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A B S T R A C T

Predicting the solubility and lipophilicity of platinum(II, IV) complexes is essential for prioritizing potential 
anticancer candidates in drug discovery. This study introduces the first publicly available online model for 
predicting the solubility of platinum complexes, addressing the lack of literature and models in this regard. Using 
a time-split dataset, we developed a consensus model with a Root Mean Squared Error (RMSE) of 0.62 through 5- 
cross-validation on a training set of 284 historical compounds (solubility data reported prior to 2017). However, 
the RMSE increased to 0.86 when applied to a prospective test set of 108 compounds reported after 2017. Further 
analysis of the high prediction errors revealed that these inaccuracies are primarily attributed to the under-
representation of novel chemical scaffolds, particularly Pt(IV) derivatives, in the training sets. For instance, a 
series of eight phenanthroline-containing compounds, not covered by the training set’s chemical space, had an 
RMSE of 1.3. When the model was redeveloped using a combined dataset, the RMSE of this series significantly 
decreased to 0.34 under the same validation protocol. Additionally, we developed an interpretable linear model 
to identify structural features and functional groups that influence the solubility of platinum complexes. We 
further validated the correlation between solubility and lipophilicity, consistent with the Yalkowsky General 
Solubility Equation. Building on these insights, we developed a final multitask model that simultaneously pre-
dicts solubility and lipophilicity as two endpoints with RMSE = 0.62 and 0.44, respectively. The data and final 
developed model is available at https://ochem.eu/article/31.

Abbreviations: ADMET, Absorption, Distribution, Metabolism, Excretion, and Toxicity; GIT, gastrointestinal tract; MPNN, message passing neural network; 
OCHEM, Chemical Modelling environment; QSPR, quantitative structure-property relationship; SDF, Structure-Data Files; CNN, Convolutional Neural Network; 
SMILES, Simplified Molecular Input Line Entry System; SMARTS, SMILES-Arbitrary-Target Specification; ASNN, Associative Neural Network; RF, Random Forest; 
OOB, out-of-bag; InChi, International Chemical Identifier; RMSE, Root Mean Squared Error; MP, Melting Point; EFG, Extended Functional Group; HS, high specificity; 
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1. Introduction

Aqueous solubility is a crucial property of a drug, impacting its 
administration route, bioavailability and key pharmacokinetic proper-
ties, namely ADMET (Absorption, Distribution, Metabolism, Excretion, 
and Toxicity). [1,2] Drugs in solid dosage forms administered orally first 
disintegrate into smaller parts or primary particles, allowing drug mol-
ecules to dissolve more readily in the gastrointestinal (GIT) fluids than 
from an intact tablet. This molecular dissolution of the drug is then 
followed by its penetration through the intestinal barrier. [3] If the 
solubility or rate of dissolution is too low in the water-based GIT fluids, 
the drug molecule will primarily be excreted without entering the 
bloodstream or reaching its site of action, thereby rendering it ineffec-
tive. [1]

In drug discovery, understanding the physicochemical properties of 
candidate molecules in the early stages can help identify and eliminate 
molecules that are unlikely to succeed in later stages of development. 
[1] The importance of aqueous solubility for drug design is considered 
throughout the drug development pipeline, from assay development, 
ADMET optimization, and formulation design to the dosage form se-
lection stages. In this respect, in-silico estimation of the aqueous solu-
bility for the large number of drug candidates typically considered 
during lead optimization (before synthesis) is essential for streamlining 
and accelerating this traditionally lengthy and costly process. It is 
currently estimated that 40 % of marketed drug products, and 70–90 % 
of drug candidates in development stages have a low aqueous solubility. 
This results in low bioavailability, which often necessitates higher doses 
in the final formulations in order to achieve the desired therapeutic ef-
fect. However, this can also increase the risk of toxicity. [3]

In this study, we use quantitative structure-property relationship 
(QSPR) modelling to predict the intrinsic aqueous solubility of platinum 
complexes. By quantifying the intrinsic aqueous solubility, we aim to 
answer the question: “How much of a molecule can dissolve in water 
under thermodynamic equilibrium at a given temperature, assuming no 
ionization or other interactions?”. In other words, intrinsic aqueous 
solubility provides insights into the inherent ability of the neutral form 
of a compound to dissolve in water without external influences like pH 
adjustments or complexation. For an ionizable molecule, intrinsic sol-
ubility is defined as the concentration of the unionized molecule in a 
saturated aqueous solution at thermodynamic equilibrium at a given 
temperature. [4] Hence, it represents the lowest solubility of a com-
pound across all pH levels. This definition gives each compound a single, 
unique value, which is advantageous for computational modelling, and 
stands in contrast to other types of solubility, e.g., kinetic and equilib-
rium solubility, which depend on the pH used to perform the measure-
ments and therefore give rise to many different values for ionizable 
compounds. [5]

Solubility can be expressed using various terminologies, such as 
molality (m), volume fraction (v/v), parts of solvent (ppx), percentage (% 
w/w, % v/v), molarity (M, in mol/L), and others. [3] In modelling, a 
standard practice is to use the logarithm (log) of solubility (S, in mol/L). 
This standardized unit is important to ensure consistency and avoid 
discrepancies in reported experimental values, which might otherwise 
appear in different units, such as mM, mg/mL, or μg/mL. [6] In practice, 
around 85 % of drugs have a solubility between − 1 and − 5 log(mol/L). 
[7] This solubility range reflects a compromise between the polarity 
necessary for reasonable aqueous solubility and the hydrophobicity 
necessary for acceptable membrane transport. [7]

Recent years have seen substantial advancements in modelling 
methods for predicting aqueous solubility of organic molecules. [1,7,8] 
Many new approaches in this field have been developed, including 
artificial neural networks and deep learning, [9,10] which leverage raw 
molecular structures and have shown promise for the prediction of 
various molecular properties, including aqueous solubility, especially 
for large datasets. Comparative analyses between the deep residual 
network (ResNet) architecture and shallow neural networks, have been 

conducted by Cui et al. [11] New techniques include graph-based neural 
networks, [12] message passing neural networks (MPNNs) [13], and 
MPNN models with self-attention [14] as well as Transformers. [15] 
These efforts generally rely on datasets, ranging from 100 to about 1 k 
molecules, [8] with the exception of several recent works, [11,16,17] 
which have leveraged datasets of around 10,000 molecules, and the 
Kaggle Kinetic Solubility Prediction Challenge, which utilized a dataset 
of 100 k compounds. [18] The use of more advanced representations of 
chemical structures, SELFIES, allowed Yüksel et al. [19] to improve the 
performance of solubility models in comparison to traditional use of 
SMILES. These studies demonstrate an increasing interest in developing 
new methods for solubility prediction for organic molecules. However, 
to our knowledge, no published solubility prediction models have spe-
cifically addressed platinum complexes.

It was not until the 1960s that metal-containing/organometallic 
drugs reached a milestone in cancer treatment, when Barnett Rosen-
berg accidentally discovered the anticancer properties of cis-dia-
mminedichloridoplatinum(II), known as cisplatin. [20] Cisplatin binds 
covalently to DNA, leading to DNA damage and subsequent cell death. 
[21] Despite its efficacy, cisplatin is associated with high systemic 
toxicity, especially nephrotoxicity. [21] Additionally, it has a water 
solubility of 1 mg/mL (− 2.47 log(mol/L)), poor lipophilicity, high 
reactivity and severe side effects arising from premature aquation, and 
non-selective binding to biomolecules. [22,23] This prompted the 
development of new metallodrugs based on the structure activity rela-
tionship (SAR) approach, as postulated by Cleare and Hoeschele [24], 
using cisplatin as a structural scaffold. This strategy led to the devel-
opment of carboplatin (cis-diammine(1,1-cyclobutanedicarboxylato) 
platinum(II)), a complex with higher water solubility (17.2 mg/mL or −
1.32 log(mol/L)), higher stability and lower toxicity. A decade later, 
Oxaliplatin (trans-L-(1R,2R-diaminocyclohexane)oxalatoplatinum(II)), 
which has a water solubility of 6.1 mg/mL (− 1.81 log(mol/L)), was 
developed, with the aim of circumventing tumor resistance to cisplatin. 
[20]

Why does the search for therapeutic platinum complexes continue? 
Despite the widespread use of existing platinum-based drugs in more 
than half of all cancer chemotherapy treatments, [25] their clinical 
application is fraught with difficulties due to some patients’ innate or 
acquired resistance to these drugs, in addition to pharmacokinetic 
drawbacks. [21,22] Recent efforts in pharmaceutical research are 
increasingly focused on designing platinum-based anticancer agents 
with improved pharmacokinetic profiles, aiming to enhance cytotoxicity 
while reducing side effects. [21]

The great potential of platinum-based drugs as anticancer agents is 
attributed to the unique coordination chemistry of transition metals, 
which opens up intriguing possibilities for designing better analogs in 
terms of pharmacokinetics. The ability to modify ligands and alter co-
ordination geometry, such as transitioning from Pt(II)’s square planar to 
Pt(IV)’s octahedral configuration, significantly impacts properties such 
as solubility, lipophilicity, stability, and reduction potential. [20] 
Moreover, Pt(IV) complexes are kinetically more inert than Pt(II) com-
plexes, reducing their reactivity with off-target biomolecules. They are 
also prodrugs, which must be reduced under the hypoxic conditions of 
tumor tissues before becoming active, thereby increasing their selec-
tivity [26]. The Pt(IV) complex satraplatin, for instance, with its addi-
tional axial acetato ligands, stands out as the first orally formulated 
platinum drug evaluated in clinical trials. [27] Finally, the strategic 
design of ligands in these complexes allows for the targeting of specific 
tumor sites or incorporation of additional bioactive components, making 
them promising for innovative and tailored drug design. [20]

Predicting the solubility of Pt complexes based on their chemical 
structures is a crucial step for designing the required platinum-based 
anticancer candidates with improved pharmacokinetics. However, the 
sparse experimental solubility data for Pt complexes and the inherent 
challenges in their computational modelling hinder the development of 
robust machine learning-based methods for this purpose. In this study, 
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we aim to address this existing gap by evaluating the effectiveness of 
both classic and current state-of-the-art algorithms for predicting solu-
bility of platinum complexes. Building upon our previously developed 
methods for lipophilicity prediction of platinum complexes, [27–30] as 
well as existing models for predicting the solubility for organic mole-
cules, [31] we adopt two approaches: (1) modelling solubility of plat-
inum complexes as a single endpoint and (2) developing a multitask 
model that concurrently predicts solubility and lipophilicity as two 
endpoints. Using molecular descriptor-based and representation 
learning-based methods, we provide a comprehensive set of insights that 
will be highly valuable for addressing salient challenges in early-stage 
drug design–in particular, for identifying optimal ligands and func-
tional groups that enhance solubility, streamlining the reverse- 
engineering of new platinum complexes with improved pharmacoki-
netics profiles.

2. Data and methods

2.1. Data collection

The data used to develop the ML models for this study were curated 
from about 80 literature sources collected up until November 2024, 
spanning more than a century of research, as shown in Fig. 1. The data 
were further augmented by solubility values for n = 18 [27,32–37] 
complexes reported for the first time in this study (Table S1). Detailed 
procedures for solubility determination are provided in the Supple-
mentary Material (see section S1: Experimental Solubility Determina-
tion). Molecular structures were digitally sketched in the On-line 
Chemical Modelling environment (OCHEM). [38] Solubility values 
measured in different units (e.g., μg/mL, mg/mL, mg/L) were uploaded 
as reported in the literature. These values were automatically converted 
to log(mol/L) values by OCHEM. Storing data with their original units 
facilitates tracking and makes it easier to detect and correct mistakes in 
chemical structures.

It should also be noted that dichloridoplatinum(II) complexes, such 
as cisplatin, can undergo aquation (exchange of chlorido ligands with 
water), resulting in higher reported water solubilities depending on 

sample preparation and measurements protocol. This can, at least in 
part, explain the large variation in the reported solubility data. Also we 
excluded one compound (see Section 2.2), which the reporting authors 
described as being unstable in water.

This comprehensive data collection reflects the evolving research 
trends in platinum complexes. Fig. 1 demonstrates the growing interest 
in designing new platinum complexes, particularly around the approval 
year of key cisplatin analogues. Carboplatin was approved for clinical 
use in 1986 in America [39]; oxaliplatin in 1996 in Europe [39] and in 
America in 2002 [40]; and nedaplatin in 1995 in Japan. [41] This does 
indeed emphasize the actively ongoing research in this area, with sci-
entists continuously developing novel complexes or optimizing existing 
derivatives, aiming at improving pharmacokinetics, enhancing cyto-
toxicity and reducing side-effects. [42]

2.2. Data cleaning and handling

We initially compiled a dataset of more than 400 Pt complexes, each 
with reported solubility values. After a preliminary review, we excluded 
compounds co-containing additional transition metals (e.g., Pd, Cr, Rh, 
etc.), or alkali metals (e.g., Rb+, Cs+) with the exception of K+ and Na+, 
which are counterions for several anionic Pt complexes. We also 
excluded duplicated entries, one compound that was reported to be 
unstable in water, and measurements taken at high temperatures 
(80 ◦C). This left us with a refined and cleaned dataset of 392 complexes.

The majority of the solubility values in this refined dataset were 
measured at 25 ◦C. However, there were a few exceptions, with 20 re-
cords measured at 20 ◦C and 10 at 37 ◦C. According to Balakin et al., [1] 
temperature variation below ΔT = 30 ◦C does not significantly increase 
the error in solubility prediction, therefore we also kept those com-
pounds. The refined dataset included 155 entries for Pt(IV), 236 for Pt 
(II), and one entry for a Pt(0) complex. The solubility values varied, 
ranging from − 5.70 to 0.54 on the logS scale (Table S2), reflecting the 
large variability in the experimental solubility data of platinum com-
plexes. For example, fewer data points fall into the highly soluble or 
moderately soluble categories (Fig. 2) which may introduce challenges 
or limitations for the models’ ability to learn the complex structure- 

Fig. 1. Time span of collected solubility data. Starting in 2013, the annual data indicates a growing interest in designing new Pt-complexes, particularly Pt 
(IV) complexes.
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property relationships for these molecules.

2.2.1. Handling of intervals and ranges
Four solubility values were reported as censored values indicating 

solubility either below a lower threshold or above an upper threshold 
rather than specific values, e.g., “Water solubility > 25.0 mg/mL” and 
“Water solubility < 0.1 mg/mL”. To handle these records effectively, 
boundary values were used for the “greater” and “less” ranges (e.g., 
Water solubility = 25.0 mg/mL and “Water solubility = 0.1 mg/mL”, 
ensuring accurate representation and appropriate handling of the data.

2.2.2. Handling of uncertainty margins
Additionally, 76 values were reported with uncertainty margins, 

exemplified by entries such as “Water solubility = 0.33 ± 0.02 mM.” The 
central value (e.g., 0.33 mM) was used as the representative solubility 
value in these cases. The accompanying uncertainty margin (e.g., ±
0.02 mM) indicates the precision of the measurement but was not 
directly incorporated into the analysis. Instead, these margins were 
noted for reference, as they provide insights into the reliability and 
variability of the measurements.

2.2.3. Consistent and reliable data representations
The structures uploaded to the OCHEM platform were internally 

stored as Structure-Data Files (SDF). During data upload, where 
required, all structures were represented using de-aromatized Kekulé 
forms. Coordination bonds were denoted as bond type #8 provided by 
the JSME editor [44]. For Transformer CNN models, [45] as well as 
Quantitative Name Property Relationship (QNPR) and ISIDA Fragmen-
tor [46] descriptors this bond type was automatically substituted by a 
non-specific bond “~”. However, the coordination bonds posed chal-
lenges for other descriptor calculation programs. To address this issue, 
an automatic conversion was implemented, replacing them with stan-
dard single bonds for calculation of descriptors. While this conversion 
introduced some trade-offs in chemical specificity, it was consistent 
across all structures and was appropriately accounted for by the data 
mining algorithms. For model development, all structures were stan-
dardized. This process involved the transformation of molecules 
following a predefined set of “SMILES-Arbitrary-Target Specification” 
(SMARTS) templates, primarily aimed at standardizing chemical groups. 
Subsequently, a neutralization step was implemented. Some Pt- 
complexes were inherently charged and were represented together 
with their counterions (see subsection Standardized Representation of Pt 
Complexes for Accurate Model Predictions). Despite the availability of 
automated preprocessing in OCHEM as outlined in its Preprocessing 

Manual, [47] we manually checked all compounds due to the manage-
able size of the dataset.

2.3. Classical machine learning methods

We used the Random Forest regression (RF) [48] and Associative 
Neural Network [49] (ASNN) as classic descriptor-based methods and 
compared their performance to the current state-of-the-art Transformer- 
CNN [45] - the representation learning model in our case.

2.3.1. Overview of descriptor-based machine learning methods
Random Forest [48] is an ensemble learning method. It aggregates 

predictions of multiple individual trees, each of which is built inde-
pendently one from another by randomly selecting a subset of de-
scriptors (features). The training data used to develop each tree is 
sampled with replacement (a “bootstrap” sample) from the original 
training set. The samples that were not used in the development of the 
respective tree can be used to estimate performance of the model (so 
called “out-of-bag” (OOB) error).

Associate Neural Networks [49] (ASNN) is an ensemble method 
that trains individual neural networks models and corrects their bias 
using k nearest neighbors. This approach was inspired by studies of 
thalamo-cortical organization of the brain [50] and was shown to 
improve accuracy of the neural network ensemble.

For the RF and ASNN methods, molecules were used with seven sets 
of molecular descriptors and fingerprints to generate features as input 
for the models. We employed a combination of two-dimensional struc-
tural fingerprints, and 2D topological descriptors to capture and quan-
tify global and local chemical information of the molecules as described 
in the next subsection. We also explored whether 3D descriptors could 
provide better results.

2.3.2. Chemical descriptors
Below is a brief overview of the analyzed descriptors. Detailed de-

scriptions of each set of descriptors can be found on the OCHEM plat-
form. [38] Moreover, the utilized descriptor packages, with the 
exception of alvaDesc, are also available as part of open source GitHub 
version of openOchem https://github.com/openochem/openochem.

E-state [51] involves calculating atom-type E-state indices and mo-
lecular bond E-state indices, which are 2D electro-topological de-
scriptors derived from a compound’s molecular graph. These indices 
represent the electronic (charge) state of each bonded atom within a 
molecule, capturing information about its topological (shape) nature. In 
this study, we employed the counts and indices of atoms and bonds.

Fig. 2. Distribution of Solubility data for Pt(II) and Pt(IV) complexes. Pt(II) exhibited a wide solubility range with a mean solubility of − 2.3 log(mol/L) and a SD of 
1.2. In contrast, Pt(IV) complexes had a narrower range with a mean of − 2.5 and a SD of 1.0. The data suggest that Pt(II) complexes have higher variability in 
solubility, while Pt(IV) complexes are slightly skewed towards lower solubility. Solubility classes adapted from SwissADME. [43].
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MOLD2 [52] is a software tool developed by the FDA that calculates 
777 descriptors ranging from 1D to 2D.

MODRED2 [53] is a software application based on the invariance of 
adjacency relationships. It is capable of generating over 1800 de-
scriptors of both 2D and 3D characteristics at a high speed. Mordred 
consists of two main classes: “Descriptor” and “Calculator.” They auto-
matically preprocess molecules (add or remove hydrogen atoms 
depending on calculated descriptors, perform Kekulization, and detect 
molecular aromaticity).

QNPR [54] Quantitative Name Property Relationship (QNPR) are 1D 
descriptors directly based on the SMILES string. They are calculated by 
splitting the respective string into fixed-length substrings. In this work, 
substrings with a length one to three characters were used.

Fragmentor ISIDA fragments are 2D descriptors. [46] Molecules are 
divided into substructural molecular fragments (SMFs), which have 
lengths 2–4 in this work. The frequencies of occurrence of SMFs in a 
molecule were used as descriptors.

Various RDKIT and ECFP4 [55] descriptors [56] as well as circular 
topological fingerprints [55] generated by the RDKit chemoinformatics 
library. ECFP4 represents the variant with a radius of two bonds. These 
fingerprints are designed to capture the chemical environment of each 
atom in a molecule and are particularly useful for structure-property 
modelling.

StructuralAlerts descriptors (also known as Extended Functional 
Groups, or EFGs) [57], featured by the ToxAlerts tool, [58] are uniquely 
identified by SMARTS templates encoding the presence or absence of 
583 heterocyclic compound classes and periodic table groups (e.g., hy-
drocarbons, ketones, dioxanes, etc.) in molecules.

AlvaDesc [59] (v. 2.0.16) which has 33 blocks that calculates 5666 
descriptors such as constitutional, topological, and pharmacophore de-
scriptors. It includes ETA and Atom-type E-state indices, functional 
groups, and fragment counts. Additionally, AlvaDesc implements an 
extensive set of 3-dimensional descriptors, including 3D-autocorrela-
tion, Weighted Holistic Invariant Molecular Descriptors (WHIM), and 
GETAWAY. AlvaDesc also provides the calculation of several model- 
based physicochemical properties, such as the aqueous solubility 
model (ESOL) and includes geometrical and chirality descriptors.

For descriptor packages requiring 3D information, 3D molecule 
structures were generated and optimized using ULYSSES. [60] The 
ULYSSES was selected since this quantum-chemistry package supports 
optimization of metal-complexes.

2.3.3. Unsupervised filtering of descriptors
A series of unsupervised filters were applied when selecting features 

to retain only informative descriptors. Descriptors with fewer than 2 
unique values were eliminated for lack of discriminatory power and 
those with a variance below 0.01 were also excluded to ensure mean-
ingful variability. Pairwise correlations among descriptors were assessed 
using Pearson’s correlation coefficient, and those with a correlation 
coefficient exceeding 0.95 were grouped together to minimize 
redundancy.

2.4. Representation learning

Transformer-CNN [45] used a learned representation based on 
augmented SMILES notation. The model deployed in this study lever-
aged pre-training on SMILES representations of 1.7 M organic com-
pounds from ChEMBL database used in the original study [45] enriched 
with approximately 600 platinum complexes, curated from the litera-
ture as part of our ongoing research into logS and logP predictions. For 
this step, which aimed to train neural networks to learn SMILES can-
onization, no experimental data were used, only SMILES. The curated 
dataset was augmented by generating 10 non-canonical SMILES repre-
sentations for each compound as explained elsewhere. [45] This allowed 
the model to learn the numerical representation of the organic as well as 
platinum complexes, which is the key to transferring the learning to our 

smaller dataset. Additionally, stereochemical features such as (/,\, @, 
@@) were incorporated within the vocabulary of 66 symbols used by 
the model, enriching the representation of molecular structures with 
stereochemical information.

2.5. Consensus model

The consensus model approach was applied to leverage the com-
plementary strengths of different modelling methods. Predictions of 
individual base models were averaged as shown in Eq. (1). 

y = sum(yi)/n (1) 

In this equation, the sum is done over all i = 1, …,n is selected 
models, and yi is the vector of prediction of the selected model. 
Consensus modelling enhances the robustness and accuracy of individ-
ual models. [61]

2.6. Optimization of hyperparameters of methods

The models developed in this study use a pre-set of hyperparameters, 
that were optimized across several datasets of different properties. 
Namely 512 trees and 1/3 numbers of all features were used to develop 
each model for the RF, and 64 single hidden layer models with 3 hidden 
neurons for the ASNN. For the ASNN the settings were the same as used 
in logP models for Pt compounds. [27,28] These hyperparameters were 
also used by us consistently across multiple previous studies, including 
those predicting the lipophilicity of Pt complexes. [27,28] Transformer 
CNN was used to develop models using the same hyperparameters as 
described elsewhere. [45] The model was trained for a maximum of 25 
epochs. Optimizing hyperparameters specifically for the relatively small 
solubility dataset, such as the one analyzed in this study, could easily 
result in overfitting. [17] Therefore, to maintain model generalizability 
and prevent overfitting, we did not perform hyperparameter optimiza-
tion in this study.

2.7. Model evaluation

The performance of each representation and model approach was 
evaluated using the Root Mean Squared Error (RMSE) as the error 
metric. This statistical coefficient measures the average differences be-
tween the values predicted by a model, yi

p, and the measured values, yi
e, 

as shown in Eq. (2). 

RMSE = sqrt

(

sum
(
yi

p − yi
e

)2
/

N

)

(2) 

where sum is over all i = 1, …,N samples in the dataset.

2.8. Model validation

Since the main goal of this study was to develop models capable of 
predicting the solubility of new platinum complexes, we estimated the 
predictive performance of models using two rigorous validation pro-
tocols: a time-based split and five-fold cross-validation (5CV) approach.

2.8.1. Time-based Split for prospective validation of models
To simulate real-world conditions, where historical data guide model 

training and newer data serve as a prospective test, we split the dataset 
based on publication year of the source literature. Specifically, 284 
complexes published before 2018 were designated as historical data for 
training, while 90 complexes published in 2018 or later formed the test 
set. The test set was further augmented with 18 complexes, whose sol-
ubility was measured for this study (Table S1). The test set was not used 
for any aspect of model selection or tuning, reflecting practical appli-
cations and ensuring unbiased assessment of predictive performance.
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2.8.2. Five-fold cross-validation (5CV)
The 5CV was done to estimate prediction ability of models developed 

with respective dataset. The dataset was randomly split on five folds 
using 14 first characters of InChi hash codes, which account only for the 
connectivity information. This ensured that any racemates or isomers of 
the same compound were confined to a single fold – whether for the 
training fold or the validation fold – thereby preventing accidental 
overlap/leakage between training and validation subsets (i.e., the 
compound was never in training and validation sets simultaneously). 
Models were trained on four folds and validated on the remaining fifth 
fold, which was not used at any point for model selection or tuning. This 
process was repeated five times so that each fold served once as the 
validation subset. The final model was then developed with the entire 
dataset following exactly the same procedure as per individual model 
during the cross-validation process.

3. Results and discussion

3.1. Chemical space analysis

The post-2017 test set had marginally lower mean solubility (− 2.44 
log(mol/L) compared to the earlier (historical) training set (− 2.36 log 
(mol/L), as shown in Table S2. While this might seem counterintuitive if 
one expects newer compounds to be more soluble, the discrepancy could 
reflect efforts targeting other properties rather than purely optimizing 
for solubility. A notable example is satraplatin, which was developed 

with a relatively low aqueous solubility (0.4 mg/mL or − 3.1 log(mol/ 
L)), however it has higher lipophilicity and in vivo stability and less 
reactivity, leading the new generation of oral platinum agents. Although 
efforts to enhance pharmacokinetics continue through modifications of 
existing ligands and the introduction of more hydrophilic ligands, these 
strategies may not necessarily or uniformly boost solubility across all 
newly designed Pt(II) and Pt(IV) complexes.

Upon analyzing the distribution of Pt(II) and Pt(IV) within the 
training time split set, we found that it included only 74 Pt(IV) com-
plexes (26 %), whereas the test set was predominantly composed of Pt 
(II) complexes (70 %). This imbalance is critical, especially considering 
our previous analysis of lipophilicity prediction, which revealed that 
models developed with Pt(II) logP values provided low accuracy for Pt 
(IV) complexes. [27] Consequently, the underrepresentation of Pt(IV) 
complexes in the training time split is anticipated to decrease the ac-
curacy of the model for our time-split analysis for these Pt(IV) types of 
complexes in the test set.

The chemical space distribution of the test set in respect to the 
training set is shown in Fig. 3. The figure highlights examples that offer 
insights into the diversity and underrepresentation of certain chemical 
groups within the test and training sets. As per literature, this includes: 
the novel design of a series of eight Pt(IV) complexes incorporating 
halogenated phenylacetic acid derivatives [62] derived from Pt(II) 
bearing heterocyclic ligand phenanthroline (FPA-phen). This group of 
phen-containing compounds is unique to the test set; a series of seven 
satraplatin analogues with the replacement of satraplatin’s equatorial 

Fig. 3. t-SNE visualization illustrating the 2D distribution of the post-2017 test set with respect to the training set chemical space. The distribution of Pt types (II, IV) 
is also demonstrated within each data set, with Pt(IV) colored with lighter shades. Molecules were encoded using ECFP4 fingerprints: radius 2 and 2048 Bits. Distinct 
clusters of both datasets indicate the innovative strategies recently adopted to design novel compounds. Each circled and labeled compound is an example of its 
respective derivative cluster, with labels indicating the names of ligands coordinated to the platinum (Pt) or characterizing these compounds. The figure showcases 
the diversity of chemical properties and highlights the specific areas within the chemical space where the predictive model based on the training set may have low 
accuracy since the test set will be out of the applicability domain of the model. Here, “FPA-phen” represents phenanthroline-containing derivatives with halogenated 
(fluorine) phenyl acetate. [62] “DiCA” a series of asymmetric Pt(IV) dicarboxylato derivatives. [63] “SA” is oxaliplatin-based Pt(IV) complex bearing succinic acid. [64] 
“CA” a series of unsymmetric Pt(IV) complexes bearing carboxylate or carbamate ligands. [65] “SubH” is the suberoyl-bis-hydroxamic acid ligand. “QOP” a series of cationic 
Pt(II) complexes bearing quinolinate and phosphine ligands. [66] “diazido” a series of trans-di-(N-heterocyclic)imine dihydroxido diazido Pt(IV) complexes. [67] “5FPh- 
PTA” a pentafluorophenyl Pt(II) complex of PTA (1,3,5-triaza-7-phosphaadamantane). [68] “bisPhB” denotes bis phenylbutyric acid. [26] “PA” two Pt(IV) conjugates 
containing one or two molecules of perillic acid. [69]. From the training set, “DiI-ImH” diiodido derivative of a series of Pt(II) containing bis (imidazole). [70] “DiPMe3” 
phosphine Pt(II) derivatives. [71]
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chlorides with acetates and two axial phenylbutyric acid groups 
(bisPhB); the development of Pt(IV) complexes with axial carbamate 
ligands;

3.2. Effect of molecular representations and descriptors on model 
performance

We assessed model performances using a wide range of structure 
representations, and employing RMSE as the evaluation metric. Pre-
liminary analyses revealed that RF provided the highest accuracy for the 
training set using 5-fold CV compared to other descriptor-based methods 
in predicting solubility. Therefore, the RF method was selected for 
modelling. The performance results for each RF model are given in 
Table 1 for both time-split sets as well as combined sets.

For the time-split dataset the best performance (RMSE = 0.64) was 
achieved by the RF using alvaDesc [59] followed by Estate, [51] and 
RDKIT (2D) descriptors. Two other sets of descriptors, namely ISIDA 
Fragments and MOLD2 calculated RMSEs which were close to the top- 
performing descriptors. Transformer CNN performance was similar to 
the best RF models. Furthermore, applying the consensus approach by 
combining the Transformer CNN with seven 2D descriptor-based models 
resulted in the highest prediction accuracy across all datasets as reported 
in Table 1.

The comparison between 2D and 3D descriptors showed that both 
contributed models with similar RMSE. This observation is intriguing 
given the complex nature of solubility as a property influenced by both 
molecular packing in crystal structure and interaction with the solvent. 
However, the same result was also observed and explained with respect 
to solubility of general organic compounds by Balakin et al., [1] who 
pointed to difficulties in identifying the conformational minimum of 
compounds in crystal structures which could contribute to this problem. 
The generation of atomic coordinates by the ULYSSES package [60] also 
failed for two structures – large complexes for which no suitable 3D 
structures were generated. Therefore, we decided to not use 3D de-
scriptors in this study.

The narrow variability in 5CV accuracy across 2D descriptors em-
phasizes the robustness of model performances notwithstanding the 
used molecular representations. Across all 2D descriptors, the RMSE was 
higher in the prospective time-split test set which inherently introduced 
new chemical classes which were not found in the earlier complexes 

from the training set, or which were underrepresented there (Fig. 3). 
This expansion of the chemical space, particularly if the training set is 
small, can significantly impact model performance. Due to the small 
sizes of training and test sets, the confidence intervals for all sets are 
rather wide. The lowest RMSE across all descriptors was calculated using 
alvaDesc and Estate indices.

3.3. Analysis of consensus models

3.3.1. Time split sets
The consensus model was built as an average of eight models with 

the lowest RMSE, developed with RF and Transformer-CNN. Its perfor-
mance on the time split training set, evaluated through 5CV, yielded an 
RMSE of 0.64 while an RMSE of 0.86 was obtained for the test set of 
compounds measured after 2017 (Table 1, Fig. 4a). It should be 
mentioned that the model based on RDKIT fragments provided a lower 
RMSE = 0.80 for this test set. However, we could not know in advance 
which set of descriptors would contribute the lowest RMSE for unseen 
data. Also, selection of models based on their test set performances in-
creases the risk of chance correlation, in comparison to selection based 
on the results of 5CV on the training set. [72] Indeed, confidence in-
tervals for the test set performances are larger than those for training test 
set, which could introduce bias into the selection and result in over-
fitting. [72]

This discrepancy between the training and test sets highlights the 
challenges associated with model generalization to unseen data. In 
general, the increase in RMSE for the test set indicates two possibilities: 
overfitting, or presence of molecular structures in the test set that fall 
outside the model’s applicability domain as defined by the training data. 
The former issue is excluded since performance for 5-fold CV was 
calculated using exactly the same protocol as for time-split set. This issue 
is exacerbated especially if the dataset is small.

As previously noted, Pt(IV) complexes were underrepresented in the 
time-split training set (26 %), but overrepresented in the test set (70 %). 
The model predicted Pt(II) and Pt(IV) complexes with RMSE of 0.70 ±
0.08 and 0.91 ± 0.07 respectively. Thus, the model had difficulty with 
generalizing solubility prediction for Pt(IV) complexes, which were 
scarce in the historical training set but prevalent in the newer com-
pounds contained in the test set. This was visually and statistically 
evident in our case, as shown by the distinct clusters of compounds from 
the test set depicted in Fig. 3, indicating their higher structural diversity 
as compared to compounds from the training data. For example, RMSE 
= 1.3 was for 8 phenanthroline-contacting compounds from study of 
Aputen et al. [62] (FPA-phen group) as well as for 12 compounds from 
the DiCA group. [63] These sets of compounds were on the border of the 
t-SNE plot as shown in Fig. 3 and thus were more structurally diverse 
than the compounds in the training set. However, once the model was 
redeveloped using all compounds, RMSEs of 0.34 ± 0.08 and 0.7 ± 0.2 
were obtained for the FPA-phen and DiCA groups, respectively. The 
higher accuracy for FPA-phen can be explained by the lower diversity of 
molecules within this group as compared to DiCA group, as evidenced by 
the sizes of the clusters for both groups in Fig. 3.

This comparison underscores the benefits of using a larger and more 
diverse dataset for training in enhancing model reliability and accuracy. 
Extension of the training set with compounds from the test set allowed 
the model to account for structural diversity within this set.

3.3.2. Combined set
When evaluated on the combined dataset using 5CV, the RMSE of the 

ensemble model did not change 0.62 ± 0.03. This result again indicates 
that the time split test set had around the same experimental accuracy as 
the other data, and their low accuracy was mainly due to differences in 
chemical diversity of the test set compounds. The broader range of 
solubility values in the combined dataset enabled the model to better 
capture the complexity of solubility prediction across a wider array of 
molecular structures. This improvement highlights the potential benefits 

Table 1 
RMSE values across analyzed molecular representations and models developed 
using RF method.

Descriptor set Time Split Training 
5CV (n = 284)

Time Split 
Test Set (n 
= 108)

Combined 
Set 5CV (n =
392)

AlvaDesc (2D)* 0.64 ± 0.04 0.90 ± 0.06 0.66 ± 0.03
Estate* 0.65 ± 0.04 0.91 ± 0.07 0.66 ± 0.03
RDKIT (2D)* 0.65 ± 0.04 0.81 ± 0.06 0.65 ± 0.03
MOLD2* 0.66 ± 0.04 0.86 ± 0.06 0.66 ± 0.03
ISIDA Fragmentor 

(length: 2–4)*
0.66 ± 0.04 0.85 ± 0.06 0.65 ± 0.03

MORDRED (2D)* 0.69 ± 0.04 0.87 ± 0.06 0.65 ± 0.03
QNPR (length: 1–3*) 0.7 ± 0.05 0.97 ± 0.07 0.7 ± 0.03
RDKIT (ECFP4) 0.72 ± 0.04 0.91 ± 0.06 0.74 ± 0.03
EFGs 0.79 ± 0.04 0.84 ± 0.06 0.74 ± 0.03
MORDRED (3D) 0.67 ± 0.04 0.88 ± 0.06 0.67 ± 0.04
AlvaDesc (3D) 0.66 ± 0.04 0.93 ± 0.06 0.71 ± 0.04
RDKIT (3D) 0.67 ± 0.04 0.87 ± 0.05 0.72 ± 0.04
PyDescriptor (3D) 0.71 ± 0.04 0.97 ± 0.07 0.75 ± 0.03
Learned Representation 

(LR)
Transformer CNN* 0.65 ± 0.04 0.92 ± 0.06 0.63 ± 0.03

Consensus model (eight 
models)
1 (LR) + 7 (2D) base 
models

0.62 ± 0.04 0.86 ± 0.06 0.62 ± 0.03

* indicates base models used to build consensus models.
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of incorporating diverse training data to enhance model performance 
and generalizability in solubility prediction tasks.

3.4. Analysis of outlying compounds

The outliers in the test set could be mainly attributed to the limited 
chemical space coverage in the training set, as exemplified by the “FPA- 
phen” and “DiCA” series discussed in the previous subsection. Once the 
model was retrained on the combined dataset to include these respective 
series of compounds, they were no longer identified as outliers.

Several compounds were also identified as significant absolute out-
liers within the training sets. The largest outlier in both sets was cis- 
dichloridobis(trimethylphosphine)platinum(II) (Fig. 5). The compound 
exhibited a solubility of − 5 log(mol/L), yet was predicted with higher 
solubility value of − 2.05 log(mol/L) when using the time-split training 
set, and − 2.4 log(mol/L) when using the full training set, respectively. 
This compound was rather unique within the training set, and its nearest 
neighbor compounds had low Tanimoto similarity (<0.5). Additionally, 
these nearest neighbors were much more soluble, which might 
contribute to the prediction discrepancy.

The figure highlights cis-dichloridobis(trimethylphosphine)platinum 
(II), the largest outlier in our dataset, alongside its nearest neighbors 
from the training set. This compound has a substantial lower solubility 
compared to its most similar neighbors, which do not contain any 
phosphorus atoms. Note that the model is unable to distinguish geo-
metric (cis-trans) isomerism; therefore, representing compounds as 
either cis or trans isomers has no impact.

The second largest outlying molecule in both training sets was a di- 
iodido bis(imidazole) derivative synthesized and measured by the co-
authors. [70] The compound is depicted on Fig. 6 alongside its two 
analogues. In general, di-chlorido and di-hydroxido platinum complexes 
exhibit higher solubility compared to di-iodido complexes due to a 
combination of factors including higher electronegativity, reduced steric 
hindrance, lower polarizability leading to decreasing hydrophobicity, 
and enhanced hydrogen bonding capabilities. In addition, iodido ligands 
do not undergo aquation as readily as chlorido ligands. Chlorido ligands 
are exchangeable with water molecules through aquation within the 
biological environment of human cells. Although the aquation reaction 

is not thermodynamically favorable under standard conditions, cellular 
environment drives the formation of more soluble aqua complexes as 
demonstrated by the classical example of cisplatin.

The solubility dataset contained 132 compounds with Pt–Cl bonds, 
12 with Pt–Br, 8 with Pt–F bonds, and only 4 compounds with Pt–I 
bonds. Complexes containing Pt–Cl, Pt–Br, or Pt–F bonds had RMSE 
of 0.64, 0.5, and 0.3 in the combined set, respectively, indicating good 
predictive performance. Additionally, the dataset contained six com-
pounds with iodine bonded to benzene rings or CH2 groups instead of 
directly coordinated to the Pt center (i.e., not Pt–I bond), for which the 
model did not have any difficulty and predicted them with RMSE = 0.6. 
However RMSE = 1.3 was obtained for complexes with Pt–I bonds. This 
suggested that a limited number of only 4 compounds was insufficient to 
learn the influence of Pt–I bond on the solubility of compounds. Thus, 
more solubility measurements for compounds featuring Pt–I bonds are 
required to accurately learn the influence of this bond type on the sol-
ubility of platinum complexes.

3.5. Analysis of overrepresented groups in low/high soluble compounds

To identify structural features that are overrepresented in lower- 
solubility compounds, we divided the dataset into lower and higher 
soluble groups using the median logS value − 2.73 log(mol/L) as the 
threshold. We used the SetCompare tool [73] in OCHEM, which utilizes 
a hypergeometric distribution with Bonferroni correction, to determine 
the prevalence of certain Extended Functional Groups (EFGs) [57] 
within each class/set. Our analysis showed that the most significant 
EFGs associated with lower solubility were halogens, aromatic com-
pounds, and arenes (Fig. 7). These groups also featured in the linear 
equation model (see the next subsection, Table 2) with negative co-
efficients, indicating their contribution to reduced solubility and thereby 
confirming the statistical findings of the SetCompare tool.

Arenes and aromatic compounds are characterized by their stable, 
conjugated ring systems that tend to stack. This contributes to their 
hydrophobic nature, limited hydrogen bonding capability, and struc-
tural rigidity. These features disrupt the hydrogen bond network of 
water, making the solvation process less energetically favorable. In 
contrast, compounds containing any cations, saturated six-membered 

Fig. 4. Performances of Consensus Models. Measured values (x-axis) are plotted vs predicted for consensus models built using 1) time split and 2) combined datasets. 
Standard deviations for individual predictions are shown as error bars. Eight and twelve molecules from the test set (FPA-phen and DiCa, see Fig. 3) are encircled. For 
both these sets the model calculated RMSE = 1.3 in the time split dataset and RMSE = 0.34 (FPA-phen) and 0.7 (DiCA) in the combined dataset.
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heterocycles with three heteroatoms (Fig. S1), and dialkyl-ethers were 
associated with higher solubility.

3.6. Interpretable model based on logP and melting point

The Yalkowsky General Solubility Equation (GSE) [74] links com-
pound solubility to their lipophilicity and melting point. 

logS = 0.5–0.01(MP − 25) − logP (3) 

where logS is the predicted solubility in log(mol/L), MP is the 
melting point in Celsius (◦C) and logP is the lipophilicity of compounds 
in log units.

For this study, logP values were predicted using our previously 
developed model [27] (which was trained on a dataset of n = 233 
compounds). Melting points were predicted using a Transformer CNN 
model, initially trained on a 275 k dataset [54] and extended to include 
melting point data for a subset of 55 Pt complexes.

The Transformer CNN method used in this study calculated RMSE =
33 ◦C for the training set, which was within the same accuracy as the 
consensus model used in the original study. [54] However, for the subset 
of Pt-complexes, a much higher RMSE = 49 ◦C was obtained. It is known 
that Pt complexes can decompose before melting, which could 
contribute to the low accuracy of the model for these chemicals.

An attempt to directly predict logS applying the Yalkowsky equation 
with the predicted MP and logP values resulted in an RMSE = 1.6. 
However, we redeveloped the model using linear regression with the 
same properties. The linear regression model had an RMSE = 0.98. 
Notably, the melting point did not contribute to the regression model 
and was excluded from the final equation. This potentially was due to 
the low accuracy of the melting point model. At the same time our 
analysis validated the significant correlation between logP and logS, 
highlighting the predominant influence of logP over melting point in 
determining the solubility of platinum complexes.

3.7. Development of interpretable model based on lipophilicity and EFGs

In addition to being instrumental for the identification of molecular 
features associated with low- or high-soluble compounds, the EFGs 
contributed to one of the best individual models for the test set in the 
time-split validation study for RF (Table 1). The advantage of using EFGs 
is that models based on such descriptors are inherently interpretable due 
to the clear chemical rationale behind the descriptors: presence or 
absence of specific functional groups.

For the time-split validation a linear model based on EFGs calculated 
an RMSE of 1.05 ± 0.05 and 1.2 ± 0.1 for training and test sets, 
respectively, and had an overall RMSE of 0.97 ± 0.04 for the combined 

Fig. 5. Cis-dichloridobis(trimethylphosphine)platinum(II) compound (“DiPMe3”, as shown in Fig. 3) and its nearest neighbors in the training set.
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set. Note two large compounds were excluded (Fig. S2), as they were 
large outliers for the regression model and 3D conversion of these 
compounds failed due to their size. In addition to EFGs we also used 
predicted logP [27] as a descriptor which significantly improved the 
model, yielding RMSE of 0.89 ± 0.04 and 1.03 ± 0.08 for training and 
test sets respectively, and 0.83 ± 0.03 for the combined set, respectively. 
The functional groups with regression coefficients selected by the model 
for the combined set are listed in Table 2.

Positive coefficients indicate that the appearance of the respective 
functional group increases solubility, while groups with negative co-
efficients decrease it. For example, functional groups with positive co-
efficients, such as cations or hydroxy compounds, or esters typically 
increase solubility due to their ability to engage in hydrogen bonding or 
ion-dipole interactions with water molecules, which enhances aqueous 
compatibility. In contrast, groups with negative coefficients, such as 
halogens decrease it.

Interestingly, the regression equation includes three separate terms 
for halogen effects, which allow for a nuanced “fine-tuning” of their 
contributions depending on the specific functional group and molecular 
environment. In general, the presence of halogens is associated with 
decreasing solubility. This is confirmed by their overrepresentation 
among insoluble compounds in Fig. 7 and their negative coefficient in 
Table 2. However, their effect varies depending on the types of atoms to 
which they are bonded within the molecule– the molecular context. 
Hence, Table 2 includes two additional terms: ‘Aryl halides,’ which have 
a large negative coefficient, and another for ‘halogen derivatives 
including (alkyl, alkenyl, aryl)’ which contribute positively to solubility. 
These distinctions arise due to the overlapping effects among the func-
tional groups (cross-dependencies), and the linear model attempts to 
partition their contributions across multiple coefficients or terms. This 
analysis highlights the complexity of developing and interpreting even 
linear models when using seemingly interpretable groups.

3.8. Limitations of models: Accounting for geometric isomerism and 
stereochemistry

Diastereomers lacking explicit chiral centers annotations would be 
challenging for 2D descriptors to distinguish, as they are chemically 
identical but have different spatial arrangements. For example [erythro- 
1,2-diamino-1-(4-fluorophenyl)propan-1-ol]dichloridoplatinum(II) and 
[threo-1,2-diamino-1-(4-fluorophenyl)propan-1-ol]dichloridoplatinum 
(II) have measured solubilities of − 3.22 and − 3.99 log(mol/L), 
respectively. [75] However, both compounds were predicted to have a 
solubility of − 3.66 log(mol/L), which could be attributed to the absence 
of explicit chiral centers annotation in the source paper. The model is 
also unable to distinguish cis/trans configurations. E.g., for cis/trans 
forms of {[2-(ethylsulfanyl)acetyl]oxy}platino2-(ethylsulfanyl)acetate 
[76] which had measured solubilities of − 1.50 and − 2.94 log(mol/L), 
respectively. The model predicted a value of − 1.95 log(mol/L) for each 
of them. This limitation of the current method should be addressed in 
the future with the inclusion of 3D descriptors, following the correct 
prediction of molecular crystal structures.

3.9. Model for simultaneous prediction of solubility and lipophilicity

Given the correlation between logP and water solubility, we decided 
to develop a multitask model to predict them simultaneously. The RF 
implementation available in OCHEM does not support the simultaneous 
development of models for several properties. Therefore we used the 
ASNN as well as Transformer CNN, which inherently support multitask 
learning. The combined dataset included 233 logP values from the 
previous study [27] as well as solubility values from this study (n =
392). The consensus model developed using the same 2D descriptor sets 
had an RMSE = 0.62 for solubility and an RMSE = 0.44 for logP (which 
was similar to RMSE = 0.40 reported for logP elsewhere [27]). 

Fig. 6. Di-iodido bis(imidazole) derivative (“DiI-ImH”, as shown in Fig. 3), the second largest outlying compound, and its two nearest analogues in the training set.
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Considering that the multitask model was trained to fit two properties 
simultaneously and leveraged a larger dataset size (625 compounds), 
this multitask model is therefore more robust and is recommended to 
predict solubility and lipophilicity of Pt complexes. Indeed, this multi-
task model provided improved predictions for compounds with Pt–I 
bonds, an RMSE = 0.8 compared to an RMSE = 1.3 obtained with the 
model based on logS data alone.

3.10. Applicability domain

The applicability domains (AD) of the consensus models were based 
on standard deviation of the individual models. [78]. The AD was 
defined as standard deviation covering 95 % of data in the training set. 
Each prediction of the models is accompanied by confidence intervals. 
The AD can signal to the users that predictions are not reliable. Of 
course, chemical space is huge and such a situation can easily arise when 
analyzing new data. For example, application of a multitask model to 
logP data of n = 9 alizarin derivatives [77] indicated that all predictions 
were outside of the AD of the model (Fig. 8). RMSE = 1.2 was calculated 
for logP prediction. However, despite the RMSE being high, the model 
correctly captured trends within this series and a Pearson correlation 
coefficient R2 = 0.7 between predicted and experimental values was 
calculated.

3.11. Extension of models with new data

OCHEM allows users to extend the training set with new data and 
recalculate models. The individual steps involved, including the upload 
of new data, correction of the representation and the redevelopment of 
models, are described in the Supplementary Materials. For the previ-
ously mentioned dataset of alizarin derivatives [77] the redevelopment 
of the consensus model after incorporation of these compounds led to 
the RMSE being reduced to 0.31. Therefore, after retraining the model 
could accurately predict compounds from this new series. Users are 
strongly advised to consider predictions within the AD of models, check 
the predicted and experimental values and extend the model with new 
data, if required.

3.12. Standardized representation of Pt complexes for accurate model 
predictions

The correct use of the developed model requires that the platinum 
complexes collected by the user are represented consistently with the 
representation methodology used for model development.

Coordination bonds to the Pt center should be explicitly depicted (see 
Fig. 9 and Fig. S3, S4, S5). Notably, depicting single bonds instead of 
coordination bonds provided very similar results for the consensus 
model predictions since the coordination bond is used mainly for 
Transformer CNN. This similarity in results arises because, for most 
descriptor calculation programs, coordination bonds are internally 

Fig. 7. Overrepresented EFGs between lower and higher soluble complexes. Positive and negative p-values indicate that the group is overrepresented in the set of 
lower or highly soluble compounds, respectively.
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converted to single bonds thus making both these representations 
equivalent. Exceptions would be the fragmentor ISIDA and QNPR.

For ionic complexes, the counterions (second coordination sphere) 
must be explicitly included to ensure charge neutrality. The charge 
within the complex ion (first coordination sphere) should be attributed 
to the platinum atom itself (see Fig. 9a,b).

Furthermore, representing Pt complexes in an ionized form with a set 
of separate ligands not bonded or coordinated to the Pt center, rather 
than depicting explicit coordination or single bonds (Fig. S4) will result 
in incorrect predictions. The users of the model must adhere to the same 
representation scheme used in this study to ensure correct solubility 
predictions.

We note that, in particular with transition metal complexes, many 
representations and interpretations of the chemical bonds are possible, 
each with its own advantages and limitations. The chemical interpre-
tation of Pt–N bonds as depicted in Fig. 9a focuses on the bond disso-
ciation limit. Formally, the platinum atom is seen with a charge +2, 
whereas, e.g., the 3,5-dimethyl pyridine is neutral. In other words, a 
vacant d orbital from the Pt center will accept a nitrogen’s lone pair, as 
depicted in Fig. 9c. Though useful for rationalizing reactivity, this 

representation is in disagreement with quantum mechanical calcula-
tions. We performed a Density Functional Theory benchmark on a 
similar complex, and the calculations reveal a charge on platinum far 
from the formal value of +2 (Fig. 9d). It is also noteworthy that the 
chlorine’s partial charge differs quite significantly from the formal value 
of − 1. Further, it is seen in Fig. 9d that, although Cl is involved in a 
single bond (Mayer Valence = 0.94), the Pt atom has an unconventional 
pattern between 3 and 4 bonds. This shows that any classical interpre-
tation of bonds is limited and cannot cover all chemical aspects of the 
molecule. As long as the representation models are consistent and sys-
tematic, the resulting model should not be limited by any specific rep-
resentation. To make matters more complicated, the quantum 
mechanical analysis of molecules is not restricted to a single method-
ology. Though still used in applied computational chemistry, Mulliken 
and Mayer population analyses are deprecated by the theoretical 
chemistry community, e.g., to Hirschfeld analysis. The purpose of this 
evaluation was, however, to illustrate that many bond descriptors are 
possible, and that they will most likely disagree with one another, even if 
only slightly. Translating these insights to our ML applications, this il-
lustrates that it is not possible to obtain a unique bond descriptor with 
which to train ML models. The most important consideration is that the 
cheminformatics representation of atoms and bonds is consistent, as this 
is the information that the model learns.

Predictions of water solubility and lipophilicity of Pt-complexes are 
certainly not sufficient to explain the biological activity of compounds. 
Understanding what the body does to the drug (pharmacokinetics) is 
also extremely important. To a large degree, the bioavailability of a drug 
is dependent on its solubility, lipophilicity, and ability to cross mem-
branes, bind to plasma proteins, etc., which are part of the ADMET pa-
rameters widely used in drug development. [1,2,5] Naturally, it should 
be even more important to consider the real milieu and to determine the 
concentration of the drug at the site of action. For example, the mea-
surement of solubility in serum (or artificial complex environments 
simulating serum) could provide better, more physiologically relevant 
estimates of the bioavailability of compounds. However, this is almost 
impossible, especially in the early stages of drug discovery, where very 
large numbers of compounds are screened. Such measurements could 
only be made for a small, self-consistent study on a limited number of 
samples. Therefore, simpler and more standardized pharmacologically 
relevant physicochemical properties, such as water solubility and lip-
ophilicity, are widely used by pharma companies as approximations of 
drug bioavailability.

4. Conclusions

The primary aim of this study is to evaluate the current state-of-the- 
art algorithms in accurately predicting the solubility of platinum com-
plexes. In this respect, we collected the largest database of Pt-complex 
solubilities to this date (Nov. 2024). The database was further 
augmented by solubility values (n = 18) which are reported publicly for 
the first time in this study (Table S1).

In order to ensure the use of the best informative features for our 
predictive task, we initially analyzed the performance of RF and 
Transformer CNN models. Training RF models using a wide range of 2D 
and 3D descriptors, we found that the spatial information generated by 
the 3D descriptors did not provide significant improvement to the RMSE 
values. In addition, generating 3D structures failed for few large com-
pounds, therefore we decided to use only the best performing 2D de-
scriptors to develop our consensus model.

Further analyses highlighted the comparative effectiveness of clas-
sical (RF) and modern (Transformer CNN) ML models in solubility 
prediction of Pt complexes. Consensus models that leveraged the 
strengths of descriptor- and learning-representation-based highlighted 
the potential benefits of incorporating diverse methods to enhance 
model performance and generalizability in solubility prediction tasks. 
We have developed three different models, of increasing complexity and 

Table 2 
Linear regression model based on EFG to predict water solubility of Pt- 
compounds. The model distinguishes between high specificity (HS) and low 
specificity (LS) patterns. HS patterns only match compounds containing the 
exact heterocyclic moiety, such as pyrrole (N), furan (O), and thiophene (S) 
rings. In contrast, LS patterns provide a broader classification, generalizing 
these groups to include any “aromatic” atom except carbon.

Functional group/term OCHEM representative 
image

Regression 
coefficient

constant term − 2.664
predicted logP using model from ref. [27] - 0.3514
Increasing solubility

Cations +0.4066

Hydroxy compounds: alcohols 
or phenols

+0.268

Ethers +0.3705

Halogen derivatives (alkyl, 
alkenyl, aryl)

+0.1932

Five-membered heterocycles 
with three heteroatoms (LS)

+0.3765

Six-membered heterocycles with 
three heteroatoms (LS)

+0.1706

Decreasing solubility
Halogens − 0.1239

Five-membered heterocycles 
(LS)

− 0.4321

Aryl halides − 0.4001
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number of data points: (1) a model developed using temporally split 
dataset (training set = 284, test set = 108), (2) a model developed using 
a combined dataset (n = 392), and (3) a multitask model which simul-
taneously predicted solubility and lipophilicity of Pt complexes as two 
endpoints (n = 625). Interestingly all three models had the same RMSE 

= 0.62 log(mol/L). Given the fact that the multitask model developed 
using the largest number of experimental data, it should exhibit the 
highest robustness and is recommended for practical applications. 
Notably, this study presents the first publicly available model for pre-
dicting the solubility of Pt complexes, providing a valuable tool for the 

Fig. 8. The application of the multitask consensus model to alizarin derivatives [77]. The model reports that the analyzed compounds are outside of its applicability 
domain and thus its predictions of their properties are unreliable.

Fig. 9. Representation of (ionic) complexes used for model development. Dotted lines are coordination N–Pt bonds. a-b) Examples of cationic complexes. c) 
Schematic representation of the bonding in a Pt complex with a pyridine ligand. A metal’s vacant d orbital receives two electrons from the nitrogen’s lone pair. d) 
Calculated chemical descriptors for the Pt complex. On top of each atom, the Mulliken partial charge is reported, evidencing the deviations with respect to the 
expected formal charges. Mayer bond orders and valences are also given. The method and software used for the Density Functional Calculations are detailed in the 
supplementary material (see S6: Density Functional Calculations).
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scientific community, and addressing the existing gap in research in this 
area.

The outlier analysis with respect to the chemical space converge 
analysis revealed that the underrepresentation of certain structural 
features in the training set was the primary cause of high-prediction 
errors in both the 5CV sets and the test set. This finding was empha-
sized by the accurate predictions of the previously-seen outliers in the 
test set when the model was trained on the combined dataset and further 
on an expanded training set with the multitask model. This confirms that 
integrating a more diverse array of molecules does indeed enhance the 
accuracy and generalizability of predictive tasks of machine learning 
models within drug discovery. Given the fact that the research into 
platinum complexes is still actively ongoing, with scientists exploring 
new chemical classes or optimizing the existing ones, our model’s pre-
dictive power is expected to improve with further expansion and 
diversification of available datasets.

Analysis of the chemical features associated with lower solubility of 
platinum complexes outlined that the presence of aromatics, halogens 
or, in particular, five-membered heterocycles, unsaturated six- 
membered heterocycles with heteroatoms, aryl halides and nonmetals 
(Table 2 and Fig. 7) can decrease the solubility of Pt-complexes. 
Achieving optimal solubility without compromising lipophilicity and, 
consequently, therapeutic efficacy requires a careful selection of ligands 
and counterions that can enhance water interactions while maintaining 
the desired biological activity. In this regard, the interpretable EFG- 
based linear model presented in this study offers valuable insights for 
future structural feature selection or modification strategies aiming at 
improving the pharmacokinetic properties of platinum complexes.
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