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1 | BACKGROUND

In Alzheimer’s disease (AD), amyloid-plaques and neurofibrillary tau
tangles (NFT) make up the pathophysiological hallmarks causing
neurodegeneration,? known to cause decline in cognitive capacity
and everyday functioning. However, other processes like vascular dys-
function, oxidative stress, endosomal and lysosomal dysfunction, and
neuroinflammation are likely to play a pivotal role as well.3*

Adults with Down syndrome (DS) present with a triplication of the
amyloid precursor protein (APP) gene, due to the presence of three copies
of chromosome 21 (chr21),> which results in the early accumulation
of intracellular amyloid already in childhood,® eventually leading to
extracellular accumulation of amyloid, the formation of solid amyloid-
plaques, and subsequent intracellular tau phosphorylation, ultimately
resulting in progressive cognitive impairment.”

Even though DS-AD largely parallels the pathophysiological and
clinical presentation of AD in the carriers of the autosomal dominant
gene mutations in presenilin 1 (PSEN1), presenilin 2 (PSEN2), or APP,
the diagnosis of dementia due to DS-AD remains challenging, predom-
inantly due to the heterogeneous presentation of clinical symptoms,
widely varying level of baseline cognitive capacity and the lack of
standardized tests to assess and evaluate these.®?

Therefore, diagnosis often relies on external anamnesis since those
affected may not recognize or prioritize memory decline as a signif-
icant issue. Behavioral changes or loss of daily living skills are more
frequently reported, but these symptoms can be highly variable.10:11
The lack of awareness among families, caregivers, and clinicians exac-
erbates these diagnostic challenges,'? which can lead to a significant
delay of the diagnosis.

A lot of effort has been put into researching biomarkers in DS-AD
by assessing AD pathology in brain imaging, cerebral spinal fluid (CSF),

and blood. Considering cost-effectiveness, accessibility in a clinical

RESULTS: We identified 253 DEP between DS and HC and 142 DEP between
symptomatic and asymptomatic DS. Several pathways regarding inflammatory and
neurodevelopmental processes were dysregulated in both analyses. LASSO feature
selection within DS returned 15 proteins as potential blood markers.

DISCUSSION: This exploratory proteomic analysis found potential new blood
biomarkers for diagnosing DS-AD in need of further investigation.

Alzheimer’s disease, biomarker, Down syndrome, neuroinflammation, plasma

* Inflammatory pathways are dysregulated in symptomatic versus asymptomatic DS.

* NFL and GFAP are confirmed as powerful biomarkers in DS with clinical and/or

* Further circulating proteins were identified as potential blood biomarkers for

setting, and the minimally invasive nature of sample obtainment, blood-
based biomarkers are of high interest, potentially mirroring AD-related
changes of the brain in DS within in the peripheral bloodstream.’?
Levels of AB42 in plasma have been reported to be elevated in
DS, yet reports on the diagnostic and prognostic performance of both
AB42 and AB42/40 ratio remain inconsistent.’*"18 Markers of tau
pathology, however, namely pTau-181 and pTau-217, reliably differ-
entiate between symptomatic and asymptomatic DS and have been
reported to correlate well with tau and amyloid pathology as assessed
by positron emission tomography (PET).1417-21 Further, plasma levels
of neurofilament light chain (NFL), a marker of axonal degeneration,
rise early and correlate well with cognitive decline?? as well as amyloid
load and neurodegeneration in brain imaging, offering strong diagnos-
tic utility.2>23 Finally, glial fibrillary acidic protein (GFAP), relating to
astrocytic activity, rises as early as in the third decade, correlates well
with cognitive status as well as tau and amyloid burden in PET, and
shows good performance for predicting disease progression, which
interestingly could not be replicated in CSF.2124 Recently, we have
also shown that the presynaptic marker beta-synuclein provides good
discriminatory power in DS-AD, rising even before pTau-181.2°
Despite the genetic basis of DS-AD, resulting in a predictable
sequence of pathophysiological events,” significant variability in symp-
tom onset and presentation remains, warranting the investigation
of additional pathophysiological processes that might be directly or
indirectly caused by increased levels of proteins originating from
chr21.26-29 A neuroinflammatory phenotype in DS-AD, that is, distinct
from sporadic AD (sAD) has been suggested?’ and neuropatholog-
ical studies reported a neuroinflammatory protein profile evolving
across the DS-AD continuum.2é In blood, differences in circulating
inflammatory proteins compared to euploids have been identified,
in line with chronic autoinflammation possibly contributing to DS-

AD?? while another study, targeting 20 inflammation-related proteins,
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further found differences in DS-AD and mildly impaired DS compared
to asymptomatic DS with excellent accuracy,3? underscoring the need
to further investigate interconnected processes through exploratory
proteomic approaches.

We aimed to explore the proteomic profile of individuals with DS
using OLINK technology to identify proteins and pathways influencing
AD progression thereby leveraging a broader, exploratory approach.
The findings may uncover biomarkers and therapeutic targets, pro-
viding a foundation for future hypothesis-driven research into DS-AD
pathophysiology.

2 | METHODS
2.1 | Participants and clinical workup

All participants included in this investigation are either part of our
AD21 cohort study or our study for biological samples in neurode-
generation (Biobank fir translationale Neurodegeneration), and were
recruited from the outpatient clinic at LMU University Hospital Munich
in Germany. The former, AD21, investigates AD in adults with DS, using
clinical characterization, neuropsychology, neuroimaging, and biofluid
analysis with annual follow-up visits. Further information on the study
design as well as inclusion and exclusion criteria can be found in the
supplements (Table S1). The latter study provided the euploid healthy
controls (HC) included in this analysis and aims at collecting biofluids
and basic demographic information within the framework of a biobank.
Included in this analysis were HC from this study where clinically as
well as by patient account there was no sign of cognitive decline and
no hint at cognitive symptoms impacting daily living activity and fur-
ther no diagnosis of cognitive impairment of any kind, known structural
brain lesions, or the diagnosis of a neurodegenerative disease.

Each individual or their respective legal proxy provided informed
written consent prior to inclusion. Both studies are approved by the
LMU ethics committee (DS: #17-126, HC: #20-0997) and conducted in
accordance with the Declaration of Helsinki.

Our study sample reflects the demographics of adults with DS
in Germany, where participants were predominantly of European
descent, specifically White/Caucasian. While ethnic diversity within
this cohort is limited, we sought to ensure inclusivity by recruiting
participants from various age groups as well as intellectual disability.

Chromosome analysis in DS was conducted to assess the accu-
rate type of trisomy 21 (full, translocation, mosaicism) where possible.
Intellectual disability (ID) was stratified according to Diagnostic and
Statistical Manual of Mental Disorders, 5th edition (DSM-V) criterias!
into mild, moderate, severe, or profound, based on the individuals’ best-
ever level of functioning, obtained from interviews with caregivers,
neuropsychological assessment, behavioral observations, and review
of medical records.

Symptomatic diagnosis was reached independently by two neu-
rologists referencing a predefined diagnostic algorithm?: changes in
cognition, behavior, and activities of daily living were assessed based

on patient and caregiver information. Subsequently, differential diag-

THE JOURNAL OF THE ALZHEIMER’'S ASSOCIATION

RESEARCH IN CONTEXT

1. Systematic review: The authors conducted a comprehen-
sive review of the existing literature leveraging estab-
lished databases (e.g., PubMed, Google Scholar). There
were very few publications using proteomics to explore
blood samples in Down syndrome (DS), especially in
the context of Alzheimer’s disease (AD) or neuroinflam-
mation, those uncovered are cited accordingly in the
manuscript. We identified what we consider critical gaps
in proteomic analyses in Down syndrome, setting the
stage for this study’s proteomic approach using the Olink
Explore 3072 platform.

2. Interpretation: Our findings contribute new insights
into DS-AD by identifying key pathways associated with
immune and neurodegenerative processes as well as pro-
viding potential blood biomarkers for AD in the DS popu-
lation which may serve as early indicators or therapeutic
targets.

3. Future directions: Longitudinal analyses are needed to
verify the current results and to further investigate the
mechanistic pathways linking immune dysregulation with

neurodegeneration in Down syndrome.

noses were excluded via neurological, laboratory blood test, and
individual cognitive performance assessments performed by trained
neuropsychologists using the validated German version of the Cam-
bridge Cognitive Examination for Older Adults with Down Syndrome
(CAMCOG-DS).232 The CAMCOG-DS consists of 45 items and 7
subscales (orientation, language, memory, attention, praxis, abstract
thinking, and visual perception). A more detailed description of the spe-
cific tasks can be found elsewhere.® This eventually led to the diagnosis
of either asymptomatic DS (aDS) or symptomatic DS (sDS), the latter
including dementia as well as mild cognitive impairment in the context
of DS-AD.

Alzheimer’s pathology was further verified referencing the A/T/N
criteria,! where possible, using validated AD biomarkers such as cere-
bral spinal fluid (CSF) for assessment of phospho-tau-181 (pTau181,
cutoff 61 pg/mL) and AB1-42/1-40 ratio (AB-ratio, cutoff 5.5%) with
the respective Innotest assays. Further, if possible, cerebral imaging
was acquired as part of the clinical workup. For this, magnetic reso-
nance imaging (MRI) including T1- (repetition time [TR] 2560 ms, TI:
1100 ms, flip angle: 7°, CAIPIRINHA = 2, field of view [FOV] = 256 mm
x 256 mm, slice thickness 0.8 mm, 224 slices per slab) and T2-weighted
sequences (TR 2800 ms, echo time [TE] 405 ms, GRAPPA = 2, FOV =
256 mm x 256 mm, slice thickness 0.8 mm, 224 slices per slab) as well
as a fluid-attenuated inversion recovery sequence (TR 5000 ms, TE
393 ms, GRAPPA =2, FOV = 256 mm x 256 mm, slice thickness 1 mm,
176 slices per slab) were obtained using a 3 Tesla Siemens Scanner

(Siemens, Erlangen, Germany). Positron emission tomography (PET)
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imaging was performed with a Siemens Biograph-64 system. 18F-
florbetaben PET (295 MBq) images were acquired 90-110 min after
injection. 18F-PI-2620-PET (185 MBq) was performed using dynamic
emission recording (0-60 min after injection, 30-60 min window for
visual interpretation). For intensity scaling, a cerebellar grey matter

reference was used for all tracers.

2.2 | Collection and measurement of plasma
samples

Blood samples for both study cohorts were collected into ethylene-
diaminetetraacetic acid (EDTA) tubes from non-fasting participants,
centrifuged at 2000 x g for 10 min to obtain plasma, aliquoted into
polypropylene tubes, and subsequently stored at —80°C within 30-45
min after initial blood drawl.

For protein analysis, we leveraged the OLINK Explore 3072 Panel
(Uppsala, Sweden; Lot #B31341; consisting of the following individ-
ual Explore 384 kits: Inflammation Lot #B24609, Inflammation Il Lot
#B23708, Oncology Lot #B23705, Oncology Il Lot #B24546, Car-
diometabolic Lot #B23706, Cardiometabolic Il Lot #823710, Neurol-
ogy Lot #B23707, Neurology Il Lot #B23711), a multiplex immunoas-
say platform designed for human protein biomarker discovery, mea-
suring the concentration of approximately 3000 proteins in one bio
sample.33 For this, blood samples had to be thawed, pipetted on the
assay plate, and refrozen before being sent to OLINK for measurement.
This proximity extension assay uses highly specific antibodies that bind
to their respective protein and hybridize their attached nucleotide
single strands with neighboring antibodies on the protein’s surface.
The resulting double strand is then amplified and quantified via next-
generation-sequencing read-out. After quality control, the final data
set is obtained as an arbitrary unit of normalized protein expression
values (NPX, log2-transformed). For this run, the intra-assay coefficient
of variation (%CV) for the proteins measured in each kit ranged from
6%CV to 13%CV, with a median of 9%CV. The limit of detection (LOD),
calculated for each kit individually, ranged from —11.21to 2.11.

2.3 | Statistical analysis

All statistical analyses were run on R (version 2023.06.1+524).
Exploratory proteomics analysis was conducted using the R packages
Olink Analyze, clusterProfiler, glmnet as well as the STRING database
website.3*

Baseline demographics were summarized as mean + standard devi-
ation for continuous variables and count percentage for categorical
variables. Group comparisons were conducted via Mann-Whitney
U-tests for continuous and Fisher’s exact tests for categorical variables.

t-Tests investigating differentially expressed proteins (DEP)
between DS and HC as well as symptomatic and asymptomatic DS
were carried out two-sided. An uncorrected p-value of less than
0.05 was considered statistically significant; in the case of multiple

comparisons, the Benjamin-Hochberg method for false discovery

rate was applied, with a p-value below 0.05 set as a significance
threshold.

All obtained DEP were analyzed for enrichment of biological pro-
cesses, molecular functions, and specific cellular component using
the Gene Ontology (GO, accessed 03/24024) database®® and inves-
tigated for enrichment of biological signaling pathways using the
Kyoto Encyclopedia of Genes and Genomes (KEGG, version 109).3¢
Protein-protein interactions (PPI) between DEP were assessed with
the STRING database (version 12.0).3* All proteins measured on the
panel were set as background reference.

Feature selection was performed using absolute shrinkage and
selection operator (LASSO) regression with an |1 penalty and a regula-
tion parameter lambda set to 0.107 as chosen by cross-validation. For
further analysis, a train and test subset were generated using 80% and
20% of the whole data set, respectively. Weights, accounting for the
imbalance in diagnosis outcome, were applied. The resulting selection
of proteins relevant to predicting the outcome variable was then fur-
ther used to assess their diagnostic performance via receiver operating

characteristics (ROC) analysis.

3 | RESULTS
3.1 | Demographics

In this study, we included 73 adults with DS and 15 euploid HC. There
were no significant differences in age or sex distribution (Table 1, both
p > 0.05). As expected, there was a significant difference between the
age of sDS and aDS, with the latter being around 20 years younger
(p < 0.001). Further, we found a significantly worse performance on the
CAMCOG-DS in the symptomatic DS group (p < 0.001).

3.2 | DS versus HC

Between DS and HC, we found 253 proteins exhibiting different plasma
levels after false discovery rate (FDR) correction. Out of these, 211
were increased (Figure 1A) in DS, while the remaining 42 showed
decreased levels in DS compared to HC. Mapping each of these DEP
to their originating chromosome, we found 11 proteins to be encoded
on chr21, all of them with higher levels in DS (Figure 1B).

To further gain understanding of the relevance of the proteomic
differences between both groups for biological and molecular func-
tion as well as known signaling pathways in humans, we conducted
protein enrichment analysis. Utilizing the KEGG database, we found
two significantly enriched processes, namely cytokine-cytokine recep-
tor interaction (hsa04060) and cell adhesion molecules (hsa04514)
connected with increased protein levels in DS. When assessing the
proteomes with the GO database, we found enriched processes of
acute inflammatory response, cell binding and regulatory signaling, and
neuronal growth connected to significantly increased protein levels,
while significantly reduced protein levels in DS were matched to sev-

eral pathways relating to the cell cycle, RNA and DNA processing as
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TABLE 1 Demographics of all participants included in this study.

DS, aDs, sDS, HC,

Parameter N=73 N =49 N=24 N=15
Age at visit (years) 38+ 12 32+8 51+8 44 + 17
Sex

Female 34(47%)  24(49%) 10(42%)  9(60%)

Male 39(53%) 25(51%)  14(58%)  6(40%)
Leucocyte blood 57+14 58+14
level (uL™1)

NA ) 3
Diagnosisof AID 49 (67%) 36 (74%) 13 (60%)
CAMCOG-DS (%) 63+17 46 +18

NA 2 1
Amyloid (A) status

Positive 0 12

Negative 3) 0

NA 46 12
Tau (T) status

Positive 0 5

Negative 1 3

NA 48 16
Neurodegeneration (N) status

Positive 0 10

Negative 9 1

NA 40 13

Abbreviations: aDS, asymptomatic Down syndrome; AID, autoimmune dis-
ease; CAMCOG-DS, Cambridge Cognitive Examination for Older Adults
with Down Syndrome; DS, Down syndrome; HC, healthy control; NA, not
available; sDS, symptomatic Down syndrome.

well as chromatin and DNA integrity, cellular stress, and macromolec-
ular biosynthesis (Figure 1C,D). A comprehensive list of all significant
pathway findings between the groups can be found in the supplements
(Table S2).

For a better understanding of the functional protein networks
affected by the discovered DEP, we assessed PPI with the STRING
database®* to visualize and further categorize them into functional
clusters. Enrichment within each cluster was further analyzed leverag-
ing the GO, KEGG, and Reactome®” database (Table S3, Figure S1).

DEP between DS and HC were clustered into nine subnetworks with
the largest one consisting of 162 DEP showing functional enrichment,
among others, for cytokine-cytokine receptor interaction (hsa04060),
immune system processes (GO:0002376), transmembrane signaling
receptor activity (GO:0004888), and cytokine signaling in the immune
system (HSA-1280215). The second largest cluster, made up of 16
DEP, was associated with synaptic function such as PPl at synapses
(HSA-6794362) as well as voltage-gated potassium channel complexes
(GO:0008076) and gama-aminobutyric acid (GABA)-ergic synapses
(GO:0098982). For another cluster with eight corresponding DEP,

we found protein interactions relating to the lipid metabolic pro-

THE JOURNAL OF THE ALZHEIMER’'S ASSOCIATION

cess (GO:0006629) and phospholipid metabolism (HSA-1483257).
Some for the remaining clusters reported associations of protein
interactions included azurophile granules (GO:0042582) and lyso-
somes (GO:0043202, 4 DEP) as well as carbonate dehydratase activity
(GO:0004089) and nitrogen metabolism (hsa00910, 2 DEP).

3.3 | sDS versus aDS

In the interest of discovering potential plasma biomarkers for the diag-
nosis and/or progression of DS-AD, we repeated this analysis in the
subgroup of adults with DS, dichotomizing them by their clinical diag-
nosis of being either symptomatic or asymptomatic. Here, we found
142 DEP after FDR correction. Specifically, 133 of DEP were increased
in symptomatic DS, while the remaining nine DEP exhibited decreased
levels in this group. Interestingly, none of the DEP originated from
chr21 (Figure 2A,B).

When assessing significantly enriched signaling pathways with the
KEGG database, we found cytokine-cytokine receptor interaction
as significantly enriched in symptomatic DS, in addition to antigen
processing and presentation and graft-versus-host-disease. One path-
way seemed to be suppressed in the symptomatic phenotype which
was the Fc-y-R-mediated phagocytosis. Within the GO database,
symptomatic adults with DS showed significant enrichment in 139
GO terms. Of them, 33 were associated with pathway activation,
including immune-related processes such as lymphocyte chemotaxis,
major histocompatibility complex (MHC)-protein complex binding, and
glial cell proliferation, further signaling processes such as chemokine
receptor binding, cytokine activity, glycosaminoglycan binding, and G-
protein-coupled receptor binding, as well as growth plasma levels
and metabolic activities. Pathways significantly suppressed by means
of reduced expression of the corresponding proteins in sDS included
cellular structure and organization, cell proliferation, cell signaling
and communication, and transcription and translation (Figure 2C,D,
Table S4).

Looking at PPl networks within DS, DEP between symptomatic
and asymptomatic adults were clustered into 13 functional subnet-
works (Figure 3) with the largest consisting of 72 proteins showing
enrichment for terms including cytokine-cytokine receptor inter-
action (hsa04060), signaling (GO:0023052), death receptor activity
(GO:0005035), and immune system (HSA-168256). The second largest
cluster made up of 10 DEP was associated with extracellular matrix
structural constituents (GO:0005201, GO:0031012) and molecules
associated with elastic fibers (HSA-2129379). Another cluster count-
ing six DEP exhibited functional association of PPl with enzymatic
activity such as protein digestion and absorption (hsa04974) and
peptidase (GO:0008233) as well as hydrolase (GO:0016787) activity.
Finally, the fourth largest cluster consisted of five DEP associated with
the Wnt signaling pathway (hsa04310, GO:0016055). All remaining
clusters can be found in the supplements (Table S5).

LASSO feature selection (balanced accuracy: 0.9, sensitivity: 0.8,
specificity: 1, positive predictive value: 1, negative predictive value:

0.7143) investigated all proteins measured regarding their potential
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FIGURE 1 (A) Volcano plot displaying the differences of DEP in adults with DS compared to HC. Accordingly, 211 DEP were found to be
increased (e.g., CDH15, TFF1, and IL10RB) and 42 DEP showed reduced circulating protein levels in DS versus HC (e.g., OLFM4, PRG3, and
CBLNA4). (B) Distribution of all DEP (green) in relation to all proteins assessed (grey) and their respective chromosome revealed 11 DEP (37.9%)
originating from chr21. (C) Top 20 enriched pathways from KEGG analysis in DS versus HC with the 10 most positive and negative normalized
enrichment score (NES), respectively, and where the size of the dot refers to the number of proteins that have been put in for analysis and are
annotated in the respective term. Here, cytokine-cytokine receptor interaction and CAMs turned up significantly enriched (arrows). (D)
Significantly enriched terms from GO analysis for increased and suppressed pathways in DS compared to HC. DEP, differentially expressed
proteins; DS, Down syndrome; GO, Gene Ontology; HC, healthy control; KEGG, Kyoto Encyclopedia of Genes and Genomes.

for predicting the outcome of sDS versus aDS and selected 15 non-
zero coefficients, with, apart from NFL and GFAP, 13 further potential
markers spanning areas of immune response, neurotransmission, and
receptor signaling (Figure 4, Table Sé). Eleven proteins contributed
positively toward the probability of sDS, while the remaining four
exhibited a relevant negative relationship with the outcome of sDS
versus aDS (Figure S2).

We assessed the diagnostic performance of all 15 proteins with ROC
analysis which revealed an AUC above 0.75 for nine of the LASSO-
selected features (Table 2, Figure 5), specifically NFL, GFAP, ectodys-
plasin A2 receptor (EDA2R), C-X-C motif chemokine 17 (CXCL17) and
cluster of differentiation 14 (CD14), insulin-like growth factor bind-

ing protein-2 (IGFBP2), spondin-1 (SPON1), cerebellin 4 (CBLN4), and
neuronal-specific septin-3 (SEPTIN3).

4 | DISCUSSION

This cross-sectional study investigated proteomic profiles in adults
with and without DS leveraging the Olink Explore 3072.

For 253 DEP between DS and HC, enrichment analysis reported
coordinated up-regulation in protein levels for immune activity, cell and
cytokine signaling, and neuronal growth while proteins for DNA pro-

cessing, cell cycle, and biosynthesis were significantly down-regulated

1|uo//:sd1y) SUORIPUOD PUe SWd L 8y} 835 *[5202/S0/2T] Lo AiqITauliuo A8|IM ‘winjuszsBunyos.iod sayosine Ueuyolen  WNiLeZ Z)oyw pH AQ 000L Z[e/200T 0T/I0p/0d A8 | M Aeiq I puljuO'SPUINO -2 e//SdNY Wiy papeojumod ‘€ ‘S20Z '6/252SST

fopmA

85UB0|7 SUOWILUOD) BAFeRID 3|l dde 8u) Aq pausenob afe sapile O 88N Jo S9N 104 ARIq1TBUIUO AB]IM UO (SUORIPUOD-pUe:



WAGEMANN ET AL.

Alzheimer’s &PDementia® | 7or1a

(A)

Ss
2
b
k-
2 L
0
10 05 ) 05 10 15
Estimate
(C) Ubiguitin-Mediated Proteolysis (hsa04120) .
TGF-beta Signaling Pathway (hsa04350) °
Spliceosome (hsa03040)
KEGG analysis sware interactions in Vesicular Transport (nsa04130) o
Small Cell Lung Cancer (hsa05222)
adjusted
RIG-Iike Receptor Signaling Pathway (hsa04622) °
ERFmag 4 P-value
Pyrimidine Metabolism (hsa00240) °
Phosphatidylinositol Signaling System (hsa04070) 02
Lysosome (hsa04142) |
0.1
Intestinal Immune Network for IgA Production (hsa04672) °
-
— Graft-Versus-Host Disease (hsa05332) o
Glycerolipid Metabolism (hsa00561) . Protein
number
——J Fc Gamma R-Mediated Phagocytosis (hsa04666) °
® 50
——» Cytokine-Cytokine Receptor Interaction (hsa04060) [ ] ®
Colorectal Cancer (hsa05210) ° . 150
Cell Adhesion Molecules (CAMs) (hsa04514) Q
B Cell Receptor Signaling Pathway (hsa04662)
Thyroid Disease (hsa05320) °
Arachidonic Acid Metabolism (hsa00590) .
— Antigen Processing and Presentation (hsa04612) °
-1 [ 1
Normalized Enrichment Score

Adenylyl Cyclase Modulating G-Protein-Coupled Receptor Signaling Pathway

THE JOURNAL OF THE ALZHEIMER’'S ASSOCIATION

(B)

300 |

N
3
8

Protein Count

4.5%
51%
5.3%
3.9%
6.3%
5.5%
9.5%

5 £ 8
~ © G

7.7%

1.4%

> R 2 288
b A5 EE EE

2%

&
&

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X
Chromosome

All Proteins Assessed DEP with % of all Proteins measured

(D) Translation Regulator Activity Nucleic Acid Binding (GO:0008135)
Translation Regulator Activity (GO:0045182)

Transcription Regulator Activity (G0:0140110)
Structural Molecule Activity (GO:0005198)

Sequence Specific DNA Binding (GO:0043565)

RNA Binding (GO:0003723)

Protein Serine Threonine Kinase Activity (GO:0004674)
Protein Serine Kinase Activity (GO:0004674)
Modification Dependent Protein Binding (GO:0140030)
MHC Protein Complex Binding (GO:0042287) . l 0.04

Heparin Binding (GO:0008201) 003

GO analysis

adjusted
P-value

Glycosaminoglycan Binding (GO:0005539)

(

(

( 0.02
Extracellular Matrix Structural Constituent (G0:0005201)

(

(

(

0.01

DNA Binding Transcription Factor Activity (GO:0003700)
Cis Regulatory Region Sequence-Specific DNA Binding (GO:0000987)
CCR Chemokine Receptor Binding (GO:0048020)

Transcription Regulator Complex (GO:0005667)

Spindle Complex (GO:0072686)

Nuclear Protein Containing Complex (GO:0140513){ @

External Encapsulating Structure (GO:0030312)

Collagen Containing Extracellular Matrix (GO:0062023)

Chromosome (GO:0005694)

Chromosomal Region (GO:0098687)

Response to Arsenic Containing Substance (GO:0046685) .

Regulation of Systemic Arterial Blood Pressure (GO:0003073) .
Lymphocyte Chemotaxis (GO:0048247)

Glial Cell Proliferation (GO:0014009) .

GO:0007186) o
G0:0007188)
Adenylyl Cyclase Activating G-Protein-Coupled Receptor Signaling Pathway (GO:0007189) °

Protein
number

® 50
® 100
@ 50
@ 200
@ 20

1 J e
[8]8)

G-Protein-Coupled Receptor Signaling Pathway

(
(
(
(

2 4 0 1 2
Normalized Enrichment Score

(A) Volcano plot displaying the differences of DEP in symptomatic versus asymptomatic adults with DS. Here, 133 DEP were found

to with increased levels (e.g., GFAP, NEF, and IGFBP2) and 9 DEP showed decreased protein levels (e.g., CBLN4, CR2, and RET). (B) Distribution of
all DEP (orange) in respect to all proteins assessed (grey) between symptomatic and asymptomatic DS regarding their respective chromosome
with none of them originating from chr21. (C) Top 20 terms from KEGG Analysis, with 3 of them showing significant positive enrichment for
symptomatic DS, and 1 negatively enriched pathway (arrows). (D) Significant terms from GO analysis for top enhanced or diminished pathways,
respectively, in symptomatic versus asymptomatic DS. DEF, differentially expressed proteins; DS, Down syndrome; GFAP, glial fibrillary acidic
protein; IGFBP2, insulin-like growth factor binding protein-2; KEGG, Kyoto Encyclopedia of Genes and Genomes; NEF, negative regulatory factor.

in DS. Eleven DEP originated from chr21, with reported involve-
ment in immune response regulation, cellular adhesion, and tissue
remodeling.2:383% Analyzing PP, large clusters related to enhanced
processes such as regulation of leucocyte proliferation, cytokine pro-
duction, synaptic function, and lipid metabolism in DS.

This is in line with observations of a dysregulated and highly active
immune system throughout the lifespan of DS,*%4! resulting in higher
susceptibility for autoimmune diseases,*?*3 further corroborated by
reports of increased cytokine blood levels in children and adults
with DS#04244 and a higher chemokine and cytokine response from
monocyte-derived dendritic cells of DS patients.** Also, a study with
SomaScan in blood reported similar pathway enrichments of inflam-
matory response, immune control, and regulation of neurogenesis
between DS and HC.2?

DS is considered a primary interferonopathy given that increased
cytokine signaling is likely due to the fact that four of six interferon
(IFN) receptors are encoded on chr21.434> We, too, found corre-
lates of enhanced signaling in DS with increased levels of IFNAR1,
IL10RB, originating chr21, as well as IFNGR1, ILR1, IL4R, and IL20RB.
Since chemokines and cytokines play a vital role by regulating cell
constitution, migration, and balancing pro- and anti-inflammatory
processes,2?4¢ dysregulations could lead to progressive neuroinflam-
mation contributing to DS-AD.2527 Further, dysregulated cell adhesion
molecules pathways associated with chr21 in DS versus HC could
affect cellular interactions and tissue remodeling. Junctional adhe-
sion molecule 2 (JAM2) is involved in endothelial tight junction
formation,®® has been associated with AD,*’ and could potentially

affect the blood-brain barrier permeability in DS-AD. Elevated levels of
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FIGURE 3 Top four clusters using the Markov-Cluster algorithm from PPI STRING network analysis of DEP between symptomatic and
asymptomatic adults with DS with most significant enriched terms annotated in the legend suggesting differences in immune system signaling
(cluster 1), the makeup of the extracellular matrix (cluster 2), enzymatic protein digestion (cluster 3), and Wnt signaling (cluster 4). Each node
represents one DEP while each edge represents functional interaction between two DEP with the thickness of the edge increasing with the
confidence of the proposed shared function. DEP, differentially expressed proteins; DS, Down syndrome; PPI, protein-protein interactions.

neural cell adhesion molecule 2 (NCAM2) and Collagen Type XVIII
Alpha 1 Chain (COL18A1) arguably contribute to the intellectual
disability phenotype3? and decreased risk for solid tumors*® in DS,
respectively. However, their impact within DS-AD remains unclear.
Increased levels of cystatin B (CSTB) though have been found in DS-AD
brains, potentially affecting amyloid metabolism and neuroinflamma-
tory processes via modulation of cysteine cathepsins.*?

Pathways of neuronal development and regeneration were also sig-
nificantly enriched in DS. Studies in induced pluripotent DS stem cells
suggest abnormal neuronal differentiation affecting neuronal archi-
tecture and density as well as a number and length of neurites, and
differentiation into GFAP-positive cells, thereby promoting a shift from
the neuronal to the astroglial and oligodendroglial phenotype,>%-51
which could facilitate later developments of neuroinflammation and
AD pathology.

Pathway analyses in blood from euploid sAD versus HC leveraging
OLINK reported changes in signal transduction, apoptosis and inflam-

matory pathways, cell proliferation, and monocyte chemotaxis,>?

as
well as positive regulation of protein kinase B signaling, growth factor

binding, and cytokine-cytokine receptor interaction.”® While the lat-

ter indicates some shared proteomic alterations with our analysis, most
of the reported pathways suggest distinct differences in the proteomic
dynamics between sAD and DS-AD, underlining the value of DS as a
unique model for AD.

Subsequently, we identified 142 DEP between sDS and aDS, none
originating from chr21, suggesting proteomic differences not directly
resulting from increased gene dosage of chr21, but rather of down-
stream effects.

The major findings in enrichment analysis within DS concerned dys-
regulation of immune function and cell signaling, tissue differentiation,
extracellular constituents, and metabolic activity, which was mirrored
in PPl analysis.

Dysregulated cytokine signaling, antigen presentation, and sig-
naling involving G-protein coupled receptors suggest imbalances in
immune cell communication and glial cell proliferation in sDS, in line
with an overactive immune environment by further amplifying inflam-
matory responses, possibly resulting from AD pathology.”* Studies
report dynamic cytokine profiles along the DS-AD spectrum, resem-
bling an early and a late neuroinflammatory period, with early peaks

of upregulated pro-inflammatory markers like interleukin (IL)-6, IL-13,
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FIGURE 4 Box plots of individual NPX levels from symptomatic and asymptomatic adults with Down syndrome for all 15 proteins received
from LASSO feature selection. LASSO, least absolute shrinkage and selection operator; NPX, normalized protein expression.

IL-15, and macrophage-derived chemokine (MDC) around age 20.2%
Likewise, elevated plasma levels of STREM2 have been observed in
young DS.>® Late inflammatory processes, however, have been char-
acterized as persistent activation of increasingly dystrophic microglia
and decreased immune markers like IL-10, IL-12, tumor necrosis
factor-alpha (TNFa), and IFNy, while levels of IL-6, IL-8, IL-15, and
monocyte chemoattractant protein-1 (MCP-1) increased.?® A phe-
notype of microglial activation characterized by elevation of CD86,
IL-10, TNFea, IL-1B, IL-6, and decrease in IL-12, already in asymp-
tomatic patients below age 40, has been reported in DS brain tissue
and shows further exacerbation with age?’ while investigations in
blood in DS with or without AD showed elevated levels of proin-
flammatory markers with a combined measure of amyloid-8 and
inflammatory agents predicting future cognitive decline the following
24 months.>¢

The downregulation of several proteins in sDS relates to consid-
erable cell cycle dysregulation suggestive of altered cellular growth,
repair mechanisms, cell stability, and chromosomal segregation. Alter-
ations in cell cycle and proliferation potency have been reported in
trisomic cells,>”-°8 and a DS mouse model showed decelerated cell pro-
liferation with increasing age®? while ribosomal biogenesis exhibited

dysregulation in older compared to younger DS individuals.¢© Interest-

ingly, a study reported that increases in APP expression could inhibit
cell proliferation by regulating global gene expression.? Since the
onset of symptomatic DS-AD is inevitably intertwined with accumu-
lating AD pathology and therefore increasing age, our findings support
potential molecular changes during the life span of DS possibly drive
aging processes and benefit AD pathophysiology.

Applying LASSO, we identified 15 proteins for the distinction
between sDS and aDS, 9 of which were identified as DEP and exhibited
an AUC above 0.75.

NfL blood levels increase early in DS-AD, with baseline concentra-
tions predicting dementia status and preceding amyloid PET changes
by up to 10 years141562.63 while GFAP, rises significantly in prodromal
and symptomatic DS-AD, correlating well with imaging measures of AD
(-related) pathology.2* We identified both as relevant features for sDS,
confirming strong diagnostic performance (AUC > 0.9).1>24

EDAZ2R is enriched in reactive astrocytes®*%> and higher levels
have been associated with smaller grey matter volume and impaired
fluid cognitive ability in euploids.®® In our sDS cohort, EDA2R over-
expression could therefore contribute to cognitive decline via chronic
reactive astrogliosis.

The astrocytic signaling protein IGFBP2 is increased in AD,®” asso-

ciated with clinical diagnosis of mild cognitive impairment or dementia,

1|uo//:sd1y) SUORIPUOD PUe SWd L 8y} 835 *[5202/S0/2T] Lo AiqITauliuo A8|IM ‘winjuszsBunyos.iod sayosine Ueuyolen  WNiLeZ Z)oyw pH AQ 000L Z[e/200T 0T/I0p/0d A8 | M Aeiq I puljuO'SPUINO -2 e//SdNY Wiy papeojumod ‘€ ‘S20Z '6/252SST

fopmA

85UB017 SUOWIWOD aAIEa.D a|qealdde sy Aq peusenob afe safoie VO ‘8sn JO Se|nJ 1oy ARIq1T 8UIUQ A8]IAA UO (SUOIPUOD-pLE:



wor1a | Alzheimer’s &P Dementia’

WAGEMANN ET AL.

THE JOURNAL OF THE ALZHEIMER’S ASSOCIATION

Top LASSO selected Features (AUC>0.75) predicting sDS

o _ g
- L1 11 Features
I—| GFAP
[ —— NFL
© _|
= EDA2R
—— CXCL17
—— SPON1
© _|
2 ©o —— IGFBP2
=
=
= CBLN4
C L’
) K —— CD14
w ] L
o —— SEPTINS
N |
o i
o | .7 |
c ~
[ I I I I ]
0.0 0.2 0.4 0.6 0.8 1.0
1 - Specificity

FIGURE 5 Allnine proteins received from feature selection analysis with their corresponding AUC for diagnostic performance of
differentiating between symptomatic and asymptomatic DS with corresponding ROC curves and an AUC over 0.75. AUC, area under the curve; DS,

Down syndrome; ROC, receiver operating characteristics.

AD-like brain atrophy, and CSF tau levels,®84? supporting our finding of
significantly increased blood levels in sDS.

Soluble CD14 has been shown to enhance immune response to
lipopolysaccharides in human euploid cells’® and is increased in
sDS, suggesting a further exacerbation of the augmented reaction
to lipopolysaccharides reported in DS by CD14-positive-monocytes-
derived cells.** We, too, found it significantly increased in sDS,
potentially contributing to dysregulated immune-related pathways,
exhibiting a moderate association with disease status.

While CXCL17 is mostly associated with chemotaxis in mucosal
tissue,”! amouse model study found increased cerebellar expression of
CXCL17 upon stimulation by peripheral inflammatory agents,72 which
could explain the elevated levels and good discriminative power within
our analysis.

SPON1, significantly increased in sDS, is reported to prohibit
enzymatic release of amyloid by binding to APP73 thereby possibly
mediating cognitive decline and structural brain changes in AD,”+7°
and increase in CSF in autosomal-dominant AD, as early as 30 years
prior symptom onset.”®

Finally, synaptic proteins SEPTIN3 and CBLN4 were increased and
decreased, respectively, in sDS, hinting at compensatory processes
ameliorating AD-related synaptic dysfunction. Indeed, disorganization
and accumulation of SEPTIN3 has been associated with complement-
dependent synapse loss in AD’7 and its gene polymorphisms are

considered relevant for AD pathology susceptibility.”® Conversely,

its elevated levels in sDS could also hint at increased release from
perishing synapses rather than overexpression, as proposed with beta-
synuclein.?> Meanwhile, CBLN4, pivotal for synaptic formation and
maintenance, has been suggested as a treatment target of AD due to
its amelioration of amyloid-related synaptic dysfunction.”” Therefore,
reduced expression levels in sDS might be contributing to synaptic
dysfunction.

Our study has certain limitations. Our sample size of 73 adults
with DS and 15 HC is rather small, warranting further analyses
with larger cohorts to validate present findings. Secondly, our cross-
sectional sample allows only limited interpretation of the potential
biomarkers uncovered; however, DS-AD arguably allows for a pseudo-
longitudinal interpretation similar to autosomal-dominant AD° due to
the genetically determined course of pathology.8! Further, lack of com-
prehensive data for amyloid, tau, and markers of neurodegeneration
for the majority of the cohort prohibited us from further differentiat-
ing potential biomarkers according to neuropathological status. Finally,
LASSO analysis was not adjusted for age due to its high correlation
with diagnosis (Pearson r = 0.74) and strong potential for solely pre-
dicting diagnosis, indicating a highly significant association (logistic
regression estimate = 0.225, p < 2e-16, Akaike information criterion
[AIC] = 124,231). While this approach avoids conflating age-related
effects with the outcome of diagnosis, it limits our ability to fully dis-
entangle their independent contributions, which we plan to address in

future analyses.
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TABLE 2 All 15 proteins received from feature selection analysis
with their corresponding AUC for diagnostic performance of
differentiating between symptomatic and asymptomatic DS.

Feature AUC

GFAP 0.925
NFL 0.916
EDA2R 0.91

CXCL17 0.904
SPON1 0.872
IGFBP2 0.855
CBLN4 0.815
CD14 0.792
SEPTIN3 0.759
ANGPTL2 0.732
KIR2DL2 0.72

ASAH2 0.711
SCGB3A1 0.71

FLT3 0.654
CGN 0.617

Abbreviation: AUC, area under the curve; DS, Down syndrome.

In conclusion, this work confirmed NFL and GFAP as powerful
blood markers for DS-AD and further identified several novel potential
biomarkers with considerable power for diagnosing DS-AD. Motivated
by the need for the implementation of an easily accessible and well-
tolerated alternative to lumbar punctures and imaging protocols, the

identified candidates warrant further investigation.
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