relaxed structure in terms ofmodel confidence in order to compute a
predicted DockQ (pDockQ) score51. Following the CAPRI definitions for
the correspondence between DockQ values and accuracy of predicted
structures, we deem structures with pDockQ ≥0.23 as positive hits for the
purposes of our in silico validation.

A novel sensitive assay to measure SARS-CoV-2 infection
cDNA encoding for the nanoluciferase fragment 1–158 (NanoLg) con-
taining the same mutations than the LargeBiT fragment of the Nanobit
assay52 and the 13 aa long c-terminal Nanoluciferase peptide (aa 159–171,
Nano-Sm) were cloned in the pLVX-puro vector (Clontech) in fusion with
GFP11 (at the C-ter of LN) or GFP1-10 (at the N-ter of SN) respectively.
Lentiviral vectors were produced by co-transfection of the pLVX-puro
NanoLg or pLVX-puro NanoSm plasmids with gag-pol packaging plasmid
psPAX2 (Addgene, #12260) and VSV-G envelope expressing plasmid in
HEK293T cells using calciumphosphate precipitation. Lentiviral titers were
measured by p24 ELISA according to the manufacturer’s instructions
(Clontech).

105 cells Vero E6 were transduced with 5.106 TU NanoLg or NanoSm
expressing lentiviruses for 4 h, then cells were grown in DMEM 5%
SVF+ 1% Penicillin-Streptomycin+8 µg/ml puromycin. Transduced cells
were then amplified under puromycin treatment.

For the SARS-CoV-2 infection assay, Vero E6-NanoLg and Vero E6-
NanoSmwere plated separately at 25,000 cells/well or co-cultured (12,500of
each cell lines mixed/well) in white 96 well plates (Greiner Bio-One,
#655083). One day after, cells were infected by serial dilutions of SARS-
CoV-2 strain 1973 (hCoV-19/France/GES-1973/2020, EPI_ISL_414631) in
50 µl of DMEM, then incubated for 24 h. Infection rates were measured by
lysing cells after removal of the medium in 30 µl of 100-fold diluted
NanoLuc substrate (Promega, #N1110). Luciferase enzymatic activity was
measured using a CentroXS luminometer (Berthold; 2 s integration time).

Small molecule inhibition
GC376 (Sigma Aldric) and Spautin-1 (Calbiochem) were dissolved in
DMSO to make a 100mM stock solution. A 40mM solution was prepared
from the stock in DMSO, and then serial 2-fold dilutions were prepared in
DMSO. The final range of inhibitors was from 40mM to 0.63mM (i.e. 8
2-fold dilutions), which is 200 times higher than the tested concentrations.
Each compound dilution was diluted 1000-fold in DMEM (giving 2X
concentrated chemicals with equal DMSO concentration for each).

Vero E6NanoLg+Vero E6NanoSm co-cultures (12,500 each) plated
the day before in 96 white plates were infected with 500 PFU (MOI 0.01) of
the previously described SARS-CoV-2 strain in 50 µl DMEM for 1 h. Then
50 µl of the 2X concentrated compounds were added. Cells were incubated
for 24 h. Infection rate was measured by nanoluciferase activity reading as
described above.

Each compound was measured in biological triplicates, each contain-
ing 3–8 technical replicates.

The results arepresentedasRLU± standarddeviations.Dose-response
curves were plotted using Prism v9 (GraphPad) in which IC50 values were
calculated with the variable slope model.

Cell viabilitywasmeasured using theCell-Titer-Glo® Luminescent Cell
Viability Assay kit (Promega, G7750).

Statistics and reproducibility
Weperformed all statistical analyses using either R-Studio, Python or Prism
(GraphPad Software, version 8). The figure legends specify the number of
replicates and the type of tests conducted. The numbers of biological
replicateswere chosenbasedon thenatureof the experiments andpublished
papers describing similar experiments. To compare two groups, we used a
two-tailed unpaired Student’s t test. Fisher’s exact test was performed on
2 × 2 contingency to determine if the difference of proportion of positive
direct interactions was significant between random pairs tested in mN2H
and pairs tested in mN2H and coming from our BioID results. Data in
graphs are presented asmean ± S.E.M. Data distribution was assumed to be
normal but this was not formally tested. The study sizes were not pre-
determined using statistical method. The experiments were not rando-
mized, and investigators were not blinded to allocation during experiments.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The mass spectrometry proteomics data have been deposited to the Pro-
teomeXchange Consortium via the PRIDE42 partner repository with the
dataset identifier PXD033452. Supplementary tables are available on Fig-
share (https://doi.org/10.6084/m9.figshare.28515860). The source data are
available on Figshare (https://doi.org/10.6084/m9.figshare.28528268).

Code availability
The code used in this paper is available upon request.
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