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Transformers and genome language models

Micaela E. Consens1,2,3, Cameron Dufault1, Michael Wainberg2,4,5,6,7, 
Duncan Forster2,8,9, Mehran Karimzadeh2,10,11,12, Hani Goodarzi    10,11,12, 
Fabian J. Theis    13,14,15,16, Alan Moses1,17 & Bo Wang    1,2,3,18 

Large language models based on the transformer deep learning architecture 
have revolutionized natural language processing. Motivated by the 
analogy between human language and the genome’s biological code, 
researchers have begun to develop genome language models (gLMs) based 
on transformers and related architectures. This Review explores the use of 
transformers and language models in genomics. We survey open questions 
in genomics amenable to the use of gLMs, and motivate the use of gLMs and 
the transformer architecture for these problems. We discuss the potential 
of gLMs for modelling the genome using unsupervised pretraining tasks, 
specifically focusing on the power of zero- and few-shot learning. We explore 
the strengths and limitations of the transformer architecture, as well as 
the strengths and limitations of current gLMs more broadly. Additionally, 
we contemplate the future of genomic modelling beyond the transformer 
architecture, based on current trends in research. This Review serves as a 
guide for computational biologists and computer scientists interested in 
transformers and language models for genomic data.

In the past decade deep learning has been applied to complex tasks, 
including generating art1,2, representing language3–6, and predicting 
protein structures from amino acid sequences7. The success of deep 
learning is attributed to the size, accessibility and multimodality of avail-
able datasets along with the push to generate larger and larger models8.

In genomics, novel techniques9,10 such as chromatin accessibility11,12,  
methylation13,14, transcriptional status15, chromatin structure16, and 
bound molecules12 have yielded a large and varied source of data17. 
Deep learning tools have been widely applied to genomics due to 
their potential to solve many challenges posed by omics datasets18. 
For example, a primary application of deep learning in genomics is to 

predict high-dimensional modalities (transcription factor binding, 
RNA binding, chromatin accessibility, contact-maps, gene expression, 
RNA sequencing (RNA-seq) coverage, promoter/enhancer regions, 
and more19–39) from DNA sequence. Typically, these deep learning 
models have been dominated by convolutional neural network (CNN) 
structures20–26,29,32. However, driven by the success of transformer mod-
els40 in computer vision and natural language processing (NLP), trans-
formers are now being applied to genomic modelling problems30,31,39–43.

Although transformers were originally conceived for sequence- 
to-sequence problems, they have since been adapted for diverse 
genomics tasks, such as predicting a quantitative assay or performing 
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of non-coding DNA sequences that can affect the regulation of genes 
thousands of base pairs away, acting as promoters, enhancers, silenc-
ers or insulators.

DNA is sequenced in fragments58, assembled into full-genome 
references for well-studied species, and stored in public databases like 
GenBank60 and RefSeq61. For less-studied species, complete assemblies 
may not yet exist. Vast quantities of short DNA reads can be found in 
sequence read databases such as the Sequence Read Archive (SRA)62. 
Other data modalities capture additional genomic information beyond 
sequence identity, such as 3D genome organization and transcriptional 
activity. Examples of this include assay for transposase-accessible 
chromatin with sequencing (ATAC-seq)11 and DNase-seq63 for DNA 
accessibility, Hi-C64 for 3D contact maps, chromatin immunopre-
cipitation followed by high-throughput sequencing (ChIP–seq)12 for 
protein–DNA interactions, and RNA-seq14 or single-cell RNA-seq15 for 
transcriptional activity. Experiments such as CRISPR (clustered regu-
larly interspaced short palindromic repeats) perturbations65 help to 
identify regions within non-coding DNA that when knocked down or 
out result in gene expression changes. These regions are candidates 
for enhancers, regions involved in transcription that promote the 
recruitment of transcription machinery, and therefore increase gene 
expression. Publicly available sources of these other modalities of 
genomic data include ENCODE66, Roadmap67, GTEx68 and the 1000  
Genomes Project69.

DNA sequence data is either one-hot encoded or tokenized when 
inputted to a deep learning model. One-hot encoding DNA transforms 
an N length sequence into a 4 × N matrix of zeros and ones indicating 
the presence or absence of a specific nucleotide at each position in 
the sequence52. Tokenization strategies vary, with single-nucleotide 
tokens, k-mers or byte-pair encoding (BPE)70 creating vocabularies of 
different sizes (Fig. 1). k-mer tokenization borrows from bioinformatic 
principles, treating k-length nucleotide subsequences as the ‘words’ of 
the genomic language. BPE70 iteratively merges the most commonly 
co-occurring nucleotides in the genome to build a genomic vocabulary 
of a specified size, with varying length ‘words’. While chromosomes are 
millions of base pairs long, deep learning models are limited to shorter 
inputs, typically up to 1,000 tokens. However, clever tokenization (for 
example, if some tokens represent 100 bp length motifs) can extend 
the effective context to 10,000 bp. Full-chromosome contexts remain 
an open challenge. Instead, as chromosome-length sequences are too 
long, they are often split into manageable lengths before tokenization 
or one-hot encoding.

Why transformers and gLMs?
Transformers excel in DNA representation largely due to their attention 
mechanism, which captures relationships across entire sequences, 
independent of nucleotide proximity31,42,71 (Supplementary Infor-
mation, appendix A). This contrasts with recurrent neural networks 
(RNNs), which struggle with long-range dependencies, and CNNs, 
which are limited to capturing relationships in fixed window sizes 
(Fig. 2). Transformers, originally developed as encoder-decoders72 
(see ‘Architecture’ section), naturally build on the success of earlier 
encoder-decoder models for genomic sequences (Supplementary 
Information, ‘Encoder-decoders’ section).

Most DNA sequence data are unlabelled60–62. gLMs address this 
through pretraining, learning generalizable representations from 
genomic tokens without relying on human annotations (Fig. 1). This 
reduces bias and improves downstream task performance. Pretrain-
ing tasks, when well designed59,73, enhance a model’s ability to per-
form ‘few-shot’ and ‘zero-shot’ tasks (see ‘pretraining’ in Box 1). 
Few-shot performance is particularly valuable in genomics, where 
biologists often work with limited, well-characterized examples (for 
example, microRNAs or enhancers). Strong zero-shot performance 
has the potential to discover new regulatory grammar within the 
genome.

classification31,43. Computational advances continue to be made in 
improving the efficiency of the transformer, allowing the size of these 
models to increase along with their predictive power44,45. This has 
accelerated the application of transformer models for genomics. More 
recently, genomic models are being proposed with novel architectures 
that claim to outperform the transformer46.

This Review will discuss the trajectory of deep learning approaches 
in genomics, including transformers, with a detailed discussion of the 
applications, successes and challenges of gLMs. gLMs, as referred to 
here, are models pretrained on sequences of genomic tokens such as 
nucleotides or k-mers. Numerous review papers have explored deep 
learning models in genomics, with topics spanning from general intro-
ductions to specific discussions on model interpretation, understand-
ing gene regulation, predicting the impact of genetic variation, and 
unveiling new applications18,47–57. Our Review contributes to the field 
by specifically and exclusively focusing on transformers for genomic 
sequence prediction, transformers as gLMs, and gLMs with alterna-
tive architectures to transformers. We will not discuss transformers 
or language models for protein sequences as these topics have been 
reviewed elsewhere58. Given the rapid pace of the field, we acknowledge 
we cannot be comprehensive and instead focus on select models and 
advancements up to July 2024.

In this Review, we introduce an open problem in genomics and 
discuss the potential of the transformer model and, more broadly, the 
potential of gLMs solve it. We then present an overview of the trans-
former architecture in the context of genomics, along with a briefing 
on new approaches based upon state space models (SSMs), which 
have been claimed to outperform transformers. We also introduce 
hybrid models, which we define as models that include transformer 
modules but are not language models, instead being directly trained 
to predict assay data. We then introduce transformer-based gLMs and 
alternative-architecture gLMs. This Review is intended for computa-
tional biologists with deep learning experience interested in under-
standing gLMs and similar tools, and computer scientists keen on 
gaining insights into the research opportunities within this exciting 
field.

An open problem in genomics
Only about 2% of the human genome encodes proteins, leaving the 
vast majority as non-coding regions whose functions remain poorly 
understood55. A key goal in genomics is deciphering the regulatory 
grammar of the genome: understanding how regulatory elements inter-
act with one another and the genes they influence to modulate gene 
expression. This includes understanding how these interactions vary 
across environmental conditions, developmental stages, and cell types.

Deep learning is one of many tools applied to this challenge56. As 
regulation in the genome is large and complex, researchers focus on 
smaller tasks such as identifying regulatory elements like promoters or 
enhancers, classifying mutations as deleterious or benign, predicting 
transcription-factor binding sites, splice sites, gene expression, and 
chromatin accessibility19–39.

What data do deep learning models for genomics train on?
The genome of an organism is defined by its complete set of DNA 
sequences. Using only four different nucleotides (often represented 
by A, T, G and C), the information necessary for life is encoded in con-
tinuous stretches of DNA58. DNA has a double-stranded structure, with 
two complementary strands bonded together and read in the opposite 
directions59. For many complex organisms, including humans, DNA is 
wound up and packaged into chromosomes that are millions of base 
pairs long. Each chromosome contains many genes, regions of DNA 
transcribed into RNA. During transcription, many different protein 
complexes are recruited in a specific order, often through patterns 
of nucleotides known as motifs58. These motifs are found within the 
non-coding DNA sequences surrounding a gene. There are examples 
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Fig. 1 | A big-picture look at the diverse applications of gLMs. a, gLMs can be 
trained to process DNA sequence data from one (often human) or more species 
and extract signals to make predictions on downstream tasks. Pretraining 
allows gLMs to learn the underlying structure of a dataset. b, Downstream task 
performance is evaluated after fine-tuning. Downstream tasks can include 
functional region identification, variant effect prediction, and gene expression 
level prediction. c, DNA sequences can be tokenized on the single-nucleotide 

level, multiple nucleotides can be grouped into k-mers, or learned vocabularies 
(such as BPE) can be used. d, gLMs are often pretrained using the masked 
language modelling pretext task, where a percentage of tokens are masked at 
different random positions in each sequence of the dataset. The model can use 
information from preceding and succeeding tokens to predict each masked 
token. Alternatively, in autoregressive language modelling, each token is 
predicted in order, and therefore only preceding information is used.
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Transformers
Understanding the use of transformers in the context of genomic model-
ling requires a foundational understanding of the architecture and its 
training regime. In explaining the transformer, we assume readers have a 
grasp of several prominent concepts in machine learning, including the 
architectures of deep feed-forward neural networks (DFNNs), CNNs and 
RNNs. For a comprehensive introduction to deep learning, specifically 
in the context of genomics, we direct readers to other reviews18,47,49,51. 
We refer readers to previous publications to familiarize themselves 
with DFNNs, CNNs74 and RNNs75,76 (Box 1 provides concise definitions).

Architecture
The transformer architecture, introduced in 2017, features layers of 
stacked self-attention mechanisms, typically multi-headed attention, 

alongside addition and normalization layers, skip-connections and 
fully connected layers for final output predictions77. Here, we define 
encoder-only and decoder-only transformers. For a detailed breakdown 
of the attention formula and multi-head attention, see Supplementary 
Information, appendix A. For detailed information on the historical 
application of the subcomponents within the transformer module, and 
the discussion of the transformer as an encoder-decoder framework, 
see Supplementary Information.

The original transformer model was introduced as an encoder- 
decoder framework, but transformers can also be implemented as 
encoder-only or decoder-only models77. Bidirectional encoder rep-
resentations from transformers (BERT)3 is an encoder-only model 
with 12 layers and 12 attention heads, pretrained using the masked 
language modelling (MLM) task (see ‘Pretraining’ section). Generative 

a  DFNN

b  CNN

Curated input
features Prediction

Sequence information captured by model

T TA T TAA G GC C. . . T TA T TAA G GC CG C A

500,000 bp (ref. 96)
DNA sequences Motif Transcription 

factor motif
Transcription 
factor motif

c  RNN Memory

T TA T TAA G GC C. . . T TA T TAA G GC C. . .

800 bp (ref. 24)
DNA sequences Memory of preceding positions

Memory + local reweighing

d  Transformer

Attention

T TA T TAA G GC C. . .

T TA T TA AA G GGC C. . .

T TA A . . .36,000 bp (ref. 97)
DNA sequences

Relevance of each position to
each other position

Attention+ +

e  Selective SSM-based

T TA . T A GAA G .C .. . .

T TA . T A GAA G .C. . .. . .

1,000,000 bp (ref. 46)
DNA sequences

Memory of preceding positions
with local relevance

Fig. 2 | A comparison of how different genomic deep learning models operate 
on DNA sequence data. All DNA sequence lengths are given as the lengths used 
by a recently proposed model in the Review (in order from top to bottom: Borzoi95 
for CNN, DeepMILO24 for RNN, GENA-LM96 for transformer, HyenaDNA46 for 
S4-based). a, A DFNN is capable of taking a curated feature set, either manually 
curated or taken from the output of another model and making a prediction.  
b, A CNN can directly take as input a DNA sequence, and use convolutions to scan 
across a sequence to capture local patterns, or motifs, within a DNA sequence. 
This allows a CNN to pick up motifs that repeat across DNA, like promoters and 
genes. c, An RNN can take as input a DNA sequence and scan along its entirety 

while retaining a memory of what it has already seen. The RNN can use its memory 
as context to inform sequence information it has yet to see. d, A transformer 
can take as input a relatively short DNA sequence and use attention to ‘attend’ to 
every position within the inputted sequence. Attention allows the transformer 
to capture medium-range dependencies by modelling global context as the 
relationship between every token of the input sequence. e, A selective SSM 
layer, like the RNN, can scan along an entire sequence maintaining a memory 
of previous input tokens, but unlike the RNN, recontextualizes new tokens 
dynamically based on previous sequence information.
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pretrained transformer (GPT)4 is a decoder-only model pretrained with 
the autoregressive language modelling (ALM) task (see ‘Pretraining’ 
section). BERT models process tokens bidirectionally, considering 
both left-to-right and right-to-left contexts, while GPT models generate 
text sequentially, predicting the next token based on previous ones. In 
genomics, BERT predicts masked nucleotides using both upstream and 
downstream information, while GPT predicts subsequent nucleotides 
based on preceding ones.

BERT-style and GPT-style models excel in different tasks3,6. 
Encoder-only models, like BERT, are useful in cases where final predictions 
have high accuracy when based on only an embedding, or feature repre-
sentation of the inputted sequence. This is often true for classification 

tasks. BERT-based models pretrained with MLM are useful for under-
standing genomic sequences where the overall context (upstream and 
downstream) is important, such as identifying genomic features or clas-
sifying sequences where directionality is not critical. The BERT framework 
has been successfully applied for many genomic modelling problems30.

Decoder-only transformers pretrained with ALM, like GPT-3 and 
GPT-46,8, are appropriate for tasks that involve predicting sequences 
where directionality is important. This includes modelling anything 
co-transcriptional or co-translational, such as RNA splicing or protein 
folding, where these sequences are biologically synthesized in a unidi-
rectional manner. Additionally, decoder-only models generally have 
superior zero-shot generalization78.

Box 1

Glossary of key terms
Attention
A mechanism in transformers that dynamically weights the 
importance of different input elements in a sequence. The input 
sequence is projected to a set of learned key, query and value 
matrices. The dot product is computed between the keys and queries 
to determine the similarity of every pair of input elements. The 
resulting matrix is then softmaxed to get a relevancy score between 
0–1 of every pairwise element in the input sequence, known as the 
attention matrix. This attention matrix is multiplied by the values 
matrix so that every input element’s representation is updated 
by every other input element’s representation, according to their 
pairwise relevance.

CNN
Convolutional neural network. A neural network with convolutional 
layers that aggregate information in spatially proximate regions 
according to learned parameters. In genomics, these models detect 
patterns in DNA sequences using one-dimensional convolutions.

Decoder
The part of a model that generates output sequences from encoded 
representations of the input.

DFNN
Deep feed-forward neural network. A multi-layered deep learning 
model where each neuron connects to all neurons in the next layer.

Embedding
A numeric representation of data learned to capture semantic 
relationships, typically through a task-specific objective. Also called a 
learned representation.

Encoder
The part of a model that processes input data into learned 
representations or embeddings.

Fine-tuning
Adjusting a pretrained model on a specific task using a smaller, 
task-specific dataset.

gLM
Genomic language model. A model that has been pretrained in a 
self-supervised manner on tokenized genomic sequence data.

Hybrid
A model architecture that incorporates a transformer module along 
with other layer types (for example, convolutional or recurrent layers) 
to predict assay data.

Multi-head attention
A variation of attention where multiple sets of key, query and value 
vectors are projected to compute attention in parallel.

Pretraining

Training a model on a larger more general dataset, usually in a 
reconstruction pretext task to learn the underlying structure of the 
data, before fine-tuning on a specific task.

Pretext
A training task during self-supervised pretraining that helps the 
model learn a dataset's underlying structure, usually through 
reconstruction of the input data.

RNN
Recurrent neural network. A neural network that captures temporal or 
sequential dependencies between successive inputs with ‘memory’ 
mechanisms, including long short-term memory (LSTM) networks 
and gated recurrent units (GRUs).

Self-attention
A form of attention, where key, query and value vectors originate from 
the same input sequence.

Self-supervised learning
A method for training a model on unlabelled data using a pretext task, 
where the data’s structure is exploited to generate labels the model 
must predict. Examples of this include MLM and ALM.

SSM
State space model. A class of models that can represent sequential 
data, traditionally used in control theory to model dynamic systems 
using state variables (the minimum number of variables that 
defines all possible states of a problem). These models, and recent 
modifications of them like the selective SSM, aim to be competitive 
with transformer performance, with a subquadratic cost in compute.

Token
The smallest unit of data a language model trains on. For gLMs, a 
token can be a DNA k-mer (where for k = 6, a token is ATGATT), a single 
nucleotide (like ‘A’) or a BPE-summarized DNA token.

Transformer
A neural network composed of a series of stacked layers with 
data-dependent global context. Global context is achieved by having 
every token attend to every other token, and attention is determined 
dynamically (through the attention calculation) by the inputted data.

Transformer module
A subset of layers in the transformer that includes the attention 
mechanism, usually forming either the encoder or decoder of a 
transformer.

Zero-shot generalization
The ability of a model to perform well on tasks it was not explicitly 
trained on.
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Training
Transformers can be trained in a supervised manner on labelled data for 
specific tasks, or pretrained in a semi-supervised manner on unlabelled 
data. Here, we discuss different methods of pretraining and fine-tuning 
transformer models, along with their motivation.

Pretraining. The attention mechanism in transformers is often credited 
with their success79. However, perhaps just as important, is the trans-
former’s capacity to be pretrained. While pretraining is not exclusive 
to transformers and benefits other architectures80,81, transformers are 
the most commonly pretrained architecture.

Unsupervised pretraining is the area of most research interest, 
particularly in biology, where available data are mostly not labelled82. 
The goal of unsupervised learning is for the model to uncover the 
underlying structure and signal of a dataset through pretext tasks 
(Box 1). These tasks, such as reconstruction (for example, predicting 
masked regions) or contrastive learning (for example, forcing semanti-
cally similar data points to be close in representation space), help the 
model learn meaningful data representations despite the lack of labels. 
In genomics, pretraining exposes the model to diverse sequences, 
enabling it to understand various sequence patterns, contextual rela-
tionships, and general nuances of genomic data.

MLM is the most common pretraining task in genomics39,41,43,83 
(Fig. 1). MLM involves randomly masking a subset of input tokens (usu-
ally 15%), with the model’s task being to predict these masked tokens. 
In genomics, masking out nucleotide tokens within the genome and 
having the model ‘fill in the gaps’ allows the model to learn bidirectional 
relationships between nucleotides.

ALM is a training technique used in models such as GPT4,6, where 
the task is to predict the next token in a sequence based on all previously 
observed tokens (Fig. 1). For genomic sequence modelling, this means 
predicting the next base (or group of bases) in a DNA sequence given the 
preceding bases46. Thus, ALM enables the model to directly generate 
new sequences. However, an artefact of this training is unidirectionality, 
as only previous tokens are considered when predicting the next one 
(Fig. 1), which contrasts with bidirectional models trained using MLM, 
which consider both past and future tokens. Thus, ALM and MLM offer 
different types of sequence understanding. At the time of writing this 
Review, the ALM pretext task has only been applied to the HyenaDNA46 
model and the Evo model84, neither of which are transformer based.

Fine-tuning. After pretraining, the model undergoes fine-tuning, a 
form of transfer learning, on a smaller, task-specific (usually labelled) 
dataset. The pretrained parameters are adjusted so the model spe-
cializes for the target task. In some cases, earlier model layers may 
be frozen, with only later layers being fine-tuned. The expectation is 
that the model’s weights will not change dramatically, as pretrained 
weights provide useful information for the downstream task. How-
ever, this assumption is often not explicitly evaluated. Most genomic 
models have not been closely examined to assess what is learned dur-
ing pretraining versus fine-tuning85. Ideally, fine-tuning benefits from 
the broad representations learned in pretraining, allowing the model 
to specialize with less labeled data. For example, in genomics, MLM 
pretraining on the human genome could be followed by fine-tuning 
for classifying TATA promoters. This combination of pretraining and 
fine-tuning balances unsupervised learning from large unlabelled 
datasets with supervised learning from smaller, task-specific labelled 
datasets.

SSMs and beyond
SSMs represent sequential data and were traditionally used in control 
theory to model dynamic systems using state variables, the minimum 
number of variables that define all possible states of a problem86. 
SSMs, at a given time t, map an input sequence xt, to a hidden state or 
embedding space ht, to make a prediction yt. Like RNNs, the prediction 

yt depends on the hidden state ht−1 of the last input or xt−1. An RNN is 
actually a special case of an SSM (Fig. 2). The state space described by an 
SSM is similar to the embedding space, where embeddings of genomic 
deep learning models (whether they are RNNs, CNNs or transformers) 
can also describe the ‘state’ of an input sequence. While RNNs face 
slow training times but fast inference, transformers improve training 
time but struggle with slow inference due to their quadratic cost at 
longer sequences. Even for non-generative transformers with increased 
sequence lengths during training, the memory needed to store the 
attention weights can become prohibitive. Modified SSMs, or selective 
SSMs, aim to address these issues by enabling parallelizable training 
and fast inference. For a detailed breakdown of SSM equations, the 
differences between the original SSM86 and selective SSMs87, see Sup-
plementary Information, appendix B.

Selective SSMs, of which Mamba is an example, are a class of mod-
els that adapt the original SSM for high-accuracy sequence-to-sequence 
prediction. Selective SSMs, unlike regular SSMs, selectively ‘propagate’ 
or ‘forget’ information by learning a different matrix for each input that 
determines how much of the current input enters the hidden state. 
This modification, along with some clever memory and storage access 
manipulations, allows selective SSMs to compete with attention’s 
global context and data dependency79, at a fraction of the cost of a full 
pair-wise attention calculation.

Models like the Hyena layer79 also build off the idea of selective 
SSMs to balance global subquadratic context and data dependency to 
achieve very long contexts (Fig. 2). For a more detailed description of 
the Hyena layer, see Supplementary Information, appendix C.

So far, the Hyena layer, and the Mamba layer are the only new 
model types to be applied to genomic data46,84,88. However, if trends 
in NLP and protein modelling continue to be predictive of DNA mod-
elling trends, these models are likely to continue to be adapted for 
DNA sequences. Additionally, the benefits of these models in terms 
of matching the performance of transformers, but scaling back on 
computational cost, could help increase context window size further 
for genomic sequence modelling.

Hybrid models and gLMs
The main focus of this section will be to explore the transformer model 
and similar architectures (including HyenaDNA), but more general 
reviews of deep learning models applied to genomic data are avail-
able elsewhere54–57,89–91 as is background on model interpretation in 
genomics52,53.

The transformer
In genomic modelling, transformers are used either as a subsequent 
module after initial layers or as a standalone model. In the hybrid 
approach, initial layers compress broad context into a shorter-sequence 
length but high-dimensional embedding space to mitigate attention’s 
quadratic computational cost. When extended context windows are 
not needed, transformers with vanilla self-attention can operate stan-
dalone, processing input directly as transformer gLMs.

Therefore, we split transformer-based models for genomics into 
two classes: hybrids and transformer gLMs, and leave other gLMs as a 
separate category of genomic models56 (Supplementary Fig. 1). Hybrid 
models incorporate transformers into more complex architectures, and 
are designed for tasks like predicting experimental assays (for exam-
ple, cap analysis gene expression (CAGE) tracks and ChIP–seq). These 
models are specialized for high accuracy on assay-prediction tasks 
similar to CNN-based models like DeepBind20,21. Unlike gLMs, hybrid 
models typically do not pretrain, which is a characteristic feature of 
gLMs, making hybrid models more task-specific and less generalizable.

Hybrid models: assay prediction
SATORI (self-attention-based model to detect regulatory element 
interactions) combines a convolutional layer and a self-attention 
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mechanism to model the interactions between regulatory elements 
in DNA sequences. The model uses the sparsity in the attention matrix 
as a proxy for covariance, and was proposed as ‘interpretable’ due to 
direct analysis of the attention matrix. However, treating the attention 
mechanism within transformers as directly interpretable has draw-
backs92 (see ‘Limitations’ section).

Enformer31, developed shortly after SATORI, predicts various 
genomic track signals (gene expression, DNA accessibility, histone 
modifications and transcription factor-binding). It combines convo-
lutional and transformer blocks to capture long-range dependencies 
in sequences up to around 200 kb, with organism-specific prediction 
heads for human and mouse data. This architecture overcomes the 
context window limitations of convolution-only models like Basenji32 
and ExPecto25. However, recent work by Karollus et al.93 scrutinized 
models like Enformer and Basenji294 (which also increased context 
window size over its predecessor), emphasizing the need for more 
and better-curated training data. They noted that despite Enformer’s 
dramatically increased context window, it still encountered consider-
able limitations in predicting the impact of distal regulatory elements, 
such as enhancers. Enformer’s predictive power remains comparably 
robust even with a severely restricted input window, suggesting its 
receptive field size is not the primary determinant of its success. This 
success can instead be attributed to innovations in model architecture 
such as combinations of various layer types, overall parameter number, 
or the quantity of data it was trained on. Karollus et al.93 propose that 
models able to accurately account for distal regulators’ contributions 
must train on datasets curated with an emphasis on long-range signals.

Borzoi95 builds on the Enformer architecture by doubling the size 
of its context window. Borzoi further expands the number of experi-
mental assay predictions compared to Enformer and introduces pre-
dictions of RNA-seq coverage. The model’s main innovation is using an 
architecture styled after U-Net to upsample and increase prediction 
resolution following the transformer module. The convolutional blocks 
preceding the transformer summarize the longer sequence input and 
transform it into the same resolution as Enformer. This allows attention 
to be calculated with similar compute, thereby avoiding the quadratic 
memory complexity by decreasing sequence resolution. To make final 
predictions at a higher resolution, the information outputted by the 
transformer is upsampled using deconvolutional layers.

C.Origami is the hybrid transformer iteration on 3D genome pre-
diction42. The model makes de novo predictions of cell-type-specific 
chromatin architecture from DNA sequence and genomic signals 
(CTCF-binding and ATAC-seq). Like its predecessor, Orca72, C.Origami 
uses an encoder-decoder design, but adds an additional encoder for its 
multi-modal input types (one for DNA sequence and one for genomic 
signals). C.Origami leverages a transformer module to integrate the 
embeddings of the dual encoders before a task-specific decoder. The 
transformer module facilitates the multimodal integration and also 
enables long-range information exchange across these modalities, 
allowing C.Origami to outperform Orca74 and Akita36. The C.Origami 
model enables in silico experiments that examine the impact of genetic 
perturbations on chromatin interactions and identifies a compendium 
of putative cell-type-specific regulators of 3D chromatin architecture.

Transformers: gLMs
One of the earliest gLMs, DNABERT, adapted the original BERT model 
for genomic sequence modelling3,30,39. DNABERT is pretrained on over-
lapping k-mers using the MLM task, then fine-tuned for specific tasks. 
These include predicting proximal and core promoter regions and 
the presence of transcription factor binding sites with high accuracy. 
However, DNABERT’s limited context window (512 tokens) restricts its 
ability to model long-range dependencies. To address this, a variation 
on the model, DNABERT-XL, splits longer sequences into smaller pieces, 
which are independently fed into the model. While this approach to 
increasing context-window size was able to identify between TATA and 

non-TATA promoters well, DNABERT did not demonstrate an end-to-end 
approach in modelling complex long-range dependencies, due to the 
limitations of the cost of attention.

The major advantage of DNABERT was the introduction of 
self-supervised pretraining for genomic data. As seen in Table 1, the 
model is pretrained extensively before any fine-tuning tasks. This 
alleviates the need for large amounts of labelled task-specific data later 
on, and highlights the power of gLMs.

Like DNABERT, the Nucleotide Transformer is pretrained in a 
self-supervised manner and adopts k-merization for tokenization43. 
This family of models varies in size, ranging from 500 million to 2.5 
billion parameters, and unlike DNABERT, uses non-overlapping k-mers 
to avoid issues with token leakage from overlapping k-mers39. However, 
the non-overlapping k-mer approach has limitations, primarily that 
insertion or deletion of a single nucleotide base leads to dramatic 
changes in how a sequence is tokenized39.

The smallest of the Nucleotide Transformer models is five times 
larger than DNABERT, and the authors’ benchmarking experiments 
(predicting enhancers, promoters, TATA promoters, splice sites, and 
so on) show that increasing model size yields better performance. 
This is the same intuition that has led assay-prediction models like 
Enformer and its predecessors to increase their parameter sizes. 
Nucleotide Transformer also showed that training with intra-species 
variability (using multiple genomes of a single species, such as thou-
sands of human genomes) did not perform as well as training with 
inter-species variability (their multi-species training regime). This is 
likely due to multi-species models capturing functional importance 
conserved across evolution, allowing them to generalize better even 
on human-based prediction tasks. The Nucleotide Transformer models 
strongly suggest that models leveraging evolutionarily diverse data 
in pretraining will improve capacity to capture functional relevance.

DNABERT-239 follows the multi-species training approach and 
uses BPE instead of k-mers for tokenization70. This approach bypasses 
the issues associated with overlapping and non-overlapping k-mer 
tokenization. BPE iteratively merges frequent pairs of nucleotides or 
segments within the genome instead of using a specific k-mer. This 
results in the model’s vocabulary comprising a set of variable-length 
tokens representing the entire genome dataset across species (Box 1). 
BPE tokenization of DNA sequences has been observed to result in 
biologically significant tokens, with the longest tokens corresponding 
to elements of the genome known to be repetitive96. By contrast, k-mer 
tokenization treats all regions of the genome equally. Furthermore, the 
BPE method remains as computationally efficient as non-overlapping 
tokenization. The DNABERT-2 authors employ several other methods 
to improve computational efficiency over DNABERT, including the 
use of Flash Attention97, among others98,99. These modifications allow 
DNABERT-2 to perform comparably to the Nucleotide Transformer 
models in several tasks, despite 21 times fewer parameters and signifi-
cantly less computational cost.

Another recently introduced family of transformer-based DNA 
gLMs is GENA-LM96. Like DNABERT-2 it uses BPE tokenization, and like 
Nucleotide Transformer there are both human-only and multi-species 
models with varying parameters. However, a significant difference 
between GENA-LM and other models is the use of sparse attention 
to help mitigate the quadratic complexity in the context length of 
the transformer’s attention mechanism. This results in GENA-LM 
models having increased maximum sequence length over other 
transformer-based gLMs, with a maximum tokenized sequence length 
of 4,096 tokens. The median token length after BPE tokenization is 
nine base pairs, thus GENA-LM models can process sequences of up 
to 36,000 base pairs.

Beyond the transformer
While transformers are the dominant architecture for gLMs, alterna-
tives can also match their performance and undergo similar pretraining 

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 7 | March 2025 | 346–362 353

Review article https://doi.org/10.1038/s42256-025-01007-9

Ta
bl

e 
1 |

 A
 su

m
m

ar
y 

of
 th

e 
re

ce
nt

ly
 p

ro
po

se
d 

de
ep

 le
ar

ni
ng

 m
od

el
s c

ov
er

ed
 in

 th
is

 R
ev

ie
w

M
od

el
 n

am
e

Pr
im

ar
y 

ar
ch

ite
ct

ur
e 

(in
pu

t, 
pa

ra
m

et
er

s)
En

co
de

r/
de

co
de

r
To

ke
ni

za
tio

n/
en

co
di

ng
D

at
e 

pu
bl

is
he

d
Pr

e-
 tr

ai
ni

ng
?

H
um

an
 o

r 
m

ul
tis

pe
ci

es
?

Tr
ai

ne
d 

to
 p

re
di

ct
In

te
rp

re
ta

bi
lit

y 
m

et
ho

d

D
N

AB
ER

T30
Tr

an
sf

or
m

er
(5

12
 b

p 
in

pu
t, 

11
0 

m
ill

io
n 

pa
ra

m
et

er
s)

En
co

de
r-o

nl
y

O
ve

rla
pp

in
g 

k-
m

er
1 F

eb
ru

ar
y 

20
21

M
LM

H
um

an
Ba

se
d 

on
 fi

ne
-tu

ni
ng

 
ca

n 
pr

ed
ic

t s
eq

ue
nc

e 
cl

as
si

fic
at

io
n 

ta
sk

 su
ch

 a
s:

• P
ro

m
ot

er
 re

co
gn

iti
on

• T
ra

ns
cr

ip
tio

n 
fa

ct
or

-b
in

di
ng

 si
te

 
pr

ed
ic

tio
n

• S
pl

ic
e 

si
te

 p
re

di
ct

io
n

•  F
un

ct
io

na
l g

en
et

ic
 v

ar
ia

nt
s 

cl
as

si
fic

at
io

n

At
te

nt
io

n 
vi

su
al

iz
at

io
n 

m
et

ho
d 

ca
lle

d 
D

N
AB

ER
T-

vi
z

SA
TO

RI
 (S

el
f 

At
te

nt
io

n 
Ba

se
d 

M
od

el
 

to
 d

et
ec

t 
Re

gu
la

to
ry

 
El

em
en

t 
In

te
ra

ct
io

ns
)12

3

C
N

N
 +

 (R
N

N
) +

 tr
an

sf
or

m
er

(u
p 

to
 1 

kb
 in

pu
t, 

if 
RN

N
 

is
 in

cl
ud

ed
 6

74
,2

70
 

pa
ra

m
et

er
s)

En
co

de
r-o

nl
y

O
ne

-h
ot

 e
nc

od
in

g
1 J

ul
y 

20
21

N
o

M
ul

tis
pe

ci
es

Tr
an

sc
rip

tio
n 

fa
ct

or
–

tr
an

sc
rip

tio
n 

fa
ct

or
 

in
te

ra
ct

io
ns

Us
es

 fi
lte

r–
fil

te
r i

nt
er

ac
tio

ns
 

fro
m

 th
e 

se
lf-

at
te

nt
io

n 
la

ye
r t

o 
in

fe
r c

oo
pe

ra
tiv

ity
 

be
tw

ee
n 

re
gu

la
to

ry
 

fe
at

ur
es

, b
ui

lt 
as

 a
n 

‘in
te

rp
re

ta
bl

e’
 m

od
el

En
fo

rm
er

31
C

N
N

 +
 tr

an
sf

or
m

er
(1

96
 k

b 
in

pu
t, 

22
8 

m
ill

io
n 

pa
ra

m
et

er
s +

 16
 m

ill
io

n 
pa

ra
m

et
er

s f
or

 th
e 

hu
m

an
 

ou
tp

ut
 h

ea
d 

an
d 

5 
m

ill
io

n 
fo

r t
he

 m
ou

se
 o

ut
pu

t h
ea

d)

En
co

de
r-o

nl
y

O
ne

-h
ot

 e
nc

od
in

g
4 

O
ct

ob
er

 2
02

1
N

o
M

ul
tis

pe
ci

es
Ex

pe
rim

en
ta

l t
ra

ck
s f

or
 

hu
m

an
 a

nd
 m

ou
se

 fr
om

 
EN

C
O

D
E

At
te

nt
io

n 
m

at
ric

es
 w

er
e 

in
sp

ec
te

d 
ar

ou
nd

 sp
ec

ifi
c 

re
gi

on
s o

f s
eq

ue
nc

es

G
PN

 (G
en

om
ic

 
Pr

et
ra

in
ed

 
N

et
w

or
k)

83

M
od

ifi
ed

-tr
an

sf
or

m
er

 
ar

ch
ite

ct
ur

e,
 re

pl
ac

es
 

at
te

nt
io

n 
m

ec
ha

ni
sm

 w
ith

 
di

la
te

d 
co

nv
ol

ut
io

ns
 (5

12
 

bp
 in

pu
t, 

ov
er

 6
5 

m
ill

io
n 

pa
ra

m
et

er
s)

En
co

de
r-o

nl
y

Si
ng

le
 n

uc
le

ot
id

e 
to

ke
n

23
 A

ug
us

t 2
02

2
M

LM
M

ul
tis

pe
ci

es
 

(n
on

-h
um

an
)

N
ot

 tr
ai

ne
d 

in
 a

ny
 

su
pe

rv
is

ed
 w

ay
, d

id
 p

er
fo

rm
 

un
su

pe
rv

is
ed

 o
r z

er
o-

sh
ot

 
va

ria
nt

 e
ffe

ct
 p

re
di

ct
io

n 
in

 
co

di
ng

 re
gi

on
s

M
ot

if 
an

al
ys

is
 o

f 
co

nv
ol

ut
io

ns

C
.O

rig
am

i42
C

N
N

 +
 tr

an
sf

or
m

er
(a

pp
ro

x 
20

0 
kb

p 
in

pu
t, 

10
 

m
ill

io
n 

pa
ra

m
et

er
s)

En
co

de
r-o

nl
y

O
ne

-h
ot

 e
nc

od
in

g
9 

Ja
nu

ar
y 

20
23

N
o

M
ul

tis
pe

ci
es

D
e 

no
vo

, c
el

l-t
yp

e-
sp

ec
ifi

c 
pr

ed
ic

tio
n 

of
 g

en
om

e 
in

te
ra

ct
io

n 
co

nt
ac

t m
ap

s

Vi
su

al
iz

at
io

n 
of

 a
ll 

at
te

nt
io

n 
w

ei
gh

ts
 re

ve
al

ed
 th

at
 

di
ffe

re
nt

 a
tt

en
tio

n 
he

ad
s 

at
te

nd
 to

 sp
ec

ifi
c 

re
gi

on
s,

 
us

in
g 

D
N

AB
ER

T-
vi

z

N
uc

le
ot

id
e 

Tr
an

sf
or

m
er

43
Tr

an
sf

or
m

er
(m

ax
 in

pu
t o

f 1
,0

00
 to

ke
ns

, 
2.

5 
bi

lli
on

 p
ar

am
et

er
s)

En
co

de
r-o

nl
y

N
on

-o
ve

rla
pp

in
g 

k-
m

er
iz

at
io

n
15

 Ja
nu

ar
y 

20
23

M
LM

M
ul

tis
pe

ci
es

Ba
se

d 
on

 fi
ne

-tu
ni

ng
 

ca
n 

pr
ed

ic
t s

eq
ue

nc
e 

cl
as

si
fic

at
io

n 
ta

sk
s s

uc
h 

as
:

•  E
pi

ge
ne

tic
 m

ar
ks

 
pr

ed
ic

tio
n

•  P
ro

m
ot

er
 se

qu
en

ce
 

pr
ed

ic
tio

n
En

ha
nc

er
 se

qu
en

ce
 

pr
ed

ic
tio

n
• S

pl
ic

e 
si

te
 p

re
di

ct
io

n

An
al

ys
ed

 a
tt

en
tio

n 
m

ap
s g

at
he

re
d 

fro
m

 th
e 

pr
e-

tr
ai

ne
d 

m
od

el
s a

nd
 

us
ed

 B
ER

To
lo

gy
 p

ap
er

 
to

 g
ui

de
 a

na
ly

si
s o

f h
ow

 
at

te
nt

io
n 

is
 d

is
tr

ib
ut

ed
 to

 
di

ffe
re

nt
 g

en
om

ic
 e

le
m

en
ts

 
ac

ro
ss

 d
iff

er
en

t h
ea

ds

G
EN

A-
LM

96
Tr

an
sf

or
m

er
(m

ax
 4

.5
 k

b 
in

pu
t a

nd
 3

36
 

m
ill

io
n 

pa
ra

m
et

er
s w

ith
 fu

ll 
at

te
nt

io
n,

 3
6 

kb
 in

pu
t a

nd
 

11
0 

m
ill

io
n 

pa
ra

m
et

er
s w

ith
 

sp
ar

se
 a

tt
en

tio
n)

En
co

de
r-o

nl
y

BP
E

13
 Ju

ne
 2

02
3

M
LM

M
ul

tis
pe

ci
es

Ba
se

d 
on

 fi
ne

-tu
ni

ng
 

ca
n 

pr
ed

ic
t s

eq
ue

nc
e 

cl
as

si
fic

at
io

n 
ta

sk
s s

uc
h 

as
:

• P
ro

m
ot

er
 p

re
di

ct
io

n
• S

pl
ic

e 
si

te
 p

re
di

ct
io

n
• D

ro
so

ph
ila

 e
nh

an
ce

rs
 

pr
ed

ic
tio

n
• C

hr
om

at
in

 p
ro

fil
in

g
•  P

ol
ya

de
ny

la
tio

n 
si

te
s 

pr
ed

ic
tio

n

N
on

e

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 7 | March 2025 | 346–362 354

Review article https://doi.org/10.1038/s42256-025-01007-9

M
od

el
 n

am
e

Pr
im

ar
y 

ar
ch

ite
ct

ur
e 

(in
pu

t, 
pa

ra
m

et
er

s)
En

co
de

r/
de

co
de

r
To

ke
ni

za
tio

n/
en

co
di

ng
D

at
e 

pu
bl

is
he

d
Pr

e-
 tr

ai
ni

ng
?

H
um

an
 o

r 
m

ul
tis

pe
ci

es
?

Tr
ai

ne
d 

to
 p

re
di

ct
In

te
rp

re
ta

bi
lit

y 
m

et
ho

d

D
N

AB
ER

T-
239

Tr
an

sf
or

m
er

(1
28

 b
p 

in
pu

t, 
11

7 
m

ill
io

n 
pa

ra
m

et
er

s)

En
co

de
r-o

nl
y

BP
E

26
 Ju

ne
 2

02
3

M
LM

M
ul

tis
pe

ci
es

Ba
se

d 
on

 fi
ne

-tu
ni

ng
 

ca
n 

pr
ed

ic
t s

eq
ue

nc
e 

cl
as

si
fic

at
io

n 
ta

sk
s s

uc
h 

as
:

• C
or

e 
pr

om
ot

er
 p

re
di

ct
io

n
• P

ro
xi

m
al

 p
ro

m
ot

er
 

pr
ed

ic
tio

n
• S

pl
ic

e 
si

te
 p

re
di

ct
io

n
• T

ra
ns

cr
ip

tio
n 

fa
ct

or
-b

in
di

ng
 si

te
 

pr
ed

ic
tio

n 
fo

r h
um

an
 a

nd
 

m
ou

se
• E

pi
ge

ne
tic

 m
ar

ks
 

pr
ed

ic
tio

n

N
on

e

H
ye

na
D

N
A46

H
ye

na
(u

p 
to

 1 
m

ill
io

n 
to

ke
n 

in
pu

t, 
up

 to
 6

.6
 m

ill
io

n 
pa

ra
m

et
er

s)

D
ec

od
er

-o
nl

y
Si

ng
le

 n
uc

le
ot

id
e 

to
ke

n
27

 Ju
ne

 2
02

3
AL

M
H

um
an

Ba
se

d 
on

 fi
ne

-tu
ni

ng
 

ca
n 

pr
ed

ic
t s

eq
ue

nc
e 

cl
as

si
fic

at
io

n 
ta

sk
s s

uc
h 

as
:

• E
pi

ge
ne

tic
 m

ar
ks

 
pr

ed
ic

tio
n 

Pr
om

ot
er

 
se

qu
en

ce
 p

re
di

ct
io

n
• E

nh
an

ce
r s

eq
ue

nc
e 

pr
ed

ic
tio

n
• S

pl
ic

e 
si

te
 p

re
di

ct
io

n

N
on

e

Bo
rz

oi
95

C
N

N
 +

 tr
an

sf
or

m
er

(5
24

 k
b 

in
pu

t, 
18

6 
m

ill
io

n 
pa

ra
m

et
er

s)

En
co

de
r-o

nl
y

O
ne

-h
ot

 e
nc

od
in

g
1 S

ep
te

m
be

r 2
02

3
N

o
M

ul
tis

pe
ci

es
M

or
e 

ex
pe

rim
en

ta
l t

ra
ck

s 
fo

r h
um

an
 a

nd
 m

ou
se

 fr
om

 
EN

C
O

D
E 

as
 w

el
l a

s R
N

A-
se

q 
tr

ac
ks

At
te

nt
io

n 
m

ap
 e

xp
lo

ra
tio

n 
ac

ro
ss

 T
SS

 re
gi

on
s,

 
ex

on
 b

ou
nd

ar
ie

s,
 a

nd
 

po
ly

ad
en

yl
at

io
n 

si
gn

al
s f

or
 

ex
am

pl
e 

re
gi

on
s

Ev
o84

St
rip

ed
H

ye
na

D
ec

od
er

-o
nl

y
Si

ng
le

 n
uc

le
ot

id
e 

to
ke

n
27

 F
eb

ru
ar

y 
20

24
AL

M
M

ul
tis

pe
ci

es
(p

ro
ka

ry
ot

ic
 

ge
no

m
es

)

Ze
ro

 sh
ot

 e
va

lu
at

ed
 o

n:
• P

re
di

ct
in

g 
m

ut
at

io
na

l 
ef

fe
ct

s o
n 

no
n-

co
di

ng
 R

N
A 

fu
nc

tio
n

• P
re

di
ct

in
g 

ge
ne

 e
xp

re
ss

io
n 

fro
m

 p
ro

m
ot

er
–R

N
A 

bi
nd

in
g 

si
te

 p
ai

rs
• G

en
er

at
in

g 
m

ob
ile

 g
en

et
ic

 
el

em
en

ts
• G

en
e 

es
se

nt
ia

lit
y 

pr
ed

ic
tio

n
Fi

ne
-tu

ne
d 

to
 g

en
er

at
e 

pr
ot

ei
n–

RN
A 

co
m

pl
ex

es

N
on

e

Ta
bl

e 
1 (

co
nt

in
ue

d)
 | A

 su
m

m
ar

y 
of

 th
e 

re
ce

nt
ly

 p
ro

po
se

d 
de

ep
 le

ar
ni

ng
 m

od
el

s c
ov

er
ed

 in
 th

is
 R

ev
ie

w

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 7 | March 2025 | 346–362 355

Review article https://doi.org/10.1038/s42256-025-01007-9

regimes (for example, MLM or ALM pretexts79,80). It remains unclear 
whether the success of the transformer model lies in an artefact of the 
architecture, like the attention mechanism, or whether this mechanism 
simply allowed these models to scale up more quickly than their coun-
terparts. It could be that the pretraining capabilities of the transformer, 
which are not restricted to this architecture, contribute the most to its 
success. If this is the case, the transformer model could be replaced by 
another model in NLP, proteomics, and genomics79,100,101.

The genomic pretrained network, or GPN83, copies the exact archi-
tecture of a transformer encoder module but replaces the attention 
mechanism with a convolution operation across the sequence. The idea 
behind this came from recent work that showed that pretrained CNNs 
are competitive with transformers in NLP80, and protein modelling81. 
The GPN model leverages the MLM pretext task in pretraining and is 
trained solely on individual nucleotides, rather than using BPE or any 
k-merization strategy. The genomes used in pretraining consisted of 
eight Brassicales reference genome assemblies from National Center 
for Biotechnology Information (NCBI) Genome. Instead of sampling 
the whole genome equally in 512 bp windows during pretraining, the 
authors took the union of exons (with a small intronic flank), promoters 
(1,000 base pairs upstream of the TSS (transcription start site)), and a 
complementary number of random windows from the whole genome. 
While the authors state this may have improved performance, they do 
not show any experiments to validate this claim.

The authors demonstrate that GPN learns non-coding vari-
ant effects from unsupervised pretraining solely on genomic DNA 
sequences, outperforming supervised deep learning models such as 
DeepSEA21.

Another non-transformer gLM, HyenaDNA46, achieves a context 
size of 1 million nucleotides, 500× larger than the largest of the gLMs 
utilizing full pairwise attention, the Nucleotide Transformer43. Instead 
of relying on the quadratic-bound attention mechanism, which com-
pares each pair of points in a sequence, the authors of the original Hyena 
paper designed a subquadratic-time layer. HyenaDNA is based on the 
structure of the decoder-only transformer architecture, replacing the 
attention mechanism directly with the Hyena operator. HyenaDNA 
is trained generatively using the ALM pretext task. The HyenaDNA 
model was only trained on one reference human genome, providing an 
obvious direction for future work. The model boasts state-of-the-art 
performance on all eight datasets from GenomicBenchmarks102.

The recently proposed Evo model84 is trained on whole prokaryotic 
genomes. Evo uses the StripedHyena architecture, a hybridization of 
attention layers and Hyena layers. The authors are the first to provide 
scaling laws experiments motivating the use of the StripedHyena archi-
tecture as opposed to Mamba, Hyena, or a set of efficient Transformer 
variations. Scaling law analysis aims to determine the relationship 
between the size of pretraining datasets, the model architecture used, 
and performance metrics. Scaling laws of language models in NLP show 
increasing training dataset size and model size results in proportional 
increases in performance103. This is a strong motivation for working 
with these models in NLP, and suggests the training task of these models 
learns the underlying structure of the data. However, whether gLMs and 
protein language models adhere to this kind of a scaling law has yet to 
be robustly demonstrated104,105. Evo is capable of predicting whether a 
mutation in a non-coding RNA (RNA that does not encode for proteins 
but instead might regulate activity in the cell) results in a drop in fitness 
as measured by non-coding RNA deep mutational scanning (ncRNA 
DMS) experiments84. Evo shows an ability to predict gene expression 
given promoter–RNA binding site sequence pairs, and can predict gene 
essentiality, as mutations in essential genes result in larger negative log 
likelihood changes than non-essential genes. Overall, the Evo authors 
showed that Evo has strong performance on a variety of tasks, but only 
tested on prokaryotic data and compared to models pretrained on both 
eukaryotic and prokaryotic DNA. Additionally, the prokaryotic genome 
is substantially less complex than the eukaryotic genome, making the 

performance of Evo at genome-scale, and the efficacy of Evo’s pretrain-
ing, not necessarily translatable to eukaryotic DNA.

A comparison
Hybrid models with transformer elements are not always evaluated on 
the same tasks as transformer gLMs or alternative gLM architectures. 
Hybrid models are supervised, predicting assay data, while gLMs are 
typically assessed on self-supervised representations or after super-
vised fine-tuning. When gLMs are evaluated on their pretrained embed-
dings, they often underperform compared to supervised models59,73.
This performance gap can be partly explained by the different train-
ing objectives: gLMs aim to provide general representations of DNA 
sequences for diverse downstream tasks, whereas hybrid models target 
high accuracy for specific tasks. The disparity may also result from 
ineffective pretraining task design for gLMs, as many models do not 
report zero-shot performance relative to expert supervised methods. 
Given that gLMs typically have many more parameters and require more 
data to pretrain, if a smaller, less computationally intensive model can 
outperform a gLM, there is little incentive to train a gLM. Therefore, a 
gLM’s pretrained or zero-shot performance should be comparable to 
hybrid models, and their fine-tuned predictions should outperform 
hybrid models across a broader range of downstream tasks. Thus, we 
recommend comparing gLMs in zero-shot contexts, using supervised 
hybrid models as a baseline.

Many of the models explored here report strong performance on a 
single task (hybrid model), or curated series of tasks (gLM), compared 
against a subset of similar models. Hybrid models can show a measurable 
improvement over prior methods on the specific task they were trained 
on. However, comparisons between gLMs are less straightforward. The 
pretrained embeddings of gLMs may capture different information 
within the genome59, making it difficult to assess which representation 
is more meaningful. Additionally, fine-tuned performance can vary 
in task difficulty, biological relevance, and dataset application (for 
example, genome segmentation is more challenging than sequence 
classification). To standardize gLM comparisons, several benchmarking 
task collections have been proposed: GenomicBenchmarks102, Genome 
Understanding Evaluation (GUE)39, and the BEND Benchmarking paper59. 
GenomicBenchmarks and GUE evaluate fine-tuned performance, 
while BEND assesses zero and few-shot performance, either directly 
through gLM embeddings or by training a shallow CNN on top of them. 
A well-pretrained gLM should embed similar sequences proximally 
and dissimilar ones distally in the embedding space. For variant effect 
prediction, cosine distances between reference and variant sequence 
embeddings can indicate functional differences. For tasks like enhancer 
region annotation, evaluating zero-shot embeddings is less straightfor-
ward. This is why shallow CNNs are trained on top of gLM embeddings 
to predict specific annotations from the frozen gLM pretrained weights 
in tasks like gene finding, chromatin accessibility, histone modification, 
and more. The BEND paper found that current gLMs show promise but 
do not consistently outperform supervised baselines, aligning with 
results from other studies on zero-shot performance103. The Nucleo-
tide Transformer Multi-Species and original DNABERT models had the 
best zero- and few-shot embeddings, with the Nucleotide Transformer 
excelling in gene finding and enhancer annotation, and DNABERT in 
chromatin accessibility and histone modification prediction. These 
models approached the performance of hybrid models like Enformer 
and Basset33. However, the design and curation of benchmarking tasks 
and datasets for gLMs remain an area for future research106.

Limitations
As previous review papers have focused on the limitations inher-
ent in applying deep learning models to genomic data, including 
cell-type-specificity debates and training data limitations55, we focus 
on the limitations inherent to applying novel architectures to genom-
ics, such as the transformer and SSM-like models.
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Long-range interactions
Hybrid models remain unable to capture long-range dependencies 
within the genome. This is despite most improvements in assay pre-
diction models increasing context window size to better model these 
long-range dependencies. However, Karollus et al.93 suggest a larger 
receptive field might not be the key factor driving success in more 
recent models, including Enformer31. While trends show models with 
increased context window size have had higher accuracy in predict-
ing experimental assays, this does not necessarily suggest context 
window size is the driving force behind improved predictive capacity. 
Karollus et al. showed that significantly reducing the input size given 
to the Enformer model has a minimal effect on its performance, sug-
gesting that transformer-based models, like Enformer, may achieve 
state-of-the-art performance simply due to the addition of the trans-
former module, or through increased parameter size. Enformer’s 
successor, Borzoi95 appears to better integrate long-distance infor-
mation, as measured by ranking distal regulatory elements for their 
gene-specific enhancer activity (data from CRISPR screens). How-
ever, experiments similar to those performed on Enformer have not 
yet evaluated Borzoi’s performance after a significant reduction of 
the input size. Likely, context window size has to be combined with 
better-curated datasets, ones that are curated to capture the effects 
of distal expression quantitative trait loci (eQTLs), distal enhancers, 
and distal repressors93.

If such a dataset can be curated, then the context-window size 
will be the driving factor for modelling long-range dependencies. 
Transformer-based gLMs that do not use downsampling techniques 
to reduce dimensionality before calculating self-attention, or do not 
apply a more efficiently implemented attention method97, will be lim-
ited by their context window. Even the Nucleotide Transformer43, 
with 2.5 billion parameters, could only extend the context window to 
a maximum of 1,000 tokens, which remains 1,000 times smaller than 
the HyenaDNA46 context window.

Other gLMs that forgo the use of the quadratic attention mecha-
nism have the potential to better capture long-range interactions in 
the genome. As long as the attention mechanism itself is not the driv-
ing force of success in these models, which does not appear to be the 
case given the recent success of HyenaDNA46, Evo84, and GPN83, this is 
a strong avenue for potential research.

Cell type specificity
Hybrid models, which aim to predict experimental assays, are usu-
ally trained with either ENCODE107 data from multiple cell lines, or 
fine-tuned non-specifically across cell types. The tasks they are evalu-
ated on make predictions ignoring the inter-cell-type variability within 
genomic annotations. While this allows the models to leverage huge 
amounts of data available on ENCODE66 and Roadmap67 by pooling cell 
types together, many findings in the field of genomics and the increased 
use of single-cell specific sequencing show there is cell-specific het-
erogeneity in regulatory annotations like chromatin accessibility, 
chromatin conformation, gene expression, and transcription factor 
binding26,108,109. Some transformer models have recently been pro-
posed to mitigate the bias of cross-cell-line gene expression prediction 
using transfer learning, but this approach has yet to be commonly 
adopted110. A future area of research could be moving away from hybrid 
models for predicting cell-type-specific experimental assays. Instead, 
the prompting capabilities of generative gLMs could be leveraged to 
create cell-type-specific contexts for predictions.

Data privacy
As mentioned, most of the models discussed in this Review are trained 
on public datasets like ENCODE107 and Roadmap111. However, genetic 
information is unique, so there is a risk of re-identifying individuals 
even from anonymized genomic datasets. As more data continue to 
be integrated into these models, and these models are potentially 

leveraged for use on private datasets including in clinical settings, 
there is an increasing need for developing and implementing more 
robust de-identification techniques and privacy-preserving algorithms, 
such as differential privacy112 and federated learning113.

Interpretability
A key limitation of applying deep learning models to genomic data 
is their black-box nature, which becomes more pronounced as mod-
els grow in size and complexity. This is especially problematic in the 
context of genomics where the underlying ‘language’ of the genome 
is unclear to us53. While previous work has extensively explored deep 
learning interpretability in genomics18,52,55, this section focuses specifi-
cally on interpreting transformer models and similar architectures.

Attention scores have been proposed as a solution to the interpret-
ability problem in genomics30,31,114. Models like Enformer, DNABERT, and 
C.Origami have used attention scores to demonstrate their ability to 
capture biological signals. However, studies outside genomics show 
that attention scores are not inherently interpretable115,116. Reporting 
only raw attention scores misses key information by focusing solely 
on the inner product of queries and keys, and ignoring the full com-
putation of queries, keys, and values. Aggregating attention scores 
across layers or heads, as is commonly done, also neglects the com-
plexities of how attention passes through the model, including through 
add-and-norm layers and skip-connections77,116. Models that consider 
the mean of attention heads across multi-headed attention also dilute 
the information captured by the model as different heads contribute 
differently in each layer, and not all heads contribute equally115–117.

To address these issues, methods like attention flow and atten-
tion rollout118 have been used to interpret transformers. Layer-wise 
relevance propagation (LRP), widely applied to interpret CNN-based 
models92, has been adapted for transformers as well to explain 
multi-headed attention and highlight ‘redundant’ heads103. A recent 
adaptation of LRP for transformers, incorporating attention scores 
across multiple heads102, has outperformed other attribution meth-
ods like classic LRP119, partial LRP103, rollout118 and Grad-CAM120 on 
transformers.

Ultimately, the interpretation of transformers in genomics beyond 
attention-score visualization has been limited. We acknowledge that 
while previous papers provide some insight into transformers’ inter-
pretability specifically in genomics114, they have not compared meth-
ods beyond attention scores or acknowledged the limitations of this 
method.

Beyond transformers, other gLMs also require interpretability 
assessments. For example, GPN83 reported motifs captured in the 
convolutional blocks of the architecture as a metric of interpretability, 
similar to previous CNN-based models for genomics20,21,23. These motifs 
were then compared to experimentally determined and validated 
motifs and reported as position weight matrices (PWMs) or logos. 
HyenaDNA, despite its success, lacks a dedicated interpretability sec-
tion, likely due to the novelty of the Hyena layer and the absence of 
established interpretability methods for this architecture.

Model-agnostic methods like SHAP (Shapley additive expla-
nations)121, and WeightedSHAP122, offer alternative interpretability 
approaches for models with or without attention. SHAP quantifies the 
contribution of each feature to a model’s prediction on a specific data 
point. While SHAP uniformly averages the contribution of each feature 
on the model’s prediction across different subsets of the total number 
of features, WeightedSHAP allows for using weights to emphasize more 
important feature contributions.

All transformer-based hybrid models covered in this review have 
reported attention scores for their interpretability metrics, with the 
SATORI123 authors even claiming the model was inherently interpret-
able due to the attention mechanism alone. While these models have 
not employed more sophisticated methods for model interpretability, 
attention mechanisms themselves may encourage the exploration of 
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model interpretability. In contrast, only one of the non-transformer 
gLM models (GPN) reported some kind of model interpretability. We 
suggest researchers working with transformer-based models consider 
incorporating methods like classic LRP119, partial LRP103, rollout118, 
SHAP121, or weightedSHAP122 to discover biological motifs and tokens 
of interest these models attend to. Furthermore, we encourage the 
development of interpretability methods for the novel architec-
tures proposed to this field beyond transformers, like HyenaDNA. 
We expect the use of interpretability methods for attention-based 
mechanisms in genomics to increase, given their increasing usage 
trend among transformers applied to other fields102. Similarly, we 
expect models that aim to outperform the transformer in genom-
ics to develop interpretability methods for their novel architecture 
design. For this, we hope to see both perturbation-based interpre-
tation methods124,125, as well as interpretations of internal model 
representations126.

Compute requirements
Perhaps the most noteworthy limitation in the usage of gLMs is the 
computational cost of training them. Their pretraining often neces-
sitates high-performance computing resources, which may not be 
readily accessible or affordable for all research teams. However, this 
may be changing with the introduction of novel architectures like 
Mamba87.

Using a compute calculation derived by OpenAI, we can calculate 
the petaflops/days for each of the models discussed in the review 
(except for GENA-LM96 and Evo84, for which there was insufficient data) 
to compare across different model architectures and parameter count. 
The equation for PFS-days using GPU time is:

PFS-days = number of GPUs × (petaflops/hardware)

×days trained × estimated utilization

Where OpenAI assumes a 33% utilization for GPUs. Looking at Fig. 3 
we can see that most models proposed using transformers or similar 
architectures for genomics can be trained with USD 5,000 on eight A100 
GPUs. However, of the largest and arguably most discussed models 
(DNABERT, Enformer, Nucleotide Transformer and HyenaDNA) only 
DNABERT could be trained within this budget. Note that DNABERT was 
trained before 2021, when GPU access was more limited and expensive.

Transformer-based models require substantial compute and mem-
ory due to their multi-layer, multi-headed attention mechanisms. Even 
though HyenaDNA is more efficient, it still demands more compute 
than most academic labs can afford (setting USD 5,000 as a base-
line). Additionally, the long training times for these models slow down 
research progress and hinder model iteration (Fig. 3).

Pretraining task design
Pretraining is a powerful and architecture-agnostic tool for gLMs, 
but its effectiveness depends on the quality of the pretraining task. 
Ideally, it enables models to capture universal data patterns127, but if 
poorly designed, it becomes an unnecessary computational cost128. To 
maximize benefits, pretraining tasks should be biologically relevant 
for later applications.

Pretraining tasks from NLP have generally been applied to genom-
ics with little consideration for their biological relevance and the inher-
ent differences between DNA sequences and natural language. These 

Parameter number (millions)

DeepSEA PFS-days

$5,000 PFS-days

Compute for Hybrids and gLMs

100

10–2

10–1

100

101

101 102 103

Model types

Transformer-gLM

Hybrid

Other gLM

HyenaDNA

GPN

Nucleotide Transformer

DNABERT-2

Borzoi

Enformer

DNABERT

C.Origami

SATORI

Fig. 3 | The total amount of compute, in PFS-days used to train the various 
models discussed in the Review (all of the models for which parameter 
number, training time, and GPU usage were available). A petaflops-day 
(PFS-day) consists of performing 1015 neural net operations per second for one 
day, or a total of ~1020 operations. It is a compute-time measurement proposed 

by OpenAI to compare across model architectures, which can be thought of 
similarly to kW⋅h for energy. For context, we calculate the PFS-days for the 
original DeepSEA21 model and the equivalent PFS-days that can be purchased 
to train a model with US$5,000, renting eight A100 GPUs at US$8.80 per hour. 
Calculations for PFS-days can be found in the ‘Limitations’ section.
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tasks may not capture meaningful biological signals or align with the 
model’s ultimate goal. A better approach may be to design a pretraining 
task based on biological insights. One recently proposed technique for 
biologically informed unsupervised pretraining is phylogenetic aug-
mentation129. In this task, evolutionarily related sequences are treated 
as augmentations, or different views, of original sequence data. The 
goal of phylogenetic augmentation pretraining is to learn representa-
tions that maximize the mutual information between evolutionarily 
related sequences and their conserved function.

Ultimately, the gLMs discussed in this Review have applied ALM or 
MLM pretext tasks for pretraining, with minimal adaptations for bio-
logical context. The effectiveness of these models' pretraining has been 
largely unexplored. However, initial investigations on the performance 
of pretrained models, or investigating pretraining regimes for genome 
gLMs, have not been favourable85,128. While this remains a limitation of 
current gLMs, it also provides a promising direction for future research.

Future directions
The success of deep learning models for the genome, specifically 
with the increasing use of gLMs, and the limitations they are currently 
bound by, provide a complex outlook for the future. Of the notable 
trends within deep learning genomic modelling, one of the most 
prominent is the potential of unsupervised pretraining regimes, 
specifically multi-species pretraining. This approach could capture 
evolutionarily conserved data in the genome and better model its 
underlying grammar. As the success of many of these models is con-
sidered to be contingent upon their expensive and time-consuming 
pretraining regimes, it is important to understand what exactly the 
models are learning in pretraining versus fine-tuning. Recent work75 
investigating BERT model behaviour in genomics shows that k-mer 
embeddings from random data have comparable performance on 
downstream tasks to k-mer embeddings pretrained on real biologi-
cal sequences. This tells us that while pretraining and unsupervised 
learning could increase the power of genomic models, the pretrain-
ing tasks for these models must be well designed and validated to 
prove true genomic grammar is being captured. We suggest further 
experiments are conducted on these models to compare pretrained 
and fine-tuned versus randomly initialized and fine-tuned embed-
ding spaces. Additionally, we question whether pretraining on entire 
genomes is the best way to leverage the power of pretraining83,130. 
Repetitive non-coding sections of DNA make up nearly half of the 
human genome131, and could potentially overpower the ability of these 
models to learn more relevant signals from relatively less common 
but more important sequence regions.

While this Review focuses on DNA-based genome language 
models, single-cell RNA-seq language models follow many similar 
principles40,41,132–136. However, these models come with their own 
strengths and limitations, particularly in handling the non-sequential 
nature of transcriptomic data. An in-depth exploration of these models 
is out of scope, but we expect many advancements in architectural and 
pretraining task designs to be aligned between DNA and scRNAseq 
language models.

New gLM architectures like the Hyena layer are emerging, which do 
not rely on attention mechanisms yet still support pretraining. These 
models may offer better scalability for genomic data compared to tradi-
tional transformers46,83. The attention mechanism’s quadratic complex-
ity is a bottleneck for genomic modelling, especially if increasing the 
context window size is crucial. This opens the door for next-generation 
models like HyenaDNA, Mamba-based models and StripedHyena mod-
els, to potentially outperform transformers.

Efforts are underway to improve the scalability of attention mecha-
nisms, such as introducing sliding windows137, enhancing efficiency44,138, 
and improving long-range interaction modelling in NLP48. Despite these 
advancements, transformers still lag in context window size compared 
to models with the Hyena layer, or models that use Selective SSMs. 

The hybridization of attention and other SSM-like layers in the future 
provides even more dials to adjust in model design.

As multi-omic data becomes more widely available, interest in train-
ing gLMs on sequence tokens alone may diminish. Large models capable 
of integrating multi-modal data could unify genomic, transcriptomic, 
proteomic and epigenomic data, offering a more holistic view of biologi-
cal systems. If trends in deep learning models for proteins predict future 
trends in genomic sequence modelling139, the next training paradigm in 
genomics will be diffusion140. If pretraining with evolutionarily varied 
data is important for modelling genomic information129, perhaps diffu-
sion, approximations of which have been widely applied in evolutionary 
theory141–143, is the obvious choice. DNA-based diffusion models have 
already started to show promise in modelling regulatory elements in the  
genome144.

The future of powerful and interpretable deep learning models 
in genomics is one of personalized medicine, understanding evolu-
tionary dynamics, drug discovery, synthetic biology, and more. We 
are at an exciting time for the field, and we hope to see an increase 
in the use of multi-species pretraining, and more biologically moti-
vated and downstream-task-aligned approaches to designing pre-
text tasks. Furthermore, we hope to see greater emphasis on the 
zero-shot performance of proposed gLMs. Research aligned with 
these tenets will lead to the greatest success in modelling the genome, 
whether it be through transformer models, Hyena layers, Mamba 
layers, or diffusion-style training. Additionally, we believe deep learn-
ing models will only succeed in modelling genomic data if strides 
continue to be made toward their interpretation within genomic  
contexts116,126.
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