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Abdominal adipose tissue (AT) amounts are increasingly considered as potential biomarkers for a 
variety of diseases and clinical questions, for instance, in diabetology, oncology or cardiovascular 
medicine. Despite the emergence of automated deep-learning methods for tissue quantification, 
interactive (supervised) segmentation tools will typically be used for model training. In comparison 
with CT-based approaches, MRI segmentation tools are more complex and less common. This work 
aims to validate a novel MRI-based tissue volumetry against a reference method in patients with 
(pre-) obesity. The new tool (segfatMR) was developed under a Matlab-based, open-source software 
framework and combines fast automatic pre-segmentation followed by manual (expert) corrections 
where needed. Analyses were performed retrospectively on a subset of clinical research MRI datasets 
(1.5 T Achieva XR, Philips Healthcare) and involved the segmentation of datasets from 20 patients (10 
women/men) aged 25.1–63.1 (mean 48.5) years with BMIs between 28.3 and 58.8 (mean 36.8) kg/m2. 
Two independent expert readers analyzed the abdominopelvic data (30–40 slices, mean 35.8) with 
segfatMR and a widely used commercial tool (sliceOmatic). Coefficients of determination (R2), bias 
and limits of agreement (Bland Altman) were determined. Segmentation performance (R2 between 
methods) was excellent for both readers for SAT (> 0.99) and very high for VAT (around 0.90). The novel 
method was almost twice as fast as the reference standard – 25 and 19 s/slice (R1 and R2) vs. 40 and 
34 s/slice. The presented semiautomatic segmentation tool enables a fast and accurate quantification 
of whole abdominopelvic adipose tissue volume in obesity studies. Use, adjustments and extensions of 
the MRI volumetry tool are facilitated by the open-source design on a standard PC.
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Within a few decades only, obesity has become an epidemic with a rising prevalence in both adults and children1. 
The major side effects are a higher risk for metabolic syndrome, cardiovascular diseases, type-2-diabetes2,3, 
musculoskeletal4,5 and psychological disorders6 as well as cancer. The overall costs for treatment also pose a 
substantial socioeconomic burden7.

Excess weight in itself, however, is not necessarily the key factor for the development of the above diseases. 
Overweight may be subdivided into more and less ‘healthy’ forms in a metabolic context. Not all patients with 
overweight will present with a metabolic syndrome, the triad of insulin resistance, dyslipidemia and arterial 
hypertension8. Adipose tissue (AT) accumulation predominantly occurs in two compartments, the subcutaneous 
(SAT) and the visceral (VAT) one. SAT is located between the skin and superficial muscles while VAT is found 
between the abdominal organs. This distinction is of clinical relevance because an excessive VAT amount (relative 
to total AT volume, TAT) constitutes the metabolically relevant (‘unhealthy’) type of overweight because of its 
significant association with the metabolic syndrome8.
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There are different ways to analyze body composition and adipose tissue amounts, such as bioelectrical 
impedance analysis (BIA), dual-energy X-ray absorptiometry (DEXA), computed tomography (CT) and 
magnetic resonance imaging (MRI)9. Among them, CT and MRI provide true three-dimensional (3D) 
information and allow for proper segmentation and distinction between all fat compartments. While CT is the 
more common method for diagnostic imaging, MRI does not expose the body to ionizing radiation.

Tissue segmentation in radiological images will eventually rely on fast and fully automated methods with 
minimal user interaction10. Their development, however, will likely involve an interactive segmentation tool 
with reviewing and editing options. Over the years, a variety of software tools have been deliberately used for 
the segmentation of adipose tissue, among them sliceOmatic (Tomovision, Magog, QC, Canada), Osirix11, 
CoreSlicer12, ITK-SNAP13, MIPAV14, 3D Slicer15 or ImageJ16. Each of them has specific advantages (widely used, 
flexible or open source) and disadvantages (inter-reader variability, proprietary format or costs). Especially for 
large cohort studies fully automated approaches based on machine learning are established17,18 and commercial 
solutions exist19.

Despite an obligation to buy, Matlab (Mathworks, Natick, MA, USA) is popular in scientific research, has 
a large developer community and provides a runtime environment for the (free) distribution of applications.

Recently, an open-source Matlab framework, DicomFlex20, has been proposed that aims to facilitate the 
development and extension of common processing tools for medical images. It was designed as a compact, 
easy-to-use, stand-alone solution for (smaller) research sites, where the task of segmentation is not necessarily 
performed by the most experienced users.

The aim of this work was therefore to develop and validate a semiautomatic tool for multi-slice MRI 
segmentation of SAT and VAT amounts under that framework (DicomFlex) using MRI data from study patients 
with obesity. Our hypothesis was that such a tool is as accurate as an established reference method but – 
considering the long times for volumetric fat segmentation – substantially faster.

Materials and methods
Study population
The retrospective study was carried out within the Integrated Research and Treatment Center AdiosityDiseases 
of Leipzig University Medicine, Leipzig, Germany, and analysis was approved by the Institutional Review Board 
(IRB) of the corresponding Faculty of Medicine (reference numbers 283/11-ff, 284/10-ff). Informed consent was 
obtained from all participants. All methods were carried out in accordance with the Decalaration of Helsinki. 20 
patients (25–63 years old) with an average BMI of 36,8 kg/m2 (range: 28,3–58,8) were included. Subcutaneous 
adipose tissue (SAT) and visceral adipose tissue (VAT) were segmented on axial MRI slices acquired between 
pelvic floor and diaphragm. In general data was anonymized during the underlying clinical trial. Two radiologist 
checked MR scans for incidental findings. The readers had access to imaging data, gender and BMI during the 
initial segmentation on a per-day basis in the 7–10 days after the MRI scan.

Magnetic resonance imaging
All subjects were examined in supine position in a 1.5T MRI system (Achieva XR, Philips Healthcare, Best, 
Netherlands). In-phase and opposed-phase images were acquired with a 2D double-echo (TE1: 2.3 ms, TE2: 4.6 
ms) spoiled gradient-echo sequence using the integrated quadrature body coil as receive coil. Other sequence 
parameters were repetition time = 112 ms, flip angle = 70°, slice thickness = 10.0 mm, interslice gap = 0.5 mm, 5 
slices per breath-hold, field of view = 530 mm × 530 mm, acquisition matrix size = 216 × 177 and reconstruction 
matrix size = 480 × 480. Data were acquired in two contiguous stacks aiming to include the whole abdomen 
between pelvic floor and diaphragm. A breath-hold technique was used to reduce motion artefacts and total 
acquisition time was 10 × 13 s plus breathing interval times.

Image analysis
MRI data were analyzed on a standard PC equipped with a quad-core CPU (Intel Core i7-3770, 3.4 GHz) and 
16 GB RAM running 64-bit Windows. The semiautomatic SAT/VAT segmentation was designed under the 
Dicomflex framework20 using Matlab version 9.1 and related toolboxes.

The segfatMR application was realized under a new Dicomflex cComputeapp class (cCompute_segfatMR), 
which includes app-specific properties and quantification methods based on in-phase MR images (available in 
standard Dicom format). The automatic part of the segmentation method (mAutoSegment) generates a refined 
outer (blue) and inner subcutaneous boundary (yellow) and a crude visceral envelope (red), as shown in Fig. 1. 
Processing details are given in Fig. 2. The last step saves the boundary results as a boundary object, which is a 
property of the cCompute_segfatMR class. The software is part of the existing software framework that is freely 
accessible in a public repository as a compiled and packaged MATLAB application. More details on the algorithm 
and a corresponding documentation are provided on GitHub under https://github.com/Stangeroll/Dicomflex2).

Two independent and experienced users segmented the SAT and VAT amounts using the new (segfatMR) as 
well as the reference method (sliceOmatic). Times were recorded between the start of the respective application 
and the final save operation of the segmentation results. In short, segfatMR processing consisted of selecting and 
loading the images, setting two landmarks (diaphragm, pelvic floor), automatic segmentation and final manual 
adjustments of the SAT/VAT contours and VAT thresholds where needed. For sliceOmatic, SAT and VAT image 
regions were independently defined by a region growing algorithm and then refined by a number of standard 
editing functions (tag colour, delete, lock and surface/volume).
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Statistical analysis
Linear regressions were performed between applications and between readers and results are reported as 
coefficients of determination R2, the square of Pearson correlation coefficient r (Figs.  3, 4 and 5; Table  1). 
Analyses were performed with SPSS (Version 27, IBM Inc., Armonk, NY, USA). Bland-Altman (BA) analyses 
are even more appropriate and give the bias and level of confidence for all comparisons. Processing times are 
shown in boxplot format for both readers and both methods (Fig. 7). Statistical differences were tested at an 
error level of 0.05.

Results
Figures 3, 4, 5 and 6 show the regression lines over the data points (SAT and VAT volumes) for all patients with 
the corresponding BA plots and for all comparisons between methods and readers. Plots are annotated with 
coefficients of determination R2 (adjusted values reported by SPSS) and standard deviations σBA of the respective 
differences.

Agreement of abdominopelvic SAT volumes between methods (Fig. 3) is excellent (R2 > 0.99 for both readers 
R1 and R2) with σBA values of 0.49 L (R1) and 0.36 L (R2). Figure 4 shows the corresponding data for VAT with 
lower R2 (around 0.90) and higher σBA values (0.63/0.53 L). Figure 5 shows the interreader agreement of adipose 
tissue segmentation which is very high for SAT and for both methods (R2 > 0.99, σBA = 0.44/0.26 L). Figure 6 
shows the interreader plots for total VAT volumes. Despite being lower than for SAT, R2 values are still high 
(> 0.88) with a notably higher interreader agreement for the new method (R2: 0.954 vs. 0.883; σBA: 0.42 L vs. 
0.63 L), which is also visually apparent. All BA bias values were not significant but between methods for SAT 
segmentation by R1. Table 1 summarizes the numerical results for all linear regression and BA analyses (between 
methods and readers).

Fig. 1.  Graphical user interface of stand-alone tool (segfatMR) for multi-slice segmentation of SAT and VAT 
amounts. After automatic segmentation, the user has the opportunity to review and graphically adjust the 
boundaries after selecting them by key press (1–3 for outer SAT, inner SAT and VAT, respectively). Unlike 
the SAT boundary, the VAT boundary is a crude one and fat quantification uses a histogram-based threshold 
(green dashed vertical line) to separate signal intensities from fat or lean tissues (resulting VAT areas overlaid 
in green). The interactive table summarizes all results and allows the user to link slices to positions of vertebral 
bodies (column VB) or landmarks (LM), such as pelvic floor (PF) or femoral heads (FH).
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Fig. 2.  Main processing steps for computation of refined outer SAT (a-d, left column), refined inner SAT (e-h, 
middle column) and crude (envelope) VAT boundaries (i-l, right column). (a) adaptive threshold mask of MR 
image using adaptthresh (Matlab function) with filter size 19 × 19. (b) binarized MR image using imbinarize 
and mask from a. Resulting white areas primarily reflect adipose tissue but artefacts are present as well, 
most notably, at the bottom of the image. (c) largest connected white-pixel region from b determined using 
regionprops is considered as SAT. Further criteria were implemented for consistency, for example, the ratio 
of the principal diameters of considered regions. (d) resulting outer (yellow) SAT contour computed using 
bwboundaries on filled mask (not shown here) and overlaid on original MR image. (e) adaptive threshold mask 
with 17 × 17 filter used for binarization and (f) resulting binary mask (inverted). (g) largest connected region of 
mask f after multiplication with filled mask for outer SAT contour. (h) resulting inner (blue) SAT contour. (i) 
filled mask for inner SAT contour after evaluation of different threshold masks and quantitative criteria (region 
size and eccentricity). (j) eroded mask from i and (k) resulting envelope (red) boundary for VAT. (l) MR image 
annotated with all boundaries.
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Fig. 4.  Linear regression results (a,b) and Bland-Altman plots (c,d) of total VAT volumes (20 patients) 
segmented with new (segfatMR) and reference method (sliceOmatic) for two independent readers (R1:a,c and 
R2;b,d).

 

Fig. 3.   Linear regression results (a,b) and Bland-Altman plots (c,d) of abdominopelvic SAT volumes (20 
patients) segmented with new (segfatMR) and reference method (sliceOmatic) for two independent readers 
(R1: a, c and R2;b,d).
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Whole abdominal coverage involved 38.2 ± 3.2 (29–46) slices. Figure  7 shows boxplots of the effective 
processing times per slice for both methods and readers. There is a highly significant (p < 0.001) and, more 
importantly, notable reduction in processing time for both readers (R1: from 40 to 25 s, R2: from 34 to 19 s) with 
the new method (segfatMR) which translates to a time saving on the order of 10 min for the segmentation of all 
abdominal slices here. The lowest median time for abdominal fat segmentation was 11.4 min (R2).

Discussion
Efforts to quantify adipose tissue amounts by imaging have focused on the identification of surrogate measures 
or landmark slices mainly because interactive processing of all abdominopelvic slices (typically between 
diaphragm and pubic symphysis) is laborious. The segfatMR tool may facilitate analyses or actually enable them. 
Despite a substantial reduction in analysis time, agreement with the reference and between readers was high. 
Reader interaction was limited to visual inspection of the computed AT contours (corrected by simply drawing 
new segments where needed) and of the overlaid VAT amounts (corrected by adjusting the threshold for 
tissue assignment). Commercial tools usually provide a larger range of options, but segmentation may involve 
annotations across the entire slice and a choice of specific display and processing functions.

Tissue Reader Eq. between methods R2
adj σBA [L] ΔBA [L] P (∆BA)

SAT
R1 Vnew = 0.939 ∙ Vref + 0.670 L 0.998 0.49 -0.29  < 0.05 *

R2 Vnew = 0.972 ∙ Vref + 0.331 L 0.998 0.36 -0.11 0.206

VAT
R1 Vnew = 0.826 ∙ Vref + 0.746 L 0.889 0.63 -0.22 0.134

R2 Vnew = 0.977 ∙ Vref + 0.074 L 0.913 0.53 -0.05 0.656

Tissue Method Eq. between readers R2
adj σBA [L] ΔBA [L] P (σBA)

SAT
ref VR2 = 0.977 ∙ VR1 + 0.176 L 0.996 0.44 -0.19 0.072

new VR2 = 1.013 ∙ VR1 – 0.199 L 0.998 0.26 0.00 0.958

VAT
ref VR2 = 0.908 ∙ VR1 + 0.541 L 0.883 0.63 0.03 0.836

new VR2 = 1.100 ∙ VR1 – 0.336 L 0.954 0.42 0.20 0.051

Table 1.  Summary of linear regression and Bland–Altman analyses. ref/new: reference/new method 
(sliceOmatic/segfatMR); R2

adj. adjusted R square. σBA/ΔBA/P (ΔBA): standard deviation/mean (bias) of volume 
differences [L], P value for bias.

 

Fig. 5.   Linear regression results (a,b) and Bland-Altman plots (c,d) of abdominopelvic SAT volumes (20 
patients) segmented by two readers (R1 and R2) for two methods (ref: a,c and new b,d).
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Despite some additional efforts and time, a supervised approach will also work with highly variable anatomical 
distribution patterns and body shapes. Imaging artefacts from breathing or organ motion, among others, can 
be reliably identified and corrected for. Another aspect is the detection of incidental findings. Moreover, the 
segfatMR tool and other Dicomflex applications may be easily modified or extended.

Fig. 7.   Boxplot of effective processing times (in seconds) per slice for fat segmentation with the new (fatSeg) 
and the reference method (sliceOmatic) and both readers (R1 and R2). Boxes mark quartiles Q1-Q3 and 
whiskers minimum and maximum times.

 

Fig. 6.  Linear regression results (a,b) and Bland-Altman plots (c,d) of total VAT volumes (20 patients) 
segmented by two readers (R1 and R2) for two methods (ref:a,c and new b,d).
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MRI examinations are more complex and less common than CT scans, take longer and have special 
contraindications for patients with devices or implants. The confined geometry of an MRI system poses a 
challenge for patients with claustrophobia or overweight. AT segmentation requires adequate training in the 
reading of MR images. MRI signal intensities may also vary across the field of view for technical reasons like 
magnetic field inhomogeneities. This work has a number of limitations. Patients were selected from a bariatric 
cohort with higher VAT amounts which are easier to distinguish from surrounding structures like bowel, 
pancreas or urinary bladder. This bias might also explain the low inter-rater variability. A second limitation 
is the reference standard, which only relies on the assessment of two readers. The third limitation is the use of 
specific input data, in-phase images of a two-point Dixon sequence, which has been agreed upon in the original 
clinical study protocol.

Segmentation of SAT is less demanding, both visually (reader) as well as technically (algorithm). Patients with 
lipodystrophy are an exception but our experience is limited here. The tool also computes a histogram threshold 
for each slice that distinguishes fat from lean tissue and can be adjusted manually (slider). This threshold applies 
to tissues within the entire VAT contour and may therefore require a threshold adjustment (towards higher 
values) that deliberately excludes minor (true) VAT amounts to make up for falsely included fat amounts in 
non-VAT regions, typically a pronounced fatty contamination in the bowels. In contrast, sliceOmatic allows 
for a dedicated, but also more time-consuming, focal editing of VAT amounts. Despite two slightly different 
approaches, our analysis revealed no significant bias between the respective VAT volumes. So far, our analysis 
has relied on MRI data from a two-point Dixon sequence, which is typically not part of the routine protocol. One 
of the main reasons for implementation under a dedicated software framework (DicomFlex), however, was the 
ability to flexibly adjust to different input data (standard T1-weighted sequence). In terms of time investment, 
the presented semiautomatic fat segmentation lies between traditional, essentially manual (interactive) and fully 
automatic approaches.

Segmentation tasks will likely benefit from the ongoing progress in deep learning (DL) techniques. While 
analysis times for whole-abdominal datasets are expected to be much shorter, DL tools are not widely available 
and might be less accurate for cases further away from the datasets used for their training. Large, carefully 
annotated datasets – and powerful CPU or GPU engines – are required to reach the accuracy level of human 
experts. The question to what extent DL image processing may generate artifacts or obscure actual features – also 
depending on the training datasets – is currently not fully answered.

Research on automatic segmentation was proposed early21, even for obese patients17. There is preliminary 
evidence that therapy-induced weight loss can also be quantified in an automated manner22, but smaller changes 
in volumes of adipose tissue and organs very likely require a direct manual inspection of the images.

As more advanced multi-echo Dixon techniques become routinely available, proton density fat fraction 
(PDFF) data might be more reliable for the design of DL-based adipose tissue segmentation. Such an approach 
has recently been used for whole-body (neck-to-knee) MRI measurements in 20 volunteers. A combination 
of segmentation techniques for different tissues might pave the way for a comprehensive and rapid analysis of 
the body composition. Until then, semiautomatic tools like the one presented will still be indispensable (a) to 
obtain highly accurate results in a reasonable amount of time, (b) to provide training data for deep-learning 
approaches or (c) in cases where visual inspection by a radiologist is required by the study protocol (e.g., to check 
for incidental findings).

The tool is significantly faster and less laborious than common manual methods like the commercial reference 
used here (sliceOmatic). With an average processing time over an entire abdominopelvic dataset of around 20 s 
per slice on current standard hardware, it appears to be suitable for small to moderately sized quantification tasks 
aiming at narrower limits of agreement than simple single-slice estimates.

In conclusion, we have presented and validated a semiautomatic software tool (segfatMR) for the segmentation 
of different abdominal adipose tissue amounts between diaphragm and pelvic floor. The software is easy to 
use, requires basic anatomical knowledge only and may generate the training datasets required for automated 
segmentation approaches. Hardware requirements are relatively low and no prior information or validation is 
needed for particular cohorts or questions. Further code adaptation and application deployment are facilitated 
by our open-source design.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to local data 
safety restrictions but are available from the corresponding author on reasonable request.
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