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Abstract 
Linking sequence-derived microbial taxa abundances to host (patho-)physiology or habitat characteristics in a reproducible and 
interpretable manner has remained a formidable challenge for the analysis of microbiome survey data. Here, we introduce a flexible 
probabilistic modeling framework, VI-MIDAS (variational inference for microbiome survey data analysis), that enables joint estimation 
of context-dependent drivers and broad patterns of associations of microbial taxon abundances from microbiome survey data. VI-
MIDAS comprises mechanisms for direct coupling of taxon abundances with covariates and taxa-specific latent coupling, which can 
incorporate spatio-temporal information and taxon–taxon interactions. We leverage mean-field variational inference for posterior 
VI-MIDAS model parameter estimation and illustrate model building and analysis using Tara Ocean Expedition survey data. Using 
VI-MIDAS’ latent embedding model and tools from network analysis, we show that marine microbial communities can be broadly 
categorized into five modules, including SAR11-, nitrosopumilus-, and alteromondales-dominated communities, each associated with 
specific environmental and spatiotemporal signatures. VI-MIDAS also finds evidence for largely positive taxon–taxon associations in 
SAR11 or Rhodospirillales clades, and negative associations with Alteromonadales and Flavobacteriales classes. Our results indicate 
that VI-MIDAS provides a powerful integrative statistical analysis framework for discovering broad patterns of associations between 
microbial taxa and context-specific covariate data from microbiome survey data. 
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Introduction 
Microbial species are an integral part of life on earth. Ecosystems, 
ranging from the human gut to the global ocean, harbor trillions 
of bacteria, archaea, viruses, and fungi that take on essential func-
tional roles and have developed intricate ecological relationships 
within their respective habitat. Over the past decades, advances 
in amplicon and metagenomics sequencing techniques [1–4] and  
standardized experimental and bioinformatics workflows [5–7] 
have enabled the large-scale collection and dissemination of 
microbial survey data, including those from the seminal Human 
Microbiome Project [8], several gut-focused surveys [9–12], the 
Earth Microbiome Project [13], and the Tara Ocean Expedition [14]. 
These surveys have reached a level of maturity and complexity 
that ultimately allow the estimation of statistical associations 
between microbial abundances, typically represented as com-
positional counts of amplicon sequence variants (ASVs) or 
operational taxonomic units (OTUs), and habitat properties 
[14, 15], biogeochemical processes[16], and/or host health status 
[17, 18]. This, in turn, provides a starting point for deciphering 
and understanding the ecological and functional roles of different 

microbial clades in the ecosystem, nutrient and bio(geo)chemical 
dependencies, resource limitations of microbial growth, and the 
presence of ecological taxon–taxon interactions [19]. 

Conventional statistical methods for microbiome data largely 
focus on either statistical abundance modeling [20–25] or taxon– 
taxon associations [19, 26–29]. The complexity and interconnected 
nature of microbial ecosystems would, however, benefit from 
integrative approaches that go beyond estimating individual sta-
tistical associations or taxon–taxon associations. To fully cap-
ture the interplay between microbial abundances, host or habitat 
characteristics, and taxon–taxon interactions, it is essential to 
estimate their contributions within a unified model. 

Here, we introduce such an integrative probabilistic modeling 
framework that is specifically tailored to microbiome survey data 
and enables joint estimation of habitat-dependent drivers and 
broad associations patterns of microbial taxa abundances (see 
Fig. 1). Our approach, termed VI-MIDAS (variational inference for 
microbiome survey data analysis), models the observed taxon 
abundances by simultaneously learning taxon-specific latent 
representations that leverage the effects of host or environ-
mental factors and taxon–taxon associations via an item-item
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Figure 1. Overview of the VI-MIDAS framework. (A) VI-MIDAS integrates microbiome survey data in form of microbial abundance data W, 
host-associated, habitat or environmental data, and spatio-temporal information. (B) Different data sources are coupled directly or indirectly through 
a latent space β to a generative model. An additional latent space taxon interaction model is included. The generative probabilistic model 
(e.g. Negative Binomial (NB) model) integrates covariate data via a coupling model. (C) Variational approximation and mean-field estimation are used 
for Bayesian parameter estimation, resulting in posterior microbial abundance samples Ŵ and model parameter distributions. (D) Model components, 
such as estimated latent representation and taxon–taxon interactions, can be used for data understanding, visualization, and downstream analysis. 

interaction modeling approach, originally proposed for market 
basket analysis [ 30]. 

VI-MIDAS uses the parametric structure of the negative bino-
mial distribution [25, 31] to account for the overdispersed nature 
of the amplicon count data and comprises two main model com-
ponents: (i) a component that allows for full adjustment of taxon 
abundances from a user-defined subset of covariates and (ii) 
taxa-specific latent vectors that incorporate, e.g. spatio-temporal 
or environmental covariates and taxon–taxon interactions, thus 
providing a marginal characterization of each taxon. We resort 
to mean-field variational inference for parameter estimation of 
VI-MIDAS’ intractable posterior distribution [32], thus comple-
menting other recent variational approaches to microbiome data 
modeling, such as, e.g. Poisson principal component analysis [33], 
microbiome dynamics modeling [34], Dirichlet Multinomial mod-
eling [35], multi-level modeling [36], and microbiome ordination 
[37]. 

To illustrate the complete workflow of the VI-MIDAS frame-
work, we focus on integrative analysis of global marine micro-
biome survey data. The ocean microbiome is of fundamental 
importance for life on earth, being responsible for about half of 
all primary production (i.e. the production of chemical energy in 
organic compounds) and holds enormous potential for climate 
remediation [38]. Several initiatives such as the Tara Oceans 
Project [39] and the Simons CMAP [40] provide well-structured 
sequencing data, biogeochemical and environmental covariate 
data, and satellite-derived products that are amenable to statis-
tical analysis. Here, we re-analyze Tara expedition data (http:// 
ocean-microbiome.embl.de/companion.html), originally consid-
ered in [14] to study the structure and function of the global ocean 
microbiome. The expedition collected ocean water samples from 
68 distinct geographical locations at varying levels of depth. We 
will make extensive use of this dataset to motivate and describe 

the details of the VI-MIDAS framework as well as the learned 
representations and associations of the global ocean microbiome. 

We start with an overview of the Tara Oceans data under study, 
introduce the generative model components of VI-MIDAS, and 
show how different data types enter the modeling framework. 
We then give a high-level overview of the variational parame-
ter estimation procedure, including the selection of VI-MIDAS’ 
hyperparameters, such as the choice of the priors and the dimen-
sionality of the latent representation. Following model parameter 
inference, we illustrate how standard modularity analysis of VI-
MIDAS’ learned latent representation of the Tara data identi-
fies five distinct groups of microbial consortia. We analyze the 
inferred modules in terms of their composition of ecologically 
relevant clades and discuss the derived module-specific envi-
ronmental and spatiotemporal signatures. Finally, we highlight 
the emerging interaction pattern among ecologically relevant 
clades and discuss the framework in the larger context of other 
microbiome survey data. Further methodological details are sum-
marized in Supplemental material. Code for the presented VI-
MIDAS workflow is available at http://github.com/amishra-stats/ 
vi-midas) and requires minimal adjustment to analyze other 
microbiome survey data. 

Materials and methods 
Tara ocean data and ecologically relevant taxa 
re-classification 
We consider the processed Tara expedition data, as provided at 
http://ocean-microbiome.embl.de/companion.html. The expedi-
tion collected water samples from 68 distinct geographical loca-
tions (Fig. 2B) across different depths, resulting in n = 139 dis-
tinct samples. Across these samples, the original data comprises 
microbial taxa abundances profiles of more than 35 000 bacterial
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Figure 2. Illustration of the Tara ocean data: (A) Taxon abundance profiles, agglomerated to expert-derived ERCs for two samples (marked as 1 and 2 
in Fig. 2B). (B) Tara ocean sample locations. (C) Environmental features associated with the samples marked as 1 and 2 in Fig. 2B; (D) Abundance 
profiles log(W + 1) of q = 1379 taxa at n = 139 distinct locations with rows highlighting province of the sample and columns grouped by ERC. (E) 
Abundance profiles clustered into five modules (M1–M5) as identified by modularity analysis of the latent space β (see Section Modularity analysis for 
more details). The dashed vertical lines separate the latent modules. The five microbial modules (M1–M5) comprise 524, 400, 307, 112, and 35 
taxa/OTUs, respectively. The first column shows ocean depth layer, the second column the province indicator. 

taxa in form of metagenomic OTUs (mOTUs) (derived using the 
miTAGS framework [ 41]). 

Here, we focus on the most abundant taxa by taking the union 
of all mOTUs that, in each individual sample, contribute to 40% 
of the total library size. This filtering allows us to cover the 
abundance profiles of the q = 1378 taxa with the most signifi-
cant variability and reduces the number of excess zero counts. 
To account for the highly variable sequencing depth across the 
samples, we normalize the abundance data with respect to the 
lowest library size via common-sum scaling [31]. Fig. 2D shows the 
log-transformed abundance profiles W ∈ Rn×q. Since the original 
taxonomic affiliations of the miTAGS are difficult to interpret, we 
next developed a partitioning of the selected taxa into ecologically 
relevant classes (ERCs). The original full taxonomy strings are too 
long to understand at a glance, and parsing by taxonomic level 
is not a good option since taxa vary widely in the depth of their 
annotations. For example, cyanobacteria should be annotated at 
the genus level or higher, but many other abundant but less 
described taxa do not have any taxonomic information at that 
level. We manually curated the data to provide a short relevant 
taxonomic indicator that provides a rough indicator of the eco-
logical niche of an organism while remaining short enough to be 
interpreted at a glance [42]. Some taxonomies have been altered 
to preserve the updated SILVA taxonomy (i.e. Betaproteobacteria 

is now Burkholderiales). New SILVA 138 [43] taxonomies have been 
used wherever possible (i.e. when the original ID was still in SILVA 
138), but in cases where there was only the SILVA 108 taxonomic 
information, we have used our best guess. For example, if an 
organism had the same classification as other organisms in SILVA 
108, we have often given it the same name as its counterparts in 
SILVA 138. We present all our findings in terms of these 29 ERCs. 

Each Tara sample also contains environmental and spatiotem-
poral information, including geolocation, the derived Longhurst 
province (biome) indicator, sampling date, ocean depth informa-
tion (depth from sea surface), environmental covariates, such as, 
e.g. sea surface temperature (SST), and biogeochemical features 
such as salinity, chlorophyll, nitrate, and oxygen concentration 
(see Fig. 2C for illustration). Table 1 summarizes the measured 
covariates and derived spatiotemporal indicator variables that 
are included in the VI-MIDAS framework and their corresponding 
mathematical representation. 

Generative modeling in VI-MIDAS 
We seek to model the abundance profiles of q microbial taxa 
where we denote a single sample by the random variable w ∈ R

q 

and the observed data from n samples by W = [wij]n×q ∈ Rn×q. 
For concreteness, we illustrate model building and analysis using 
the Tara abundance profiles (see Fig. 2D) of  q = 1378 taxa but the
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Table 1. Environmental and spatiotemporal variables included in the VI-MIDAS model. 

Model component Variables Description 

Environmental η[E] 
ij Environmental covariates Sea surface temperature (and its gradient), salinity, chlorophyll, nitrate, nitrogen dioxide, 

phosphate, silicon, and oxygen concentration. 
(Depth) SRF surface water layer; up to 5 m below the surface 
Spatial DCM Deep chlorophyll maximum; approximately 17–188 m below the surface; region below 

the surface with maximum chlorophyll concentration 
η

[D] 
ij MIX Subsurface epipelagic mixed layer; approximately 25–150 m below the surface 

MES Mesopelagic zone; approximately 250–1000 m below the surface 
Spatial Polar biome Polar region in the northern and southern hemisphere characterized by low taxonomic 

diversity at all trophic levels. 
(Longhurst Province) Westerlies biome High-latitude region below the westerly winds 
η

[P] 
ij Trades biome Low-latitude region below the easterly trades characterized by high taxonomic diversity 

Coastal biome Region in the upper part of the continental slope 
Seasonal η[S] 

ij Q1, Q2, Q3, Q4 Derived indicator of seasonal quarter when sample was taken (January to March; April 
to June; July to September; October to December) 

modeling strategy is applicable to any multimodal microbiome 
survey. 

Distributional model 
VI-MIDAS posits that the overdispersed microbial count data W 
are reasonably well modeled with the negative binomial distri-
bution [18, 44, 45]. While other generative statistical modeling 
approaches are available, including the Dirichlet Multinomial 
(mixture) framework [20, 46], latent Dirichlet allocation [47], and 
Poisson distribution models [21, 24, 48], we found the negative 
binomial model to be an excellent choice for the Tara ocean 
data (see Fig. S1 B of the Supplementary material for the over-
dispersion analysis). Using the negative binomial distribution with 
mean and dispersion parameterization [44], VI-MIDAS models the 
jth taxa in the ith sample as: 

p(wij; τjμij, φj) = NB(wij; τjμij, φj) 

=
(

wij + φj − 1 
wij

)(
τjμij 

τjμij + φj

)wij ( φj 

τjμij + φj

)φj 

. (1)  

Here, the mean parameter τjμij is the product of a taxon-specific 
shape parameter τj ∈ (0, 1) and the entry-specific parameter 
μij ∈ R+. The  parameter  φj ∈ R+ is the taxon-specific dispersion 
parameter. Let us denote the dispersion and shape parameters for 
q outcomes by � = [φ1, . . . , φq] and τ = [τ1, . . . , τq], respectively. 
The shape parameter τ accounts for the disparity in abundance 
among microbial taxa. The generative model (1) of VI-MIDAS  

implies E(wij) = τjμij and Var(wij) = τjμij + 
τ2 

j μ
2 
ij 

φj 
. This variance 

structure reflects the overdispersion characteristic of the negative 
binomial distribution , making this framework well-suited for 
modeling overdispersed count data. 

Modeling strategy and model components 
One novelty in VI-MIDAS is the combination of ideas from gener-
alized linear modeling [44] and compositional data analysis [49] to  
associate the microbial relative count data with spatiotemporal, 
environmental, and taxa information. Specifically, we model the 
log-transformed mean parameter μ = [μij]n×q of the generative 
model (1) with two components, a consistent zero-aware geomet-
ric mean estimate ti and a linear predictor η = [ηij]n×q ∈ Rn×q 

as follows: 

log μij = log ti + ηij . (2)  

The sample-wise parameter ti is estimated by a zero-aware geo-
metric mean estimator, introduced in [50], which provides a prin-
cipled approximation to the geometric means across all n samples 
in the presence of excess zeros. We detail the exact formula-
tion of ti and its approximation guarantees in Section 3.1 of the 
Supplementary material. Including O = [log t1, . . . , log tn] as an 
offset term in the model is necessary since we do not have access 
to absolute microbial abundance data, thus requiring transform-
ing the compositional data appropriately. The second term η effec-
tively models centered log-ratio (clr) transformed (rather than the 
original count) data and is the key component to couple habitat 
(or host) information to the microbial abundance profiles. VI-
MIDAS introduces a novel decomposition of the component η that 
allows the incorporation of three distinct coupling mechanisms: 
(i) a direct coupling term for covariates, (ii) an indirect coupling 
term for covariates via a latent space representation, and (iii) a 
latent taxon–taxon interaction term. 

In our ocean application, the first component, denoted by η[E] 
ij , 

includes all relevant environmental attributes (see first row in 
Table 1). All spatiotemporal features, i.e. the Longhurst province 
indicator, the depth information, and the seasonal indicator (see 
second to last row in Table 1) are handled by the latent coupling 
term and are denoted by η[P] 

ij , η[D] 
ij , and  η[S] 

ij , respectively. Lastly, 
statistical associations among co-occurring taxa are included via 
a latent interaction term η[I] 

ij , leading to following model: 

ηij = η
[E] 
ij +

(
η

[P] 
ij + η

[D] 
ij + η[S] 

ij

)
+ η[I] 

ij . (3)  

The following paragraphs detail the parametric form of each of 
the components, the nature of the underlying covariate data, and 
their biological relevance. 

Direct coupling of environmental features 
Let us denote the p covariates in the direct coupling term by X = 
[x1, . . . , xn]T = [xij]n×p. VI-MIDAS models the direct component for 
the jth taxa in the ith sample via 

η
[E] 
ij = xT 

i γ .j . (4)
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with γ = [γij]p×q ∈ Rp×q denoting the matrix of all coefficients. 
For the Tara data, we opted to model η[E] 

ij using following p = 9 
covariates: sea surface temperature (SST) (and its gradient grad 
SST), salinity, chlorophyll, nitrate, nitrogen dioxide, phosphate, sil-
icon, and oxygen concentration. All variables are mean-centered 
prior to incorporation into the model. In the original Tara analysis 
[14], temperature and oxygen have been identified as key drivers 
of taxonomic compositions. The VI-MIDAS analysis will allow a 
refined picture of the these general tendencies. 

Latent space coupling of spatiotemporal features 
VI-MIDAS offers a second mechanism for including variables of 
interest through latent space modeling. We denote q taxa-specific 
shared latent variables of size k by β = [βij]k×q ∈ Rk×q. The  size  
factor k is an application-specific hyper-parameter that controls 
the expressiveness of the latent space. Features are then coupled 
to the latent space in a multiplicative fashion. 

For the Tara data, we illustrate this mechanism by coupling 
all available spatial and temporal indicators to the latent space 
component. We first consider the r = 4 primary provinces (or 
biomes): polar, Westerlies, coastal, and Trades [51]. We denote the 
model matrix indicating the r distinct regions of the n samples 
by R = [r1, . . . , rn]T ∈ {0, 1}n×r. Here,  ri is a one-hot encoded vector, 
indicating membership of the i-th sample to one of the r provinces. 
The matrix R connects to the joint latent space via the coefficient 
matrix α = [α]r×k ∈ Rr×k, leading to 

η
[P] 
ij = riαβ .j . (5)  

Similarly, the Tara data include samples across d = 4 ocean 
depths: surface water (SRF), deep chlorophyll maximum (DCM), 
the subsurface epipelagic mixed layer (MIX), and the mesopelagic 
zone (MES). We denote the depth indicator matrix of the n samples 
by D = [d1, . . .  , dn]T ∈ {0, 1}n×d (di is one-hot encoded vectors 
representing membership of the i-th sample in one of d ocean 
depth) and connect it to the joint latent space via the coefficient 
matrix δ = [δ]d×k ∈ Rd×k, leading to 

η
[D] 
ij = diδβ .j . (6)  

Finally, by parsing the sampling dates at the different Tara loca-
tions, we can associate a temporal indicator with each sample. 
Here, we group the samples into s = 4 seasons: the 1st (Q1, January 
to March), 2nd (Q2, April to June), 3rd (Q3, July to September), and 
4th (Q4, October to December) yearly quarter, and construct the 
season indicator matrix S = [s1, . . . , sn]T ∈ {0, 1}n×s, where each 
row si represents the membership of the ith sample to one of the 
s seasonal categories. The coefficient matrix ϑ = [ϑ]s×k ∈ Rs×k 

couples S to the latent space β, leading to 

η
[S] 
ij = siϑβ .j . (7)  

In summary, the coupling of the described features to a shared 
latent space via the coefficient matrices α, δ, ϑ allows to quan-
tify to what extent spatiotemporal information influences each 
taxon’s (latent) abundance after discounting the contribution of 
the environmental component. 

Latent modeling of taxon–taxon associations 
It is well-established that the abundances of species in an ecosys-
tem are not only driven by environmental or spatiotemporal fac-
tors but also by interactions among the species themselves [52]. 

While discovering detailed ecological interactions among taxa, 
such as, e.g. competition, mutualism, parasitism, or commen-
salism, is beyond the reach of coarse-grained statistical models, 
VI-MIDAS’ latent space modeling offers a principled mechanism 
to assess the influence of taxa co-occurrences on their respective 
abundances. We achieve this by borrowing recent ideas from 
market basket analysis and adopt the so-called SHOPPER utility 
model for interaction analysis [30]. In SHOPPER, Ruiz et al. [30] 
proposed a probabilistic model based on the basket data from a 
supermarket to learn about the latent characteristic of each item 
and exchangeable/complementary interactions among items. The 
approach uses item-specific latent variables to define an item– 
item interaction component. Following their setup, the “interac-
tion,” or, in the biological context, association of the jth taxa with 
any mth taxa is given by ρT 

.j β .m where ρ = [ρ]k×q ∈ R
k×q comprises 

length-k latent variables for each of the q taxa. The entries of 
VI-MIDAS’ interaction component η[I] for the jth taxon in the ith 
sample are thus given by 

η
[I] 
ij = 

⎧⎨ 

⎩ 
0, wij = 0 

1 
ai−1 ρT 

.j

∑
m�=j 1wim �=0β .m, wij �= 0 

, (8)  

where ai = ∑q 
m=1 1wim �=0 is the total number of taxa present 

in the ith sample. Note that the interaction term ρTβ is not 
symmetric. Note that, while some ecological interactions, such as 
parasitism, are directed and asymmetric, thus making asymmetry 
biologically plausible, the model parameter ρ and β do not allow 
to estimate directionality. Consequently, following the SHOPPER 
model [30], we derive a symmetrized interaction matrix I = [Ii,j] ∈ 
R

q×q with each entry being computed as: 

Ii,j =
(
ρT 

·i β ·j + ρT 
·j β ·i

)
/2 (9)  

This allows easier downstream network analysis of potentially 
positive (mutualistic) and negative (competitive) associations 
among the taxa, or in our case, among the ecologically relevant 
clades. 

Variational inference in VI-MIDAS 
The generality and flexibility of VI-MIDAS poses a considerable 
challenge for fast and accurate model parameter estimation. We 
introduce a variational inference framework that makes esti-
mation in VI-MIDAS feasible and illustrate its performance and 
parameter sensitivities using the Tara data. For ease of presen-
tation, we summarize the key ingredients below and refer to the 
extensive Supplementary information and the documented code 
base available at https://github.com/amishra-stats/vi-midas) for  
details. 

Bayesian model and variational approximation 
We begin by denoting all (latent) parameters in the VI-MIDAS 
framework by � = {α, ϑ , β, γ , ρ, τ , �} (see Table S1 of the 
Supplementary material). Given the microbial abundance data 
W, the (direct) covariates X, and the model parameters �, we  
integrate the generative model (1) into a Bayesian framework 
where the posterior distribution reads: 

p(�; W, X, t) = 
p(W; �, X, t)p(�) 

p(W; X, t) 
, (10)  

where p(W; �, X, t) = ∏
i,j p(wij; τjμij, φj) denotes the likelihood of W 

and p(�) = p(α)p(δ)p(β)p(γ )p(ρ)p(�)p(τ )p(ϑ) the prior distribution,
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respectively. To achieve good generalizabilty and interpretabil-
ity of VI-MIDAS’ over-parameterized model, we place sparsity-
inducing Laplace priors with scale parameter λ on each of the 
unconstrained latent variables in the set {α, δ, β, γ , ρ, ϑ}. For exam-
ple, the prior on α reads p(α) = ∏

i,j p(αij) with p(αij) = Laplace(0, λ). 
Furthermore, we place an inverse-Cauchy prior on the dispersion 
parameter �, i.e.  p(φj) = inverse-Cauchy(0, υ) and p(�) = ∏

j p(φj), 
and a Uniform (1,2) prior for the shape parameter τ , i.e.  τj ∼ 
Beta(1,1) and p(τ ) = ∏

j p(τj). Choosing suitable hyperparameters 
for the priors will be discussed below. 

In the high-dimensional setting, computing the posterior dis-
tribution is challenging because of the intractable form of the 
marginal distribution p(W; X, t) and the non-conjugate priors on 
the model parameters. Markov Chain Monte Carlo (MCMC) sam-
pling provides a helpful paradigm for obtaining samples from the 
posterior distribution in the Bayesian framework. However, since 
MCMC lacks computational efficiency in large/high-dimensional 
problems, we use mean-field Variational Inference (VI) [32, 53, 
54] and approximate the posterior with a variational posterior 
distribution of the latent variable �. Briefly, let q(�; ν) be the vari-
ational posterior distribution with parameter ν. VI approximates 
sampling of the posterior by minimizing the Kullback-Leibler (KL) 
divergence, 

min 
ν 

KL(q(�; ν) || p(�; W, X, t)) 

such that supp(q(�; ν)) ⊆ supp(p(�; W, X, t)). It can be shown that 
the above optimization problem simplifies to maximizing the 
evidence lower bound (ELBO) given by 

L(ν) = Eq(�;ν)[log P(W, �; X, t)] − Eq(�;ν)[log q(�; ν)], (11) 

which is a lower bound on the logarithm of the joint probability of 
the observations log P(W; X, t) [53]. Replacing the joint distribution 
P(W, �; X, t) with a product of likelihood and prior distribution 
P(W, �; X, t) = P(W; �, X, t)P(�) further simplifies the objective. 

Model estimation, hyperparameter tuning, and posterior 
estimates 
The non-convexity of the variational objective and the large 
number of model parameters require careful assessment of all 
aspects of model parameter estimation, hyperparameter tuning, 
and generalization capability. To estimate the parameters of the 
variational posterior distribution, we employ stochastic gradient 
descent within the automatic differentiation variational inference 
(ADVI) framework [55]. The key steps of ADVI are outlined in 
Algorithm 1 of the Supplementary material. A prerequisite for 
model parameter estimation is the identification of suitable 
model hyperparameters. In VI-MIDAS, the key hyperparameters 
are the scale of the sparsity-inducing Laplace prior, the scale of 
the inverse-Cauchy prior, and the intrinsic dimensionality k of the 
latent space β, respectively. VI-MIDAS tunes these parameters via 
random search (see Section 3.3 of the Supplementary material 
for details) where the out-of-sample log-likelihood posterior 
predictive density (LLPD) is used for assessing optimality of the 
hyperparameters [56]. Due to the non-convexity of the objective 
and the use of stochastic optimization in VI initialization, we 
further evaluate the suitability of hyperparameter setting across 
fifty random initializations and select the hyperparameter 
set leading to the best averaged LLPD (see Section 3.5 of 
the Supplementary material). The computational workflow is 
implemented in Python using the probabilistic programming 

language Stan [57] and is available in the GitHub repository 
(https://github.com/amishra-stats/vi-midas). 

After hyperparameter tuning, we re-estimate the final model 
parameters on complete data. VI-MIDAS generates m = 100 
posterior samples of each of the latent variables in the set �

and estimates the model parameters � using the mean of the 
samples from the variational posterior distribution. The model fit 
is numerically evaluated using the posterior predictive check [56, 
58] on the full data. The procedure requires generating m posterior 
samples, denoted by the random variables Wrep = [wrep 

ij ] ∈ Rn×q 
+ , 

and then computing the p-value of the model fit as p-value := 
p(t(Wrep) <  t(W)), where t is the test statistic. In practice, we 
use the test statistics t(Wrep) = E(log p(Wrep|�)) and t(W) = 
E(log p(W|�)). 

Results 
VI-MIDAS recapitulates broad statistical patterns of the 
observed species abundances 
VI-MIDAS’ hyperparameter tuning revealed that the setting k = 
200, λ = 0.246, and  ν = 0.10063 achieved the highest average LLPD 
of 3.332 on the Tara data (see Fig. S7 in Supplementary material). 
For this setting, a posterior predictive check on the generated 
samples achieved a P − value = 0.53. We thus fail to reject the 
null hypothesis that the posterior samples are different from the 
observed W. Figure 3A and 3B shows the observed and estimated 
abundance profiles (averaged over m = 100 samples), respectively. 
Fig. 3C shows the count histograms of data and model (pooled 
across all samples and species), and Fig. 3D shows the Q–Q plot. 
We observe that, apart from the low-abundance tail of the distri-
bution, VI-MIDAS broadly recapitulates the statistical abundances 
patterns across all samples and species. 

VI-MIDAS identifies depth and environmental features as 
main drivers 
We next assessed the contribution of each model component 
toward explaining the species abundance patterns in the Tara 
data. The modularity of the VI-MIDAS framework facilitates 
an “ablation” study (see Section 3.4 of the Supplementary 
material) where each model component is excluded, followed 
by a re-evaluation of the out-of-sample LLPD. Table S4 (see 
Supplementary materials) shows the LLPDs of the full model 
and the model after ablation of the environmental (E), province 
(P), ocean depth (D), seasonality (S), and latent interaction (I) 
component, respectively. 

Firstly, the ablation study confirmed that all components 
helped improve model generalization since every ablated 
model has reduced out-of-sample LLPDs. While the seasonality 
component(S) shows comparatively little influence on explaining 
the abundance pattern in the current model, as previously 
observed for this dataset [14], the out-of-sample LLPD is reduced 
the most when the ocean depth (D) component is ablated (LLPD 
= –3.3882). This reflects the well-known depth stratification of 
marine species between the sunlit ocean and aphotic deep ocean 
ecosystems. Figure S4 in Supplementary material illustrates the 
learned depth stratification across all taxa, as reflected in the 
component δβ. The environmental component was identified as 
the second most important component with an LLPD reduction 
of -3.3554. 

Figure 4 summarizes the estimated effects δβ of the ocean 
depth features and the environmental effects γ on the abundance 
of species aggregated into ERCs, respectively. The ocean depth 
summary (Fig. 4A) reveals three distinct sets of occurrence
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Figure 3. Comparison of observed abundances and VI-MIDAS posterior samples: (A) Heatmap showing the abundance profile log(W + 1) of 1378 
species for n = 139 samples. (B) Expected value of the abundance using the hyperparameter corresponding to best model fit. (C) Histograms of 
observed and estimated species abundances. (D) Q–Q plot comparing the observed and estimated abundance profile of the species. 

patterns for two different groups of ERCs. One group (right most 
in Fig. 4A) comprises ERCs such as Nitrosopumilius, Pseudomon-
adales, SAR 324 clade, and Sphingomonadales which thrive in 
the Mesopelagic (MES) zone. A second group includes species 
like Prochlorococcus, SAR 116 clade, and Synechococcus, which 
flourish within the ecosystem of the ocean’s deep chlorophyll 
maximum (DCM) and surface mixed layer (SRF) zones. The third 
group comprises marine Actinobacteria, Verrucomicrobiota, and 
others that show no dependence on depth. A summary of geo-
chemical features highlights temperature (the top row in Fig. 4B) 
as the primary positive factor influencing the abundance of 
Synechococcus, Prochlorococcus, and Puniceispirillales (SAR116 
clade). Oxygen concentration emerges as the main positive 
driver of abundance for Cytophagales, Flavobacteriales, and 
Roseobacter clades, while Nitrates, Nitrites, and Phosphate are 
identified as key drivers for the SAR324 clades, Nitrosopumilus, 
and Oceanospirillales (four right most columns in Fig. 4B). The 
estimated patterns broadly recapitulate known biology about 
ocean microbial ecosystems. 

VI-MIDAS reveals five latent microbial sub-communities 
The generative model (1) of VI-MIDAS includes the taxon-
specific latent variables β ∈ R

k×q to integrate spatiotemporal 
features and taxon–taxon associations. For the Tara data, VI-
MIDAS’ hyperparameter tuning scheme identified k = 200 as 
best latent dimension. After model estimation, the resulting 
k−dimensional latent vectors can be thought of as representing 
the hidden marginal characteristics of each of the q taxa after 
discounting spatiotemporal and species-species association 
effects, and adjusted for environmental covariates. The latent 
space representation thus provides an excellent opportunity to 
partition the different taxa into coherent sub-groups (or modules) 

that likely reflect functionality or niche occupation in the global 
ocean, independent of environmental, taxonomic or phylogenetic 
relatedness. 

To quantify similarity between microbial taxa in the latent 
space, we first computed cosine distances of all pairs of the q 
latent vectors. This particular choice of distance allows us to 
bypass the non-identifiability issue of the parameter β. We  used  
the resulting distance matrix to construct a k-nearest neighbors 
graph (knn = 10). Figure 5 shows the latent space embedding using 
a force-directed layout of the k-nn graph. We next performed 
Clauset-Newman-Moore greedy modularity analysis of the near-
est neighbor graph [59] and identified five distinct modules in 
the latent space (see M1-M5 in Fig. 5 with top five ERCs high-
lighted and color-coded). The latent space representation reveals 
several distinct microbial sub-communities, dominated by a few 
ERCs, including one sub-community dominated by Prochlorococ-
cus and SAR11 clades and one dominated by Nitrosopumilus. 
Module 1 (M1) comprises Flaviobacteriales, SAR86 clades, and the 
Chloroplast class. SAR11 clade, SAR86 clade, and Flavobacteriales 
are heterotrophs with functional similarity in oxidizing carbon 
in the ocean [60]. Both SAR86 clade and SAR11 clade follow a 
similar seasonal pattern (in the Bermuda Atlantic Time Series 
oceanographic stations) and coexist in oligotrophic regions with 
less nutrient supply [61]. Module 2 (M2) includes Nitrosopumilus, 
Marinimicrobia, and SAR324 clades. Existing literature supports 
that SAR11 clade (a subgroup of a species), Marinimicrobia, and 
MGII Archaea are more abundant in deep sea water [62]. Module 
3 (M3) comprises Prochlorococcus, SAR11, Marine Actinobacteria, 
and SAR86 clades, among others, all comprising dominant taxa 
of the sunlit ocean. The two smallest modules 4 and 5 (M4 
and M5, respectively) are dominated by Alteromonadales and 
are separating M2 from M1 and M3. Interestingly, Module 4 also
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Figure 4. Summary of the estimated average effect sizes of the influence of (A) ocean depth (VI-MIDAS model component δβ) and (B) environmental 
covariates (VI-MIDAS model component γ ) on all  ERCs.  

comprises Synechococcus species. This module thus hints at the 
known metabolic dependency of certain Alteromonadales taxa 
on Synechococcus (a photoautotroph) [ 63]. Although the latent 
representation does separate the majority of ERCs into distinct 
subgroups, we nonetheless observe that taxa of certain ERCs are 
spread out over the latent space, indicating different niche spe-
cialization. For instance, the SAR11 clade, one of the most abun-
dant marine microbial taxa, is present in three different modules. 
Likewise, taxa in the SAR86 clade are present in both modules 
M1 and M3. For ease of identification, Table S3 in Supplementary 
material summarizes each module in terms of the composition of 
the ERCs and their abundance. 

Global associations between biogeography and latent 
microbial sub-communities 
VI-MIDAS’ integrative model also enables a quantitative descrip-
tion of the identified microbial sub-communities in terms of the 
direct and indirect coupling covariates. Figure 6 illustrates how 
the compositions of ERCs in each of the five modules are related 
to the most important environmental and spatial covariates. 

Using the mean of the posterior sample from the VI-MIDAS 
model, we used the estimated γ as the effect sizes of the environ-
mental features X, δβ as effect sizes of depth, and αβ as the effect 
sizes of the r provinces, respectively Figure 6 reports the average 
effect sizes of association to the four modules. 

The module M1 represents taxa coexisting in the SRF and 
DCM zone of the ocean. The abundance of taxa in the mod-
ule is associated with a higher concentration of oxygen, PO4, 
and NO2NO3 and lower temperature and salinity. In addition 
to representing the taxa SAR11 clade, SAR86 clade, Chloroplast, 
and Flavobacteriales, the module also includes Synechococcus, 
Oceanospirillales, and Poseidoniales. Synechococcus is a unicel-
lular prokaryotic autotrophic picoplankton that participates in 
the marine ecosystem as a primary producer via photosynthesis. 
Similarly, Chloroplast sequences are a signature of eukaryotic 
phytoplankton, though their host eukaryote is not identified in 
the TARA Oceans dataset. The presence of both taxa in M1 thus 
is consistent with environments that have higher oxygen con-
centrations due to photosynthesis and gas exchange with the 
atmosphere. 

Module M2 mainly represents the species coexisting in the MES 
zone (200–1000 m) of the ocean (see Fig. 2(E)). M2 almost exclu-
sively represents the ERCs Nitrosopumilus and SAR324 clade. The 

abundance of the species in the group is associated with a lower 
concentration of oxygen and temperature, and higher concen-
trations of nitrates, PO4, and  NO2NO3. In the oxygen-depleted 
environment, Nitrosopumilus survives by oxidizing ammonia to 
nitrite, confirming the observed association pattern [64]. Mari-
nomicrobia (SAR406 clade) in groups M1 and M2 allow us to 
distinguish subgroups of species that can survive in both deep and 
shallow water [62]. 

Module M3 comprises the highest mean abundance of all taxa 
is highest, primarily representing the taxa SAR11 clade, SAR86 
clade, and Prochlorococcus (cyanobacteria). The abundance of the 
species in the group is positively associated with depth indicators 
(and negatively associated with MES. Among the geochemical 
factors, temperature, salinity, and oxygen concentration are posi-
tively associated, whereas the concentration of nitrates, PO4, and  
NO2NO3 is negatively associated with the taxa. 

Module M4 primarily represents Alteromonadales (Proteobac-
teria) and some Pseudomonadales (Proteobacteria) and Syne-
chococcus. Their abundance is associated with factors such as 
lower salinity and higher oxygen concentration. Module M5 also 
primarily represents Alteromonadales. Based on its association 
with the ocean depth indicators and geochemical features, we 
conclude that these taxa can survive in a deep-sea environment 
characterized by lower temperatures and oxygen concentrations. 
Associative patterns of Alteromonadales in M4 and M5 differ 
significantly, suggesting distinct ERC sub-groups that populate 
different niches. 

Positive and Negative interactions among ERCs 
VI-MIDAS includes a mechanism for learning microbial interac-
tions adjusted for direct (here, environmental) covariates. Con-
trary to prominent (partial) correlation-based methods [65, 66], 
VI-MIDAS follows the SHOPPER utility model [30] and quantifies 
pairwise interactions Iij between any two taxa i and j in terms of 
the latent variables ρ and β (see Eq. 9). 

To get a high-level view of the estimated interactions, we 
aggregated the adjacency matrices of significant positive and 
negative interactions among taxa by ERCs (for a more detailed 
view of the most significant taxon-level interactions, we refer to 
Section 4 of the Supplementary Materials). Figure 7 illustrates the 
aggregated positive (lower triangle) and negative (upper triangle) 
interactions among ERCs. The diagonal entry highlights the max-
imum of the two types of interactions to avoid confusion (see
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Figure 5. Low-dimensional embedding of the latent representation β using a k-nearest-neighbor (knn = 10) graph of cosine distances. Modularity 
analysis reveals five distinct graph modules. We highlight 825 out of a total of 1378 taxa, comprising the top five ERCs in each of the five modules (see 
main text for further information). 

also Section 4 of the Supplementary materials for the matrix of 
ratios between positive and negative interactions). We observe 
that SAR11 clade and Rhodospirillales form positive interactions 
with almost all other ERCs. SAR11 clade and Rhodospirillales 
belong to the Alphaproteobacteria phylum that play a critical role 
in carbon and nitrogen fixation [ 67, 68], potentially explaining the 
large number of interactions. However, members of the SAR11 
clade also form many negative interactions with other ERCs. 
Alteromonadales exhibits primarily negative interactions with 
other ERCs (the strongest one with SAR11). 

Discussion 
In recent years, multimodal and multi-omics microbiome sur-
vey data have emerged for a wide range of microbial habitats 
[14, 41, 69–72]. These data collections hold the promise to describe 
and understand the functional interplay between the underlying 
microbial ecology and the host or the environment the microbiota 
resides in. Learning interactions among species and habitat char-
acteristics from observational data remains, however, a challeng-
ing problem. To this end, we have proposed VI-MIDAS, a flexible 
and efficient probabilistic framework for microbiome survey data 
analysis. 

VI-MIDAS uses the negative binomial distributional framework 
in combination with a principled centering transformation to 
model overdispersed amplicon abundance data and comprises 
three mechanisms to integrate concomitant covariate data into 
the generative model: (i) a direct coupling mechanism, (ii) an indi-
rect latent coupling mechanism, and (iii) a latent interaction term. 

These terms are linearly linked to the probability distribution’s 
mean parameter. Because of the intractable form of the marginal 
distribution of data, we apply mean-field variational inference 
framework to learn an approximate posterior distribution of the 
parameters. 

VI-MIDAS is available in Python and uses the probabilistic pro-
gramming language Stan [57]. The implementation is available on 
GitHub (https://github.com/amishra-stats/vi-midas). The reposi-
tory also includes Python scripts and Jupyter notebooks for VI-
MIDAS’ three-stage parameter estimation framework: hyperpa-
rameter tuning, component contribution analysis, and sensitivity 
analysis. 

To illustrate the VI-MIDAS modeling and analysis workflow, 
we have used data from the global Tara expedition [14], connect-
ing the available spatiotemporal and environmental character-
istics with generative modeling of the amplicon count data. To 
ease interpretability, we also grouped the amplicon-derived taxa 
into expert-annotated ecologically relevant classes (ERCs) which 
may be of independent interest for the analysis of other marine 
sequencing data. Focusing on the q = 1378 most abundant taxa 
representing 23 ERCS, we integrated the geochemical data using 
the direct coupling mechanism, effectively removing influence of 
common environmental factors such as temperature, salinity, and 
elemental compositions on microbial abundances. The remain-
ing spatiotemporal features, including season, ocean province, 
and depth, as well as species-species associations are integrated 
through the latent coupling and interaction mechanism, thus 
delivering a latent species representation, adjusted for the influ-
ence of all available covariates. The learned VI-MIDAS’ model
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Figure 6. Global associations between biogeography and covariates: each row presents the average effect size of the association between the microbial 
abundances of taxa in a module (M1–M5) to the geochemical features and ocean depth (from left to right). A module (leftmost) is shown as the 
composition (in %) of the ERCs. Each module comprises different number of taxa {524, 400, 307, 112, 35}, respectively. Modules M1–M3 cover the 
majority of taxa, and M4–M5 two smaller Alteromonadales-dominated sub-communities. 

thus not only provides a convincing generative count model for 
the Tara data but also allows integrated statistical analysis of 
covariate feature effects and taxa abundances. 

Modularity analysis of the similarity network of VI-MIDAS’ 
latent species representation revealed that the majority of taxa 
(> 1200) can be categorized into three global microbial communi-
ties (M1–M3 in Fig. 5), including a low-temperature/high-oxygen 
community (M1), dominated by Flavobacteriales and the Chloro-
plast ERC, a mesopelagic community (M2) dominated by SAR11, 
SAR324, and Nitrosopumilus, and a high-temperature community 
(M3) dominated by SAR11 and Prochlorococcus, the later of which 
is the most abundant clade in the oligotrophic subtropical and 
tropical oceans (see, e.g. [73] and references therein). Furthermore, 

our analysis suggests two distinct Alteromonadales-dominated 
communities that show different depth and province dependen-
cies (M4–M5) (see Fig. 6 for further global associations overview). 
It is noteworthy that Alteromonadales also play a pivotal role 
in the latent interaction analysis, showing widespread negative 
associations with other ERCs. We posit that the potentially distinct 
role of Alteromonadales in the global ocean might be of interest 
for follow-up analysis on other data sets, including recent data on 
the global mesopelagic zone [74]. 

While our ablation study showed evidence that all VI-MIDAS 
components for the Tara data contribute to the quality of the 
generative model, the model is just one of several available 
alternatives. For covariate inclusion, we deliberately chose
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Figure 7. Summary of taxonomic interactions: The adjacency matrices of significant positive and negative interactions among taxa are grouped and 
aggregated by their ERCs type. Interactions summary by the ERCs types. Lower triangle reports positive interactions, the upper triangle reports 
negative interactions. Diagonal entries show the maximum of either (positive or negative) self-interaction. 

to directly adjust the microbial abundances for geochemical 
covariates to better carve out “hidden” relationships among 
the species. Nonetheless, the VI-MIDAS framework naturally 
enables other model constructions. For instance, one could have 
removed the direct coupling component and link all concomitant 
features to the latent space representation, or alternatively, 
remove the latent representation altogether and directly adjust 
for all covariates. We will explore such modifications in future 
studies. Moreover, while we chose the Negative Binomial model 
as base distribution for the most abundant taxa, the variational 
formulation lends itself to other statistical models for microbial 
count data, including zero-inflated or hurdle- type extensions of 
the Negative Binomial model [ 75] or the Dirichlet-Multinomial 
model [35, 76]. Finally, in its current state, VI-MIDAS is built 
on Stan [57] with tailored Python code for optimization, model 
selection, and analysis. The advent of extensive statistical 
packages in modern deep learning tools, such as Tensorflow 
distributions [77] or PyTorch [78], may enable efficient porting 
of VI-MIDAS into these general-purpose ecosystems. Paired with 
variational inference tools [79], would potentially allow for faster 
model adaptation and alternative optimization routines. 

VI-MIDAS makes the explicit methodological choice to 
symmetrize the latent interaction structure, leading to the 

interpretation of positive (“mutualistic”) and negative (“compet-
itive”) associations (see Eq. 9). While this approach precludes 
the representation of asymmetric (directed) interactions such 
as parasitism, it enables meaningful aggregation of the overall 
interaction structure across ERCs. In our future work, we 
aim to explore explicit modeling of directionality in microbial 
interactions, potentially leveraging approaches designed for 
directed networks. 

The VI-MIDAS framework was designed to adapt model 
complexity to dataset size, ensuring applicability to presently 
available microbiome survey data. VI-MIDAS employed a random 
search strategy for hyperparameter tuning, sampling 50 param-
eter combinations for latent dimension (k), sparsity-inducing 
priors (λ), and dispersion parameters (υ) (see Section 3.3 of 
the Supplementary material). Five-fold cross-validation based 
on out-of-sample (LLPD) identified optimal hyperparameter 
settings, with robustness further ensured through 50 random 
initializations to address non-convexity in ELBO optimization 
(see Section 3.5 of the Supplementary material). We also 
performed model ablation to evaluate the importance and 
contribution of specific model components by systematically 
removing them and assessing their impact on performance or 
interpretability. This three-pronged strategy—hyperparameter
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tuning, sensitivity analysis, and model ablation—effectively 
balances model complexity with sample size. In our experience, 
VI-MIDAS performs robustly with datasets of several hundred 
samples. For smaller datasets, we recommend to simplify the 
model by removing the latent taxon–taxon interaction terms to 
mitigate overfitting. 

In summary, VI-MIDAS provides a novel probabilistic frame-
work for learning environment- or host-specific feature associa-
tions, latent species characterization, and species–species inter-
actions from microbiome survey data. With minimal adjustment, 
the framework is readily available for the analysis of other large-
scale survey data, including gut microbiome surveys [12, 80, 81], 
thus representing a potentially valuable general-purpose tool for 
the integrated analysis of modern microbiome data collections. 
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