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1 Supplementary Figures

We report the supplementary figures of the data analysis related to the main manuscript.
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Figure S2: a) Compares the possible approach of computing the geometric mean of the microbial abundance
sample to be considered as an offset term t in the VI-MIDAS. Suggested approach mainly differs in the
pseudo δi added to zero entries in a given sample; b) Over-dispersion of abundance is demonstrated by
comparing the means and standard deviations of the abundance of q = 1378 species selected for analysis.
According to the analysis, the negative binomial distribution is an appropriate distribution to represent the
microbial abundance data.
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Figure S1: Low-dimensional embedding of the latent representation β using a k-nearest-neighbor (knn = 10)
graph of cosine distances. Modularity analysis reveals five distinct graph modules. We highlight 825 out of
a total of 1378 taxa, comprising the top five ERCs (color-coded) in each of the five modules (see main text
for further information).

2 Supplementary Tables

Table S1: Dimension of the latent variables in the parameter set ` of the VI-MIDAS model.

γ β ρ α δ ϑ τ Φ

# ncols 1378 1378 1378 4 4 4 1378 1378
# nrows 11 200 200 200 200 200 1 1

Table S2: Selected value of the latent variable dimension k and the hyper-parameters {λ, υ} of the Laplace
and Inverse-Cauchy priors in the range of one standard deviation of the largest value of the LLPDo.

Index k λ υ LLPDo

1 200 0.246 0.10063 -3.318726
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Figure S3: Comparison of interactions among ERC identifiers: The adjacency matrices of significant mu-
tualistic and competitive interactions among OTUs are grouped and aggregated by their ERC identifier.
A block represents the logarithmic ratio of the number of mutualistic interactions versus the number of
competitive interactions. Positive and negative values, accordingly, represent one larger than the other.
Blue for mutualistic interaction and Red for competitive interactions.
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Figure S4: Model fit: Estimate of the non-interaction components in the linear predictor η: a) Province
indicator; b) Biome (depth) indicator; a) Quarter (time) indicator; d) Biogeochemical factor; e) Embedding
effect.
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Figure S5: Model fit: a) Mean estimate of the posterior sample using VI-MIDAS; b) Median estimate of
the posterior sample using VI-MIDAS; a) Mode estimate of the posterior sample using VI-MIDAS.
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Figure S6: a) Scatter plot comparing entries of the CLR transform of the observed and estimated microbial
species abundance given by log W/T and log E(W)/T, respectively; b) Comparison of the estimate of τ
and mean of the species abundance; and c) Out-of-sample validation of VI-MIDAS model performance using
Q-Q plots comparing predicted vs. observed values for 20 simulations with 90% training and 10% validation
data. Each panel represents one simulation and reports p-values from Bayesian model tests for significant
differences between predicted and observed data across the 20 simulations.
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Table S3: Top five ecologically relevant classifications (ERC) indicator of taxa in the five modules identified
in the network (shown in Figure 5) highlighting similar nodes. The table reports the composition (as %) of
825 taxa in terms of the ERC indicator and their mean abundance.

Module ERC Abundance Members Module ERC Abundance Members
(Mean) (%) (Mean) (%)

Chloroplast 12.49 9.09 Alteromonadales 7.24 6.42
Flavobacteriales 11.00 8.00 Synechococcus 27.70 1.70

SAR11 clade 19.44 5.94 Pseudomonadales 4.83 1.45
Other 10.77 5.09 Other 6.37 1.33

1

SAR86 clade 18.91 3.88

4

Oceanospirillales 5.78 0.48
SAR11 clade 18.67 8.48 Alteromonadales 17.84 3.76

Nitrosopumilus 23.03 6.06 Bacteria-other 12.22 0.12
SAR324 clade 15.48 5.09 Chloroplast 17.81 0.12

Marinimicrobia 16.69 4.97 Oceanospirillales 36.30 0.12
2

Gamma-other 11.13 3.15

5

Other 13.29 0.12
SAR11 clade 45.63 13.70

Prochlorococcus 53.06 3.52
SAR86 clade 34.74 3.27

Flavobacteriales 28.33 2.06
3

Marine Actinobacteria 29.17 2.06

3 Methods Details

3.1 Controlling for the relative abundance data in VI-MIDAS

Due to experimental limitations and systematic bias in high-throughput sequencing, we do not have access
to microbial species’ absolute (actual) abundance data. Several analysis techniques have been proposed
for use on the transformed data. Some acceptable transformation techniques include centered log-ratio
transform (CLR), relative abundance, and isometric log-ratio transform [Callahan et al., 2016]. Many
statistical methods [Shi et al., 2016, Mishra et al., 2019] consider the relative abundance (compositional)
data for exploratory and predictive tasks in microbiome data analysis. For example, CLR transformation
leads to centering the log of abundance by its geometric mean, i.e.,

CLR(w) = log w − log g(w)

where g(w) is the geometric mean of w. Instead of using the relative abundance data for a predictive model,
VI-MIDAS overcomes the limitations of the microbial abundance data by the use of a suitable offset term.
By including ti = log g(wi) as an offset term in the log-link function (2) of VI-MIDAS, one can control for
such limitations; see [Zhang et al., 2017].

A significant number of entries in the abundance matrix W are zeros. Some of these may reflect the
absence of species, while others may be caused by experimental limitations. Hence, one may consider
computing the geometric mean using only non-zero entries in a sample (g+) or after adding a pseudocount
(δi) to the ith sample. A standard approach is to use δi = 1, denoted g+1. In the VI-MIDAS model, we
mainly follow de la Cruz and Kreft [2018] to compute the pseudocount δi by solving

δi = sup{δ∗ ∈ (0,∞) | Gwi,ε(wi)− g(w+
i ) ≤ εg(w+

i )},

where Gwi,ε(wi) = exp
(

1
n

∑q
j=1 log(wij + δi)

)
− δi, w+

i = {wij |wij > 0} is the set of nonzero entries in

wi and ε is the relative difference between the standard geometric mean g(w+
i ) and our modified geometric

mean. Let us denote the geometric mean by g+δi . In practice, one may also use δ∗ = minni=1 δi as a
possible alternatives with geometric mean as g+δ∗ . Figure S2 (a) in the supplementary materials compares
the geometric mean of n samples using the suggested approach.
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3.2 Variational inference for estimation

VI-MIDAS is an over-parameterized model. To generalize well on the test data, VI-MIDAS uniformly
places a Laplace prior with scale parameter λ on each of the unconstrained latent variables in the set
{α, δ,β,γ,ρ,ϑ}, i.e., p(αij) = Laplace(0, λ) and p(α) =

∏
i,j p(αij). Also, we place a inverse-Cauchy priors

on the dispersion parameter Φ, i.e., p(φj) = inverse-Cauchy(0, υ) and p(Φ) =
∏
j p(φj), and a Uniform(1,2)

prior for the shape parameter τ , i.e., τj ∼ Beta(1,1) and p(τ ) =
∏
j p(τj). Given the microbial abundance

data W, the geochemical covariates X, the model parameter ` and the generative model (1), we express
the posterior as

p(`; W,X, t) =
p(W; `,X, t)p(`)

p(W; X, t)
, (1)

where p(W; `,X, t) =
∏
i,j p(wij ; τjµij , φj) is the likelihood of W and p(`) =

p(α)p(δ)p(β)p(γ)p(ρ)p(Φ)p(τ )p(ϑ) is the joint prior distribution. In the high-dimensional setting,
computing the posterior distribution is challenging because of the intractable form of the marginal
distribution p(W; X, t) and the non-conjugate priors on the model parameters. Markov Chain Monte Carlo
(MCMC) sampling provides a helpful paradigm for obtaining the required posterior distribution in the
Bayesian framework. However, MCMC lacks computational efficiency in large/high-dimensional problems
such as VI-MIDAS. Hence, we use the framework of mean-field VI [Jordan et al., 1999, Wainwright et al.,
2008, Blei et al., 2017] and approximate the posterior with a variational posterior distribution of the latent
variable `.

We let q(`;ν) be the variational posterior distribution with parameter ν. VI minimizes the Kullback-
Leibler (KL) divergence,

min
ν

KL(q(`;ν) || p(`; W,X, t))

such that supp(q(`;ν)) ⊆ supp(p(`; W,X, t)). On simplification, the optimization problem is equivalent to
maximizing the evidence lower bound (ELBO) given by

L(ν) = Eq(`;ν)[logP (W, `; X, t)]− Eq(`;ν)[log q(`;ν)], (2)

a lower bound on the logarithm of the joint probability of the observations, i.e., logP (W; X, t) [Jordan
et al., 1999]. One can further simplify by replacing the joint distribution P (W, `; X, t) with a product of
likelihood and prior distribution P (W, `; X, t) = P (W; `,X, t)P (`).

Coordinate ascent variational inference provides an efficient framework for approximating the variational
posterior in a generative model with conjugate priors satisfying support-matching constraints [Blei et al.,
2017]. For a general scenario, such as VI-MIDAS, we transform the support of the latent variable ` to a
real coordinate space using a one-to-one differentiable function

T : supp(p(`)) = Rl (3)

and express the transformed variable as ζ = T(`) where ζ ∈ Rl. For example, given any latent variable
a ∈ R+, then for T = log, we have ζ = T (a) ∈ R. Similarly, for any a ∈ (0, 1), we apply the logit
transform and write ζ = T (a) = logit(a) = log( a

1−a ) ∈ R. Using a standard transformation, we express

the joint distribution of the transformed latent variable ζ as P (W,T−1(ζ); X, t)|det JT−1(ζ)|. For the
unconstrained latent variables ζ, we formulate the mean-field variational posterior distribution as

q(ζ;µ,σ) ∼ N (µ,Σ) =

l∏
i=1

N (ζi;µi, σi),

where µ = [µ1, . . . , µl] ∈ Rl is the mean parameter and σ = [σ1, . . . , σl] ∈ R+l is the variance parameter.
Now, we reformulate the ELBO (2) in terms ζ as

L(µ,σ) = Eq(ζ;µ,σ)[logP (W,T−1(ζ); X, t) + log |det JT−1(ζ)|]− Eq(ζ;µ,σ)[log q(ζ;κ)]

= Eq(ζ;µ,σ)[logP (W,T−1(ζ); X, t) + log |det JT−1(ζ)|] +
∑
i

log σi + const. (4)
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Here, Gaussian variational distribution is related to the second-order approximation of the posterior around
the maximum-a-posteriori (MAP) estimate. In terms of the original parameter `, variational distribution
is non-Gaussian because of the transform T and its Jacobian. To estimate parameters of the variational
posterior after reparameterization, VI-MIDAS solves

µ̂, σ̂ ≡ arg max
µ,σ

L(µ,σ), (5)

using the coordinate ascent approach. We solve the optimization problem using stochastic gradient ascent
(SGA), which uses automatic differentiation (AD) to compute the gradient and Monte Carlo integration
to approximate the expectation [Blei et al., 2017]. AD is applicable when gradient operation is inside the
expectation. The estimation approach achieves this by applying an additional elliptical transformation given
by κi = (ζi − µi)/ exp(vi) where vi = log σi. We denote the set of new latent variable as κ = [κ1, . . . , κl],
and reparameterize ELBO as

L(µ,v) = Eq(κ;0,1)[logP (W,T−1(S(κ)); X, t) + log |det JT−1(S(κ))|] +
∑
i

vi, (6)

where ζ = S(κ) = diag[exp(v)]κ+ µ and v = [v1, . . . , vl]. To execute gradient ascent, we need to compute
dL(µ,v)
dµ and dL(µ,v)

dv . Let us represent the derivative of the random variable function inside the expectation

as da
dκ = ∇θ logP (W,θ; X, t)∇κT−1(S(κ)) +∇κ log |det JT−1(S(κ))|. Then, with reparameterized ELBO,

the gradient with respect to µ and v is given by

dL(µ,v)

dµ
= Eq(κ;0,1)

[ da
dκ

]
and

dL(µ,v)

dv
= Eq(κ;0,1)

[ da
dκ
� exp(v)� κ

]
+ 1. (7)

We compute the gradient inside the expectation using automatic differentiation and then approximate the
expectation using MC integration by drawing m (typically m = 1) from the standard normal distribution.
This step results in a noisy and unbiased estimate of the gradient of the ELBO. Using the gradient estimate,
we update the variational parameters {µ,v} via stochastic optimization given by

µ(i+1) ← µ(i) + ξ(i)µ �
dL(µ,v)

dµ
, and v(i+1) ← v(i) + ξ(i)v �

dL(µ,v)

dv

where ξ(i)µ and ξ(i)v are step-size. The computation procedure is guranteed to converge to a local maximum
of the ELBO under the condition of a sufficiently decaying step-size sequence. In particular, we use an
adaptive step-size sequence [Duchi et al., 2011] to meet this condition given by

ξ(i)µ = ϑ× i−1/2+ε ×

(
ς +

√
%
(i)
µ

)−1
and ξ(i)v = ϑ× i−1/2+ε ×

(
ς +

√
%
(i)
v

)−1
, (8)

where ϑ is the learning rate, %
(i)
µ = αdL(µ,v)dµ + (1 − α)%

(i−1)
µ and %

(i)
v = αdL(µ,v)dv + (1 − α)%

(i−1)
v is the

curvature. In practice, we search for the optimal learning rate such that ϑ ∈ {0.01, 0.1, 1, 10, 100}. Other
parameters, such as ε = 10−16, ς = 1 are chosen to prevent zero division, and α = 0.1 are chosen in order
to give more weight to the past curvature. This suggested approach to parameter estimation comes under
the framework of Automatic Differentiation Variational Inference (ADVI) [Kucukelbir et al., 2017]. The
approach is implemented in the probabilistic programming language Stan [Carpenter et al., 2017]. We have
summarized the parameter estimation procedure in Algorithm 1.
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Algorithm 1 Automatic Differentiation Variational Inference for VI-MIDAS

Given: Count abundance data W, covariates X, province P, ocean depth D, model
P (W,T−1(S(κ)); X, t) where S(κ) = diag[exp(v)]κ+ µ.
Initialize variational posterior parameter µ(1) = 0,v(1) = 0, i = 1.
Search for learning parameter rate ϑ over a set of finite values.
repeat

Draw m = 1 sample from N (0, I).

Estimate noisy gradient dL(µ,v)
dµ and dL(µ,v)

dv using MC integration; see equation (7).

Calculate step-size ξ(i)µ and ξ(i)v using ADAM; see equation (8).

Update µ(i+1) ← µ(i) + ξ(i)µ �
dL(µ,v)
dµ and v(i+1) ← v(i) + ξ(i)v �

dL(µ,v)
dv .

i← i+ 1
until |L(µ(i+1),v(i+1))− L(µ(i),v(i))| < ε where ε = 0.01
return µ∗ = µ(i),v∗ = v(i).

3.3 Hyperparameter tuning

We estimate the model parameters using the ADVI approach implemented in the probabilistic program-
ming language Stan. VI-MIDAS requires specifying the dimension k of the latent variable and the hyper-
parameters {λ, υ} of the sparsity-inducing Laplace priors and the inverse-Cauchy prior of the generative
model. In the hyperparameter tuning step, the procedure selects 50 random settings from a range of
possible values of the parameters given by k ∈ {10, 16, 30, 50, 80, 100, 150, 200, 500}, λ ∈ (0.01, 3000) and
υ ∈ (0.03125, 0.5). To evaluate these settings, we split the data into five folds with 90% training and 10%
testing. We use Algorithm 1 to estimate parameters on the former and then evaluate the estimate on the
latter using out-of-sample log pointwise predictive density (LLPD) [Gelman et al., 2013, Blei et al., 2017].
Figure S7 reports the test sample LLPD to evaluate the model fit for the selected settings. We select all
the settings in the range of one standard deviation of the most significant value of the LLPD; see Table S2
in the supplementary materials.
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Figure S7: Hyperparameter tuning: a) out-of-sample log pointwise predictive density (LLPD) comparing
fifty different settings randomly selected from a range possible values: taxa-specific feature vector length
k ∈ {10, 16, 30, 50, 80, 100, 150, 200, 500}, hyperparameter for Laplace priors λ ∈ (0.01, 3000) and the hy-
perparameter for inverse-Cauchy priors υ ∈ (0.03125, 0.5); b) parallel coordinate plot highlighting the
hyperparameter settings of high (H : dark red) and low (L: light green) mean values of LLPD. The analysis
has selected k = 200, λ = 0.246 and υ = 0.10063 as the values of the latent variable dimension and the
hyperparameters with the highest LLPD = −3.32.
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3.4 Ablation Study

The analysis quantifies the relative importance of each of the components, i.e., interaction(-I), biogeochemi-
cal environment(-E), province(-P), ocean depth(-D), and seasonality(-S) in the VI-MIDAS model. For each
component in the VI-MIDAS model, we consider a component-excluded model. For instance, the model that
excludes the interaction component is denoted VI-MIDAS(-I). Similarly, VI-MIDAS(-E), VI-MIDAS(-P), VI-
MIDAS(-D) and VI-MIDAS(-S) denote the models excluding the geochemical environment(E), province(P),
ocean depth(D) and seasonality(S) components, respectively. For the selected setting from the hyperparam-
eter tuning step, we evaluate each component-excluded model in terms of the out-of-sample LLPD. From
the comparison results in Table S4, we observe that the seasonality (S) is least important and the ocean
depth(D) component is most important.

Table S4: Out-of-sample log-likelihood posterior predictive density (LLPD) of the full model and after
ablation of the environmental(E), province(P), ocean depth(D), seasonality(S), and latent interaction (I)
component.

Model VI-MIDAS VI-MIDAS(-E) VI-MIDAS(-P) VI-MIDAS(-D) VI-MIDAS(-S) VI-MIDAS(-I)

LLPD -3.3322 -3.3554 -3.3398 -3.3882 -3.3335 -3.3377

3.5 Model sensitivity analysis

The objective function maximizing the ELBO is non-convex; hence, the estimates of the parameters are
sensitive to their initial values. For each of the settings selected in Table S2, we estimate the model
parameters on complete data for fifty random initializations. The parameters estimated from the random
initializations are evaluated based on the fitted LLPD [Gelman et al., 2013]. Out of fifty different parameter
estimates for the selected setting, we select the one with the most significant value of fitted LLPD. Based
on the variational posterior parameter estimate, we generate 100 posterior samples of the latent variables `.

3.6 Model fit diagnostic

After performing the model sensitivity analysis, we obtain the estimate of the VI-MIDAS model parameters
`. The model fit is numerically evaluated using the posterior predictive check [Rubin, 1984, Gelman et al.,
2013] on the full data. The procedure requires generating m = 100 posterior samples, denoted by the
random variable Wrep = [wrepij ] ∈ Rn×q+ , and then computing the p-value of the model fit as

p-value = p(t(Wrep) < t(W)),

where t is the test statistic. In practice, we use the test statistics t(Wrep) = E(log p(Wrep|`)) and t(W) =
E(log p(W|`)). For the selected setting, we have p-value = 0.53, and thus we fail to reject the hypothesis
that the posterior samples are different from the fitted W. A simpler test statistic is t(w) = w. In this case
too, we have p-value = 0.59. We visually examine the model fit by comparing the abundance data with
its predicted value and the error; see Figure S8(a-c). Figure S8 (d) reports the convergence of the ELBO
using ADVI. Finally, we compare the observed and estimated abundance profiles of the species using the
Q-Q plot (for distribution) and the scatter plot; see Figure S8(e-f).
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a b

Figure S8: Model fit diagnostic: a) Heatmap showing the abundance profile log(W + 1) of 1378 species at
n = 139 distinct geographical locations across the globe; b) Expected value of the abundance using the hy-
perparameter corresponding to best model fit; c) Error plot representing the absolute value of the difference
between the observed and expected species abundance, denoted by | log E(W )− log W|; d) Convergence of
the ELBO with conformable rank k = 16 and hyperparameter λ = 398.199 and υ = 0.04904; e) Q-Q plot
comparing the observed and estimated abundance profile of the species; f) Scatter plot comparing entries
of the CLR transform of the observed and estimated microbial species abundance, given by log W/T and
log E(W)/T, respectively; g) Histogram comparing the distribution of the observed and expected species
abundance in terms of log W and log E(W).

4 Network analysis of mutualistic and competitive interaction

In the model inference, we have considered the top five positive and top five negative entries in the rows
of I to learn about each taxa’ most significant mutualistic and competitive interactions. Based on the
significant entries in I, we separately define the adjacency matrix of the mutualistic (positive entries) and
competitive (negative entries) interactions and then visualize them through the network plots; see Figure
S9 (a-b).

We have also identified the most important OTUs/taxa in the interaction networks (based on adjacency
matrix; see Figure S9 (a-b)) as a hub (denoted with a “*” shape) with a degree greater than one hundred.
The associations of each of the hub nodes with other taxa (in term ERC types) are summarized in the
mutualistic and competitive interaction heatmap in the Figure S9 (c). Each of the entries in the heatmap
reports the fraction of an ERC type (x-axis) associated with a hub node (y-axis). We have further
summarized the most important associations (greater than 0.5 in Figure S9) of hub nodes in the mutualistic
and competitive interactions network in Table S5.

The set of OTUs (out of a total of 1378) that exhibit the most significant mutualistic interaction includes
{OTU2, OTU3, OTU4, OTU11, OTU13, OTU18, OTU25, OTU21, OTU32, OTU36, OTU48, OTU90};
see Table S5 for the details of taxonomic rank. The ECR types of their hub nodes mainly comprise SAR11
clade, Synechococcus, Prochlorococcus, Rhodospirillales, and Planctomycetes. Based on the ERC type of
the nodes connected to OTU2, OTU4, OTU25 and OTU90 (see Table S5), we deduce the existence of
subtypes of Rhodospirillales that may differ in ecology and metabolic functions. Using organic substrates
as the carbon source, Rhodospirillales can grow in a variety of conditions such as a) anaerobically in the
light, b) aerobically in the dark, and c) fermentatively (anaerobically) in the dark [Alber, 2009]. Similarly,
based on the nodes connected to OTU11, OTU13, OTU18, OTU22 and OTU32, one can learn about the
metabolic versatility of the most abundant ERC type SAR11 clade; and its ability to exhibit mutualistic
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relationships with other species.

Now, the set of OTUs that exhibit the most significant competitive interactions includes {OTU19,
OTU37, OTU354, OTU1139, OTU1563, OTU1824, OTU2578, OTU5312, OTU4327, OTU4683, OTU4704};
see Table S5 for the details of taxonomic rank. In competitive interactions, one species may discourage the
abundance of the other either directly (gazing) or indirectly (metabolic pathway). Most of the OTU that act
as hub nodes have very low mean abundance except {OTU19, OTU37, OTU354}. Based on the competitive
interactions of OTU19, the analysis suggests that SAR86 clade discourages the abundance of taxa with
the ERC indicators Bacteria-other, Oceanospirillales, SAR202 clade, SAR324 clade, Pseudomonadales, Ni-
trosopumilus, and Sphingomonadales. Similarly, OTU19, a Gamma-other bacteria, reduces the abundance
of Poseidoniales (MGII Archaea) and Prochlorococcus, and OTU354, a Marine Actinobacteria, reduces the
abundance of Pseudomonadales and Sphingomonadales.

Table S5: Description of the hub nodes in mutualistic and competitive interactions network (see Figure
S9 (a-b) of the SM) in terms of their ID, ERC indicator, and mean abundance and their most significant
associations (greater than 0.5 in Figure S9(c) of the SM) with other ERC types.

Significant HUB OTU HUB Abundance Connection ERC
Interaction Marker ID ERC (Mean)
Type

4 OTU2 Rhodospirillales 227.3 Rhodospirillales, Alpha-other, SAR86 clade, SAR11 clade, Syne-
chococcus, Puniceispirillales (SAR116 clade), Prochlorococcus

5 OTU3 Prochlorococcus 193.7 Poseidoniales (MGII Archaea), SAR86 clade, Synechococcus,
Prochlorococcus, Puniceispirillales (SAR116 clade)

12 OTU4 Rhodospirillales 177.7 Gamma-other, SAR202 clade, Marinimicrobia (SAR406 clade),
SAR324 clade, Nitrosopumilus

2 OTU11 SAR11 clade 99.1 SAR11 clade
11 OTU13 SAR11 clade 97.7 SAR202 clade
1 OTU18 SAR11 clade 90.0 Rhodospirillales, SAR86 clade, Synechococcus, SAR11 clade,

Prochlorococcus, Puniceispirillales (SAR116 clade)
0 OTU25 Rhodospirillales 86.5 Poseidoniales (MGII Archaea), SAR202 clade, Synechococcus,

Prochlorococcus
14 OTU21 SAR11 clade 85.2 Nitrosopumilus, SAR324 clade
3 OTU32 SAR11 clade 73.1 Poseidoniales (MGII Archaea)
10 OTU36 SAR86 clade 73.0 Puniceispirillales (SAR116 clade)
13 OTU48 Planctomycetota 72.0 SAR202 clade, SAR324 clade

Mutualistic

6 OTU90 Rhodospirillales 51.2 Alteromonadales, Gamma-other, Pseudomonadales, SAR202 clade

16 OTU19 SAR86 clade 80.7 Bacteria-other, Oceanospirillales, SAR202 clade, SAR324 clade,
Pseudomonadales, Nitrosopumilus, Sphingomonadales

2 OTU37 Gamma-other 71.3 Poseidoniales (MGII Archaea), Prochlorococcus
9 OTU354 Marine Actinobacteria 22.1 Pseudomonadales, Sphingomonadales
15 OTU1139 Flavobacteriales 9.0 Alteromonadales, Oceanospirillales, SAR202 clade, SAR324 clade,

Nitrosopumilus, Pseudomonadales, Sphingomonadales
1 OTU1563 Flavobacteriales 8.2 Poseidoniales (MGII Archaea), SAR11 clade, SAR86 clade, Syne-

chococcus, Prochlorococcus
Competitive 0 OTU1824 Oceanospirillales 6.9 Alpha-other, Marine Actinobacteria, Rhodospirillales, Chloroplast

(unclassified), Cytophagales, Puniceispirillales (SAR116 clade),
SAR11 clade, SAR86 clade, Poseidoniales (MGII Archaea), Syne-
chococcus, Prochlorococcus

13 OTU2578 Marine Actinobacteria 6.0 SAR202 clade, SAR324 clade, Nitrosopumilus, Pseudomonadales,
Sphingomonadales

3 OTU5312 Chloroplast (unclassified) 4.6 Prochlorococcus
11 OTU4327 Cytophagales 4.6 Bacteria-other, Roseobacter clade
4 OTU4683 Alteromonadales 4.5 Prochlorococcus, Chloroplast (unclassified), Puniceispirillales

(SAR116 clade), Synechococcus
5 OTU4704 Alteromonadales 4.5 SAR202 clade, SAR324 clade, Nitrosopumilus, Sphingomonadales,

Pseudomonadales
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Mutualistic Interactions Competitive Interactions

A B

C

Figure S9: Interactions among species: Based on the significant entries in I, we separately define the
adjacency matrix of the mutualistic (positive entries) and competitive (negative entries) interactions and
then visualize them through the network plots. a) Network plot based on the top 5 positive interactions of
each of the OTUs with “*” denoting the ten hub nodes identified with degree greater than 100. b) Network
plot based on the top 5 negative interactions of each of the OTUs with “*” representing the 11 hub nodes
identified with degree greater than 100. c) Distribution of the association of the hub nodes (y-axis) with
other species. Entries in the heatmap show association of a hub node with the fraction of each of the ERC
types (x-axis).
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5 Comparison of VI-MIDAS with existing framework

5.1 Comparison of VI-MIDAS network with microbial co-occurance network

We explored microbial community relationships by conducting a co-occurrence network analysis and com-
paring it to a network inferred using the VI-MIDAS framework. For the co-occurrence network, we used
log-transformed abundance data and employed Spearman’s rank correlation ( |r| > 0.3 ) to measure associ-
ations between microbial taxa. To refine the network structure and improve interpretability, we applied a k
-nearest neighbor algorithm ( k = 10 ), ensuring that each node connected only to its ten most correlated
taxa. Visualizing the network with a force-directed graph layout and identified seven distinct ecologi-
cal modules using Clauset-Newman-Moore modularity optimization algorthm (see Figure S10). We have
summarizes top five or less number of taxa in each of the seven modules identified in Table S6. These
modules highlighted groups of taxa with closely linked ecological interactions based on their occurrences. In
contrast, the VI-MIDAS framework took a more integrative approach by combining microbiome data with
environmental and spatiotemporal covariates. The method provides framework to account for confounding
biogeochemical factors such as depth, salinity, and sea surface temperature. The resulting network identified
five ecological modules, reflecting taxa with shared environmental dependencies. Notably, Alteromonadales-
dominated Modules 4 and 5 in the VI-MIDAS network demonstrated distinct environmental preferences,
aligning with their known ecological roles.

Table S7 summarizes the significant structural differences we found between the two networks. The
two networks’ significant differences in edge connectivity were indicated by a Hamming distance of 0.915.
The co-occurrence network displayed a higher clustering coefficient (0.441 vs. 0.400), suggesting tighter
taxonomic groups, whereas the VI-MIDAS network displayed a slightly higher density (0.0116 vs. 0.0111).
The VI-MIDAS network has a reduced average shortest path length (4.732 vs. 5.180), indicating more
effective node connectivity. While highlighting the distinctive features that each method captures, similarity
metrics like the Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI) revealed a moderate
overlap in community structures Rawlings et al. [2023]. As indicated in Table S8, we conducted statistical
tests comparing important network features in order to investigate the differences in more detail. These
tests revealed significant differences in degree centrality (p = 4.6 × 10−7), closeness centrality (p = 7.9 ×
10−127), and spectral correlation (p = 6.2× 10−12), reflecting distinct patterns of node influence and global
connectivity.

Through this analysis, we gained a deeper understanding of how the two approaches capture different
aspects of microbial ecology. The co-occurrence network emphasized direct microbial interactions, while
VI-MIDAS provided a broader perspective by integrating spatiotemporal and environmental dependencies.
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Latent representation 
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Figure S10: Network visualization of microbial taxa co-occurrence based on log-transformed abundance
data, constructed using Spearman’s correlation and refined with the k -nearest neighbor algorithm ( k =
10 ). Nodes represent taxa, and edges highlight significant associations, with modular structures indicating
ecological interactions and shared functional roles.

Alteromonadales dominated subnetwork: We further analyze and compare the Alteromonadales-
dominated modules from the VI-MIDAS framework (M4-M5) to that of sub-network based on microbial
co-occurrence. Table S9 presents statistical test results to demonstrate significant differences between them
in terms of various network properties. For instance, in terms of closeness centrality and spectral correlation
the two networks are significantly different, indicating distinct global connectivity and structural patterns
between the two networks.

Figure S11 compare the two subnetwork in terms phylogenetic distribution analysis. In case of VI-
MIDAS, Pseudoalteromonas and Rheinheimera are mainly dominant in Module 4, whereas Alteromonas,
Salinimonas, Idiomarina, and Glaciecola is present in Module 5. This demonstrate the framework’s ability
to capture functional and ecological differences within this taxon. By accounting for environmental and
spatio-temporal factors, VI-MIDAS identifies functionally similar species that share ecological niches. The
distinction between these subgroups reflects adaptations to specific environmental conditions, highlight-
ing how VI-MIDAS integrates ecological context to reveal taxonomically related and functionally similar
microbial groups.

Together, these methodologies enhance our understanding of microbial dynamics by combining strengths:
VI-MIDAS excels in integrating environmental and latent factors to capture indirect dependencies, while the
co-occurrence network highlights direct taxon-taxon interactions, making it useful for analyzing immediate
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Table S6: Co-occurance network analysis: Top five ecologically relevant classifications (ERC) indicator of
taxa in the seven modules identified in the network (shown in Figure S11) highlighting similar nodes. The
table reports the composition (as %) of 825 taxa in terms of the ERC indicator and their mean abundance.

Module ERC Abundance Members Module ERC Abundance Members
(Mean) (%) (Mean) (%)

1 SAR11 clade 38.68 10.23 4 Alteromonadales 15.19 3.05
1 SAR86 clade 27.47 3.92 4 Pseudomonadales 9.54 0.65
1 Flavobacteriales 19.54 3.34 4 Oceanospirillales 18 0.22
1 Prochlorococcus 53.73 2.03 4 Other 13.29 0.07
1 Marine Actinobacteria 25.48 1.60 4 Chloroplast (unclassified) 17.81 0.07
2 Other 9.86 4.14 5 Alteromonadales 7.7 3.19
2 Nitrosopumilus 19.82 3.63 5 Oceanospirillales 9.25 0.44
2 Flavobacteriales 8.08 3.12 6 Synechococcus 19.91 2.54
2 Oceanospirillales 9.13 3.05 6 Prochlorococcus 15.54 0.29
2 Alteromonadales 5.39 2.32 6 Chloroplast (unclassified) 19.95 0.22
3 SAR11 clade 22.11 6.02 6 Poseidoniales (MGII Archaea) 10.58 0.07
3 Chloroplast (unclassified) 14.62 4.43 6 Marine Actinobacteria 12.97 0.07
3 Poseidoniales (MGII Archaea) 23.98 1.74 7 Pseudomonadales 5.06 1.02
3 Marinimicrobia (SAR406 clade) 21.24 1.74
3 SAR324 clade 19.22 1.09

Table S7: Comparison of VI-MIDAS and microbial co-occurrence network analysis approaches based on
various network measures.

Measure VI-MIDAS Co-occurrence Dissimilarity

Hamming Distance 0.915
Network Density 0.0116 0.0111 0.001
Network Clustering Coefficient 0.400 0.441 -0.041
Network Average Shortest Path Length 4.732 5.180 -0.448
Adjusted Rand Index 0.212
Normalized Mutual Information 0.309

Table S8: Statistical test comparing VI-MIDAS and microbial co-occurrence network for some of the key
network properties . These metrics assess the structural and functional similarities between networks, with
lower p-values indicating statistically significant differences.

Measure Test Statistic P-value

Degree Distribution 0.105225 1.052250e-01
Degree Centrality 0.105225 4.622368e-07
Betweenness Centrality 0.058055 1.921257e-02
Closeness Centrality 0.451379 7.922546e-127
Spectral Correlation 0.183795 6.190849e-12

microbial relationships. These complementary insights not only improve our ability to study microbial
communities but also provide a robust framework for advancing microbiome research in complex ecosystems.

Figure S11 shows assoiciation Alteramonadales in M4-M5 with environmental factors. The associations
of microbial taxa with oxygen and nitrate concentrations shows their ecological adaptations and metabolic
strategies in oceanic environments. Pseudoalteromonas and Rheinheimera, positively associated with oxy-
gen, thrive in oxic conditions, likely contributing to organic matter degradation and secondary metabolite
production in oxygen-rich zones [Møller et al., 2022, Long et al., 2021, Li et al., 2024]. Conversely, Al-
teromonas, Salinimonas, Idiomarina, and Glaciecola, associated with low oxygen but high nitrate levels, are
adapted to oxygen minimum zones (OMZs) where nitrate serves as a key electron acceptor for denitrification
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or nitrate reduction [Long et al., 2021, Acinas et al., 2021]. These patterns highlight oxygen and nitrate as
critical drivers of microbial community structure, shaping ecological niches and supporting biogeochemical
processes essential for maintaining ocean ecosystem balance [Møller et al., 2022, Long et al., 2021, Li et al.,
2024].

Table S9: Sub-network associated with Alteramonadales: Statistical test result comparing key network
properties of VI-MIDAS and microbial co-occurrence network. Except ARI and NMI, these metrics assess
the structural and functional similarities between networks, with lower p-values indicating statistically
significant differences.

Measure Test Statistic/ Signifigance
Value (P-value)

Adjusted Rand Index (ARI) 0.368678
Normalized Mutual Information (NMI) 0.308652
Degree Centrality 0.100000 0.587976
Betweenness Centrality 0.091667 0.69668
Closeness Centrality 0.708333 3.19e-29
Spectral Correlation 0.377398 6.19e-12

5.2 Comparison with linear regression model

Here we performed a comparative analysis by fitting a sparse linear regression model to the normalized
microbiome data for each OTU, using environmental features and spatiotemporal variables as predictors
(See Figure S12), and compares the associations of OTUs in the five modules identified by VI-MIDAS with
those obtained using sparse linear regression. While the linear regression approach identified some general
trends, it failed to capture the latent, higher-order interactions and nuanced community structures that VI-
MIDAS uncovers. Furthermore, the ablation study (Results, page 7, paragraph 4, and Supplementary Table
S4) confirmed the importance of each component in VI-MIDAS, demonstrating that removing taxon-taxon
interaction terms significantly degrades model performance.

5.3 Comparison with variance partition analysis

Variation partitioning analysis (VPA) is a commonly used approach in microbial ecology to partition the
variation in microbial community composition based on environmental variables. The analysis thus provide
a broad understanding of how abiotic factors, such as temperature, salinity, and nutrient concentrations,
contribute to microbial abundances at the community level. However, it is limited when the interest lies in
partitioning variation at the level of individual taxa or specific ecological response categories (ERCs). In
addition, the approach does not integrate latent taxon-taxon interactions or explicitly model the joint effects
of abiotic and biotic drivers, which are critical for a comprehensive understanding of microbial ecology.

In contrast, VI-MIDAS offers a probabilistic generative model that not only captures non-linear relation-
ships between microbial abundances and environmental variables (e.g., depth, temperature, spatiotemporal
features) but also integrates latent taxon-taxon interactions. This approach enables partitioning variation
at both the community and individual taxa or ERC levels. For example, VI-MIDAS identifies ecologically
relevant microbial modules, such as SAR11 and Nitrosopumilus, and reveals hidden taxon relationships that
cannot be resolved by traditional VPA or distance-based methods. Furthermore, it uncovers latent microbial
sub-communities and their biogeographic patterns, providing deeper ecological insights (Main manuscript,
Results, page 7, Fig. 5 ).
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VI-MIDAS networka. Co-occurance networkb.

Figure S11: Comparison of Alteromonadales subnetworks in modules identified by VI-MIDAS and microbial
co-occurrence networks. The first subplot (VI-MIDAS) shows the phylogenetic distribution of distinct taxa
in Module 4 and Module 5, reported as counts and mean abundances at the genus level. The second subplot
(co-occurrence network) reports the same for Alteromonadales in Module 2, Module 4, and Module 5.
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Figure S12: Global associations of biogeography and covariates: Each row presents the average effect size of
the association between the microbial abundances of taxa in a module (M1-M5) to the geochemical features
and ocean depth (from left to right). A module (leftmost) is shown as the composition (in %) of the ERCs.
Each module comprises different number of taxa {524, 400, 307, 112, 35}, respectively. Modules M1-M3
cover the majority of taxa, and M4-M5 two smaller Alteromonadales-dominated sub-communities.Rightmost
two panel show comparison of the association of biogeography and covariates using VI-MIDAS and linear
regression model.
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a. b.

c.

Figure S13: Variation partition analysis of microbiome data from the Tara Ocean Expedition. (a) Scree plot
showing the proportion of variation explained by environmental, spatial, and temporal factors. (b) Biplot
illustrating sample distribution and environmental predictors. (c) PERMANOVA analysis highlighting
the significance and relative contributions of spatial, temporal, and environmental factors to microbial
community variation.
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