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Scientific machine learning is a new class of ap-

proaches that integrate physical knowledge and

mechanistic models with data-driven techniques to

uncover the governing equations of complex pro-

cesses. Among the available approaches, universal

differential equations (UDEs) combine prior knowl-

edge in the form of mechanistic formulations with

universal function approximators, such as neural

networks. Integral to the efficacy of UDEs is the joint

estimation of parameters for both the mechanistic for-

mulations and the universal function approximators

using empirical data. However, the robustness and

applicability of these resultant models hinge upon

the rigorous quantification of uncertainties associated

with their parameters and predictive capabilities. In

this work, we provide a formalization of uncertainty

quantification (UQ) for UDEs and investigate key

frequentist and Bayesian methods. By analyzing three

synthetic examples of varying complexity, we evaluate

the validity and efficiency of ensembles, variational

inference and Markov-chain Monte Carlo sampling as

epistemic UQ methods for UDEs.

This article is part of the theme issue ‘Uncertainty

quantification for healthcare and biological systems

(Part 2)’.
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1. Introduction
Two primary paradigms govern the modelling of dynamical systems: (i) Mechanistic modelling,

which builds on first principles to derive model structures and informs parameters using data;

and (ii) machine learning (ML)-based modelling, which constructs governing equations directly

from data. Prime examples of ML-based modelling of dynamical systems include composite ar-

tificial neural networks (ANNs) based on simple integrator schemes [1] and Runge–Kutta neural

networks (RKNNs) [2]. This groundbreaking work led to the development of general neural or-

dinary differential equations (NODEs) [3]. Yet, while NODEs allow for uncovering governing

equations of dynamical systems, they do not easily facilitate the integration of prior knowledge.

Scientific machine learning (SciML) unites the paradigms of mechanistic and ML-based mod-

elling [4]. For instance, physics-informed neural networks (PINNs) describe solutions of dynam-

ical systems using customized loss functions that favour predictions in agreement with first-

principles mechanistic models [5]. Universal differential equations (UDEs) model the time deriva-

tive of the state of a system using a combination of terms derived from first principles and flexible

ANNs [6]. In our opinion, UDEs stand out because they allow for the integration of prior knowl-

edge and hard physical constraints (e.g. mass conservation or boundedness) [7], thus facilitating

generalization. Moreover, they provide governing equations that can be further interrogated.

The parameters of both the mechanistic and the neural network components of a UDE are

jointly estimated using data. Interpretation of modelling results hinges on quantifying uncer-

tainties, encompassing mechanistic parameter values and predictions for the entire model or its

components. Uncertainty quantification (UQ) of parameters is crucial because it provides insights

into the reliability and range of potential values, allowing researchers to understand the robust-

ness and credibility of their model’s mechanistic foundations. UQ of the prediction is equally

important, as it offers a measure of the model’s reliability, e.g. for perturbation studies or sce-

nario analysis, aiding decision-making by acknowledging the inherent uncertainty in forecasting

outcomes.

UQ is a highly researched topic for both dynamical mechanistic modelling [8] and machine

learning [9,10]. First-order uncertainty describes the inherent and irreducible stochasticity of the

predictions (aleatoric uncertainty), while second-order uncertainty describes uncertainty orig-

inating from the uncertainty of parameter estimates (which is one component of epistemic

uncertainty—see §2 (c)). By choosing a suitable noise model, the assessment of aleatoric uncer-

tainty is well-defined. Hence, in this work, while reporting results on aleatoric uncertainty, we

focus on estimating epistemic uncertainty.

In supervised machine learning, various methods aim to quantify epistemic uncertainty, and

many of these methods have a resemblance to the field of mechanistic modelling. A fully Bayesian

perspective is realized by Markov-Chain Monte Carlo (MCMC) sampling methods [11] and ap-

proximation methods like Variational Inference [12], yielding parameter distributions instead of

point estimates. Deep ensembles [13] and multi-start ensembles in dynamic modelling [8,14] are

both randomization-based ensemble approaches. Key differences between mechanistic modelling

and machine learning are the number and interpretability of the parameters. Hence, some flavours

of UQ methods are exclusively used in deep learning, like dropout as a Bayesian approximation

[15]. Others are more common in dynamic modelling, like Profile Likelihood (PL) calculation [16]

or asymptotic confidence intervals via the Fisher Information Matrix (FIM) [17].

For some modelling approaches in the field of SciML, like PINNs [18], a thorough investigation

of UQ exists [19]. In contrast to other methods, UDEs embed neural networks directly in the dif-

ferential equations. While this allows the incorporation of arbitrary levels of prior knowledge, it

also yields challenges like over-parametrized differential equations with correlated parameters in

combination with numerically more challenging simulations. To the best of our knowledge, pre-

vious work explored only basic UQ implementations for multi-start-optimization [20] or Bayesian

neural networks [21,22] and only considered fully observed or densely measured state variables.

In this paper, we present several key contributions. Firstly, we introduce a formal definition

of uncertainty tailored to UDEs, aiming to enhance precision and applicability in uncertainty
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assessments within this framework (§2). Secondly, we conduct an in-depth discussion of current

epistemic UQ methods applicable to UDEs (§3). Lastly, we evaluate and compare the performance

of a diverse set of UQ methods by investigating three synthetic examples (§4). Each synthetic

example is implemented using several noise models, yielding eleven data scenarios in total. Syn-

thetically generated data allows us to compare the methods’ results with an underlying ground

truth. Our investigation spans considerations of computing time, estimations of aleatoric and

epistemic uncertainty, parameter and prediction uncertainty, and different noise models, encom-

passing continuous and discrete distributions. Although the groups of UQ methods have been

investigated before [8,23], we find novel insights in the context of UDEs.

2. Formalizing precision: a tailored definition of uncertainty for UDEs
In the following subsections, we first define the general setup of dynamic models, formally in-

troduce UDEs and conclude by presenting different sources of uncertainty and discussing their

relevance for UDEs.

(a) Dynamic models
Let x(t) ∈ ℝnx be a time-dependent variable, denoting the state of a system at time t, that can be

represented using a dynamic model. Dynamic models describe the value of x by parameterizing

the derivative of x(t) and its initial condition x(t0) using a vector field f ∶ ℝ × ℝnx × ℝn� →ℝnx :

dx

dt
= f (t, x, � f ), x(t0) = x0, (2.1)

where � f ∈ℝn� and x0 ∈ℝnx are model parameters and initial conditions, respectively. Often, f is

unknown and an estimate f̂ is used instead. Let �̂ f and x̂0 be the parameters and initial conditions

of f̂ which we estimate based on nt discrete measurements at time points {t1, t2, ..., tnt }.
In many real-life scenarios, the state variables cannot be measured directly. Accordingly,

the prediction of the differential equation model needs to be transformed using an observable

function h to values predicting the measurable observables as:

ŷ(t) = h(x̂(t)) ∈ ℝny with x̂(t) = ∫
t

t0

f̂ (s, x̂(s), �̂ f ) ds + x̂0. (2.2)

Here, x̂(t) is the estimate of x(t) that we get from using f̂ , �̂ f and x̂0. An example for h comes

from infectious disease modelling, where we often observe infections, but, e.g. not the number of

susceptible, exposed or recovered persons.

Furthermore, measurements are subject to noise. Instead of measuring the underlying true

value ȳ(tk) = h(x(tk)) of the observable, we observe the random variable y(tk) ∼ P with P being a

probability distribution. In general, we do not know the underlying distribution of y(tk). Instead,

we fit a parametric distribution, which is called the noise model. There exist different formula-

tions for noise models, with the Gaussian being the most prominent representative. Depending

on the characteristics of the underlying measurements like discreteness, overdispersion or skew-

ness, other noise formulations may be more suitable. In the present work, we will focus on two

commonly used noise models in the context of infectious disease modelling [24,25], the Gaussian

noise model for continuous data and the Negative Binomial noise model for overdispersed and

discrete data:

– Gaussian noise model: Let �(tk) ∼N(0, �2I). Then, we observe y(tk) = ȳ(tk) + �(tk), where

� is the constant standard deviation of the Gaussian distribution.

– Negative Binomial noise model: Let y∈ℝny . The observed variable yi follows a Neg-

ative Binomial distribution with mean ȳi(tk) and dispersion parameter d, i.e. yi(tk) ∼
NegBin(ȳi(tk), d), for all i∈ {1, ..., ny}.
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In both cases, we assume that the i.i.d. assumption holds. Let � = {� f , �np}, where �np is the noise

parameter of the respective noise model and p(y(t)|�) the probability density function with

mean value ŷ(t). Then, the objective of the optimization process is to maximize the likelihood

of observing the data D= {(ti,y(ti)|i= 1, ..., nt} given the parameters �.

(b) Universal differential equations
UDEs combine known mechanistic terms fmech with universal function approximators (in this

work neural networks) fnet to describe the right-hand side of equation (2.1) [6]. For instance,

the neural network can be used to describe the time-varying input of an otherwise purely

mechanistic ordinary differential equation, i.e. for a fixed t we have f̂ (t, x, �) = f̂mech(t, x, � f ), with

� f = (�mech, f̂net(t, �net)). Alternatively, it can describe individual terms of the state derivatives, e.g.

f̂ (t, x, �) = f̂mech(t, x, �mech) + f̂net(t, x, �net). Hence, the formulation of UDEs allows us to incorporate

arbitrary levels of mechanistic knowledge. Here, �net are the weights and biases of the neural

network and �mech are the interpretable parameters of the mechanistic equation. Considering all

parameters, we define � = (�mech, �net, �np) for scenarios in which the initial condition x0 is known.

The parameters are jointly estimated from data.

(c) Sources of uncertainty
In general, we can (at least) formally identify two distinct types of uncertainty: aleatoric and epis-

temic uncertainty [9]. As they can guide the evaluation of model performance and its potential

application to real-life scenarios, precise quantification of these types of uncertainty is essential.

The aleatoric (statistical) uncertainty Var(y(t)) is based on inherent random effects and, hence,

irreducible. By introducing a noise model, we aim to describe the aleatoric uncertainty. Epistemic

(systematic) uncertainty stems from a lack of knowledge and potential model misspecifications.

The bias-variance decomposition of the mean squared prediction error illustrates these different

types of uncertainties [26]:

Ey(t)[ED[(y(t) − ŷ(t))2]] = (ED[ŷ(t)] − ȳ(t))2 + VarD(ŷ(t)) + Var(y(t))

= bias
2 + VarD(ŷ(t)) + Var(y(t)). (2.3)

Hence, epistemic uncertainty can be decomposed further into model bias (ED[ŷ(t)] − ȳ(t)) and

variance VarD(ŷ(t)). As described in the previous section, we generally do not know f and �.

Uncertainty in the estimates �̂ (model estimation) and f̂ (model form) are sources of epistemic un-

certainty. There exist various methods for the estimation of epistemic uncertainty, as discussed in

§3. However, the model bias is often neglected by assuming ED[ŷ(t)] = ȳ(t) and reducing the epis-

temic uncertainty to approximation uncertainty. While we will follow this assumption, we cannot

guarantee a negligible model uncertainty: SciML is typically applied to the low to medium data

regime [27]. Although neural networks are universal approximators, making them asymptotically

unbiased, a bias is typically still observed in the low to medium data regime [28,29].

UDEs are located at the interface of neural networks and mechanistic dynamical modelling.

While regularization is vital for neural networks [30], so is the exhaustive exploration of the pa-

rameter space for mechanistic models where one is interested in a global solution. It is not trivial

to find the right balance between these, which is one of the reasons why parameter uncertainty,

i.e. estimation uncertainty, is of quite some importance for UDEs. Furthermore, the numerical

precision of the ODE solver and data sparsity may influence the quality of parameter estimation.

3. Methodology for epistemic uncertainty quantification of UDEs

(a) General setting
In this study, we will explore epistemic uncertainty arising as a result of parameter uncertainty,

keeping the model form f fixed per problem setting. Bayes’ rule provides a formulation for this
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Figure 1. Overview of the presented uncertainty quantificationmethods. Given an unknown objective function landscape, we
estimate the posterior distribution of the parameters using UDE ensembles, MCMCmethods or Variational Inference. Based on
random draws from the posterior distribution, predictions of the state trajectory are made, yielding lower and upper bounds
for a 99% prediction interval.

uncertainty. The posterior density p(�|D) can be described in terms of the likelihood p(D|�) and

prior p(�):

p(�|D) =
p(D|�)p(�)

∫ p(D|�)p(�)d�
. (3.1)

From this, the posterior predictive distribution is obtained as:

p(y(t)|D) = ∫ p(y(t)|�)p(�|D)d�. (3.2)

The prior distribution for the mechanistic parameters is usually chosen based on knowledge about

the underlying processes. For the neural network parameters the choice of the prior distribution is

less trivial. Commonly, an isotropic Gaussian prior is chosen [31]. Recently, it has been shown that

especially for deep and flexible neural networks, this can cause drawbacks like the cold-posterior

effect [32]. Specifying the correct prior is still a highly investigated research topic, and several

options are discussed as alternatives for isotropic Gaussian priors [33]. One comparatively sim-

ple option is a Gaussian prior with a non-diagonal covariance matrix, allowing for correlation

between different parameters [31].

(b) Uncertainty quantification methods
In the design phase for the work, we considered a broad spectrum of epistemic UQ methods that

are theoretically suitable for dynamical systems such as UDEs. This included UQ methods based

on multistart ensemble, MCMC sampling, Variational Inference, PLs/Posteriors and the FIM. In

light of aspects related to scalability and applicability (e.g. due to identifiability constraints), we

decided to disregard PL/Posterior calculation as well as methods using the FIM. For a detailed

discussion, we refer to appendix A. The UQ methods for this study are illustrated in figure 1, and

a description is provided in the following.
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(i) Ensemble-based uncertainty quantification

To construct an ensemble-based UQ method, we consider combining ideas from deep learning

[13] and mechanistic dynamical modelling [8] to define ensemble members that are customized

to UDEs. After defining a prior distribution, encoding mechanistic knowledge when possible, we

sample m initial values Θinit = {�1

init, ...�
m

init} from it. Then, m UDEs are trained, each starting with

one element of Θinit. The resulting optima are denoted by Θ= {�̂
1

, ..., �̂
m

}. During the optimization

procedure, two issues have to be solved: overfitting and non-optimal local minima. To overcome

overfitting, we use early stopping (in combination with an L2 regularization of the neural network

parameters). Note that the necessary train-validation split yields a second source of randomness

in our ensemble implementation. Additionally, like many dynamical approaches, UDEs can face

convergence issues and numerical instabilities, which results in estimates with low likelihood. To

address the issue of ending the optimization at non-optimal local minima, only a subset of the

resulting estimators in Θ are accepted as ensemble members. We assume that m is large enough,

such that the estimated maximum-likelihood estimate over all elements in Θ, �̂MLE, is approxi-

mately equal to the theoretical maximum-likelihood estimate �MLE. Based on a likelihood-ratio

test, we evaluate whether the likelihoods of the other parameters in Θ significantly differ from

�̂MLE (a method commonly used in Systems Biology [8,16]). Hence, we keep parameter values

which achieve a likelihood similar to the best estimate. The test statistic is defined as

�(�̂) = −2(log(p(D|�MLE)) − log(p(D|�̂))) ≈ −2(log(p(D|�̂MLE)) − log(p(D|�̂))) (3.3)

and evaluated for all �̂ ∈ Θ. The threshold for �(�̂) is given by the �-quantiles of a �2 distribu-

tion with nf degrees of freedom, where nf = 1 can provide a lower bound on the uncertainty. The

parameters which meet the criterion provide an ensemble, which can be used for parameter and

prediction uncertainty analysis (see [8]).

(ii) MCMC-based uncertainty quantification

Bayesian models perform Bayesian inference for the parameters of a model based on

equation (3.1). Usually, the posterior has no closed-form solution. Instead, one relies on approxi-

mate inference algorithms like Variational Inference or MCMC-based methods [31].

MCMC-based UQ exploits parameter samples of the posterior distribution. These samples can

be obtained using MCMC sampling approaches such as (adaptive) Metropolis–Hasting, parallel

tempering and Hamiltonian Monte Carlo (HMC) algorithms. HMC algorithms leverage gradi-

ent information to search the parameter space efficiently, which has proven to be useful in dy-

namical modelling [34] and Bayesian neural networks [31]. To mitigate the problem that plain

HMC is highly sensitive to parameters of the algorithm, one can use the HMC extension No-U-

Turn Sampler (NUTS) [35]. At the moment, the NUTS algorithm is state-of-the-art for Bayesian

neural networks [36], showing the best performance in the context of neural ODEs [22]. Yet,

even with these approaches, the sampler often struggles to explore more than one mode. Par-

allel tempering algorithms operate with chains on different kinetic energy levels (temperatures).

While low-temperature chains explore individual modes, high-temperature chains more easily

traverse through the parameter space. By swapping the states of different chains under cer-

tain circumstances, parallel tempering algorithms aim to explore multimodal distributions more

efficiently [37].

(iii) Variational Inference-based uncertainty quantification

Variational Inference approximates the posterior distribution p(�|D) using a parametric dis-

tribution q(�| ) with distribution parameters  ∈ℝn [23]. The Kullback–Leibler divergence is

commonly used as an objective function, describing the discrepancy between the two distri-

butions. This reduces the inference problem to defining an appropriate variational distribution

q(�| ) and estimating its parameters  . Commonly used options are, for example, a Gaussian
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distribution q(�| ) =N(�|�, Σ), if no parameter bounds are given, or a scaled beta distribution

q(�| ) = c ⋅ Beta(�|a, b) if � ∈ (0, c).

4. Performance evaluation of methods: insights from synthetic examples
To assess the performance of the aforementioned UQ methods, we performed experiments on sev-

eral synthetic problems. By using synthetic problems, we can evaluate the methods’ performance

by comparing their results to the known data-generating process.

(a) Model formulation
In this study, we considered three different models (SEIR Pulse, SEIR Waves and Quadratic Dy-

namics) with two different noise distributions (Gaussian and negative Binomial). For each noise

distribution, we investigated several noise parameter settings. Electronic supplementary material,

table S1 and appendix C provide an overview of the considered models and scenarios.

In the main part of the paper, we present the results based on the SEIR model, a compartmental

model describing the dynamics of infectious diseases. This model describes the number of sus-

ceptible (S), exposed (E), infectious (I) and recovered (R) individuals using a system of differential

equations:

dS

dt
=−�(t)SI

N
, dE

dt
= �(t)SI

N
− �E, dI

dt
=�E − 
I, dR

dt
= 
I, (4.1)

where � is the transmission rate, � the transition rate, 
 the recovery rate and N = S + E + I + R

the population size.

We create synthetic data for two scenarios, differing the time-dependent transmission rate �(t)
(see electronic supplementary material, figure S1):

(1) In the SEIR Pulse scenario, we define the transmission rate as

�(t) =
⎧

⎨
⎩

0.05 if 15< t< 30,
0.5 else,

(4.2)

which emulates a time-restricted political intervention.

(2) In the SEIR Waves scenario, we define the transmission rate as

�(t) = 0.3 ⋅ cos
(
(−1 +

√
1 + 4t) ⋅ 1.5 + 0.25 ⋅ �

)
+ 0.4, (4.3)

which is an oscillating function for emulating the potentially complex time-dependence of contact

behaviour in combination with potential virus evolution.

For the synthetic data generation, we assumed that the state variables I and R are observed

at 30 time points. The parameters and initial conditions used for simulation are provided in

appendix B.

In practice, the basic transmission process of an infectious disease is often known, but the pa-

rameter values and the time-dependence of the transition rate are unknown. To capture this case,

we assumed the mechanistic formulation of the differential equation to be known, but the constant

rate parameters� and 
 as well as the time-dependent transmission rate � to be unknown. A neural

network was used to model �, where we use a tanh-parameterization to ensure bounds and easily

capture fast-changing dynamics. For the estimation of the noise parameter, a log transformation

was used; and for � and 
, a tanh transformation was used (see appendix D).
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Figure 2. Comparison of the UQ methods on the SEIRWaves problem (Gaussian noise, � = 0.01), visualization of estimated
parameter values. The visualization for the time-dependent parameter�(t) is provided in appendix I.

Figure 3. Comparison of the UQ methods on the SEIRWaves problem (Gaussian noise, � = 0.01), visualization of estimated
trajectories.

(b) Results
In the following, we present the results for ensemble-, MCMC- and Variational Inference-based

UQ. Implementation details such as the prior definition and hyperparameter settings are provided

in appendix D.

(i) Ensemble-based uncertainty quantification

The assessment of the results for ensemble-based UQ revealed overall a good performance: The

true parameters are contained in the uncertainty intervals (figure 2) and simulated trajectories

of the dynamics of the model using the true parameter values are contained in the prediction

intervals (figure 3). Indeed, also the (unknown) standard deviation used for synthetic data gener-

ation are contained in the corresponding uncertainty intervals (figure 2). Yet, the long tail of the

distribution indicates that the ensemble contains samples that overestimate the aleatoric uncer-

tainty. Furthermore, while the underlying dynamics of the unobserved states could be recovered,

the UQ for the transmission rate � yields broad prediction intervals (electronic supplementary

material, figure S12). A broad band of trajectories of � yields reasonable values for the observed

states I and R. This is not unexpected since � influences the state change only for time points with

I ⋅ S≫ 0. We would expect a reliable reconstruction only in these regimes. Ensemble members

with smaller negative log-likelihood values tend to show dynamics more closely related to the

dynamics of the data generation process for these time points.

We observe that, as expected, the ensemble-based UQ method yields larger prediction un-

certainty bounds with increasing aleatoric noise (electronic supplementary material, figure S13).

Small fluctuations in the trajectory cannot be captured easily within a setting of negative binomial

noise, as is indicated by the ensemble mean trajectory for I. In the SEIR problem scenarios, the role
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of the neural network is well isolated from the other dynamical components. In the quadratics

dynamics scenario, this is different, because the neural network can in principle completely re-

place known mechanistic dynamics and describe all the dynamics. Hence, the mechanistic part is

only a soft constraint on the form of the whole dynamics. A consequence of this is visualized in

electronic supplementary material, figure S14: the predictions of some ensemble members quickly

deviate from the reference dynamics outside the data domain.

One difficulty of the ensemble-based UQ method was the choice of a reasonable threshold. As

visualized in electronic supplementary material, figure S11, subselecting a fraction of the best-

performing models (which is equivalent to a different significance level for the �2-test) can result

in widely different confidence bands. An exemplary waterfall plot displaying the selection of the

ensemble members based on likelihood values is provided in electronic supplementary material,

figure S9 and shows that there is no clear convergence to a minimum objective function value

for UDEs. A major advantage of the ensemble-based UQ method is its flexible parallelisability:

Every candidate member of the ensemble can be trained independently of one another. For 10 000

candidate ensemble members, the training took between 4−12 h using 20 CPU cores.

(ii) MCMC-based uncertainty quantification

We implemented Bayesian UDEs using a NUTS and parallel tempering sampling algorithm to

compare different and potentially suitable algorithms for UDEs. When sampling, the biggest issue

of overparameterized models is the exploration of multiple modes. Neural networks specifically

tend to have by construction various symmetries in the loss landscape [38], resulting in the pos-

sibility that no additional predictive information is added even if multiple modes are explored.

We systematically experimented with different numbers of chains and samples. However, simi-

lar to what is observed with neural networks in classical supervised learning tasks [36], MCMC

chains neither mix well nor properly converge in the context of UDEs. Our analysis of the sam-

ple distributions indicated that parallel tempering algorithms achieved a better exploration than

NUTS. Furthermore, the initialization of the sampling at optimization endpoints—a common

recommendation for dynamical systems [39]—was beneficial for UDEs.

MCMC-based UQ using NUTS and parallel tempering was computationally much more de-

manding than ensemble-based UQ. The generation of approximately 10 000 samples using par-

allel tempering required 5−7 days on a CPU node with 20 CPU cores. Yet, the resulting Bayesian

confidence intervals possess a clear interpretation and there are no additional hyperparame-

ters. Indeed, while challenging to apply, the parallel tempering runs provided posterior samples,

which covered the true parameter values (figure 2). Furthermore, the corresponding prediction

intervals contained the true dynamics of the process (figure 3).

(iii) Variational Inference-based uncertainty quantification

We performed Variational Inference using a mean-field approximation of the posterior with mul-

tivariate normal base distributions. This is a common choice for a broad range of uncertainty anal-

ysis problems [10]. Yet, the choice of approximation and base distribution can have a substantial

impact on the approximation quality.

Variational Inference-based UQ required < 24 h on a single CPU core and was therefore compu-

tationally less demanding than ensemble- and MCMC-based UQ. However, the assessment of the

results revealed that Variation Inference provided biased estimates. The approximated posterior

distribution did not cover the true values of � and � (figure 2). Furthermore, while the obser-

vations are fitted, Variational Inference underestimates the uncertainty on the trajectories of the

unobserved state variables (figure 3).

(iv) Comparison of methods

The three considered methods tackle the problem of UQ from different angles. This re-

sults in differences concerning data usage and incorporation of prior knowledge, as well as
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Figure 4. UMAP for the set of parameters obtained by the MCMC and ensemble-based method. The parameter vectors
contained mechanistic and neural network parameters.

posterior coverage. Since the ensemble-based UQ method is based on the optimization of an over-

parametrized model, a train-validation split is necessary to implement early stopping and avoid

overfitting on the training data. The combined dataset is only used for subselecting from ensem-

ble candidate models. For MCMC- and Variational Inference-based methods, the whole dataset is

used in every step of the algorithms. While the incorporation of prior knowledge in the dynamic

equations, noise model and observable mapping is independent of the UQ method, assumptions

about parameter values are treated differently. For the ensemble-based method, the parameter

prior influences the start points of the optimization process. Afterwards, we only encode upper

and lower bounds that restrict the parameter update steps. For both MCMC- and Variational

Inference-based UQ, the prior distributions influence the posterior in every update step of the

algorithms.

Our comparison of UQ results across methods revealed that ensemble- and MCMC-based

methods provide assessments/predictions, while the standard Variational Inference method pro-

vides biased estimates and is unable to capture the dynamics of the unobserved state variables.

Interestingly, while one might expect that this changes for small noise levels, our findings sug-

gest that it holds independent of measurement noise (appendix F), which might be due to the

over-parametrization in the UDE and corresponding non-identifiabilities.

Yet, we also identified substantial differences between ensemble- and MCMC-based UQ

method results. A dimension reduction of the parameter samples shows different characteristics.

The uniform manifold approximation and projection (UMAP) [40] of the collection of all samples

using parameter values as features reveals that: (i) ensembles derived from optimization results

cluster; and (ii) parallel tempering yields a more patchy pattern and several additional clusters

(figure 4). While on first glance this suggests that parallel tempering achieves a better exploration,

it also seems to miss high-quality parameter vectors identified using optimization. To assess this

further, we studied the model predictions for an initial condition for which no measurements

were available (figure 5). The ensemble-based UQ yields substantially broader intervals than the

MCMC-based UQ. Predictions of the MCMC-based UQ still cover the model simulation for the

true data.
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Figure 5. Comparison of prediction performance using the same setting as in figure 3 but with a new initial condition
x0 = (0.8, 0.1, 0.0, 0.1).

5. Conclusions and future perspectives
UDEs model the dynamics of observed and unobserved states using a combination of inter-

pretable mechanistic and ANN parameters. UQ for both mechanistic parameters and state tra-

jectories is critically important, especially in fields like healthcare and epidemiology. How-

ever, performing UQ for UDEs poses unique challenges, primarily due to the high dimen-

sionality of the parameter space and the complex structure of the loss or posterior function

landscape.

Our assessment of UQ methods revealed that ensemble- and MCMC-based methods perform

better than Variational Inference. This observation holds true across different noise levels. Never-

theless, defining a suitable threshold for ensemble-based methods requires further investigation,

and the convergence of MCMC methods remains problematic.

Our findings underscore the need for further methodological developments. Building upon

the work of [36], developing methods for automatic symmetry removal could improve computa-

tional efficiency in UQ for UDEs and enable scaling to larger problems. Furthermore, exploring

hybrid UQ approaches that combine the resource efficiency of ensemble methods with the statisti-

cal interpretability of MCMC-based methods might be advantageous. Lastly, investigating model

structure uncertainty may provide valuable insights into how mechanistic terms are absorbed by

the neural network.

The results of our study likely extend beyond UDEs and may also apply to alternative ma-

chine learning-based modelling approaches. An assessment of ANNs designed to control dynam-

ical systems [41] would be of particular interest. Furthermore, extending this work to stochastic

models, particularly neural stochastic differential equations [42], would be beneficial. Accord-

ingly, while this study provides novel insights, it can only serve as a starting point for further

research.
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