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Early childhood is a period of rapid growth and immune system development. It is also critical for type 1 diabetes (T1D)
autoimmunity, which has a peak incidence between 1 and 2 years of age. Here, we investigated age-related longitudinal gene
expression changes in peripheral blood mononuclear cells from children aged 3 months to 3 years who had an increased genetic
risk for T1D, aiming to delineate gene expression trajectories and identify patterns potentially linked to the development of islet
autoimmunity. We found 2 432 genes (12.5% of analyzed genes) to exhibit significant temporal dynamics in the first 3 years of life.
These genes were grouped into six major clusters each demonstrating distinct expression trajectories of consistent increase or
decrease with age, as well as U-shaped, and inverted U-shaped age-related patterns. Notably, genes in clusters with U-shaped
expression trajectories, which mirrored the incidence of islet autoantibodies, were enriched for T1D susceptibility genes, particularly
within the Major Histocompatibility Complex (MHC) region. This study underscores the dynamic nature of gene expression in early
childhood and its potential connection to T1D risk.
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INTRODUCTION
Early childhood represents a phase marked by substantial
growth and exposure to new challenges for the immune system
[1–3]. It is also a period of heightened susceptibility to immune-
mediated diseases, such as allergy and autoimmunity [4]. The
initial years of life pose a significant risk for autoimmunity that
leads to type 1 diabetes (T1D). Children who are at increased
genetic risk for type 1 diabetes show a peak incidence of islet
autoantibodies at around one year of age, followed by an
exponential decline in the risk of autoimmunity thereafter
[5, 6]. Additionally, children manifesting islet autoimmunity at
an early age progress more rapidly to clinical diabetes
compared to those developing autoimmunity later in child-
hood [5, 7]. Consequently, comprehending immune cell
trajectories during the first years of life holds potential
significance in identifying risk factors for immune-mediated
diseases. Recent studies have reported gene expression in
relation to islet autoantibody seroconversion or progression to
T1D, but most of these have not assessed agerelated changes
[8, 9]. The objective of this study was to investigate whether
there are age-related changes in immune cells that mimic or
mirror the risk of islet autoimmunity. To address this, we
analysed longitudinal peripheral blood transcriptomic data
collected from age 3 months to 3 years in children at increased
genetic risk for type 1 diabetes to delineate age-related gene
expression trajectories.

METHODS
Cohort
The study was performed on 395 samples from 108 children who had a
genetic predisposition to type 1 diabetes (T1D) and were participants in
the BABYDIET study [7], which followed children who had at least one first-
degree relative with T1D and a T1D susceptible HLA DR-DQ genotype from
approximately 3 months of age with collection of venous blood samples
every 3 months until they reached 3 years of age (Supplemental Fig. 1a,
Supplemental Table 1). The age distribution of samples was similar across
HLA genotypes (Supplemental Fig. 1b). Of the 108 children, 26 developed
persistent islet autoantibodies (18 multiple islet autoantibodies) and 21
have developed T1D. The BABYDIET study was approved by the ethics
committee of Ludwig-Maximilians University in Munich, Germany (Ethik-
kommission der Medizinischen Fakultät der Ludwig-Maximilians-Universi-
tät, No. 329/00). Parents or legal guardians provided signed informed
consent for their children to participate in the BABYDIET study.

Peripheral blood mononuclear cell microarray gene
expression data
Microarray gene expression data used for the current analyses were previously
generated from peripheral blood mononuclear cells (PBMC) and reported [10].
These data were generated using Titan Affymetrix Human Gene 1.1 ST arrays,
which comprise over 750,000 unique 25-mer oligonucleotide probes.

Differential gene expression analysis and trajectory clustering
Data were summarized by gene-level probe sets and normalized using
quantile normalization.
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Differential expression analysis was conducted using the limma package
in R [11]. A linear mixed effects model with cubic splines and 3 degrees of
freedom was applied to account for the temporal nature of the data. This
model incorporated time, sex, and season as fixed effects, while
accounting for the random effect of subject-specific intercepts. The cubic
spline term was used to capture potential non-linear changes in gene
expression over time. The model discerned genes with temporal
expression dynamics, designating a gene as differentially expressed when
both the minimum absolute fold change over time exceeded 10% and the
adjusted p-values were below 0.05, following correction using the
Benjamini-Hochberg method. Gene expression trajectories were clustered
using hierarchical clustering with Kendall’s tau correlation as the similarity
measure, followed by manual assignment into larger clusters (see
Supplemental Methods).
Gene set enrichment analysis was performed with the R package

clusterProfiler [12]. A multiple p-value correction was not applied due to
the exploratory nature of the study. Terms with p-values below 0.05 were
considered statistically significant, and the resulting lists were summarized
as treemaps using REVIGO [13]. The box size in the treemaps reflects the
enrichment score for the term. The word size in the gene word clouds
reflects the number of significantly enriched GO terms associated with
each gene, indicating its importance. The larger the word, the more diverse
functions are linked to that gene. To identify T1D susceptibility genes, we
queried the Harmonizome database, which includes 144 distinct genes
associated with T1D, of which 119 were in the array.
Calculations for enrichment were performed using a two-sided Fisher’s

exact test.
To identify the factors contributing to gene expression variation, we

utilized the variancePartition package [14].
Interaction terms incorporating age in regression analyses were utilized

to discern differences in gene expression patterns across sex and HLA
genotypes.

RESULTS
Gene expression trajectories
Gene expression was mainly influenced by interindividual
differences, age, and season and less so by sex and HLA
genotype (Fig. 1a). After adjusting for sex and season, a total of
2 432 (12.5%) genes out of 19,424 genes included in the
microarray analysis exhibited temporal gene expression
dynamics in peripheral blood mononuclear cells (PBMC) over
the first 3 years of life (Fig. 1b, c, Supplemental Table 2,
Supplemental Fig. 2). No significant interactions were
observed between sex and age trajectories and between HLA
DR genotype and age trajectories for the 2 432 genes.
Hierarchical clustering was used to categorize the trajectory
patterns into 24 clusters (Fig. 1c), which were aggregated
manually into 6 major clusters according to their shape into
‘decreasing with early age’ (cluster A), ‘U-shaped’ (B), ‘increas-
ing with early age’ (cluster C), ‘inverted U-shape’ (cluster D),
‘stable’ (cluster E) and ‘stable or declining followed by an
increase’ (cluster F).

Gene ontology enrichment analysis of trajectory clusters
Gene ontology enrichment analysis was performed for clusters A
to F (Fig. 2). Multiple immune-related pathways were identified in
clusters C and F, which showed increased expression with age.
Genes with the strongest importance in Cluster C included those
encoding for cytokines IFNG, IL10, and IL12, the Th1 cell
transcription factor TBX21 and the type 1 diabetes susceptibility
genes PTPN22 and CTLA4. The genes indicated among the most
important in cluster F included chemokine superfamily genes XCL1
and CCL5 as well as the cytokine IL18 and the cytokine receptor
IL12RB.
Pathways annotated from genes declining from early age in

cluster A included developmental pathways involving WNT
signaling and TGFB activation as well as genes such as CDC42
that are important for cytoskeleton and therefore phagocytosis
and cell adhesion. Genes in cluster E were annotated to RNA
processing and stability, and cellular energy and sorting.

Pathways annotated to genes with U-shaped expression (cluster
B) and inverted U shape expression (cluster D), akin to the early
trajectory of blood glucose [15] and the islet autoantibody
incidence curve, respectively were of particular interest. Cluster
B genes were enriched for multiple pathways involved in oxidative
stress and metabolism as well as intracellular processes. Also
prominent was the regulation of antigen receptor-mediated
signaling pathway, which is relevant to T and B cell activation.
Notable genes included RHOA that is involved in cytoskeletal
dynamics, cell cycle, and cell migration [16], and the multi-
functional proinflammatory cytokine TNF, which is also a type 1
diabetes susceptibility gene [17]. The subgroup cluster 6 within
Cluster B was enriched for genes associated with glucose
metabolism, insulin secretion and pancreatic islet cell differentia-
tion (Supplemental Fig. 3, Supplemental Table 3). Enriched terms
for the Cluster D genes included peptide hormone response
pathways and cell division pathways, among others. Genes
include BMP2 and TGFR2, both involved in the differentiation of
regulatory T cells [18].

T1D susceptibility genes
In total, 119 T1D susceptibility genes were included in the probe
sets. Of these, 26 (21.8%) were among the genes with temporal
gene expression dynamics, representing a significant enrichment
(OR, 2.0; 95% CI, 1.3-3.2; p= 0.002). Enrichment was observed for
the U-shaped clusters B, which included 9 T1D susceptibility genes
(OR, 3.8; 95% CI, 1.7–7.5; p= 0.001; Supplemental Fig. 4) and F,
which included 3 T1D susceptibility genes (OR, 4.0; 95% CI,
0.8–12.4; p= 0.04).
Of the T1D susceptibility genes identified in cluster B, 6 were

within the MHC region of chromosome 6. We, therefore, looked
for enrichment of the 159 genes located in the MHC region
spanning chr6: 28,510,120 to 33,480,577 (Hg38). Significant age-
related dynamics were observed for 31 (19.5%) of these genes
(OR, 1.7; 95% CI, 1.1–2.5; p= 0.01). Enrichment was observed for
cluster B, which included 13 genes within the MHC region (OR, 4.0;
95% CI, 2.1–7.1; p < 0.0001), but not other clusters (Supplemental
Table 4; Supplemental Fig. 4).

DISCUSSION
Early life is a period of dynamic growth and adaptation to the
environment. Here, we find that 12.5% of genes show early life
dynamic expression changes in PBMC. Changes include increased
expression of genes with age, decreased expression with age and
both U- and inverted U-shaped expression resembling trajectories
of blood glucose and of type 1 diabetes-associated autoimmunity
incidence curves, respectively.
Age-related increases (807 genes) and decreases (809 genes)

over the first two to three years of life were the most common
gene expression trajectories. Expected changes include those
in genes related to the maturation of the immune system that
acquires memory through antigen exposure. A particularly
dynamic genomic region with respect to gene expression was
the MHC [19], which comprises 159 genes of which 31 showed
age-related expression changes. Many of these genes are
involved in immune responses. Of potential relevance to the
age 1-year peak incidence of islet autoimmunity, there was a
two-fold enrichment of T1D susceptibility genes, including
MHC genes, among those with age-related expression changes
and this enrichment was pronounced for genes that had
trajectories mirroring the islet autoantibody incidence
(Cluster B).
The study had several limitations. First, the cohort included

children from Germany with a high genetic risk for type 1 diabetes
based on family history of type 1 diabetes and HLA DR-DQ
genotype. It is not possible, therefore, to determine whether the
age-related trajectories are generalizable to children without an
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increased T1D genetic risk or are features of T1D genetic
susceptibility. Similarly, the gene trajectories and associated
pathways are likely to be affected by and reflect the many
exposures and changes that occur in early childhood, some of
which will act via epigenetic mechanisms, and may have little or
no relation to the early susceptibility for islet autoimmunity or
changes in metabolism that are observed in this age period
[15, 20]. Second, the starting material was PBMC and we cannot

attribute changes to particular cell types. Third, data were
microarray-based and findings may differ to RNAseq data [9].
In summary, we observed age-related gene expression changes

in PBMC in a large number of genes during the first years of life in
children with an increased risk for T1D. Further studies are
required to determine whether these changes are related to
specific cell types involved in the pathogenesis of T1D and if these
changes increase the risk of islet autoimmunity.

Fig. 1 Factors influencing gene expression and the hierarchical clustering and aggregation of gene expression trajectories. a A violin plot
depicting the proportion of variance in gene expression explained by individual, season, age, sex, and HLA genotype, across all genes. The
partitioning highlights the relative contribution of each variable to gene expression variability. b Dendrogram depicting hierarchical clustering
of gene expression trajectories over time, identifying 24 distinct clusters based on trajectory correlations. c (Left) Identified Clusters: Gene
expression patterns over time for the 24 clusters, with each plot showing the Z-score of gene expression over age (in months) and the general
trend within a cluster. The number of genes in each cluster is indicated. (Right) Manual Aggregation: The 24 identified clusters were manually
aggregated into 6 major clusters (A-F) based on similarities in expression patterns. Each aggregated cluster shows the Z-score of gene
expression over time, with the number of genes in each major cluster noted.
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DATA AVAILABILITY
All the gene expression data have been documented in ArrayExpress (http://
www.ebi.ac.uk/arrayexpress) under the accession number E-MTAB-1724.
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Fig. 2 Functional analysis of trajectory clusters with various trends. aWord Clouds for each cluster: Key genes associated with the pathways of each
cluster. The importance of each gene is indicated by word size, which is proportional to the number of occurrences within enriched Gene Ontology
Biological Process (GO BP) terms. b Treemaps of enriched GO BP terms for each cluster, showing the functional enrichment of biological processes.
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