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Abstract

Machine learning methods often assume that input features are available at no cost. How-
ever, in domains like healthcare, where acquiring features could be expensive or harmful,
it is necessary to balance a feature’s acquisition cost against its predictive value. The task
of training an AI agent to decide which features to acquire is called active feature acquisi-
tion (AFA). By deploying an AFA agent, we effectively alter the acquisition strategy and
trigger a distribution shift. To safely deploy AFA agents under this distribution shift, we
present the problem of active feature acquisition performance evaluation (AFAPE). We
examine AFAPE under i) a no direct effect (NDE) assumption, stating that acquisitions
do not affect the underlying feature values; and ii) a no unobserved confounding (NUC)
assumption, stating that retrospective feature acquisition decisions were only based on
observed features. We show that one can apply missing data methods under the NDE
assumption and offline reinforcement learning under the NUC assumption. When NUC
and NDE hold, we propose a novel semi-offline reinforcement learning framework. This
framework requires a weaker positivity assumption and introduces three new estimators:
A direct method (DM), an inverse probability weighting (IPW), and a double reinforcement
learning (DRL) estimator.

Keywords: active feature acquisition, semi-offline reinforcement learning, dynamic test-
ing regimes, missing data, causal inference, semiparametric theory

1. Introduction

Machine learning methods typically assume that the full set of input features will be readily
available after deployment, with little to no cost. This is, however, not always the case, as
acquiring features may impose a significant cost. In such situations, the predictive value of
a feature should be balanced against its acquisition cost. In the medical diagnostics context,
the cost of feature acquisition (e.g., for a biopsy test) may include not only monetary cost but
also the potential adverse harm to patients. This is why physicians acquire certain features,
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e.g., via biopsies, MRI scans, or lab tests, only when their diagnostic values outweigh their
costs or risks. The challenge is exacerbated when prediction must be made regarding a
large number of diverse outcomes with different sets of informative features. Going back
to the medical example, a typical emergency department is able to diagnose thousands of
different diseases based on a large set of possible observations. For every new emergency
patient with ambiguous symptoms, clinicians must narrow down their search for a proper
diagnosis via step-by-step feature acquisitions.

Active feature acquisition (AFA) addresses this problem by designing two AI systems:
i) a so-called AFA agent, deciding which features must be observed while balancing infor-
mation gain vs. feature acquisition cost; ii) an ML prediction model, often a classifier,
that solves the prediction task based on the acquired set of features. To elucidate the AFA
process, we present a hypothetical and simplified scenario of diagnosing heart attacks.

Feature
acquisitions

Classification

Unknown
patient states

Acquisition
cost

Perform
Coronography

True label: 
Heart attack

Doctor‘s label: 
No heart attack

Misclassification
cost

Perform
Labtest

Measured
patient states

Figure 1: AFA process for a simplified hypothetical heart attack diagnosis example. A
patient with chest pain (X0) prompts the doctor to first order a troponin lab
test (A1) and, upon reviewing the result (X1), to also order a coronography
(CAG) (A2). The feature acquisitions A1 and A2 produce feature acquisition
costs C1

a and C2
a . After the acquisition process concludes, the doctor makes a

diagnosis Y ∗, which, if different from the true underlying condition Y , produces
a misclassification cost Cmc.

1.1 Heart Attack Diagnosis Example

Figure 1 presents the partially observable decision process that encapsulates the sequential
decision-making aspect of the AFA problem for a heart attack diagnosis example. Upon
arrival at the hospital, a patient with an unknown health state (U0) exhibits the symptom
of chest pain (X0 = ”chest pain”). At this stage, no additional information is available.
The attending doctor decides to order a troponin lab test (A1 = ”acquire troponin”) as

2



AFA Evaluation for Time-varying Feature Settings

part of the feature acquisition process. The laboratory test incurs a feature acquisition cost
(C1

a = ”$100”). Subsequently, upon reviewing the results of the lab test (X2), the doctor
decides that a coronography (A2), an invasive imaging procedure, is necessary. Notably,
the feature acquisition cost (C2

a) for this procedure may be substantially higher due to the
potential harm to the patient. After the completion of the feature acquisition process, a di-
agnosis of whether the patient is experiencing a heart attack is performed. A (hypothetical)
misclassification cost Cmc arises if the diagnosis Y ∗ and the true condition Y differ.

In general, medical tests may also impact the patient’s health (illustrated by the edges
At → U t). The invasive coronography from our example may, for example, cause bleeding,
infections, hypotension or other problems (Tavakol et al., 2012). Such an effect is denoted
as a direct effect, and we refer to its absence as the no direct effect (NDE) assumption.

Furthermore, the decision to perform a clinical test At may not solely rely on past
observed variables Xτ (τ < t) but can also depend on past unobserved variables U τ (illus-
trated by the edges U t−1 → At) or even other factors. For example, a doctor might base
acquisition decisions on information that is partially not recorded in the medical database.
We refer to the assumption that acquisitions are only determined by past observed variables
as the no unobserved confounding (NUC) assumption.

1.2 Paper Goal

We investigate the evaluation of AFA agents under the distribution shift that occurs since
the AFA agent makes different acquisition decisions than the doctors who were responsible
for collecting the retrospective data set. The focus of the paper is thus not to design new
AFA agents and classifiers but to estimate the performance of any AFA agent and classifier
at deployment. This means the doctor should be informed, for example, how many wrong
diagnoses are to be expected or how much acquisition cost will be incurred on average if an
AFA system is deployed.

The paper has two primary objectives: i) Identification, which involves determining
the assumptions that enable the unbiased representation of costs from the retrospective
data distribution and ii) Estimation, which focuses on turning the obtained identification
strategy into point and interval estimators following well-grounded statistical principles.
We specifically analyze scenarios that involve both adherence to and violation of the NDE
and NUC assumptions. We formulate this problem of active feature acquisition performance
evaluation (AFAPE) as the problem of estimating the expected counterfactual acquisition
and misclassification costs using retrospective data.

1.3 Paper Outline and Contributions

The remainder of this paper is organized as follows. After reviewing the necessary back-
ground and related methods in Section 2, we formulate the AFAPE problem in Section 3.
The general AFAPE problem is not identified—that is, it is not possible to estimate the
counterfactual acquisition and misclassification costs from retrospective data when both the
NDE and NUC assumptions are violated.

Therefore, we begin Section 4 by employing the NUC assumption and show that this
makes AFAPE amenable to an offline reinforcement learning (RL) / dynamic treatment
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regimes (DTR) view. This allows the application of known identification and estimation
theory from the offline RL / DTR literature.

In Section 5, we make instead the NDE assumption and assume the NUC assumption
can be violated. We demonstrate that under the NDE assumption, the AFA decision process
depicted in Figure 1 transforms into a missing data graph (m-graph) (Mohan et al., 2013;
Shpitser et al., 2015), a recognized graphical framework in the missing data literature. This
enables us to apply established identification and estimation theory from the missing data
literature. After solving the missing data problem, the AFAPE problem is transformed into
an online RL setting where one can simulate different acquisition trajectories, leading to a
trivial solution for AFAPE.

In Section 6, we assume both the NUC and the NDE assumptions hold. In this set-
ting, one can apply either offline RL or missing data methods to solve AFAPE, but both
require strong positivity assumptions and do not utilize the data optimally. Therefore, we
propose a new viewpoint on AFA, which we denote as semi-offline reinforcement learning.
Under the semi-offline RL viewpoint, the AFA agent engages with the environment in an
online manner, but certain actions (where the underlying feature values are missing in the
retrospective data) cannot be explored. The positivity assumption required for identifica-
tion is drastically reduced under the new semi-offline RL viewpoint. We derive three novel
estimators that can be denoted as semi-offline RL versions of known offline RL estimators,
including the Q-function based direct method (DM) (Levine et al., 2020), inverse proba-
bility weighting (IPW) (Levine et al., 2020), and the double reinforcement learning (DRL)
estimator (Kallus and Uehara, 2020). Notably, our DRL estimator is doubly robust, ex-
hibiting consistency even if either the underlying Q-function or the propensity score model
is misspecified.

In Section 7, we explore the estimation of AFAPE under the NUC and NDE assumptions
using semiparametric theory. We demonstrate how all three viewpoints—the offline RL view
(under the NDE assumption), the missing data view (under the NUC assumption), and the
semi-offline RL view—interconnect within this theoretical framework. Unfortunately, there
is no closed-form solution for an efficient estimator. However, we can enhance the efficiency
of all estimators by applying established semiparametric techniques from related fields,
such as standard missing data problems (Tsiatis, 2006) and dynamic testing and treatment
regimes (Liu et al., 2021). These methods, though, come with significant computational
costs, are challenging to implement, and require strong positivity assumptions.

In Section 8, we present synthetic data experiments that exemplify the improved data
efficiency and reduced positivity requirements of the semi-offline RL estimators. Our exper-
iments also show that biased evaluation methods commonly used in the AFA literature can
lead to detrimental conclusions regarding the performance of AFA agents. Deploying such
methods without caution may pose significant risks to patients’ lives. We end the paper
with a Discussion (Section 9) and Conclusion (Section 10).

2. Background and Related Methods

In the following, we review some of the literature about AFA and provide some background
on offline RL/ DTR, missing data, and semi-parametric theory.
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2.1 Active Feature Acquisition (AFA)

Research on active feature acquisition (AFA) and related problem formulations have been
published under various different names and in different, largely disjoint, research commu-
nities. Early research in economics and decision science literature addressed the problem
of ”Value of Information” (VoI) (LaValle, 1968a,b; Gould, 1974; Hilton, 1979; Hess, 1982;
Keisler et al., 2014). Similar methods have also been applied in the medical field, often in
terms of cost-effectiveness analysis of screening policies (Mushlin and Fintor, 1992; Krahn
et al., 1994; Botteman et al., 2003; Force*, 2009). AFA has further been studied under
the name of ”dynamic testing regimes” (Liu et al., 2021; Robins et al., 2008) or ”dynamic
monitoring regimes” (Neugebauer et al., 2017; Kreif et al., 2021) in the causal inference
literature, often in combination with dynamic treatment regimes. In these settings, the
goal of the feature acquisitions is not to enable better predictions/diagnoses but to enable
better treatment decisions.

The name ”active feature acquisition” (AFA) (An et al., 2006; Li and Oliva, 2021a;
Li et al., 2021; Chang et al., 2019; Shim et al., 2018; Yin et al., 2020) is common in the
machine learning literature, but other names are also frequently used. These include, but
are not limited to, ”active sensing” (Yoon et al., 2019, 2018; Tang et al., 2020; Jarrett and
van der Schaar, 2020), ”active feature elicitation” (Natarajan et al., 2018; Das et al., 2021),
”dynamic feature acquisition” (Li and Oliva, 2021b), ”dynamic active feature selection”
(Zhang, 2019), ”element-wise efficient information acquisition” (Gong et al., 2019), ”clas-
sification with costly features” (Janisch et al., 2020) and ”test-cost sensitive classification”
(Xiaoyong Chai et al., 2004).

These diverse research fields share a common characteristic, which involves designing an
agent to selectively acquire a subset of features to balance acquisition cost and information
gain. The approaches used to design such agents range from simple greedy acquisition
strategies to more complex RL-based strategies. However, the focus of this work is not on
any specific AFA method but rather on evaluating the performance of any AFA method
under the acquisition distribution shift. For a more comprehensive literature review of
existing AFA methods and a distinction between AFA and other related fields, we direct
interested readers to Appendix A.

2.2 (Offline) Reinforcement Learning (RL) / Dynamic Treatment Regimes
(DTR)

We show in Section 4 that AFA can be analyzed from an offline RL/ DTR viewpoint. In
Section 5, we show that AFAPE can also be analyzed from an online RL viewpoint (if NDE
holds and after missingness has been resolved). Online RL allows the interaction of an
agent with the environment and thus the simulation of outcomes under any desired policy,
thereby leading to a trivial solution for the AFAPE problem. In offline RL, however, such
a simulation is not possible due to missing knowledge about the environment. The AFAPE
problem then becomes equivalent to the problem of off-policy policy evaluation (OPE)
(Dudik et al., 2011; Thomas and Brunskill, 2016; Kallus and Uehara, 2020), in which the
goal is to evaluate the performance of a ”target” policy (here the AFA policy) from data
collected under a different ”behavior” policy (here the retrospective acquisition policy of, for
example, a doctor). Several estimators have been developed for the OPE problem. These
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include the plug-in based on the G-formula (Robins, 1986) (also referred to as model-
based evaluation (Levine et al., 2020)), inverse probability weighting (IPW) (Levine et al.,
2020) (also known as importance sampling or the Horvitz-Thompson estimator (Horvitz and
Thompson, 1952)), the direct method (DM) (Levine et al., 2020), and double reinforcement
learning (DRL) (Kallus and Uehara, 2020).

2.3 Missing Data

In this paper, we show that AFAPE can be viewed as a missing data (+ a trivial online
RL) problem. Thus, known identification and estimation techniques from the missing data
literature can be employed. We show that the NUC assumption described in this paper
corresponds under NDE to a missing-at-random (MAR) assumption. Violations of the
NUC assumption correspond, in our setting, to a special, identified missing-not-at-random
(MNAR) scenario. Estimation strategies generally include inverse probability weighting
(IPW) (Seaman and White, 2013), and multiple imputation (MI) (Sterne et al., 2009) (a
special case of the plug-in of the G-formula).

2.4 Semiparametric Theory

The goal of AFAPE is to estimate the expected acquisition and misclassification costs
that would arise when following the AFA system’s decisions. In more general terms, this
corresponds to estimating a target parameter J = J(p) of some unknown distribution p
given a set of observed samples from p (the retrospective data set). The goal in semi-
parametric theory is to find suitable estimators for such a target parameter J while leaving
at least part of the data-generating process p unrestricted/ unspecified, thereby imposing
fewer assumptions, which can lead to more credible estimates. Assumptions that can be
taken with a reasonable level of confidence (such as in many AFA settings the NUC or NDE
assumptions), can, however, be leveraged to derive more efficient estimators.

A key focus of semiparametric theory is the identification of influence functions, which
are used to construct estimators with desirable properties, such as a consistently estimable
asymptotic variance. The estimator associated with the influence function that has the
smallest asymptotic variance is the most efficient one. Often, these influence functions
include nuisance functions—unknown components of the model that must be estimated from
the data. For example, a nuisance function might model the probability of a doctor acquiring
a particular feature. Estimating these nuisance functions typically involves parametric
assumptions (e.g., using a logistic regression model). Consequently, the resulting estimator
is only locally efficient, meaning it achieves efficiency only if the parametric assumptions
for the nuisance function hold true.

Even if the parametric assumptions are incorrect, many influence function-based esti-
mators remain consistent due to a property known as multiple robustness (Rotnitzky et al.,
2017). For instance, the DRL estimators in this paper exhibit a form of double robustness
(Scharfstein et al., 1999; Chernozhukov et al., 2018). These estimators rely on learning two
nuisance functions and remain consistent as long as the parametric assumption holds for at
least one of these functions.

For a more detailed review, please see Appendix B, which covers both the general
principles of semiparametric theory and specific insights related to missing data problems.
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A thorough understanding of semiparametric theory is primarily necessary for Section 7,
which is intended for interested readers.

2.5 Active Feature Acquisition Performance Evaluation (AFAPE)

Although we believe to be the first to explicitly formulate and analyze the AFAPE problem,
other AFA papers have reported performance metrics that can be seen as attempts to
address it. The reported results, however, often lack assumption statements and justification
for the chosen evaluation framework and are, in general, biased or inefficiently estimated.
We categorize these results based on the viewpoints analyzed in this paper:

Offline RL view: The offline RL view has been utilized in the AFA context (Chang
et al., 2019; Cheng et al., 2018). As we show in this paper, this approach is only valid under
the NUC and strong positivity assumptions.

Missing data + online RL view: We show in this paper that one can apply, under
the NDE assumption, a missing data + online RL viewpoint to solve AFAPE. While this
viewpoint has been taken in the AFA literature before, the missing data part of it has,
to our knowledge, only been solved using (conditional) mean imputation (An et al., 2022;
Erion et al., 2021; Janisch et al., 2020). (Conditional) mean imputation leads, however, to
biased estimation results, as we illustrate in Section 5.

Semi-offline RL view: Some AFA papers (Janisch et al., 2020; Yoon et al., 2018) have
addressed the problem of missing data during the online RL simulations by simply blocking
the corresponding feature acquisitions. This approach is similar to our proposed semi-offline
RL view. However, unlike our approach, these papers did not correct for the distribution
shift caused by blocking feature acquisitions, resulting in biased estimation results.

2.6 No Direct Effect (NDE) Assumption

The only work that, to the best of our knowledge, leverages the NDE assumption in a similar
way to our semi-offline RL viewpoint is a series of publications from the causal inference
literature around the slightly different problem of evaluation of joint dynamic testing and
treatment regimes (Robins et al., 2008; Caniglia et al., 2019; Liu et al., 2021; Neugebauer
et al., 2017; Kreif et al., 2021). In this setting, the agent is not only tasked with deciding
which features to acquire, but also which treatments to give to the patient. The treatment
assignment replaces the need for classification/diagnosis in these settings. Robins et al.
(2008) introduced within this setting for the first time the term ”no direct effect” (NDE)
assumption. NDE stated that the feature acquisition decisions have no direct effect (or no
long-term direct effect (Liu et al., 2021)) on the health status of the patient, except through
their effect on the treatment decisions.

Caniglia et al. (2019) derived an IPW estimator for this context, which demonstrated a
50-fold increase in data efficiency compared to the offline RL IPW estimator, signaling the
enormous benefits that can be achieved by leveraging the NDE assumption. We adapt this
estimator to the AFA setting and show that it is equivalent to our proposed IPW estimator
for a simple setting and a special positivity assumption. However, our IPW estimator can
be applied in more general settings under weaker positivity assumptions and combined with
our DM method to form the novel DRL estimator for semi-offline RL.
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Liu et al. (2021) developed nearly semiparametrically efficient estimators for this prob-
lem by modifying the DRL estimator from the offline RL perspective to enhance efficiency
under the NDE assumption. In Section 7, we demonstrate that this approach can be
adapted for AFA, where it becomes a specialized method within established semiparamet-
ric techniques for missing data problems. Our proposed semi-offline RL estimators can also
achieve greater data efficiency using this framework. However, this approach has limita-
tions: it requires strong positivity assumptions, is only applicable in very simple settings
with one acquisition action per time point, and the resulting augmentation necessitates
complex approximations of function spaces, making implementation challenging and result-
ing in estimators that are only ”nearly” efficient. Additionally, it has only been tested in
an extremely simplified context with one acquisition action and one time step (Liu et al.,
2021).

2.7 Distribution Shift Robust ML Models

Lastly, this work also relates to the general literature on distribution shift-robust ML models.
A common problem with the deployment of ML models occurs if the model is trained,
for example, on data from hospital 1 but should be deployed to hospital 2. The related
literature aims at building robust models that retain their performances across deployment
environments (Rockenschaub et al., 2023a,b). One part of the distribution that might
change between hospital 1 and hospital 2 is the feature acquisition policy. If this is the case,
and if the acquisition policy at hospital 2 is known, one may directly apply our methods to
this scenario and treat the acquisition policy at hospital 2 as the AFA policy that is to be
evaluated. However, we will not go into more detail about this scenario and will focus on
the AFA setting.

3. Active Feature Acquisition Performance Evaluation (AFAPE)
Problem Definition

We begin the section by introducing the mathematical notation for the AFA setting and
AFAPE problem. A glossary containing all the variables and important terms can be found
in Appendix C.

3.1 Feature Acquisition Process

The feature acquisition process, as illustrated in Figure 2, is modeled using the following
variables:

• Unobserved underlying features: U t ∈ Rd for t ∈ {0, . . . , T}. The features are
dynamic, meaning they change over time, so generally, U ti 6= U t+1

i .

• Feature acquisition decisions: At ∈ At = {0, 1}d for t ∈ {1, . . . , T}, where Ati = 1
indicates that feature U ti will be acquired.

• Observed feature values: Xt ∈ (R ∪ {”?”})d for t ∈ {0, . . . , T}, where ”?” denotes
a missing feature value that was not acquired. We assume no measurement error, so
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Feature acquisitions Classification

Underlying states available
to be optimized
target
not available
unknown
known

Figure 2: The causal graph depicting the AFA setting as a partially observable decision pro-
cess consisting of unobserved underlying features U t, feature acquisition actions
At, feature measurements Xt = GAt(U

t), and associated acquisition costs Cta.
After a number of acquisition steps T (here T = 2), a classification Y ∗ is to be
performed. In the case of misclassification (Y ∗ is not equal to the true label Y ), a
misclassification cost Cmc is produced. Edges showing long-term dependencies are
omitted from the graph for visual clarity. These include: U t−1, Xt−1, At−1 → At;

XT , AT → Y ∗; At → U
t
; U t−1 ↔ U t; U t−1 → U t; UT ↔ Y and UT → Y (where

↔ denotes unobserved confounding).

Xt is deterministically determined by At and U t according to:

Xt
i = GAti(U

t
i ) =

{
U ti if Ati = 1,

”?” if Ati = 0.
(1)

GA denotes the observation function for a given feature acquisition decision A. Fur-
ther, we assume for simplicity X0 = U0.

• Acquisition costs: Cta ∈ R represents the known feature acquisition cost associated
with At.

Additionally, let U t and U
t

denote the complete past and complete future of U t, respectively,

where U t = {U0, . . . , U t} and U
t

= {U t, . . . , UT }. Similarly, define At, A
t
, Xt = GAt(U

t),

and X
t

= G
A
t(U

t
) for the variables At and Xt. Let U = U

0
, A = A

1
, and X = X

0
,

and denote the space of A by A. The retrospective acquisition policy is given by πtβ(At |
Xt−1, U t−1, At−1).

3.2 Classification Process

At time T , the feature acquisition process concludes, and the classification of an underlying
label is performed based on the acquired information. The classification process includes:
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• Underlying categorical label: Y , the true label to be classified.

• Predicted label: Y ∗, obtained using a deterministic classifier Y ∗ = fcl(A
T , XT ).

• Misclassification cost: Cmc ∈ R, the cost incurred when Y ∗ differs from Y , de-
fined by a predefined cost function Cmc = fC(Y ∗, Y ). We alternatively write Cmc =
fC(fcl(A

T , XT ), Y ) ≡ fC(AT , XT , Y ) directly as a function of AT , XT and Y .

We let g represent known deterministic distributions or densities, distinct from p used for
other distributions or densities. For example, we let gcl(Y

∗ | AT , XT ) denote the determinis-
tic distribution of the classifier fcl and gC(Cmc|Y ∗, Y ) denote the deterministic distribution
of the cost function fC.

We also assume Y is always available in the retrospective data set and allow for unob-
served confounding among the unobserved underlying features and the label (represented by
edges U t ↔ U t+1, Y ), but no additional confounding with At. We denote the retrospective
data set consisting of the variables A, X, and Y as D.

3.3 Problem Definition: Active Feature Acquisition Performance Evaluation
(AFAPE)

Given a target AFA policy πtα(At|Xt−1, At−1) (which is not allowed to depend on the un-
observed underlying features U t−1) and a target classifier fcl(X

T , AT ), the goal of AFAPE
is to estimate the expected acquisition and misclassification costs that would arise, had the
target policy πα and classifier fcl been deployed. The estimation problem for this expected
counterfactual cost can be expressed as estimating

Ja = E

[
T∑
t=1

Cta,(πα)

]
, and Jmc = E

[
Cmc,(πα)

]
, (2)

where Cta,(πα) and Cmc,(πα) denote the potential outcomes of the acquisition and misclas-
sification costs under the AFA policy πα. Therefore, Ja and Jmc represent the expected
acquisition and misclassification costs under a distribution induced by πα rather than by
the retrospective acquisition policy πβ. Note that this assumes πα can be followed perfectly,
which may not always hold in practice, for example, if patients refuse certain medical tests
or miss appointments.

The goal of this paper is to i) perform identification, i.e., to determine under which
assumptions it is possible to resolve this distribution shift and to obtain an unbiased estimate
of Ja and Jmc; and ii) to derive such unbiased estimators.

As the AFAPE problem is similar for Ja and Jmc, we will focus on Jmc throughout the
main part of the paper. We abbreviate Jmc ≡ J and Cmc ≡ C. We provide the estimation
formulas for Ja and for Jmc when a prediction is to be performed at each time step in the
relevant appendices.

3.4 Problem Definition: Optimization of Active Feature Acquisition Methods

While the focus of the paper is on the AFAPE problem, we provide the definition of the
AFA optimization problem for completeness. The goal in AFA is to find the optimal AFA
policy πtα(At|Xt−1, At−1;φ∗1) parameterized by φ∗1, and the optimal classifier fcl(X

T , AT ;φ∗2)
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parameterized by φ∗2, such that their joint application minimizes the expected sum of coun-
terfactual acquisition and misclassification costs:

φ∗1, φ
∗
2 = arg min

φ1,φ2

Jtotal(φ1, φ2) = arg min
φ1,φ2

E

[
T∑
t=1

Cta,(πα) + Cmc,(πα)

∣∣∣φ1, φ2

]
.

3.5 Assumptions

Here, we provide an overview of the key assumptions in this paper. We start by stating the
fixed assumptions that hold throughout the paper before stating assumptions that we vary
within different sections.

3.5.1 Fixed Assumptions

We make the following assumptions throughout the paper:

Assumption 1 (No measurement noise) There is no noise in feature measurements,
as expressed by Eq. 1.

Assumption 2 (Consistency) If At = at, then U t(at) = U t.

This standard consistency assumption from the causal inference literature states that an
individual’s observed outcomes align with their potential outcomes under the observed
acquisition decisions. Here, U t

(At=at)
represents the potential outcome of U t under potential

acquisition decisions At = at.

Assumption 3 (No interference) The acquisition decisions for one individual do not
affect other individuals.

One prominent example of interference in medical settings is allocation interference, which
can occur when a hospital’s resources or staff are overwhelmed by a high volume of medical
test requests for multiple patients simultaneously, resulting in the inability to fulfill all
feature acquisition requests.

3.5.2 Investigated Assumptions

In this paper, we analyze how the following assumptions affect identification and estimation
of the target J in the AFAPE problem.

Assumption 4 (No direct effect (NDE)) The unobserved underlying features are not

influenced by feature acquisitions (i.e., At 6→ U
t
). Equivalently: U t ⊥⊥ At | U t−1.

This is a standard assumption in missing data problems, but it may not hold in all med-
ical settings, as some medical tests can alter certain features of the patient. The NDE
assumption is relaxed in Section 4, and made in Sections 5, 6 and 7.

Assumption 5 (No unobserved confounding (NUC)) Acquisition decisions are in-
dependent of the unobserved underlying features given past acquisition decisions and mea-
sured features: At ⊥⊥ U t−1 | Xt−1, At−1. This is graphically expressed by the missing arrow
U t−1 6→ At.
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The no unobserved confounding assumption may, for example, be violated in medical set-
tings if certain feature values are seen by the physician and influence their decision-making
for further tests but are not recorded in the database. We assume NUC in Sections 4,
6 and 7 and allow certain violations in Section 5. Note that when referring to NUC, we
only assume no unobserved confounding of the acquisition actions. Potential unobserved
confounding within U and between U and Y is allowed throughout the paper.

Assumption 6 (Positivity/ experimental treatment assignment/ overlap) Certain
feature sets have a positive probability of being acquired under the retrospective acquisition
policy πβ.

The positivity assumption (also known as experimental treatment assignment assumption
or overlap assumption) relates to how much exploration was done under the retrospective
acquisition policy πβ. Positivity requirements are crucial for identification and vary between
the discussed views. Hence, we derive and discuss them separately for each view.

4. Offline Reinforcement Learning View

Assumptions in this section: Assumption 5 (NUC)
Firstly, we consider the scenario where the NUC assumption (Assumption 5) holds (i.e.
U t−1 6→ At), but the NDE assumption (Assumption 4) does not necessarily hold (i.e.

At → U
t
). This scenario can be addressed using the offline reinforcement learning (RL)

view. The NUC assumption allows us to perform a latent projection (Verma and Pearl,
1990) to project out the unknown variables U t (along with Y and Y ∗) from the causal graph
in Figure 2 and obtain the graph in Figure 3 which contains only observed variables. The
projected graph allows us to apply established identification and estimation methods from
the offline RL literature.

available

Figure 3: Updated causal graph of the AFA setting under the NUC assumption (Assump-
tion 5) and a latent projection. The graph depicts a standard, identified offline
RL setting. Long-term dependencies are omitted from the graph for visual clarity.
These include edges Xt−1, At−1 → At; XT , AT → C; Xt−1 ↔ Xt and XT ↔ C.

4.1 Identification

Under the offline RL view, solving the AFAPE problem is equivalent to performing off-policy
policy evaluation (OPE). Identification for OPE requires sequential exchangeability (also
known as sequential ignorability), which implies that adjusting for At−1 and Xt−1 eliminates
any confounding factors affecting At. The graph in Figure 3 satisfies this requirement. Note
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that sequential exchangeability would not hold under violations of the NUC assumption
(Assumption 5) because the latent projection under the presence of edges U t−1 → At would

produce confounding edges X
t ↔ At and C ↔ At.

Identification of J further requires Assumptions 1-3 (no measurement noise, consistency,
no interference) and the following (sequential) positivity assumption:

Assumption 6.1 (Positivity for offline RL)

if p(Xt−1
(πα) = xt−1, At−1

(πα) = at−1)πtα(at|xt−1, at−1) > 0,

then p(xt−1, at−1)πtβ(at|xt−1, at−1) ≥ O
∀t, at, xt−1, at−1, and some constant O > 0

where we introduced the following notation: πtα(at|xt−1, at−1) ≡ πtα(At = at|Xt−1 =
xt−1, At−1 = at−1).

The positivity assumption states that, for every set of actions and observations at−1, xt−1

reachable under πα and a desired next action at (i.e., an action with positive support under
πα), we require also positive support for at under πβ. A violation of this assumption may
occur if the acquisition decisions under the AFA policy πα differ significantly from the
decisions made by doctors (πβ).

4.2 Estimation

Estimation can be performed using well-known techniques from the offline RL / DTR
literature. The following are common estimators:

1) Model-based evaluation:
The model-based estimator, also known in the causal inference literature as the noniterative
conditional expectation (NICE) estimator of the G-formula (Rein et al., 2024; Wen et al.,
2021), estimates the target cost J as follows:

ĴMB-Off =
∑
X,A

Ê[C|XT , AT ]

T∏
t=1

p̂(Xt|Xt−1, At)πtα(At|Xt−1, At−1) (3)

where the integration over X and A can be solved using Monte Carlo integration. Note
that we use sums to denote the integration over X. All results in this paper do, however,
also hold for continuous X, by replacing the sums with proper integrals.

This estimator requires learning the state transition function p(Xt|Xt−1, At) and the
expected cost E[C|XT , AT ]. We denote the learned nuisance functions as p̂(Xt|Xt−1, At)
and Ê[C|XT , AT ].

2) Inverse probability weighting (IPW):
The target cost that is estimated by IPW (Levine et al., 2020) is

ĴIPW-Off = Ên
[
ρ̂TOff C

]
,where ρ̂TOff =

T∏
t=1

πtα(At|Xt−1, At−1)

π̂tβ(At|Xt−1, At−1)
. (4)
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where Ên [.] denotes the empirical average over the data set D. This estimator requires
learning the retrospective acquisition policy/propensity score model πtβ(At|Xt−1, At−1).

Remark 1 (Cross-fitting estimators) When nuisance functions are estimated using
flexible machine learning methods, the training of these functions and the evaluation of the
estimator must be conducted on separate data splits to avoid introducing bias. To enhance
efficiency, this process can be performed by alternating the training and evaluation splits,
a method known as cross-fitting (Chernozhukov et al., 2018). Throughout this paper,
we assume that cross-fitting is used, though this is not explicitly noted in the proposed
estimators’ notation, leading to a slight abuse of notation.

3) Direct method (DM):
The DM estimator, also known as the iterative conditional expectation (ICE) estimator of
the G-formula (Wen et al., 2021), estimates the target cost J as:

ĴDM-Off = Ên[V̂ 0
Off]. (5)

This estimator relies on learning a state-action value function QtOff or state value function

V t
Off:

QtOff ≡ QOff(Xt−1, At) ≡ E[C(πt+1
α )|X

t−1, At],

V t
Off ≡ VOff(Xt, At) ≡ E[C(πt+1

α )|X
t, At].

where C(πt+1
α ) denotes the potential outcome of C under a policy intervention πα applied

only from time step t + 1 onwards. QOff and VOff can be learned using, for example, the
dynamic programming (DP) algorithm, which is based on the recursive property of the
Bellman equation (Bertsekas, 2012):

QOff(Xt−1, At) =
∑
Xt

VOff(Xt, At)p(Xt|Xt−1, At) (6)

VOff(Xt, At) =
∑
At+1

QOff(Xt, At+1)πt+1
α (At+1|Xt, At) (7)

In practice, one only needs to learn QOff such that VOff can be simply computed as V t
Off =

Eπα [Qt+1
Off ] using, for example, Monte Carlo integration over the known AFA policy πα.

4) Double reinforcement learning (DRL):
The target cost that is estimated by DRL (Kallus and Uehara, 2020) is

ĴDRL-Off = Ên

[
ρ̂TOffC +

T∑
t=1

(
−ρ̂tOff Q̂

t
Off + ρ̂t−1

Off V̂
t−1

Off

)]
. (8)

The DRL estimator combines approaches 2) and 3) by using both the learned propensity
score π̂β and the state action value function Q̂Off (and the derived V̂Off). This estimator is
(locally) efficient and doubly robust, in the sense that it is consistent if either the propensity
score model π̂β, or the state action value function Q̂Off is correctly specified (Kallus and
Uehara, 2020).
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5. Missing Data (+ Online Reinforcement Learning) View

Assumptions in this section: Assumption 4 (NDE)

In this section, we assume that the NDE assumption holds (i.e., At 6→ U
t
), but do not require

the NUC assumption (Assumption 5). We observe that the general AFA graph from Figure
2 transforms under NDE into the graph shown in Figure 4A). This new graph represents
a temporal missing data graph (m-graph) (Mohan et al., 2013; Shpitser et al., 2015) from
the missing data literature. The unobserved underlying feature values U t are replaced by
counterfactuals of the measured feature values Xt

(1) since U t(at) = U t(at) = U t(1) = Xt
(1) for all

potential acquisitions at and thus also at = ~1. Due to the temporal restrictions X
t
(1) 6→ At,

the shown graph can be more precisely specified as the known block-conditional missing
data model (Zhou et al., 2010). The graph depicting the counterfactual distribution is
shown in Figure 4B).

Feature acquisitions Classification

Underlying states

A) Retrospective data B) Counterfactual data

Counterfactual feature acquisitions Classification

Underlying states

available knownunknownnot available

Figure 4: A) Updated causal graph of the AFA process under the NDE assumption (As-
sumption 4). Unknown state variables U t are replaced with the counterfactual
feature values Xt

(1), which represent the values Xt would have taken if At was ~1

(i.e., the decision to observe all feature values). This graph describing the feature
acquisition process is known as a missing data graph (m-graph). B) Graph show-
ing the counterfactual distribution under πα. Edges showing long-term depen-
dencies are omitted for visual clarity. These include for both graphs Xt−1

(1) ↔ Xt
(1)

and XT
(1) ↔ Y ; for A) Xt−1, Xt−1

(1) , A
t−1 → At, and XT , AT → Y ∗; and for B)

X0, Xt−1
(πα), A

t−1
(πα) → At(πα) and X0, XT

(πα), A
T
(πα) → Y ∗(πα).

5.1 Problem Reformulation

Now, we can establish the following theorem. Under the NDE assumption, the AFAPE
problem becomes equivalent to a standard missing data problem, for which one can apply
known identification and estimation theory.
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Theorem 1. (AFAPE problem reformulation and identification under the missing data
view). The AFAPE problem of estimating J (Equation 2) is under Assumption 1 (no
measurement noise), Assumption 2 (consistency), Assumption 3 (no interference), and As-
sumption 4 (NDE) equivalent to estimating

J =
∑
X(1),Y

E
[
C(πα)|X(1), Y

]︸ ︷︷ ︸
online RL

p(X(1), Y )︸ ︷︷ ︸
missing data

. (9)

Furthermore, J is identified if p(X(1), Y ) is identified.

Proof The decomposition of J into the two expected values follows from the law of iterated
expectations and the independence of X(1), Y from a policy intervention πα. The fact
that the inner expected value is identified can be easily verified by examining the graph
representing the counterfactual distribution shown in Figure 4B). The graph shows that
all functional relationships between variables that are part of the feature acquisition and
classification processes are known (represented as blue edges). In particular, this implies
the following factorization:

E[C(πα)|X(1), Y ] =
∑

XT
(πα),A

T
(πα),Y

∗
(πα)

,C(πα)

C(πα)q(C(πα), Y
∗

(πα), X(πα), A(πα)|X(1), Y ) (10)

with the identifying distribution

q(C(πα), Y
∗

(πα), X(πα), A(πα)|X(1), Y ) =

=

T∏
t=0

g(Xt
(πα)|A

t
(πα), X

t
(1))︸ ︷︷ ︸

feature revelations

T∏
t=1

πtα(At(πα)|X
t−1
(πα), A

t−1
(πα))︸ ︷︷ ︸

acquisition decisions

gcl(Y
∗

(πα)|X
T
(πα), A

T
(πα))︸ ︷︷ ︸

label prediction

gC(C(πα)|Y, Y ∗(πα))︸ ︷︷ ︸
cost computation

which is identified since all (deterministic) distributions g(.) and πα are known functions.

Since all densities g() are deterministic and known, we can further simplify Eq. 10 using
simpler notation. We use X = GA(X(1)), πα(a|Ga(X(1))) ≡

∏T
t=0 π

t
α(at|Gat−1(X(1)), a

t−1)
and C = fC(A,GA(X(1)), Y ) to obtain:

E[C(πα)|X(1), Y ] =
∑
a∈A

fC(aT , GaT (X(1)), Y )

T∏
t=0

πtα(at|Gat−1(X(1)), a
t−1) (11)

=
∑
a∈A

fC(a,Ga(X(1)), Y )πα(a|Ga(X(1))).

We denote E[C(πα)|X(1), Y ] as the online RL part of the problem because it involves the
evaluation of a policy in a known environment. We refer to the outer expected value of
p(X(1), Y ) as the missing data problem, as it requires the identification of the counterfactual
feature distribution.
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5.2 Identification

As established in Theorem 1, the AFAPE problem is identified if the missing data problem
(i.e., p(X(1), Y )) is identified. The following positivity assumption is required to allow
identification of p(X(1), Y ) and therefore for the target parameter J from Eq. 9:

Assumption 6.2 (Positivity for missing data)

if p(Xt−1
(1) = xt−1, At−1 = ~1) > 0,

then πtβ(At = ~1|Xt−1
(1) = xt−1, At−1 = ~1) ≥ O

∀t, xt−1, and some constant O > 0

This positivity assumption is very different from the positivity assumption assumed under
the offline RL view (Assumption 6.1). It requires the ”acquire everything” action trajectory
At = ~1 ∀t to have positive support for all possible feature values. In other words, this is a
requirement for complete cases among all subpopulations.

Given the positivity assumption, the block-conditional model describing p(X(1), Y ) is
identified. We show how identification can be achieved in Appendix D.

Note that Theorem 1 holds even in the more general case without the temporal restric-
tion X

t
(1) 6→ At. In this case, p(X(1), Y ) may or may not be identified, depending on what

assumptions can be made. There exists a vast literature on identification theory for missing
data problems (Bhattacharya et al., 2020; Nabi et al., 2020; Mohan and Pearl, 2021) that
can be applied.

Here, we briefly discuss how the common missing data scenarios of missing-completely-
at-random (MCAR), missing-at-random (MAR), and missing-not-at-random (MNAR) ap-
ply within the AFA framework. MNAR scenarios arise when the missingness of a feature
is influenced by the value of another feature which may itself be missing. This situation
occurs when the NUC assumption is violated, indicated by the presence of arrows X(1) → A.
On the other hand, MAR scenarios occur when the missingness of a feature is dependent
only on observed features. This scenario aligns with our setting if the NUC assumption
(Assumption 5) holds. Lastly, MCAR represents the simplest case, where the missingness
of a feature is independent of all other feature values. In our framework, this corresponds
to the absence of any edges X → A.

5.3 Estimation

An estimate of E
[
C(πα)|X(1), Y

]
, denoted as Ê

[
C(πα)|X(1), Y

]
, can be readily computed

from Eq. 11 using Monte Carlo integration:

Ê[C|X(1), Y ] =

nMC∑
i

fC(ai, Gai(X(1)), Y ) (12)

with nMC samples ai ∼
∏T
t=1 πα(At|GAt−1(X(1)), A

t−1).

This approach is common in online RL settings, where the agent interacts with the
environment. Monte Carlo integration is performed in the following way: First, one takes
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a sample x, y from p(X(1), Y ) (obtained through either of the methods shown below) and
reveals the initial features x0 to the agent. The agent’s first action, denoted by a′1, is then
sampled from πα(A1|x0). Depending on a′1, the corresponding feature set amongst x1 is
revealed to the agent and the next action a′2 is sampled. This continues until step T , when
the classifier is applied (using the acquired subset of features from the simulation as input)
and a resulting misclassification cost c′ is computed. This process is repeated multiple
times, and the costs are averaged to obtain Ê

[
C(πα)|X(1), Y

]
.

This online RL process requires samples from p(X(1), Y ). These samples can be obtained
using standard missing data estimation methods, which result in the following estimators:

1) Inverse probability weighting (IPW):
The target cost that is estimated by IPW (Seaman and White, 2013) is

ĴIPW-Miss = Ên
[
ρ̂Miss Ê

[
C(πα)|X(1), Y

]]
, where ρ̂Miss =

T∏
t=1

I(At = ~1)

π̂tβ(At = ~1|Xt−1
(1) , A

t−1 = ~1)
,

(13)

and where I(.) denotes the indicator function. This IPW approach requires learning the
propensity score πβ, but only for the scenario of full data acquisition (where A = ~1). Because
of the indicator function I(At = ~1), only the complete cases are selected for reweighting.

2) Multiple Imputation (MI):
The target cost that is estimated by the multiple imputation (MI) (Sterne et al., 2009)
estimator is:

ĴMI-Miss = Ên

[∑
Xm

Ê
[
C(πα)|X(1), Y

]
p̂(Xm|Xo, Y )

]
. (14)

Missing part of X(1)

Observed part of X(1)

This estimator is based on the G-formula, which requires the counterfactual data distri-
bution p(X(1), Y ). In the MI estimator, this density is not modeled fully, but the em-
pirical distribution of the available data is augmented with samples (i.e., imputations)
from a model for the missing data. The MI estimator is based on the decomposition
p̂(X(1), Y ) = p̂(Xm|Xo, Y )p(Xo, Y ), where Xo denotes the observed part and Xm the miss-
ing part of X(1). The sampling of the missing part is then usually repeated multiple times
to increase the precision of the estimate, hence the name ”multiple imputation”.

In certain scenarios, MI can outperform the estimators from the semi-offline RL view,
which will be described next. Appendix E discusses the advantages and disadvantages of
the MI estimator in more detail. The appendix also highlights why using (conditional)
mean imputation, which has been previously employed in AFA settings (An et al., 2022;
Erion et al., 2021; Janisch et al., 2020) generally leads to biased estimation results.

6. Semi-offline Reinforcement Learning View

Assumptions in this section: Assumption 4 (NDE), Assumption 5 (NUC)
In this section, we assume both the NDE and NUC assumptions hold. In this context,
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either the offline RL or the missing data view can be applied to solve AFAPE, but both
have limitations, as illustrated in the following scenarios.

We assume an available data point without X0
(1), but with two time-steps and univariate

X1
(1) = 0.6 and X2

(1) = 0.9. Initially, we assume the retrospective acquisition decisions were

A1 = 1 and A2 = 1 (denoted as scenario 1). The data point in scenario 1 corresponds to a
complete case where both feature values X1

(1) and X2
(1) are known.

𝑋1 =0.6

𝑋2 =0.9 𝑋2 =0.9 𝑋2 =0.9 𝑋2 =0.9 𝑋2 =0.9

𝑋2 =0.9 𝑋2 =0.9 𝑋2 =0.9 𝑋2 =0.9 𝑋2 =0.9 𝑋2 =0.9

𝑋1 =0.6 𝑋1 =0.6

𝑋1 =0.6 𝑋1 =0.6 𝑋1 =0.6

𝑋2 =0.9

𝑋1 = ?

𝑋2 = ? 𝑋2 = ?

𝑋1 = ?

𝑋2 = ? 𝑋2 = ?

𝑋1 = ?

𝑋2 = ? 𝑋2 = ?

𝑋1 = ?

𝑋2 = ? 𝑋2 = ?

𝑋1 = ?

𝑋2 = ? 𝑋2 = ?

𝑋1 = ?

𝑋2 = ? 𝑋2 = ?

IPW weights are zero IPW weights can be non-zero retrospective trajectory 
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D) E) F) 
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Figure 5: Visualization of data utilization by IPW estimators under different views. Each
graph shows the four possible target acquisition trajectories for two exemplary
retrospective acquisition scenarios and highlights which target trajectories can
receive non-zero IPW weights under the respective views. A), D) The IPW es-
timator from the offline RL viewpoint: only target trajectories that match the
retrospective trajectory can be evaluated. B), E) The IPW estimator from the
missing data viewpoint: all trajectories can be evaluated if the datapoint is a com-
plete case; otherwise, no evaluation is possible. C), F) The IPW estimator from
the semi-offline RL viewpoint: all trajectories with equal or fewer acquisitions
than the retrospective trajectory can be evaluated.

We analyze how this data point is utilized by the IPW estimators within different
views. Figures 5A) and 5B) show the four possible target trajectories: a1 = 0, a2 = 0;
a1 = 1, a2 = 0; a1 = 0, a2 = 1; and a1 = 1, a2 = 1 under the offline RL and missing data
views, respectively. In the offline RL view, this data point can only be used to evaluate the
target trajectory a1 = 1 and a2 = 1, matching the retrospective trajectory. The missing
data IPW estimator, however, can evaluate any of the four target trajectories using this
data point since it is a complete case.

Now consider scenario 2 with hypothetical retrospective acquisition decisions A1 = 0
and A2 = 1. Figures 5D) and 5E) depict the corresponding trajectories for both views. The
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offline RL IPW estimator can use this datapoint to evaluate the matching trajectory a1 = 0
and a2 = 1 but none others. The missing data IPW estimator cannot evaluate any target
trajectories as this is not a complete case.

In scenario 2, we only know the value of X2
(1), not X1

(1), since A1 = 0. However, the

target trajectories a1 = 0, a2 = 0 and a1 = 0, a2 = 1 do not require the value of X1
(1) and can

still be simulated. This motivates our novel semi-offline RL viewpoint, where we consider
all target trajectories with the same or fewer acquisitions, compared with the retrospective
data point, as simulatable.

Figures 5C) and 5F) show the simulatable trajectories under the semi-offline RL view for
both scenarios. Similar to online RL, a policy can sample different trajectories, but under
the semi-offline RL view, only among the simulatable ones, while trajectories involving
non-simulatable actions (like a1 = 1 in scenario 2) should not be sampled.

Since not all trajectories are simulatable, we restrict the simulation policy to block
actions that would result in non-simulatable trajectories. A simple Monte Carlo estimator
averaging the costs within the simulated trajectories would be biased due to the blocking
of actions, necessitating post-simulation bias correction.

The remainder of this section formalizes the semi-offline RL viewpoint and is organized
as follows. First, we introduce the simulation policy, referred to as the semi-offline sampling
policy, and illustrate that simulations using this policy do not require information about
X(1) not already contained in X = GA(X(1)). Next, we explain how the AFAPE target J
can be equivalently formulated based on the semi-offline sampling distribution. We then
prove that this reformulated J is identified under a new, weaker positivity assumption, and
finally, we derive novel estimators for J .

6.1 The Semi-offline Sampling Policy

To introduce the semi-offline RL view, we first revisit the problem formulation from the
missing data view (Eqs. 9 and 11):

J =
∑
X(1),Y

∑
a∈A

fC(a,Ga(X(1)), Y )πα(a|Ga(X(1)))︸ ︷︷ ︸
online RL

p(X(1), Y )︸ ︷︷ ︸
missing data

. (15)

The online RL part involves integrating over all possible trajectories a ∈ A, representing
subsets of the features. Notably, many terms in this inner integral do not require complete
knowledge of X(1). Specifically, any summand with a ≤ A (where we let ≤ denote an
element-wise comparison) does not need information from X(1) beyond what is already in
X = GA(X(1)).

This missing data + online RL approach effectively says: ”Solve all missingness, then
integrate over all possible feature subsets, including many that didn’t require addressing
the missingness to begin with.” This approach is clearly suboptimal. Instead, we propose a
novel semi-offline RL viewpoint: ”Integrate over all subsets of the observed data and adjust
for the bias introduced by excluding subsets where data was missing.” We call this the
semi-offline RL viewpoint because some subsets/trajectories can be simulated (the online
part) while others cannot (the offline part).
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We define the semi-offline sampling distribution to include the observed data trajectories.
To avoid integrating over unobserved feature subsets, we replace πα in the distribution of
Eq. 15 with a policy π′sim that has no support for trajectories where the corresponding X(1)

are missing. A policy π′ that enforces this exclusion is defined formally as a blocked policy:

Definition 2. (Blocked Policy). A policy π′t(A′t|GA′t−1(X(1)), A
′t−1, At) is called a ’blocked

policy’ of the policy πt(A′t|GA′t−1(X(1)), A
′t−1) if it satisfies the following conditions:

1) Blocking of acquisitions of non-available features:

if a′t 6≤ at, then π′t(a′t|Ga′t−1(X(1)) = x′t−1, a′t−1, at) = 0 ∀t, a′t, at, x′t−1, a′t−1

2) No blocking of acquisitions of available features:

if a′t ≤ at and πt(a′t|x′t−1, a′t−1) > 0, then π′t(a′t|x′t−1, a′t−1, at) > 0 ∀t, a′t, at, x′t−1, a′t−1

Condition 1 ensures that sampling does not depend on values of X(1) that are not con-
tained in X = GA(X(1)). Condition 2 ensures that the online exploration part is utilized
by forcing the blocked policy π′ to have positive support whenever π has positive sup-
port and the desired features are available. A practical choice for π′ just sets π′(A′t =
a′t|GA′t−1(X(1)), A

′t−1, At = at) = 0 if a′t 6≤ at and rescales the other probabilities accord-
ingly.

Having defined the blocked policy, we can now introduce the semi-offline sampling dis-
tribution:

p′(A′, GA(X(1)), Y, A) =
T∏
t=1

π′tsim(A′t|GA′t−1(X(1)), A
′t−1, At)p(A,GA(X(1)), Y ) (16)

≡ π′sim(A′|GA′(X(1)), A)︸ ︷︷ ︸
semi-offline RL

p(A,GA(X(1)), Y )︸ ︷︷ ︸
observed data

which only involves observed data because A′ ≤ A due to the blocking.
Similar to online RL, we can sample from this distribution to construct a simulated data

set D′, consisting of X = GA(X(1)), Y, A,A
′, and C ′ = fC(A′, GA′(X(1)), Y ). In Figure 6,

we show the full causal graph of how such sampling is performed.
Note that although the number of observed data samples is limited by the data set

size n, the semi-offline RL variables A′ and C ′ can be sampled multiple times beyond this
constraint. While π′sim can be chosen to be a blocked AFA policy π′α, this is not required;
different choices of π′sim introduce an off-policy aspect. The only requirement is that πsim
(the unblocked version of π′sim) meets the positivity assumption from the offline RL view
(Assumption 6.1).

Since we replace πα with π′sim, the resulting cost samples C ′ cannot simply be averaged
to estimate J . Instead, we reformulate the AFAPE problem as a causal inference problem
by intervening on the semi-offline sampling distribution p′, reversing π′sim back to πα. This
reformulation is formalized as follows.

6.2 Problem Reformulation

The AFAPE problem can be reformulated under the semi-offline RL view (i.e., under the
proposed distribution p′) as the following theorem states.
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Figure 6: Causal graph for the semi-offline sampling distribution p′. Simulated acquisition
actions A′t and observations X ′t = GA′t(X

t
(1)) follow a blocked simulation policy

π′sim. The simulation policy is restricted by At such that actions A′t are blocked
if A′ti > Ati for any i. The simulated cost C ′ can be computed from A′, X ′ and
Y : C ′ = fC(Y ′∗, Y ) with Y ′∗ = fcl(X

′, A′) being the predicted label under the
simulated acquisitions. Edges showing long-term dependencies are omitted from
the graph for visual clarity. These include Xt−1, At−1 → At; X ′t−1, A′t−1 → A′t;
X ′T , A′T → Y ∗; Xt−1

(1) ↔ Xt
(1); and XT

(1) ↔ Y .

Theorem 3. (AFAPE problem reformulation under the semi-offline RL view). The AFAPE
problem of estimating J (Eq. 2 or Eq. 9) is under Assumption 1 (no measurement noise),
Assumption 2 (consistency), Assumption 3 (no interference), Assumption 4 (NDE) and
Assumption 5 (NUC) equivalent to estimating

J = Ep′ [C ′(πα)]. (17)

C ′(πα) denotes the potential outcome of C ′, had, instead of the blocked simulation policy

π′sim, the AFA policy πα been employed.

Proof Starting from Eq. 15, we find:

J =
∑
X(1),Y

∑
a∈A

fC(a,Ga(X(1)), Y )πα(a|Ga(X(1)))p(X(1), Y )

=
∑

X(1),Y,A(πα)

fC(A(πα), GA(πα)
(X(1)), Y )p(A(πα), X(1), Y )

=
∑

X(1),Y,A(πα),A

fC(A(πα), GA(πα)
(X(1)), Y )p(A(πα), X(1), Y, A)

∗1=
∑

X(1),Y,A
′
(πα)

,A

fC(A′(πα), GA′(πα)
(X(1)), Y )p′(A′(πα), X(1), Y, A) = Ep′ [C ′(πα)].
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where the change in ∗1) from A(πα) to A′(πα) is possible since an intervention on the simulated
actions leads to the same distribution as an intervention on the observed actions.

Remark 2 (Comparison of AFAPE under offline RL and semi-offline RL) The
AFAPE problem formulation under the semi-offline RL view (Eq. 17) closely resembles
the original AFAPE formulation under the offline RL view (Eq. 2): J = E[C(πα)]. This
similarity might raise the question of what is gained by this reformulation if one still needs
to adjust for the intervention πα. The key difference is that, in the offline RL view, one must
account for a significant distribution shift from πβ to πα. In contrast, under the semi-offline
RL view, the distribution shift is much smaller, from a blocked π′sim to πα.

6.3 Identification

In the following section, we focus on identifying the reformulated target J from Eq. 17.
Similar to the other views, identification under the semi-offline RL view requires a positivity
assumption. However, under the semi-offline RL view, this assumption is considerably less
stringent compared to the positivity requirements in the offline RL (Assumption 6.1) and
missing data views (Assumption 6.2).

In the offline RL view, the positivity assumption requires support for retrospective tra-
jectories (i.e., action sequences under πβ) that match any target trajectory (i.e., action
sequences under πα). The missing data view demands support for ”acquire all” retro-
spective trajectories, meaning complete cases. In contrast, the semi-offline RL view only
necessitates that for any target trajectory, there is positive support for at least one ret-
rospective trajectory with equal or more acquisitions. We now formalize this positivity
assumption rigorously. Due to its inherent complexity, we divide the formalization into
multiple definitions:

Definition 4. (Local positivity assumption and local admissible set Aadm for semi-offline
RL). Let the local admissible set Atadm(xt−1, at−1, a′t), defined for all a′t and all xt−1, at−1

s.t. p(Gat−1(X(1)) ≡ Xt−1 = xt−1, At−1 = at−1) > 0, be the non-empty set containing all
values of at for which

(1) at ≥ a′t

(2) πtβ(at|xt−1, at−1) ≥ O

for some constant O > 0. We further say that the local positivity assumption holds at
xt−1, at−1, a′t if Atadm(xt−1, at−1, a′t) exists.

The local positivity assumption states that the observed data allows the simulation of a
desired action a′t (i.e., there is positive support for at least one value at s.t. at ≥ a′t). The
local positivity assumption is, however, not enough, which leads to the following definition
of regional positivity.

Definition 5. (Regional positivity assumption and regional admissible set Ãadm for semi-
offline RL). Let the regional admissible set Ãtadm(xt−1, at−1, a′t) ⊆ Atadm(xt−1, at−1, a′t),
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defined for all xt−1, at−1, a′t s.t. p′(Gat−1(X(1)) = xt−1, At−1 = at−1, A′t = a′t) > 0, be

the non-empty set containing all values of at such that Ãt+1
adm(xt, at, a′t+1) exists for all

xt, at, a′t+1 such that the following holds for a′t+1, and xt:

p(xt|xt−1, at)πtα(a′t+1|x′t−1, a′t) > 0 (18)

where x′t−1 denotes the acquired features under a′t−1 and thus a subset of xt−1. We further
say that the regional positivity assumption holds at xt−1, at−1, a′t if
Ãtadm(xt−1, at−1, a′t) exists.

Regional positivity states that there is not only a value at with positive support in the
observed data that allows the simulation of a desired action a′t (i.e., local positivity), but
it also ensures for such an at, that the simulations of all possible future desired actions are
also possible. As regional positivity is still limited to a given data point, we also make the
following global positivity assumption.

Assumption 6.3 (Global positivity assumption for semi-offline RL) We say that
the global positivity assumption holds if the regional positivity assumption holds for all
datapoints a′1, x0 s.t. p(x0)πα(a′1|x0) > 0.

The following lemma (proved in Appendix F) establishes that the global positivity assump-
tion for semi-offline RL is weaker than both the positivity assumptions required by the
offline RL and the missing data views:

Lemma 6. (Sufficiency conditions for global positivity). The global positivity assumption
for semi-offline RL (Assumption 6.3) holds if the positivity assumption from offline RL
(Assumption 6.1) or from missing data (Assumption 6.2) holds.

After having defined positivity for semi-offline RL, we can now perform identification for J :

Theorem 7. (Identification of J for the semi-offline RL view). The reformulated AFAPE
problem of estimating J under the semi-offline RL view (Eq. 17) is under Assumption
1 (no measurement noise), Assumption 2 (consistency), Assumption 3 (no interference),
Assumption 4 (NDE), Assumption 5 (NUC) and Assumption 6.3 (global positivity) identified
by

J = Ep′ [C ′(πα)] =
∑

A′,A,GA(X(1)),Y

fC(A′, X ′, Y )q′(A′, A,X, Y ) (19)

with the distribution

q′(A′, A,X, Y ) =

T∏
t=1

πtid(At|A′t, Xt−1, At−1)︸ ︷︷ ︸
distr. subject to constraints

πtα(A′t|X ′t−1, A′t−1)︸ ︷︷ ︸
target policy

T∏
t=0

p(Xt|Xt−1, At, Y )p(Y )

(20)

where

πtid(A
t|A′t,Xt−1, At−1) = I(At ∈ Ãtadm(Xt−1, At−1, A′t))︸ ︷︷ ︸

support restriction

f tid(A
′t, Xt−1, At−1) (21)

for any function f tid s.t. πtid is a valid density.
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Here, we used again X ≡ GA(X(1)) and X ′ ≡ GA′(X(1)) to simplify notation. In fact,
since A′ ≤ A, we can also write X ′ = GA′(X). Additionally, we can define semi-offline RL
versions of the Bellman equation:

Theorem 8. (Bellman equation for semi-offline RL). The semi-offline RL view admits
under Assumption 1 (no measurement noise), Assumption 2 (consistency), Assumption
3 (no interference), Assumption 4 (NDE), Assumption 5 (NUC) and the local positivity
assumption at datapoint xt−1, at−1, a′t (from Definition 4), the following semi-offline RL
version of the Bellman equation:

QSemi(A
′t, Xt−1, At−1,Ξ) =

∑
Xt

VSemi(A
′t, Xt, At−1, At = at,Ξ)p(Xt|Xt−1, At−1, At = at,Ξ)

(22)

for any at ∈ Atadm(Xt−1, At−1, A′t)

VSemi(A
′t, Xt, At,Ξ) =

∑
A′t+1

QSemi(A
′t+1, Xt, At,Ξ)πt+1

α (A′t+1|X ′t, A′t) (23)

with semi-offline RL versions of the state-action value function QSemi and state value func-
tion VSemi:

QtSemi ≡ QSemi(A
′t, Xt−1, At−1,Ξ) ≡ Ep′ [C ′(πt+1

α )
|A′t, Xt−1, At−1,Ξ]

V t
Semi ≡ VSemi(A

′t, Xt, At,Ξ) ≡ Ep′ [C ′(πt+1
α )
|A′t, Xt, At,Ξ]

where C ′
(πt+1
α )

denotes the potential outcome of C ′ under interventions from time step t+ 1

onwards. Ξ ⊆ {Y,O}, with O denoting all features that are always available, denotes an
optional subset of additional variables that can be conditioned on. Furthermore, QtSemi

and V t
Semi are identified if the regional positivity assumption (from Definition 5) holds at

Xt−1, At−1, A′t and at ∈ Ãtadm(Xt−1, At−1, A′t).

The proofs for Theorems 7 and 8 are shown in Appendix G.
The functions QSemi and VSemi are very similar to their counterparts from the offline

RL view (QOff and VOff), with two differences: i) they are learned from a curated data set
D′ which arises from sampling p′; and ii) they contain the simulated acquisitions A′t, but
also the real features and actions Xt, At which are needed to adjust for confounding of the
blocking operation.

The identification steps so far have been very specific to knowledge about Ãtadm that
needs to be assessed from the data. We now look more closely at a specific, stronger
positivity assumption (where Aadm = Ãadm) that allows the use of the maximum amount
of datapoints and therefore leads to easier to use estimators.

Definition 9. (Maximal regional positivity assumption for semi-offline RL): We say that
the maximal regional positivity assumption holds for a datapoint xt−1, at−1, a′t if
Ãtadm(xt−1, at−1, a′t) = Atadm(xt−1, at−1, a′t) and the maximal regional positivity assumption
further holds for all xt, at, a′t+1 such that at ∈ Atadm(xt−1, at−1, a′t) and the following holds
for a′t+1, and xt:

p(xt|xt−1, at)πα(a′t+1|x′t, a′t) > 0.
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Assumption 6.4 (Maximal global positivity assumption for semi-offline RL) We
say that the maximal global positivity assumption holds if the maximal regional positivity
assumption holds for all datapoints x0, a′1 s.t. p(x0)πα(a′1|x′0) > 0.

The maximal regional positivity and maximal global positivity assumptions ensure that we
can use all available data points where At ≥ A′t without running into positivity problems in
later time steps. This makes the identification and estimation significantly easier, as shown
next.

We can now propose the following corollary of Theorem 7, which states identification
under the maximal global positivity assumption.

Corollary 10. (Identification of J for the semi-offline RL view under maximal global pos-
itivity). The reformulated AFAPE problem of estimating J under the semi-offline RL view
(Eq. 17) is under Assumption 1 (no measurement noise), Assumption 2 (consistency), As-
sumption 3 (no interference), Assumption 4 (NDE), Assumption 5 (NUC) and Assumption
6.4 (maximum global positivity) identified by Eqs. 19 and 20 where

πtid(A
t|A′t−1, A′t = a′t,Xt−1, At−1) =

= I(At ≥ a′t)πtβ(At|Xt−1, At−1)f tid(A
′t−1, A′t = a′t, Xt−1, At−1)

for any function f tid s.t. πtid is a valid density. This holds in particular for the choice of a
truncated πβ:

πtid(A
t|A′t−1, A′t = a′t, Xt−1, At−1) = πtβ(At|At ≥ a′t, Xt−1, At−1) =

=
I(At ≥ a′t)πtβ(At|Xt−1, At−1)

πtβ(At ≥ a′t|Xt−1, At−1)
.

The proof for Corollary 10 is shown in Appendix H.
Lastly, we also provide the following Remark that brings the factorization of the obser-

vational distribution p′ from Eq. 16 into a comparable form to the identifying distribution
q′.

Remark 3 (Factorization of the semi-offline sampling distribution) The semi-
offline sampling distribution p′ can be alternatively written as:

p′(A′,GA(X(1)), Y, A) =
T∏
t=1

π′tsim(A′t|GA′t−1(X(1)), A
′t−1, At)p(A,GA(X(1)), Y )

=
T∏
t=1

π′tsim(A′t|X ′t−1, A′t−1, At)︸ ︷︷ ︸
known simulation policy

πβ(At|Xt−1, At−1)︸ ︷︷ ︸
retro. acquisition policy

T∏
t=0

p(Xt|Xt−1, At, Y )p(Y ) (24)

6.4 Estimation

We propose the following novel estimators for J , which arise from the semi-offline RL view-
point. We differentiate between estimators derived under the global positivity assumption
(Assumption 6.3) and under the (stronger) maximal global positivity assumption (Assump-
tion 6.4).
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1) Inverse probability weighting (IPW):
The target cost that is estimated by the semi-offline IPW estimator is

ĴIPW-Semi = Ên
[
Ên′

[
ρ̂TSemi C

′∣∣A,X, Y ]] . (25)

The inner expectation, denoted by Ên′ [.], represents the empirical average over the simulated
values of A′, which can involve many more samples compared to the outer expectation, taken
over the observed data. The inverse probability weights are under the global positivity
assumption:

ρ̂TSemi = ρ̂TSemi(πid) =
T∏
t=1

πtα(A′t|X ′t−1, A′t−1)

π′tsim(A′t|X ′t−1, A′t−1, At)

πtid(A
t|A′t, Xt−1, At−1)

π̂tβ(At|Xt−1, At−1)
(26)

or under the maximal global positivity assumption (by choosing
πtid = πtβ(At|At ≥ a′t, Xt−1, At−1):

ρ̂TSemi =
T∏
t=1

πtα(A′t|X ′t−1, A′t−1)

π′tsim(A′t|X ′t−1, A′t−1, At)

I(At ≥ a′t)
π̂tβ(At ≥ a′t|Xt−1, At−1)

. (27)

The following remarks state that the IPW estimators from the offline RL and missing data
viewpoints are special cases of the proposed estimator:

Remark 4 (Offline RL IPW estimator as a special version of the semi-offline RL
IPW estimator) The IPW estimator from the offline RL view, ĴIPW-Off, is, for the choice

π′sim = π′α, equal to ĴIPW-Semi with:

πtid(A
t|A′t−1, A′t = a′t, Xt−1, At−1) = I(At = a′t).

Remark 5 (Missing data IPW estimator as a special version of the semi-offline
RL IPW estimator) The IPW estimator from the missing data view, ĴIPW-Miss, is, for
the choice π′sim = π′α, equal to ĴIPW-Semi with:

πid(A
t|A′t, Xt−1, At−1) = I(At = ~1).

The IPW estimator ĴIPW-Semi under the maximal global positivity assumption demonstrates
the large benefits of the semi-offline RL view over both the offline RL and missing data
views. Its second fraction shows that not only datapoints where At = A′t are used (i.e.,
have positive weight), as in the offline RL view, neither only datapoints where At = ~1 are
used, as in the missing data view, but all datapoints where At ≥ A′t can be used. However,
this benefit diminishes as the target policy becomes more ”data-hungry”—that is, as it
acquires more features. In fact, there is no difference between all three estimators for an
”acquire all features” policy:

Remark 6 (Equality of IPW estimators for an ”acquire all features” policy) The
IPW estimators from the missing data view, ĴIPW-Miss, from the offline RL view ĴIPW-Miss,
and from the semi-offline RL view ĴIPW-Semi are identical if πtα(At = ~1|Xt−1 = xt−1, At−1 =
~1) = 1 ∀t, xt−1.
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We show in Appendix I that ĴIPW-Semi (under maximal global positivity) is equivalent in
simple AFA settings to an adapted version of the IPW estimator by Caniglia et al. (2019).
Our IPW estimators ĴIPW-Semi can, however, be applied in more general AFA settings.

2) Direct method (DM):
The target cost that is estimated by the semi-offline DM estimator is

ĴDM-Semi = Ên[V̂ 0
Semi] (28)

This estimator is based on learning a semi-offline RL version of the state-action value
function QSemi using the semi-offline version of the Bellman equation (Eqs. 22 and 23).
Using QSemi, one can compute the state value function: V t

Semi = Eπα [Qt+1
Semi].

The training process of QSemi can benefit from using the off-policy aspect of the proposed
semi-offline sampling distribution p′ (i.e., from using a simulation policy π′sim that is different
from π′α). This is because a deterministic AFA policy, for example, will only generate one
exact trajectory of simulated actions A′ and costs C ′ per datapoint X,Y,A. A stochastic
simulation policy π′sim can instead be used to generate multiple such trajectories. Usually,
a parametric working model, for example a multi-layer perceptron (MLP), is assumed for
the nuisance function Q̂Semi. The estimation under such a working model will benefit from
the additional datapoints generated under a policy π′sim 6= π′α.

3) Double reinforcement learning (DRL):
The target cost that is estimated by the semi-offline DRL estimator is

ĴDRL-Semi = Ên

[
Ên′

[
ρ̂TSemiC

′ +
T∑
t=1

(
−ρ̂tSemiQ̂

t
Semi + ρ̂t−1

SemiV̂
t−1

Semi

) ∣∣∣A,X, Y ]] . (29)

which holds for both choices for ρSemi, given that the respective positivity assumption holds.
Similar to the DRL estimator from the offline RL view, this approach combines the other
two estimators (Eqs. 25 and 28).

The following theorems state some notable facts about these estimators.

Theorem 11. (Consistency of ĴIPW-Semi). The estimator ĴIPW-Semi is consistent if the
propensity score model π̂β is correctly specified.

Proof We apply the standard inverse probability weighting approach Eq′ [C ′] = Ep′ [ q
′

p′C
′]

and use the factorizations for q′ and p′ from Eqs. 20 (Theorem 7) and 24 (Remark 3),
respectively, to obtain Eq. 26 for the weights. The weights from Eq. 27 arise from inserting
the special choice for πid.

Theorem 12. (Consistency of ĴDM-Semi). The estimator ĴDM-Semi is consistent if the Q-
function Q̂Semi is correctly specified.

Proof The proof of the consistency of ĴDM-Semi follows simply from the semi-offline Bell-
man equation (Theorem 8) and the law of total expectation.
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Theorem 13. (Double robustness of ĴDRL-Semi). The estimator ĴDRL-Semi is doubly robust,
in the sense that it is consistent if either the Q-function Q̂Semi or the propensity score model
π̂β is correctly specified.

The proof is shown in Appendix J. The estimator ĴDRL-Semi is a 1-step estimator based on
an influence function derived for J under p′. Therefore, the DRL estimator is regular and
asymptotically linear (RAL). The influence function is given by the following theorem:

Theorem 14. (An influence function under the semi-offline RL view). An influence func-
tion of J is:

ϕSemi = −J + E

[
ρTSemiC

′ +
T∑
t=1

(
−ρtSemiQ

t
Semi + ρt−1

SemiV
t−1

Semi

) ∣∣∣A,X, Y ] . (30)

We will prove this theorem in the next section, addressing semiparametric estimation from
all three views.

Remark 7 (Efficiency of ϕSemi as a function of Ξ) In Theorem 8, we showed that
the semi-offline RL version of the Bellman equation holds for any subset Ξ ⊆ {Y,O},
and the same applies to Theorem 14. The choice of Ξ affects the efficiency of the DRL
estimator: a bigger set Ξ corresponds to a higher efficiency of the corresponding DRL
estimator. However, the class of influence functions presented here does not include the
efficient influence function. In fact, as we will discuss in the next section, the efficient
influence function lacks a closed-form expression.

In Appendix K, we extend the estimators discussed in this section to other settings. These
include: i) the estimation of Ja, and ii) scenarios where a prediction Y ∗t is required at each
time step t.

7. Semiparametric Theory under NUC and NDE

Assumptions in this section: Assumption 4 (NDE), Assumption 5 (NUC)
In this section, we explore semiparametric estimation approaches for J under both NDE
and NUC assumptions. Readers not interested in the detailed semiparametric theory can
skip this section. We demonstrate that all three views can be unified within an established
semiparametric theory framework for MAR missing data problems. Using this framework,
we prove Theorem 14, which defines a class of influence functions derived under the semi-
offline RL view. Although no closed-form efficient influence function exists in this setting,
efficiency improvements from Tsiatis (2006) and Liu et al. (2021) can be applied. How-
ever, these methods pose significant challenges, including strong positivity assumptions,
applicability to a limited set of problems, and implementation complexity.

To discuss semiparametric approaches to AFAPE, we first remind the reader of the
semiparametric theory review in Appendix B. The following section draws extensively on
the foundational framework of Tsiatis (2006) to establish essential context.

Let the observed data influence function be denoted as ϕ ≡ ϕ(A,GA(X(1)), Y ), and the
observed data tangent space as Λ, with the corresponding nuisance tangent space denoted
by Λnuis. The full data influence function - an influence function given the counterfactual
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variables X(1) - is denoted ϕF ≡ ϕF (X(1), Y ), with full data tangent space ΛF and nuisance

tangent space ΛFnuis. The two key relationships between these spaces and the influence
functions are as follows:

• An observed data influence function must lie in the orthocomplement of the observed
data nuisance tangent space: ϕ ∈ Λ⊥nuis.

• The observed data efficient influence function must be in the observed data tangent
space: ϕeff ∈ Λ.

Known semiparametric theory for MAR missing data methods can be applied to the AFAPE
problem under the NUC assumption. We begin by defining the space of full data influence
functions. Since we assume no restrictions on the full data, the full data influence function
is unique, efficient, and given by the online RL part of the missing data + online RL view:

ϕF (X(1), Y ) = E[C(πα)|X(1), Y ]︸ ︷︷ ︸
online RL

−J =
∑
a∈A

fC(a,Ga(X(1)), Y )πα(a|Ga(X(1)))− J. (31)

While the full data influence function is unique, the space of observed data influence func-
tions is generally not. To find it, we first define the orthogonal complement of the nuisance
tangent space, which can be expressed as (Theorem 8.3 from Tsiatis (2006)):

Λ⊥nuis =

{[
h∗(A,GA(X(1)), Y )⊕ Λ2

]
−Π

([
h∗(A,GA(X(1)), Y )⊕ Λ2

] ∣∣∣Λnuis,ψ

)}
, (32)

where h∗ belongs to the inverse probability weighting (IPW) space Λ∗IPW, Λ2 is the augmen-
tation space, and Λnuis,ψ = Λψ is the nuisance tangent space, or equivalently the tangent
space of the acquisition process. We explain these three spaces now in more detail.

The inverse probability weighting space Λ∗IPW:
The function h∗(A,GA(X(1)), Y ) in Eq. 32 can be any function in the IPW space Λ∗IPW

which is defined as:

Λ∗IPW ≡
{
h∗(A,GA(X(1)), Y ) ∈ H : E[h∗(A,GA(X(1)), Y )|X(1), Y ] = ϕ∗F (X(1), Y )

}
.

where H denotes the space of random functions with zero mean and finite variance and
ϕ∗F (X(1), Y ) denotes an element of the orthocomp of the full data nuisance tangent space:

ϕ∗F ∈ Λ⊥nuis.
In fact, if we further restrict the IPW space such that we don’t allow any element of

the orthocomp of the full data nuisance tangent space ϕ∗F (X(1), Y ), but only the full data

influence function ϕF (X(1), Y ), then we also obtain only observed data influence functions
by Eq. 32 (Theorem 8.3 from Tsiatis (2006)). In the following, we thus restrict the IPW
space to:

ΛIPW ≡
{
h(A,GA(X(1)), Y ) ∈ H : E[h(A,GA(X(1)), Y )|X(1), Y ] = ϕF (X(1), Y )

}
.

In that case, the IPW space contains functions that, when taking the conditional expected
value with respect to the full data, equal the full data influence function. The space is de-
noted as the IPW space because IPW-based identifying functions can be chosen to construct
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elements in this space. In fact, as will be shown in this section, all the IPW estimators -
from the offline RL, missing data, and semioffline RL views - are applicable and form valid
elements in ΛIPW.

The augmentation space Λ2:
The augmentation space Λ2 is defined as follows (Lemma 7.4 from Tsiatis (2006)):

Λ2 =

{
b(A,GA(X(1)), Y ) ∈ H : E

[
b(A,GA(X(1)), Y )|X(1), Y

]
= 0

}
. (33)

This space contains functions that, when taken in conditional expectation with respect to
the full data, equal zero. This provides intuition behind the decomposition of the space of
observed data influence functions: the space consists of one function that, in conditional
expectation, equals the full data influence function, plus all functions that become zero in
conditional expectation. One must, however, still obtain the residual of the projection of
these functions onto the nuisance tangent space of the acquisition process, Λnuis,ψ, intro-
duced below.

The nuisance tangent space of the acquisition process Λnuis,ψ:
The space Λnuis,ψ corresponds to the observed data nuisance tangent space of the acquisition
process and is a subspace of Λ2 (Theorem 8.1 from Tsiatis (2006)). In our AFA setting,
future feature values do not influence past acquisition decisions, resulting in the following

conditional independences: At ⊥⊥ X
t
(1), Y |GAt−1(X

t−1
(1) ), At−1 which can be translated into

tangent space restrictions such that:

Λnuis,ψ = Λ1
nuis,ψ ⊕ Λ2

nuis,ψ ⊕ ...⊕ ΛTnuis,ψ (34)

where each subspace Λtnuis,ψ is defined as:

Λtnuis,ψ ≡
{
γt(At, At−1, GAt−1(X(1))) ∈ H :

E
[
γt(At, At−1, GAt−1(X(1)))|At−1, GAt−1(X(1))

]
= 0

}
.

As these subspaces are orthogonal, projections onto them are available in closed form and
are known to be (as derived in Appendix B):

Π([.]|Λtnuis,ψ) = E
[
[.]|At, At−1, GAt−1(X(1))

]
− E

[
[.]|At−1, GAt−1(X(1))

]
.

Amongst the class of observed data influence functions, one may further be interested
in finding the one with the smallest asymptotic variance, i.e., the efficient observed data
influence function ϕeff. It can be found via the following projection of h (Theorem 10.1
from (Tsiatis, 2006)):

ϕeff = h(A,GA(X(1)), Y )−Π
(
h(A,GA(X(1)), Y )|Λ2

)
.

Hence, to construct an efficient influence function, one needs to find an element h, construct
the space Λ2, and project onto it. We now embed the three viewpoints of this work—missing
data view, offline RL view, and semi-offline RL view—into this framework. We begin with
the traditional missing data approach based on complete cases.
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7.1 Missing data view

Now, we discuss the standard, traditional missing data approach to choosing an element h
of the IPW space ΛIPW and constructing the augmentation space Λ2. Traditional semipara-
metric estimators for missing data problems rely on the missing data positivity assumption
(Assumption 6.2), which requires complete cases. The corresponding estimators are referred
to as augmented inverse probability weighting complete case (AIPWCC) estimators.

These estimators are called complete case estimators because they choose the missing
data IPW estimator for h (see Tsiatis (2006) for more details):

hMiss(A,GA(X(1)), Y ) = ρMissE[C(πα)|X(1), Y ]− J ∈ ΛIPW. (35)

Furthermore, they also require the missing data positivity assumption (Assumption 6.2) for
the construction of Λ2, given as:

Λ2 =

{ ∑
a∈A\~1

[
I(A = a)−

T∏
t=1

I(At = ~1)πtβ(At = at|Gat−1(X(1)), a
t−1))

πtβ(At = ~1|GAt−1(X(1)), A
t−1 = ~1)

]
ba(GA(X(1)), Y ) :

ba(GA(X(1)), Y ) ∈ H

}
. (36)

For the interested reader, we show how both of these choices are derived under the missing
data positivity assumption in Appendix L.

In addition to the strong positivity requirements, a key challenge is that general projec-
tions onto Λ2 are not available in closed form (Tsiatis, 2006). Alternatives to still perform
such projections and achieve full efficiency include iterative numerical methods. However,
these methods are difficult to implement and involve significant computational challenges,
which have hindered their practical application (Tsiatis, 2006). Therefore, such methods
are beyond the scope of this work, but we direct interested readers to Tsiatis (2006) for
further details.

7.2 Offline RL view

An alternative to applying traditional semiparametric theory for missing data problems
is to start from the offline RL view. In this approach, one projects the influence function
ϕOff—associated with the DRL estimator—onto the restricted tangent space under the NDE
assumption, denoted by ΛNDE:

ϕeff = Π
(
ϕOff

∣∣ΛNDE

)
= ϕOff −Π

(
ϕOff

∣∣Λ⊥NDE

)
.

This approach was first introduced by Liu et al. (2021) in the context of dynamic testing
and treatment regimes, though it can be adapted to the AFAPE setting. However, their
derivation was limited to a single acquirable feature per time step (At ∈ {0, 1}).

The space Λ⊥NDE is adapted to AFAPE, given as:

Λ⊥NDE = Λ∗ −Π(Λ∗|Λψ)
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with

Λ∗ ≡

{
bt
it−1,i

t+1(At−1, GAt−1(X(1)), X
it−1

(1) , X
i
t+1

(1) , Y )

(
At

πtβ
− 1

)
t−1∏
t′=1

(
At
′

πt
′
β

)it′ T∏
t′=t+1

(
At
′

πt
′
β

)it′
:

bt
it−1,i

t+1(At−1, GAt−1(X(1)), X(1), Y ) ∈ H

}

where it−1 ≡ {i1, .., it−1} and i
t+1 ≡ {it+1, .., iT } index subsets of {0, 1}t−1 and {0, 1}T−t

respectively and X
it−1

(1) ≡ {Xt′

(1) : 1 ≤ t′ ≤ t − 1, it
′

= 1} and Xi
t+1

(1) ≡ {Xt′

(1) : t + 1 ≤
t′ ≤ T, it

′
= 1}. Furthermore, we denote πtβ ≡ πtβ(At = 1|GAt−1(X(1)), A

t−1) for this one
acquisition per time-point setting.

The space Λ∗ includes a term for each combination of observed features (indexed by the
subsets i). This construction also relies on a stringent positivity assumption, which is even
stronger than what is required for identification under the offline RL view (Assumption 6.1).
Specifically, it demands that πtβ > 0 for all t, GAt−1(X(1)), and At−1, irrespective of the
target policy. Furthermore, since the target parameter doesn’t depend on the acquisition
process, we have Λψ = Λnuis,ψ.

In the following lemmas, we demonstrate the equivalence between this offline RL ap-
proach and the semiparametric theory for MAR missing data problems:

Lemma 15. (Relating the offline RL IPW estimator to the IPW space). The functional
hOff ≡ ρOffC − J , based on the IPW estimator from the offline RL view, is a valid element
of the IPW space: hOff ∈ ΛIPW.

Lemma 16. (Λ∗ is equal to the augmentation space). The augmentation space Λ2 is equal
to Λ∗.

Both lemmas are proven in Appendix M.
We now demonstrate that both approaches—whether derived from the offline RL or the

missing data view—yield the same influence function (as expected):

ϕeff = ϕOff −Π(ϕOff|Λ⊥NDE)
∗1= hOff −Π(hOff|Λnuis,ψ)−Π(hOff −Π(hOff|Λnuis,ψ)|Λ∗ −Π(Λ∗|Λnuis,ψ))

= hOff −Π(hOff|Λnuis,ψ)−Π(hOff|Λ2 −Π (Λ2|Λnuis,ψ))
∗2= hOff −Π(hOff|Λ2)

where we use in ∗1) that the influence function can be decomposed: ϕOff = hOff−Π(hOff|Λnuis,ψ).
In ∗2), we used that Λnuis,ψ ⊂ Λ2.

This shows that a separate projection onto Λnuis,ψ is unnecessary. However, as noted
earlier, a projection onto Λ⊥NDE (or Λ2) is not available in closed form (Liu et al., 2021),
as previously discussed in the missing data approach. Liu et al. (2021) suggest instead
constructing an arbitrarily large subspace Ω onto which a projection is feasible. In this
case, it becomes helpful to first project onto Λnuis,ψ (where closed-form projections are
available), ensuring that the resulting functional remains a valid influence function, even
when the second projection is onto the approximated space Ω.
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The resulting estimator by Liu et al. (2021) is termed ”nearly efficient.” It is, however,
still difficult to implement and has so far only been tested only for a one time point, one
acquisition setting.

7.3 Semi-offline RL view

In this section, we explore how the semi-offline RL view integrates with semiparametric
theory and derive the corresponding influence function for the semi-offline DRL estimator
given in Theorem 14.

We begin by establishing that the IPW estimator derived from the semi-offline RL
framework can be used to construct an element of the IPW space ΛIPW:

Lemma 17. (Relating the semi-offline RL IPW estimator to the IPW space). hSemi ≡
hSemi(A,GA(X(1)), Y ) = Ên′ [ρTSemiC

′|A,GA(X(1)), Y ] − J is an element of the IPW space
ΛIPW.

The proof of this lemma can be found in Appendix N.
Since constructing the augmentation space Λ2 often involves strong positivity assump-

tions and projections onto Λ2 are typically not available in closed form, we propose an
alternative approach. Specifically, we suggest projecting onto subspaces of Λ2 where closed-
form projections are feasible. One such subspace is Λ2,Semi, a tractable subspace of Λ2,
defined as:

Λ2,Semi(Ξ) = Λ1
2,Semi(Ξ)⊕ Λ2

2,Semi(Ξ)⊕ ...⊕ ΛT2,Semi(Ξ)

with each

Λt2,Semi(Ξ) =

{
bt(At, At−1, GAt−1(X(1)),Ξ) ∈ H :

E[b(At, At−1, GAt−1(X(1)),Ξ)|At−1, GAt−1(X(1)),Ξ] = 0

}
.

Notably, we have Λψ ⊆ Λ2,Semi(Ξ) ⊂ Λ2 with equality Λψ = Λ2,Semi if Ξ = ∅.
This yields the following class of influence functions, proving Theorem 14:

ϕSemi(A,GA(X(1)), Y ; Ξ) = hSemi −Π(hSemi|Λ2,Semi(Ξ))

= hSemi −
T∑
t=1

E
[
hSemi

∣∣∣At, At−1, GAt−1(X(1)),Ξ
]

+

T∑
t=1

E
[
hSemi

∣∣∣At−1, GAt−1(X(1)),Ξ
]

= E
[
ρTSemifC(A′, GA′(X(1)), Y )|Y,GA(X(1)), A

]
−

T∑
t=1

E
[
ρtSemiQ

t
Semi

∣∣∣At, At−1, GAt−1(X(1)),Ξ
]

+
T∑
t=1

E
[
ρt−1

SemiV
t−1

Semi

∣∣∣At−1, GAt−1(X(1)),Ξ
]
− J

= E

[
ρTSemifC(A′, GA′(X(1)), Y )−

T∑
t=1

ρtSemiQ
t
Semi +

T∑
t=1

ρt−1
SemiV

t−1
Semi

∣∣∣A,GA(X(1)), Y

]
− J.
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Figure 7: The plots depict convergence as a function of data set size n for sampling-based
estimators in Experiment 1. Two agents are shown: one that acquires each costly
feature with a probability of 50% and another with 100%. The estimation error is
measured as the absolute difference between the estimate and the ground truth,
which is calculated on the full data set (n = 40, 000). The semi-offline RL IPW
estimator converges the fastest for the ’Random 50%’ agent, while for the ’Fixed
100%’ agent, all IPW estimators perform identically, converging at a slower rate.

We provide full details of this derivation in Appendix O.

From the semiparametric viewpoint, it holds that a larger set Ξ will increase the effi-
ciency of the corresponding influence function as mentioned in Remark 7. This is the case
since employing a larger set Ξ will result in a larger subspace Λ2,Semi(Ξ) ⊂ Λ2, which in
turn implies a higher efficiency.

8. Experiments

We evaluate the different estimators on synthetic data sets where the missingness is artifi-
cially induced to allow the comparison with the ground truth.

8.1 Experiment Design

We perform five experiments with different violations of the identifying assumptions:

• Experiment 1: Assumptions 4 (NDE), 5 (NUC), 6.1 (offline RL positivity), 6.2
(missing data positivity), and 6.4 (maximal global positivity) all hold.
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• Experiment 2: Assumption 6.2 (missing data positivity) is violated

• Experiment 3: Assumption 6.1 (offline RL positivity) is violated for some agents.

• Experiment 4: Assumptions 5 (NUC) is violated.

• Experiment 5: Assumptions 4 (NDE) is violated.

We evaluate random AFA policies and a proximal policy optimization (PPO) RL agent
(Schulman et al., 2017) as AFA agents and use impute-then-regress classifiers (Le Mor-
van et al., 2021) with unconditional mean imputation and a logistic regression classifier.
Nuisance functions (Q̂Semi and π̂β) are fitted using multi-layer perceptrons and logistic re-
gression models, respectively. The assumed logistic regression model for the propensity
score correctly matches the ground truth. We compare the following estimators:

• Imp-Mean: Mean imputation (biased estimator)

• Blocking: Blocks the acquisitions of not available features but offers no correction.
This corresponds to the estimate Ên′ [C ′] (with π′sim = π′α) which is biased.

• CC: Complete case analysis (only unbiased under MCAR).

• IPW-Miss/IPW-Miss-gt: The IPW estimator from the missing data view. The
weights were normalized to reduce the variance of the estimator. IPW-Miss-gt uses
the ground truth propensity score model πβ instead of its estimate π̂β.

• IPW-Off /IPW-Off-gt: The IPW estimator from the offline RL view with normalized
weights and with and without the ground truth propensity score model.

• IPW-Semi/IPW-Semi-gt: The IPW estimator (for the maximal global positivity as-
sumption) from the semi-offline RL view with normalized weights and with and with-
out the ground truth propensity score model.

• DM-Semi: The semi-offline RL version of the direct method.

• DRL-Semi/DRL-Semi-gt: The semi-offline RL version of the double reinforcement
learning estimator with normalized weights under the maximal global positivity as-
sumption, with and without the ground truth propensity score model.

• Ground Truth: In the experiments where the NDE assumptions hold, the agent is eval-
uated on the fully observed data set. This corresponds to estimating J using a Monte
Carlo estimate, Ê

[
C(πα)|X(1), Y

]
, derived from samples of the ground truth data with-

out any missingness (i.e., samples from p(X(1), Y )). Conversely, in experiments where
the NDE assumption is violated, the ground truth is obtained by running the agent in
an environment that is continuously sampled from the true data-generating process.

Complete experiment details are given in Appendix P.

8.2 Results

Figure 7 shows the convergence plots of sampling-based estimators for Experiment 1, high-
lighting the data efficiency of all estimators when the identifying assumptions hold. As
expected, the blocking and complete case estimators are biased and do not converge to the
true value of J . Among the unbiased IPW estimators, the semi-offline RL IPW estimator
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A) Experiment 1: All estimators B) Experiment 1: Doubly robust estimation

Figure 8: A) General estimation results for Experiment 1. The Imp-Mean, Blocking, and
CC estimators show highly biased estimates, while the IPW, semi-offline DM,
and DRL estimators align closely with the true target J . B) Estimation results
highlighting the double robustness property of the DRL estimator. The DRL-
Semi estimator continues to provide accurate estimates even when either the
propensity score model π̂β (DRL-Semi (ps-err)) or the Q-model Q̂Semi (DRL-
Semi (Q-err)) is misspecified.

is the most efficient, achieving the fastest convergence for the ’Random 50%’ agent, which
acquires each feature with a 50% probability. However, this data efficiency disappears when
evaluating the ’Fixed 100%’ agent, which acquires all features every time. As noted in Re-
mark 3, all three IPW estimators perform identically in this scenario, as reflected by their
equal convergence speeds.

Figure 8A) displays the overall performance of various estimators in Experiment 1.
Confidence intervals were computed using the non-parametric bootstrap, excluding the
retraining of nuisance functions due to high computational complexity. As a result, the
confidence intervals are overly narrow, particularly for the semi-offline DM estimator. The
experiment demonstrates that all semi-offline RL estimators accurately approximate the
true target parameter J . However, the DM estimator may exhibit slight bias due to potential
misspecification of the Q-function. In contrast, the biased mean imputation, blocking, and
complete case analysis estimators fail to consistently estimate J .

Figure 8B) illustrates the double robustness property of the semi-offline RL version of
the DRL estimator. Even when one of the nuisance functions is misspecified, the DRL
estimator still provides estimates that closely approximate the true value of J .

Figures 9A) and B) underscore the importance of the positivity assumption. In Figure
9A), Experiment 2 shows the consequences of violating the missing data positivity assump-
tion (Assumption 6.2)—the fraction of complete cases is only 0.007%. As a result, J for the
’Fixed 100%’ agent cannot be identified from any of the views, and all IPW estimators fail
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A) Experiment 2: Missing data positivity violated B) Experiment 3: Offline RL positivity violated

Figure 9: A) Experiment 2: AFA setting with an extremely low fraction of complete cases
(0.007%), leading to violations of the missing data positivity assumption. For
the ’Fixed 100%’ agent, the target J is not identified from any view. However,
the semi-offline IPW estimator is less impacted by the lack of complete cases
when evaluating the other agents. B) Experiment 3: AFA setting with positivity
violations specific to the offline RL view. While other estimators continue to
produce accurate estimates, the offline RL IPW estimator fails entirely for the
PPO and ’Random 50%’ agents.

to provide accurate estimates. The positivity assumption is also violated for the ’Random
50%’ agent, though the impact is less severe for the offline and semi-offline RL estimators.

In Figure 9B, Experiment 3 shows the failure of the positivity assumption required by
the offline RL view (Assumption 6.1) for two agents. In this experiment, A2 = ~1 for all
data points, meaning trajectories where A(πα) = 0 have no support. While the other IPW
estimators still produce accurate estimates for J , the estimates from the offline RL IPW
estimators fail completely.

Finally, Figures 10A) and B) explore the AFA setting when either the NUC or NDE
assumptions are violated. In Figure 10A, which depicts an MNAR scenario, all IPW esti-
mators appear to perform well despite the violation of the NUC assumption. For the ’Fixed
100%’ agent, this is expected, as all estimators reduce to the missing data IPW estimator,
which is identified. However, for the ’Random 50%’ agent, the AFAPE target J is not iden-
tified from the offline or semi-offline RL views, though the estimation from the semi-offline
RL IPW estimator remains relatively robust. It is worth cautioning that violating the NUC
assumption may have more severe consequences in real-world applications.

Figure 10B demonstrates the effect of violating the NDE assumption. In this case, only
the offline RL view yields consistent estimators, as reflected in the experiment. All other
estimators show significant deviations from the ground truth. However, the offline RL IPW
estimator shows slight biases, too, possibly due to minor positivity violations.
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A) Experiment 4: NUC violated B) Experiment 5: NDE violated

Figure 10: A) Experiment 4: AFA setting with an MNAR acquisition process, resulting
in violations of the NUC assumption. Despite this, the semi-offline RL IPW
estimator still provides accurate estimates of the target J . B) Experiment 5:
AFA setting with a violation of the NDE assumption. All estimators, except
the offline RL IPW estimator, produce highly biased estimates. The offline RL
IPW estimator also shows some slight deviation from the true J , too, potentially
caused by minor positivity violations.

9. Discussion and Future Work

In this study, we explored the various aspects of solving the AFAPE problem. We acknowl-
edge that there is no one-size-fits-all solution, as the choice of assumptions can vary across
AFA settings. To facilitate this discussion, we propose a set of questions that data scientists
should ask themselves when tackling the AFAPE problem before choosing a viewpoint and
estimator.

1) What (conditional) independences hold in the data? The choice of conditional indepen-
dence assumptions directly influences identifiability and the selection of optimal viewpoints
and estimators. When both the NDE and NUC assumptions are violated, the target pa-
rameter becomes unidentifiable, making estimation infeasible. If only the NDE assumption
fails, the offline RL view is still applicable, while violations of only the NUC assumption
allow for the use of the missing data (+online RL) view. In each scenario, leveraging the
absence of an edge in the causal graph can effectively eliminate estimation bias that would
otherwise persist. When both assumptions are satisfied, one can select from the offline RL,
missing data (+online RL), or the novel semi-offline RL view. In such cases, leveraging both
the NDE and NUC assumptions through the semi-offline RL view can be advantageous, as
it allows for relaxed positivity assumptions and a reduction in estimation variance.

Conclusion: Under NUC, one can apply offline RL methods. Under NDE, one can apply
missing data methods. Under both NUC and NDE, one can apply semi-offline RL methods.
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2) How much exploration was performed by the retrospective acquisition policy πβ? Pos-
itivity requirements, crucial for all viewpoints, demand certain action sequences to be
present in the retrospective data. However, real-world data sets—especially in fields like
medicine—often breach these assumptions due to the tendency of professionals to follow sim-
ilar paths with minimal deviation. The semi-offline RL view, fortunately, imposes weaker
positivity constraints than both the offline RL and missing data (+online RL) views. Nev-
ertheless, for ”data-hungry” AFA policies, the benefits may be less pronounced compared
to the missing data view.

Additionally, the choice of the identifying policy πid depends on which positivity assump-
tions hold in the data. We leave the adaptation of known positivity assessment methods
(Petersen et al., 2012) to the semi-offline RL setting as future work.

Conclusion: The semi-offline RL view requires significantly weaker positivity assump-
tions than the offline RL and missing data (+ online RL) viewpoints.

3) Can the nuisance models be correctly specified and trained? The accuracy of different
estimators hinges on the proper specification and training of nuisance functions. Despite the
double robustness property of DRL estimators, achieving unbiased estimates still depends
on how well these functions are modeled. Estimators like the multiple imputation (MI)
method can outperform others in certain contexts, particularly when feature smoothness
assumptions are reasonable and easily modeled over time. While machine learning tech-
niques such as deep learning offer flexibility, they demand large data sets, which may not
always be available.

Conclusion: No single viewpoint or estimator is superior across all settings. The choice
between MI and semi-offline RL estimators depends on prior knowledge and the feasibility
of training the nuisance models.

4) Is the available data set size sufficient? Efficient use of data is crucial for accurate
estimation. Our experiments demonstrate that estimators based on the semi-offline RL view
achieve greater data efficiency compared to both offline RL and missing data estimators.

While our semiparametric analysis shows that the efficiency of all estimators can still
be improved, a closed-form efficient influence function does not exist. Some computation-
ally intensive methods, though complex to implement, may still enhance efficiency if the
respective strong positivity assumptions hold (Tsiatis, 2006; Liu et al., 2021).

Conclusion: Estimators derived from the semi-offline RL view demonstrate in experi-
ments notably higher data efficiency compared to estimators from the offline RL and missing
data (+ online RL) viewpoints.

When the answers to the above questions are uncertain, it is advisable to use multiple views
and estimators in tandem as part of a broader sensitivity analysis. This approach enhances
confidence in the reliability and safety of AFA agents before deployment.

Our study assumes that feature values change over time, making the timing of measure-
ments critical. In our companion paper (von Kleist et al., 2023), we address how a static
feature assumption can be incorporated into the AFAPE problem, and we explore how the
semi-offline RL and missing data views can be combined when the NUC assumption is
violated (i.e., in MNAR scenarios).
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Looking forward, we aim to tackle the AFA optimization problem outlined in Section
3.4. Once the AFAPE problem is resolved and the estimation of the target parameter
J is successful, optimization can commence. This includes training new AFA agents and
classifiers. A natural next step is adapting established DTR (Murphy, 2003; Robins, 2004)
or offline RL methods—such as off-policy policy gradient methods, actor-critic techniques,
and model-based RL approaches (Levine et al., 2020)—to the semi-offline RL framework for
further development. These adapted methods could also integrate insights from the online
RL literature, such as employing an adaptive exploration policy to enhance the sampling
process.

10. Conclusion

We study the problem of active feature acquisition performance evaluation (AFAPE), which
involves estimating the acquisition and misclassification costs that an AFA agent would gen-
erate after being deployed, using retrospective data. We demonstrate that, depending on
the assumptions, one can apply different existing viewpoints to solve AFAPE. Under the
no unobserved confounding (NUC) assumption, one can apply identification and estima-
tion methods from the offline RL literature. Under the no direct effect (NDE) assumption,
which assumes the underlying feature values are not affected by their measurement, one
can instead apply missing data methods. For settings where both the NUC and the NDE
assumptions hold, we propose a novel semi-offline RL viewpoint, which requires weaker pos-
itivity assumptions for identification. Within the semi-offline RL viewpoint, we developed
several novel estimators that correspond to semi-offline RL versions of the direct method
(DM), inverse probability weighting (IPW), and double reinforcement learning (DRL). Fi-
nally, we conducted synthetic data experiments to highlight the significance of utilizing
proper unbiased estimators for AFAPE to ensure the reliability and safety of AFA systems.
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Appendix A. Literature Review for Active Feature Acquisition (AFA)

In this appendix, we explain in more detail the difference between AFA and related fields
and introduce some common approaches to training AFA agents from the literature.

A.1 Distinction between AFA and Related Fields

AFA is different from active learning (Settles, 2009). In active learning, one assumes a
classification task with a training data set that contains many unlabeled data points. The
active learning task is then to decide which label acquisitions will improve the training
performance the most. Similar research also exists for the acquisition of features for optimal
improvement of training. This task has been referred to as ”active selection of classification
features” (Kok et al., 2021), and unfortunately also as ”active feature acquisition” (Huang
et al., 2018; Beyer et al., 2020), but its objective differs fundamentally from ours. Huang
et al. (2018) attempt to find out which missing values within the retrospective data set would
improve training the most when retroactively acquired. In this paper, we are, however,
interested which features for a new data point would improve the individual prediction for
that data point the most.

A.2 Approaches to Training AFA Agents

The AFA setting is most generally described as a sequential decision process, which moti-
vates the use of RL-based solutions. One variant, model-based RL, focuses on learning a
model for the state transitions. Under the NDE assumption, utilizing an imputation model
to capture state transitions becomes feasible, exploiting the unique AFA structure for more
straightforward learning (Yoon et al., 2018; Yin et al., 2020; Li and Oliva, 2021a,b; Ma et al.,
2019). During deployment, this imputation model can simulate potential outcomes of fea-
ture acquisitions, facilitating the derivation of optimal acquisition strategies. Conversely,
model-free RL methods do not require a state-transition function. One variant, Q-learning,
involves estimating the expected cost of specific acquisition decisions (Chang et al., 2019;
Janisch et al., 2020; Shim et al., 2018). For instance, Shim et al. (2018) illustrate the use
of double Q-learning for the AFA agent, incorporating a deep neural network that shares
network layers for the acquisition decision and classification tasks.

Appendix B. Review of Semiparametric Theory

We give here a short review of the basic concepts of semiparametric theory and some
results for missing data problems. The review is based on work by Tsiatis (2006), which we
recommend for more in-depth explanations.

B.1 General Semiparametric Theory

Semi-parametric theory aims at finding data-efficient estimators for a target parameter
J = J(p) without imposing unnecessarily strict assumptions on p. In this review, we restrict
ourselves to only scalar parameters J . We let p denote the distribution p(Z) over a set of
random variables Z from which we have n independent and identically distributed samples
(Z1,...,Zn). It is possible in many cases to obtain estimators for J that are consistent at a
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rate of
√
n without imposing many assumptions. The derivation of such estimators relies

on influence functions which are discussed next.

B.1.1 Influence functions and estimators

A central element of semi-parametric theory are influence functions as they characterize
asymptotically linear estimators in the following sense. An estimator Jest is asymptotically
linear and has an influence function ϕ(Z) ≡ ϕ if it allows the following equality (Tsiatis,
2006):

Jest(n)− J =
1

n

n∑
i=1

ϕ(Zi) + op(
1√
n

) (37)

where ϕ ∈ H and H represents the space of all random functions of zero mean and finite
variance. The central limit theorem implies that Jest is asymptotically normally distributed
(Tsiatis, 2006):

√
n(Jest(n)− J) N

(
0,E[ϕ2]

)
where  denotes convergence in distribution. The estimation error is thus asymptotically
bounded by the variance of the influence function. The efficient influence function ϕeff is
the one with the smallest asymptotic variance.

Many influence functions, such as the ones of the DRL estimators in this work, depend
linearly on the target parameter J , such that ϕ = f(Z) + J for some function f . In these
cases, one can very easily derive a corresponding, so-called ”1-step” estimator by leveraging
Eq. 37 to obtain:

Jest ≡ −J +
1

n

n∑
i=1

ϕ(Zi) = −J +
1

n

n∑
i=1

f(Zi) + J =
1

n

n∑
i=1

f(Zi).

B.1.2 Deriving influence functions

Deriving the space of influence functions or the efficient influence function for a new target
parameter or new model restrictions can be complex. There are, however, some known
properties that influence functions in general, or the efficient influence function in partic-
ular, have to fulfill and these can be used for their derivation. We examine these now in
more detail:

1) An influence function must be in the orthocomp of the nuisance tangent
space: ϕ ∈ Λ⊥nuis
To clarify this condition, we first separate the space of model parameters into J , the target
parameter, and η, the nuisance parameters. We denote the nuisance tangent space as Λnuis

and the space orthogonal to it, i.e., its orthocomplement (or orthocomp), as Λ⊥nuis. The
nuisance tangent space can be seen as the collection of directions in which the nuisance
parameters can vary without affecting the parameter of interest. It is defined as the mean
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square closure of parametric submodel nuisance tangent spaces, where a parametric sub-
model nuisance tangent space is the linear subspace spanned by the nuisance scores, which
are defined as:

Sη =
∂ log pZ(z, η, J)

∂η

∣∣∣∣
η=η0

.

Here η0 denotes the true value of η.
An influence function must be an element in Λ⊥nuis, but must fulfill also the following

normalization (Theorem 3.2 from Tsiatis (2006)):

E [ϕ(Z)SJ(Z)] = 1

where SJ(Z) denotes the scores with respect to the target parameter.
A nuisance function can thus be obtained by taking any nonzero element h(Z) ∈ H,

projecting it onto the orthocomp of the nuisance tangent space Λ⊥nuis, and normalizing it.
We denote the mentioned orthogonal projection by Π such that:

ϕ∗(Z) = Π(h(Z)|Λ⊥nuis) = h(Z)−Π(h(Z)|Λnuis).

where ϕ∗(Z) represents an element of Λ⊥nuis which if normalized would be an influence func-
tion.

2) The efficient influence function must be in the tangent space: ϕ ∈ Λ
The condition to obtain efficiency for an influence function is that we choose the influence
function that is in the tangent space Λ. It can thus be obtained by projecting any influence
function onto the tangent space:

ϕeff(Z) = Π(ϕ(Z)|Λ) = ϕ(Z)−Π(ϕ(Z)|Λ⊥).

B.1.3 Constructing tangent spaces and projecting on them

Here, we provide some useful further details about the construction of tangent spaces with
specific restrictions and the projection of random variables on them. We start by decom-
posing the space of all zero mean, finite variance functions H into orthogonal subspaces
for the case of a multivarate Z. We then examine how tangent space restrictions given by
conditional independence assumptions can be incorporated.

1) The decomposition of H for a multivariate variable Z
Firstly, we look at a useful decomposition of the space of a multivariate variable Z of dimen-
sions d. The space H of all functions h(Z1, Z2, ..., Zd) separates into orthogonal subspaces
(Theorem 4.5 from Tsiatis (2006)):

H = HZ1 ⊕HZ2|Z1
⊕ ...⊕HZd|Zd−1,...,Z1

(38)

where HZi|Zi−1,...,Z1
denotes the space spanned by the conditional scores:

HZi|Zi−1,...,Z1
=

{
h(Zi, Zi−1, ..., Z1) ∈ H : E[h(Zi, Zi−1, ..., Z1)|Zi−1, ..., Z1] = 0

}
.
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Fortunately, also the projection onto such a subspace is known and is given for an arbitrary
element h∗(Z) ∈ H as:

Π
(
h∗(Z)|HZi|Zi−1,...,Z1

)
= E[h∗(Z)|Zi, Zi−1, ..., Z1]− E[h∗(Z)|Zi−1, ..., Z1].

2) Tangent space restrictions under a conditional independence assumption
It is also possible to define the tangent space under conditional independence restrictions
and to project on it. In particular, let’s revisit the decomposition of the tangent space from
Eq. 38. Let’s assume the following independence holds: Zi ⊥⊥ Zj |Zi−1, ..., Zj+1, Zj−1, ..., Z1

for i > j. We want to find Λr, the tangent space restricted by the conditional independence,
its orthocomp Λ⊥r , and projections on it.

The independence restriction only affects the space of the respective conditional scores
such that:

Λr = HZ1 ⊕HZ2|Z1
⊕ ...⊕ Λr,Zi|Zi−1,...,Zj+1,Zj−1,...,Z1

⊕ ...⊕HZd|Zd−1,...,Z1
.

and Λr,Zi|Zi−1,...,Zj+1,Zj−1,...,Z1
= HZi|Zi−1,...,Zj+1,Zj−1,...,Z1

. The projections onto Λr are thus
straightforward:

Π
(
h∗(Z)|Λr,Zi|Zi−1,...,Zj+1,Zj−1,...,Z1

)
= Π

(
h∗(Z)|HZi|Zi−1,...,Zj+1,Zj−1,...,Z1

)
= E[h∗(Z)|Zi, Zi−1, ..., Zj+1, Zj−1, ..., Z1]− E[h∗(Z)|Zi−1, ..., Zj+1, Zj−1, ..., Z1]

Correspondingly, we can obtain the orthocomp as

Λ⊥r = HZi|Zi−1,...,Z1
−Π(HZi|Zi−1,...,Z1

|Λr,Zi|Zi−1,...,Zj+1,Zj−1,...,Z1
)

=

{
h(Zi, Zi−1, ..., Z1)− E[h(Zi, Zi−1, ..., Z1)|Zi, Zi−1, ..., Zj+1, Zj−1, ..., Z1]

+ E[h(Zi, Zi−1, ..., Z1)|Zi−1, ..., Zj+1, Zj−1, ..., Z1]︸ ︷︷ ︸
=0

:

E[h(Zi, Zi−1, ..., Z1)|Zi−1, ..., Z1] = 0;h ∈ H
}

=

{
h(Zi, Zi−1, ..., Z1)− E[h(Zi, Zi−1, ..., Z1)|Zi, Zi−1, ..., Zj+1, Zj−1, ..., Z1] :

E[h(Zi, Zi−1, ..., Z1)|Zi−1, ..., Z1] = 0;h ∈ H
}
.

B.2 Semiparametric theory for missing data under the MAR assumption

Semiparametric methods have further been applied to missing data problems. As we take on
a missing data view in this work, we now briefly introduce known results for such settings.
We restrict our review to scenarios where the missingness process follows a missing-at-
random (MAR) scenario. For more details, see also Tsiatis (2006).

We now distinguish between observed data (with missingness) and full data (without
missingness). Let the full data be denoted by X(1) ∈ Rd, the missingness indicators by

A ∈ {0, 1}d and the observed data by X ≡ GA(X(1)) such that Xi = X(1),i if Ai = 1 and
Xi = ”?”, otherwise.
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Semiparametric theory methods for missing data aim at finding observed data (efficient)
influence functions from full data influence functions. Throughout this review and the whole
paper, we assume no restrictions on the full data X(1), meaning that there is only one full
data influence function. There are, however, in general multiple corresponding observed
data influence functions. In order to find these, the observed data nuisance tangent space
needs to be constructed. This construction is simplified in MAR scenarios, as the likelihood
factorizes into two separate terms related to the acquisition process and the observed data
part of the likelihood (Tsiatis, 2006):

pA,GA(X(1))(A,GA(X(1));ψ, J, η) = pA|GA(X(1))(A|GA(X(1));ψ)︸ ︷︷ ︸
acquisition process

∑
GA(X(1))

pX(1)
(X(1); J, η)︸ ︷︷ ︸

process of full data

(39)

where we let ψ denote the nuisance parameter of the acquisition process, and η denote the
nuisance parameter of the full data generating process.

This factorization allows the following decomposition of the nuisance tangent space into
orthogonal subspaces (Theorem 8.2 from Tsiatis (2006)):

Λnuis = Λnuis,ψ ⊕ Λnuis,η = Λψ ⊕ Λnuis,η. (40)

Here, we used Λψ = Λnuis,ψ, which holds since the target parameter is not part of this
acquisition process.

We continue with the discussion for the derivation of observed data influence functions
in the main text in Section 7.

Appendix C. Glossary of Terms and Symbols

Term Description

AFAPE Active feature acquisition performance evaluation: The prob-
lem of estimating the counterfactual cost that would arise if
an AFA agent was deployed.

NDE assumption No direct effect assumption: States that the action of mea-
suring a feature does not impact the values of any features or
the label.

NUC assumption No unobserved confounding assumption: States that acqui-
sition decisions within the retrospective data set were only
based on measured feature values.

Semi-offline RL Novel framework that allows an agent to interact with the
environment (the online part) but forbids the exploration of
certain actions (the offline part).

DTR Dynamic treatment regimes

G-formula Identification formula from causal inference (Robins, 1986)
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Plug-in of the G-formula Estimation formula from causal inference that replaces
unknown densities in the G-formula with estimated ver-
sions(Robins, 1986).

IPW Inverse probability weighting: Estimator that is also known
as importance sampling or the Horvitz-Thompson estimator.

DM Direct method: Estimator based on a Q-function.

DRL Double reinforcement learning: Double robust estimator that
uses IPW weights and a Q-function.

m-graph Missing data graph: Graph to visualize assumptions in miss-
ing data problems.

MI Multiple imputation: Estimator for missing data problems
that is a special case of the plug-in of the G-formula.

influence function Function of mean zero and finite variance that is used to ana-
lyze the asymptotic properties of regular and asymptotically
linear (RAL) estimators.

MCAR assumption Missing-completely-at-random assumption: States that the
reason for the missingness of certain features does not depend
on any feature values.

MAR assumption Missing-at-random assumption: States that the reason for
missingness of certain features does only depend on observed
feature values.

MNAR assumption Missing-not-at-random assumption: States that the reason
for the missingness of certain features may depend on feature
values that are not observed.

nuisance function A function that needs to be fitted from data in order to use a
corresponding estimator but which is not of primary interest
itself. Examples are the propensity score model and the Q-
function.

local positivity assumption Positivity assumption for semi-offline RL that ensures the
simulation of a desired next action is possible from the retro-
spective data set.

regional positivity assump-
tion

Positivity assumption for semi-offline RL that ensures the
simulation of all future desired actions is possible from the
retrospective data set.

global positivity assumption Positivity assumption for semi-offline RL that ensures the
simulation of all desired actions is possible from step 1 on.

maximal regional positivity
assumption

A special, stronger version of the regional positivity assump-
tion.
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maximal global positivity
assumption

A special, stronger version of the global positivity assump-
tion.

tangent space Space of scores (i.e., derivatives of the log-likelihood)

nuisance tangent space Space of nuisance scores (i.e., the scores with respect to the
nuisance parameters)

Symbol Description

t ∈ (0, ..., T ) Time

U t Unobserved state variables at time t

d Number of features, i.e., dimension of U t

Xt = GAt(U
t) Observed feature values at time t (retrospective data set)

At Acquisition action at time t (retrospective data set)

A Space of A

Y Label

Y ∗ = fcl(X
T , AT ) Predicted label based on classifier fcl

Cta Acquisition cost for action At

Cmc = fC(Y ∗, Y ) Misclassification cost (if Y and Y ∗ differ)

πβ Retrospective acquisition policy

πα AFA policy

Cmc,(πα) Counterfactual misclassification cost had πα instead of πβ been
applied

g(.) known deterministic distribution

J / Jmc Expected misclassification cost under the AFA policy and classifier

Ja Expected acquisition cost under the AFA policy and classifier

φ∗1, φ∗2 Sets of parameters that parameterize the AFA policy and the clas-
sifier, respectively

q(.) Counterfactual distribution

QtOff State-action value function from offline RL (at time t)

V t
Off State value function from offline RL (at time t)

π′ Blocked policy

π′sim (Blocked) simulation policy

p′(.) Simulated distribution

C ′, Y ′∗, X ′, A′ Simulated cost, predicted label, features, and actions
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Symbol Description

D Retrospective data set

D′ Simulated data set

Aadm Local admissible set

Ãadm Regional admissible set

πid Distribution for A that allows identification of J under the semi-
offline RL view (subject to support restrictions)

QtSemi State-action value function from semi-offline RL (at time t)

Ξ ⊆ {O, Y } Arbitrary subset of the always observed features O ⊂ X(1) and
the label Y

q′(.) Counterfactual simulated distribution

ϕ Influence function

Λ (Observed data) tangent space

Λ⊥ Orthocomplement of the (observed data) tangent space

Π([.]|Λ) (Orthogonal) projection onto the tangent space

Λnuis (Observed data) nuisance tangent space

ΛF Full data tangent space

ΛFnuis Full data nuisance tangent space

Λnuis,ψ = Λψ (Nuisance) tangent space of the acquisition process

Λnuis,η Nuisance tangent space of the observed part of the full data pro-
cess

ΛIPW IPW space

Λ2 Augmentation space

Λ2,Semi(Ξ) Subspace of Λ2 proposed for projection onto under the semi-offline
RL view

Appendix D. Identification of the Block-conditional Model

In this appendix, we demonstrate how identification of p(X(1), Y ) can be achieved when
the NUC assumption (Assumption 5) is violated. This corresponds to the block-conditional
model (Zhou et al., 2010). We show that the propensity score model p(A = ~1|X(1), Y ) is

identified, which in turn results in identification of p(X(1), Y ), as p(X(1), Y ) =
p(X(1),Y,A=~1)

p(A=~1|X(1),Y )
.
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Identification of p(A = ~1|X(1), Y ):
The propensity score is identified by

p(A = ~1|X(1), Y ) =
T∏
t=1

p(At = ~1|X(1), Y, A
t−1 = ~1)

∗1=
T∏
t=1

πtβ(At = ~1|Xt−1
(1) , A

t−1 = ~1)

∗2=
T∏
t=1

πtβ(At = ~1|Xt−1, At−1 = ~1)

where we used in ∗1) the fact that future feature values do not affect current acquisition

decisions: At ⊥⊥ X
t
(1), Y |Xt−1

(1) , A
t−1. We further use in ∗2) that counterfactual feature

values Xt−1
(1) are equal to Xt−1 if At−1 = ~1. The last expression is a function of only

observed variables and is thus identified.

Appendix E. Multiple Imputation (MI) for the AFAPE Problem

In this appendix, we aim to delve deeper into the multiple imputation (MI) estimator in
the AFAPE context and highlight advantages as well as some common pitfalls associated
with using MI approaches in AFA.

Let us begin by emphasizing a significant advantage of the MI estimator compared
to other estimators discussed in this paper. It offers an elegant solution to the temporal
coarsening problem. In time-series settings, where fixed time intervals are assumed (t ∈
{0, 1, ..., T}), employing a very fine resolution of time steps would inevitably result in a
considerable increase in missingness, thereby making the AFAPE problem more challenging.
The MI estimator can typically overcome this issue by assuming an often justifiable temporal
smoothness of the feature distributions.

However, there are drawbacks to MI. MI requires modeling joint distributions, which is
a complex task in practice, particularly in high-dimensional settings and when dealing with
complex missingness patterns. For instance, the multiple imputation by chained equations
(MICE) method (van Buuren, 2007) necessitates fitting d conditional densities for d partially
observed features in static settings. In comparison, IPW only requires the specification of
the propensity score, which is often more feasible. This effect is especially drastic for high-
dimensional features such as images, which necessitate modeling for each pixel when using
multiple imputation, but only the modeling of one joint missingness indicator when using
IPW.

Furthermore, the MI estimator implies imputation of the missing features Xm by con-
ditioning on the observed features Xo and the label Y (i.e., estimating p̂(Xm|Xo, Y )). This
introduces the risk of data leakage, as the imputed features may carry predictive informa-
tion not because of the true data generation mechanism but due to the imputation itself,
resulting in a potentially over-optimistic estimation of prediction performance. A common
alternative, frequently employed in machine learning, is to impute the data without con-
ditioning on Y . However, this assumption implies that a missing feature X(1),i ∈ Xm is
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conditionally independent of the label given the observed features (X(1),i ⊥⊥ Y |Xo). Deter-
mining the marginal predictive value of a feature for predicting Y is, however, the whole
task of AFA, which renders this approach impractical.

Conditional mean imputation represents a simplified imputation approach that reduces
the complexity of modeling. It has been applied in AFA settings (An et al., 2022; Erion
et al., 2021; Janisch et al., 2020). In this approach, missing values are imputed using
a conditional mean model for Ê[Xm|Xo] (or Ê[Xm|Xo, Y ]). Therefore, conditional mean
imputation assumes:

ĴMI-Miss =
∑

Xm,Xo,Y

E[C(πα)|Xm, Xo, Y ]p̂(Xm|Xo, Y )p(Xo, Y )

≈
∑
Xo,Y

E[C(πα)|Ê[Xm|Xo], Xo, Y ]p(Xo, Y )

which does not hold in general and can lead to strongly biased results when E[C(πα)|Xm, Xo, Y ]
is nonlinear as is the case generally in AFA settings.

Appendix F. Proof of Lemma 6

In this appendix, we prove Lemma 6, which we repeat here for readability:

Lemma 6. (Sufficiency conditions for global positivity). The global positivity assumption
for semi-offline RL (Assumption 6.3) holds if the positivity assumption from offline RL
(Assumption 6.1) or from missing data (Assumption 6.2) holds.

We split the proof into the following propositions:

Proposition 18. If the positivity assumption for offline RL (Assumption 6.1) holds, then
the global positivity assumption for semi-offline RL also holds.

Proposition 19. If the positivity assumption for missing data (Assumption 6.2) holds,
then the global positivity assumption for semi-offline RL also holds.

We begin by proving Proposition 18:

Proof Consider the initial time step t = 1, focusing on data points (a′1, x0) such that
p(x0)πα(a′1|x0) > 0. To establish the global positivity assumption, we need to ensure that
the regional positivity assumption is satisfied.

We will show that a1 = a′1 belongs to the regional admissible set Ã1
adm(x0, a′1), which

implies that the regional positivity condition is met. Two conditions must be fulfilled for
a1 = a′1 to be included in Ã1

adm(x0, a′1). First, a1 = a′1 must belong to the local admissible
set A1

adm(x0, a′1), which directly follows from the offline RL positivity assumption. Second,
we must ensure that for a1 = a′1, the regional admissible set exists at the subsequent time
step. Specifically, since a1 = a′1 (and therefore x1 = x′1), the regional admissible set at
time step 2, Ã2

adm(a′2, x1, a1), must exist for all x1 and a′2 such that:

p(x1|x0, a1)πα(a′2|x1, a1) > 0.
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For these conditions, the positivity assumption under the offline RL view again implies that
a2 = a′2 is included in the local admissible set A2

adm(a′2, x1, a1). This reasoning can be
extended iteratively through all time steps up to T , thus proving that regional positivity
holds at every prior time point, which in turn establishes global positivity.

Next, we prove Proposition 19, following a similar strategy:

Proof Again, consider the initial time step t = 1, focusing on data points (a′1, x0) such
that p(x0)πα(a′1|x0) > 0. We show that a1 = ~1 is included in the regional admissible
set Ã1

adm(x0, a′1), irrespective of the value of a′1. First, a1 = ~1 must be included in the
local admissible set A1

adm(x0, a′1), a condition that directly follows from the missing data
positivity assumption.

Second, a1 = ~1 must permit the existence of a regional admissible set at the next time
step. Specifically, given a1 = ~1, the regional admissible set at time step 2, Ã2

adm(a′2, x1, a1) =
Ã2

adm(a′2, x1, a1 = ~1), must exist for all x1 and a′2 such that:

p(x1|x0, A1 = ~1)πα(a′2|x′1, a′1) > 0.

Under these conditions, the missing data positivity assumption again directly implies that
a2 = ~1 belongs to the local admissible set at time step 2, Ã2

adm(a′2, x1, a1 = ~1), regardless of
the values of a′2 and x′1. This reasoning can be extended step-by-step until T , thereby en-
suring that regional positivity holds at each prior time point and, consequently, that global
positivity is satisfied as well.

Appendix G. Proof of Theorems 7 and 8

In this Appendix, we prove Theorems 7 and 8. We also demonstrate how the positivity
assumption arises. We restate the theorems here for clarity and ease of reference.

Theorem 7. (Identification of J for the semi-offline RL view). The reformulated AFAPE
problem of estimating J under the semi-offline RL view (Eq. 17) is under Assumption
1 (no measurement noise), Assumption 2 (consistency), Assumption 3 (no interference),
Assumption 4 (NDE), Assumption 5 (NUC) and Assumption 6.3 (global positivity) identified
by

J = Ep′ [C ′(πα)] =
∑

A′,A,GA(X(1)),Y

fC(A′, X ′, Y )q′(A′, A,X, Y ) (19)

with the distribution

q′(A′, A,X, Y ) =

T∏
t=1

πtid(At|A′t, Xt−1, At−1)︸ ︷︷ ︸
distr. subject to constraints

πtα(A′t|X ′t−1, A′t−1)︸ ︷︷ ︸
target policy

T∏
t=0

p(Xt|Xt−1, At, Y )p(Y )

(20)
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where

πtid(A
t|A′t,Xt−1, At−1) = I(At ∈ Ãtadm(Xt−1, At−1, A′t))︸ ︷︷ ︸

support restriction

f tid(A
′t, Xt−1, At−1) (21)

for any function f tid s.t. πtid is a valid density.

Theorem 8. (Bellman equation for semi-offline RL). The semi-offline RL view admits
under Assumption 1 (no measurement noise), Assumption 2 (consistency), Assumption
3 (no interference), Assumption 4 (NDE), Assumption 5 (NUC) and the local positivity
assumption at datapoint xt−1, at−1, a′t (from Definition 4), the following semi-offline RL
version of the Bellman equation:

QSemi(A
′t, Xt−1, At−1,Ξ) =

∑
Xt

VSemi(A
′t, Xt, At−1, At = at,Ξ)p(Xt|Xt−1, At−1, At = at,Ξ)

(22)

for any at ∈ Atadm(Xt−1, At−1, A′t)

VSemi(A
′t, Xt, At,Ξ) =

∑
A′t+1

QSemi(A
′t+1, Xt, At,Ξ)πt+1

α (A′t+1|X ′t, A′t) (23)

with semi-offline RL versions of the state-action value function QSemi and state value func-
tion VSemi:

QtSemi ≡ QSemi(A
′t, Xt−1, At−1,Ξ) ≡ Ep′ [C ′(πt+1

α )
|A′t, Xt−1, At−1,Ξ]

V t
Semi ≡ VSemi(A

′t, Xt, At,Ξ) ≡ Ep′ [C ′(πt+1
α )
|A′t, Xt, At,Ξ]

where C ′
(πt+1
α )

denotes the potential outcome of C ′ under interventions from time step t+ 1

onwards. Ξ ⊆ {Y,O}, with O denoting all features that are always available, denotes an
optional subset of additional variables that can be conditioned on. Furthermore, QtSemi

and V t
Semi are identified if the regional positivity assumption (from Definition 5) holds at

Xt−1, At−1, A′t and at ∈ Ãtadm(Xt−1, At−1, A′t).

Proof Firstly, we factorize the counterfactual distribution, denoted by q′, expressing it as a
function of the observed (simulated) data. We factorize the graph step-by-step to show how
the semi-offline RL version of the Bellman equation arises. We split identification in each
step into two parts to emphasize the two parts of the Bellman equation. To help guide the
identification, we duplicate Figure 6 of the causal graph describing the simulation process in
Figure 11A). Alongside it, we show the counterfactual graph (for identification step t = 1)
in Figure 11B).

Step 0

Counterfactual factorization (step t = 0, part 1):

p′
(
C ′(πα)

) ∗1≡ p′ (C ′(π1
α)

)
=
∑
X0,Ξ

p′
(
C ′(π1

α)

∣∣∣X0,Ξ
)
p(X0,Ξ)
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where we denote in ∗1) C ′
(π1
α)

as the counterfactual C ′ under an intervention of πα from step

t = 1 onwards. The extension by X0 is needed for adjustment. The inclusion of Ξ ⊆ {Y,O},
where O denotes the subset of always observed features amongst X(1), is optional.

Counterfactual factorization (step t = 0, part 2):

p′
(
C ′(π1

α)

∣∣∣X0,Ξ
)

=
∑
a′1

p′
(
C ′(π2

α,a
′1)

∣∣∣X0,Ξ
)
π1
α(a′1|X0)

∗1=
∑
a′1

p′
(
C ′(π2

α,a
′1,π1

id)

∣∣∣X0,Ξ
)
π1
α(a′1|X0)

=
∑
a′1,a1

p′
(
C ′(π2

α,a
′1,a1)

∣∣∣X0,Ξ
)
π1
id(a

1|X0, a′1)π1
α(a′1|X0)

∗2=
∑
a′1,a1

p′
(
C ′(π2

α,a
′1,a1)

∣∣∣X0,a1,Ξ
)
π1
id(a

1|X0, a′1)π1
α(a′1|X0)

∗3=
∑
a′1,a1

p′
(
C ′(π2

α,a
′1)

∣∣∣X0, a1,Ξ
)
π1
id(a

1|X0, a′1)π1
α(a′1|X0)

∗4=
∑
a′1,a1

p′
(
C ′(π2

α,a
′1)

∣∣∣X0, a′1,a1,Ξ
)
π1
id(a

1|X0, a′1)π1
α(a′1|X0)

∗5=
∑
a′1,a1

p′
(
C ′(π2

α)

∣∣∣X0, a′1, a1,Ξ
)
π1
id(a

1|X0, a′1)π1
α(a′1|X0)

∗6=
∑
a′1,a1

p′
(
C ′(π2

α)

∣∣∣X0, a′1,Ξ
)
π1
id(a

1|X0, a′1)π1
α(a′1|X0)

with the following explanations:

• ∗1): We notice that C ′
(π2
α,a
′1)

is independent of any interventions π1
id on A1. This step

prevents positivity problems in subsequent steps.

• ∗2): We use the exchangeability C ′
(π2
α,a
′1,a1)

⊥⊥ A1|X0,Ξ, which follows from the NUC

assumption.

• ∗3): We use the consistency assumption:

p′
(
C ′

(π2
α,a
′1,a1)

∣∣∣X0, a1,Ξ
)

= p′
(
C ′

(π2
α,a
′1)

∣∣∣X0, a1,Ξ
)

• ∗4): We use the exchangeability: C ′
(π2
α,a
′1)
⊥⊥ A′1|X0, A1,Ξ

• ∗5): We use the consistency assumption: p′
(
C ′

(π2
α,a
′1)

∣∣∣X0, a′1, a1,Ξ
)

= p′
(
C ′

(π2
α)

∣∣∣X0, a′1, a1,Ξ
)

• ∗6): We use the conditional independence C ′
(π2
α)
⊥⊥ A1|X0, A′1,Ξ

We must also ensure that p′
(
C ′

(π2
α,a
′1)

∣∣∣X0, a′1, a1,Ξ
)

, i.e. conditioning on X0, A′1, A1,Ξ, is

well specified in ∗4). To understand what positivity requirements are necessary, we first
factorize the ”observational” (i.e., simulated) distribution for step t = 0. By observational
distribution for step t = 0, we refer to a distribution which only contains interventions from
step t = 2 onwards:
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Feature 
acquisitions

Classification

Underlying states

Feature acquisition simulation

available unknown knownnot available simulated blocking

A) Observational data (simulated) B) Counterfactual data

Feature 
acquisitions

Classification

Underlying states

Feature acquisition simulation

Figure 11: Causal graph for the distribution p′. A) Simulated (”observational”) distribu-
tion. B) Counterfactual distribution under the intervention π2

α. Edges showing
long-term dependencies are omitted from the graphs for visual clarity. These in-
clude: Xt−1

(1) ↔ Xt
(1); X

T
(1) ↔ Y ; Xt−1, At−1 → At; X ′t−1/X ′t−1

(π2
α)
, A′t−1/A′t−1

(π2
α)
→

A′t/A′t
(πtα)

; and X ′T /X ′T
(π2
α)
, A′T /A′T

(π2
α)
→ Y ′∗/Y ′∗

(π2
α)

.

Observational factorization (step t = 0):

p′
(
C ′(π2

α)

)
=

∑
X0,A1,A′1,Ξ

p′
(
C ′(π2

α)

∣∣∣X0, A′1,Ξ
)
π′1sim(A′1|X0, A1)︸ ︷︷ ︸

simulation policy

π1
β(A1|X0)︸ ︷︷ ︸

retro. acq. policy

p(X0,Ξ)

By comparing the observational and counterfactual factorizations, we see that the following
positivity assumption is required:

if p(x0)q′(a′1, a1|x0) = p(x0)π1
α(a′1|x0)π1

id(a
1|x0, a′1) > 0

then p(x0)p′(a′1, a1|x0) = p(x0)π′1sim(a′1|x0, a1)π1
β(a1|x0) ≥ O

∀x0, a′1, a1, and some constant O > 0 (41)

Since none of the distributions πα, πid, π′sim, and πβ depend on Ξ, the choice for Ξ will not
influence the positivity requirements. We can further simplify the positivity assumption
by using knowledge about the known simulation policy π′sim. By the construction of the
blocking operation of the simulation policy π′sim (Definition 2), one observes that

if π1
α(a′1|x0) > 0, then π′1sim(a′1|x0, a1) ≥ O1, if and only if a′1 ≤ a1

where, O1 is some constant > 0, and, as before, we let a′1 ≤ a1 denote the element-wise
comparison. The resulting positivity violation for the case a′1 6≤ a1 can be avoided by
restricting πid in the following way:
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Restriction 1 for πid (step t = 0):

if a′1 6≤ a1, then π1
id(a

1|x0, a′1) = 0 ∀x0, a′1, a1.

A second possible positivity violation arises if π1
β(a1|x0) = 0 for some values of a1. This

poses a second requirement for πid:

Restriction 2 for πid (step t = 0):

if π1
β(a1|x0) = 0, then π1

id(a
1|x0, a′1) = 0 ∀x0, a′1, a1.

Since πid is required to be a valid probability distribution (it cannot be 0 for all a1), this
imposes the following requirement for πβ:

if p(x0)π1
α(a′1|x0) > 0, then π1

β(A1 ≥ a′1|x0) ≥ O ∀x0, a′1, and some constant O > 0.

The positivity assumption implies that for any desired action a′1 by the target policy πα,
there exists at least positive support for one set of acquisitions a1 that include equal or
more acquisitions than what is contained in a′1. This is equivalent to the local positivity
assumption at x0, a′0 (i.e. the existence of A1

adm from Definition 4). In the next steps, we
show that these are only minimal requirements for π1

id(A
1|X0, A′1). To avoid running into

positivity violations in later time steps, a further restriction can be necessary.

Step 1

In the following, we continue the identification for step t = 1.

Counterfactual factorization (step t = 1, part 1):

p′
(
C ′(π2

α)

∣∣∣X0, A′1,Ξ

)
= p′

(
C ′(π2

α)

∣∣∣X0, A′1, a1,Ξ

)
=

=
∑
X1

p′
(
C ′(π2

α)

∣∣∣A′1, X1, a1,Ξ
)
p(X1|X0, a1,Ξ)

which holds for any a1 ∈ A1
adm(X0, A′1) (because local positivity must hold). Therefore,

the term p′
(
C ′

(π2
α)

∣∣∣A′1, X1, a1,Ξ
)

needs to be only identified for at least one value a1 ∈
A1

adm(X0, A′1).
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Counterfactual factorization (step t = 1, part 2):

p′
(
C ′(π2

α)

∣∣∣A′1, X1, A1,Ξ

)
=

=
∑
a′2

p′
(
C ′(π3

α,a
′2)

∣∣∣A′1, X1, A1,Ξ
)
π2
α(a′2|X′1, A′1)

∗1=
∑
a′2

p′
(
C ′(π3

α,a
′2,π2

id)

∣∣∣A′1, X1, A1,Ξ
)
π2
α(a′2|X ′1, A′1)

=
∑
a′2,a2

p′
(
C ′(π3

α,a
′2,a2)

∣∣∣A′1, X1, A1,Ξ
)
π2
id(a

2|A′1, a′2, X1, A1)π2
α(a′2|X ′1, A′1)

∗2=
∑
a′2,a2

p′
(
C ′(π3

α,a
′2)

∣∣∣A′1, X1, A1,a2,Ξ
)
π2
id(a

2|A′1, a′2, X1, A1)π2
α(a′2|X ′1, A′1)

∗3=
∑
a′2,a2

p′
(
C ′(π3

α)

∣∣∣A′1,a′2, X1, A1, a2,Ξ
)
π2
id(a

2|A′1, a′2, X1, A1)π2
α(a′2|X ′1, A′1)

∗4=
∑
a′2,a2

p′
(
C ′(π3

α)

∣∣∣A′1, a′2, X1, A1,Ξ
)
π2
id(a

2|A′1, a′2, X1, A1)π2
α(a′2|X ′1, A′1)

where we denote X ′1 ≡ GA′1(X(1)) which contains a subset of the features in X1 =
GA1(X(1)). The derivation was based on the following arguments:

• ∗1): We use that C ′
(π3
α,a
′2)

is independent of any interventions π2
id on A2.

• ∗2): We use exchangeability : C ′
(π3
α,a
′2,a2)

⊥⊥ A2|A′1, X1, A1,Ξ and consistency:

p′
(
C ′

(π3
α,a
′2,a2)

∣∣∣A′1, X1, A1, a2,Ξ
)

= p′
(
C ′

(π3
α,a
′2)

∣∣∣A′1, X1, A1, a2,Ξ
)

for A2.

• ∗3): We use the exchangeability C ′
(π3
α,a
′2)
⊥⊥ A′2|A′1, X1, A1, a2,Ξ and consistency:

p′
(
C ′

(π3
α,a
′2)

∣∣∣A′1, a′2, X1, A1, a2,Ξ
)

= p′
(
C ′

(π3
α)

∣∣∣A′1, a′2, X1, A1, a2,Ξ
)

for A′2.

• ∗4): We use the conditional independence C ′
(π3
α)
⊥⊥ A2|A′1, a′2, X1, A1,Ξ

We must also ensure in ∗3) that p′
(
C ′

(π3
α,a
′2)

∣∣∣A′1, a′2, X1, A1, a2,Ξ
)

, i.e., conditioning on

A′1, a′2, X1, A1, a2,Ξ, is well specified. To understand what positivity requirements are
necessary, we factorize the ”observational” (i.e., simulated) distribution for step t = 1.

Observational factorization (step t = 1):

p′
(
C ′(π3

α)

∣∣∣A′1,X0, A1,Ξ

)
=

∑
X1,a2,a′2

p′
(
C ′(π3

α)

∣∣∣A′1, a′2, X1, A1,Ξ
)

· π′2sim(a′2|X ′1, A′1, a2)︸ ︷︷ ︸
known simulation policy

π2
β(a2|X1, A1)︸ ︷︷ ︸

retro. acquisition policy

p(X1|X0, A1,Ξ)
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By comparing the observational and counterfactual factorizations, we see that the following
positivity assumption is required:

if q′(a′1, a′2, x1, a1, a2) =

= q′(a′1, x1, a1)π2
α(a′2|x′1, a′1)π2

id(a
2|a′1, a′2, x1, a1) > 0

then p′(x′1, a′2, x1, a1, a2) =

= p′(a′1, x1, a1)π′2sim(a′2|x′1, a′1, a2)π2
β(a2|x1, a1) ≥ O

∀x1, a′1, a1, a′2, a2, and some constant O > 0

with the following factorizations:

q′(A′1, X1, A1) = q′(A′1, X0, A1)p(X1|X0, A1)

p′(A′1, X1, A1) = p′(A′1, X0, A1)p(X1|X0, A1)

Note that we can again ignore Ξ since it doesn’t affect positivity requirements. The posi-
tivity condition can again be simplified through the two restrictions on π2

id:

Restrictions 1 and 2 for πid (step t = 2):

if a′2 6≤ a2 or π2
β(a2|x1, a1) = 0, then π2

id(a
2|a′1, a′2, x1, a1) = 0 ∀a2, a′2

This imposes the requirement for π2
β that there exists at least one value a2 such that a′2 ≤ a2

and π2
β(a2|x1, a1) ≥ O (i.e. local positivity at x1, a1, a′1). Notice, however, that this has

to hold for all values a1 that were ”allowed” in step t = 1 (i.e. where π1
id(a

1|x0, a′1) ≥ O).
As π1

id only needs to have support for at least one a1 ∈ A1
adm, we can restrict π1

id at step
t = 0 further to reduce the positivity assumption for step t = 2. We do, however, only
want to restrict π1

id as much as necessary because if π1
id has wider support, this means that

more data points are used in the analysis. Therefore, we introduce the notion of regional
positivity and the regional admissible set Ãadm (from Definition 5). In particular, Definition
5 defines Ã1

adm(x0, a′1) as the subset of A1
adm(x0, a′1) such that local positivity holds at step

t = 1 for all possible values of x1, and a′2. As this has to hold for future time-steps as well
(as will be shown next), the definition for Ãadm even states regional positivity has to hold
recursively, i.e., also at t = 1.

In summary, local positivity at step t = 2 ensures that the available data allows the
simulation of the currently desired action a′2. Regional positivity at step t = 0 ensures that
only those simulations are used at step t = 0 such that simulations of desired actions in the
future (at step t = 1) are possible with the data.

Step t
Now, we generalize the factorization to step t.

Counterfactual factorization (step t, part 1):

p′
(
C ′

(πt+1
α )

∣∣∣A′t, Xt−1, At−1,Ξ

)
= p′

(
C ′

(πt+1
α )

∣∣∣A′t, Xt−1, At−1, at,Ξ

)
= (42)

=
∑
X′t,Xt

p′
(
C ′

(πt+1
α )

∣∣∣A′t, Xt, At−1, at,Ξ
)
p(Xt|Xt−1, At−1, at,Ξ)
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which holds for any at ∈ Atadm(Xt−1, At−1, A′t) (because local positivity must hold). There-

fore, the term p′
(
C ′

(πt+1
α )

∣∣∣A′t, Xt, At−1, at,Ξ
)

needs to be only identified for at least one

value at ∈ Atadm(Xt−1, At−1, A′t).

Counterfactual factorization (step t, part 2):

p′
(
C ′

(πt+1
α )

∣∣∣A′t, Xt, At,Ξ

)
= (43)

=
∑
a′t+1

p′
(
C ′
(π
t+2
α ,a′t+1)

∣∣∣A′t, Xt, At,Ξ
)
πt+1
α (a′t+1|X′t, A′t)

∗1=
∑
a′t+1

p′
(
C ′

(πt+2
α ,a′t+1,π

t+1
id )

∣∣∣A′t, Xt, At,Ξ

)
πt+1
α (a′t+1|X ′t, A′t)

=
∑

a′t+1,at+1

p′
(
C ′

(πt+2
α ,a′t+1,at+1)

∣∣∣A′t, Xt, At,Ξ
)
πt+1
id (at+1|A′t, a′t+1, Xt, At)πt+1

α (a′t+1|X ′t, A′t)

∗2=
∑

a′t+1,at+1

p′
(
C ′
(π
t+2
α ,a′t+1)

∣∣∣A′t, Xt, At,at+1,Ξ
)
πt+1
id (at+1|A′t, a′t+1, Xt, At)πt+1

α (a′t+1|X ′t, A′t)

∗3=
∑

a′t+1,at+1

p′
(
C ′
(π
t+2
α )

∣∣∣A′t,a′t+1, Xt, At, at+1,Ξ
)
πt+1
id (at+1|A′t, a′t+1, Xt, At)πt+1

α (a′t+1|X ′t, A′t)

∗4=
∑

a′t+1,at+1

p′
(
C ′

(πt+2
α )

∣∣∣A′t, a′t+1, Xt, At,Ξ
)
πt+1
id (at+1|A′t, a′t+1, Xt, At)︸ ︷︷ ︸

arbitrary dist. subject to constraints

πt+1
α (a′t+1|X ′t, A′t)︸ ︷︷ ︸

target policy

with the following explanations:

• ∗1): We use that C ′
(πt+2
α ,a′t+1)

is independent of any interventions πt+1
id on At+1.

• ∗2): We use exchangeability : C ′
(πt+2
α ,a′t+1,at+1)

⊥⊥ At+1|A′t, Xt, At,Ξ and consistency:

p′
(
C ′

(πt+2
α ,a′t+1,at+1)

∣∣∣A′t, Xt, At, at+1,Ξ
)

= p′
(
C ′

(πt+2
α ,a′t+1)

∣∣∣A′t, Xt, At, at+1,Ξ
)

forAt+1.

• ∗3): We use the exchangeability C ′
(πt+2
α ,a′t+1)

⊥⊥ A′t+1|A′t, Xt, At, at+1,Ξ and consis-

tency: p′
(
C ′

(πt+2
α ,a′t+1)

∣∣∣A′t, a′t+1, Xt, At, at+1,Ξ
)

= p′
(
C ′

(πt+2
α )

∣∣∣A′t, a′t+1, Xt, At, at+1,Ξ
)

for A′t+1.

• ∗4): We use the conditional independence C ′
(πt+2
α )
⊥⊥ At+1|A′t, a′t+1, Xt, At,Ξ

As before, we have to make sure in ∗3) that p′
(
C ′

(πt+2
α ,a′t+1)

∣∣∣A′t, a′t+1, Xt, At, at+1,Ξ
)

, i.e.

conditioning on A′t, a′t+1, Xt, At, at+1,Ξ, is well specified. To understand what positivity
requirements are necessary, we factorize the ”observational” (i.e., simulated) distribution
for step t:
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Observational factorization (step t):

p′
(
C ′

(πt+2
α )

∣∣∣A′t, Xt−1,At,Ξ

)
=

∑
Xt,at+1,a′t+1

p′
(
C ′

(πt+2
α )

∣∣∣A′t, a′t+1, Xt, At,Ξ
)

·π′t+1
sim (a′t+1|X ′t, A′t, at+1)︸ ︷︷ ︸

known simulation policy

πt+1
β (at+1|Xt, At)︸ ︷︷ ︸

retro. acquisition policy

p(Xt|Xt−1, At,Ξ)

By comparing the observational and counterfactual factorizations, we see that the following
positivity assumption is required:

if q′(a′t, a′t+1, xt, at, at+1) =

= q′(a′t, xt, at)πt+1
α (a′t+1|x′t, a′t)πt+1

id (at+1|a′t, a′t+1, xt, at) > 0

then p′(a′t+1, xt, at, at+1) =

= p′(a′t, xt, at)π′t+1
sim (a′t+1|x′t, a′t, at+1)πt+1

β (at+1|xt, at) ≥ O

∀xt, a′t, at, a′t+1, at+1, and some constant O > 0

with the following factorizations:

q′(A′t, Xt, At) = q′(A′t, Xt−1, At)p(Xt|Xt−1, At)

p′(A′t, Xt, At) = p′(A′t, Xt−1, At)p(Xt|Xt−1, At)

The positivity condition can again be simplified through the two restrictions on πid:

Restrictions 1 and 2 for πid (step t):

if a′t+1 6≤ at+1 or πt+1
β (at+1|xt, at) = 0,

then πt+1
id (at+1|a′t, a′t+1, xt, at) = 0

∀at+1, a′t+1

This imposes the requirement for πβ that there exists at least one value at+1 such that
a′t+1 ≤ at+1 and πt+1

β (at+1|xt, at) ≥ O (i.e. local positivity at xt, at, a′t). This has to hold

for all values at that were ”allowed” in all previous steps (i.e. all at, for all τ ≤ t, s.t.
πtid(a

τ |a′τ−1, a′τ , xτ−1, aτ−1) > 0 and which could later on have led to the current state).
As πid only needs to have support for at least one at ∈ Atadm per step, we can restrict πid
at all previous steps to reduce the positivity assumption for step t. Again, we do not want
to restrict πid too much because if πid has wider support, this means that more data points
are used in the analysis. The regional positivity assumption (from Definition 5) ensures in
this case that only those simulations are used (and exist) at all previous steps such that
simulations of the desired actions can be performed at step t (and for future steps).

Full factorization
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Bringing all time-steps t = 0, ..., T together and including Y (as a part of Ξ) one obtains
the full factorization of the identifying distribution q′:

q′(A′, A,X, Y ) =
T∏
t=1

πtid(A
t|A′t, Xt−1, At−1)︸ ︷︷ ︸

arb. distr. subject to constraints

πtα(A′t|X ′t−1, A′t−1)︸ ︷︷ ︸
target policy

T∏
t=0

p(Xt|Xt−1, At, Y )p(Y )

=

T∏
t=1

πtid(A
t|A′t, GAt−1(X(1)), A

t−1)πtα(A′t|GA′t−1(X(1)), A
′t−1)

·
T∏
t=0

p(GAt(X(1))|GAt−1(X(1)), A
t, Y )p(Y )

= q′(A′, A,GA(X(1)), Y )

In order for this expression to hold, πtid must be restricted to have support only on Ãadm.
This leads to the following restriction:

πtid(A
t|A′t, Xt−1, At−1) = I(At ∈ Ãtadm(A′t, Xt−1, At−1))︸ ︷︷ ︸

support restriction

f tid(A
′t, Xt−1, At−1).

where f tid is an arbitrary function that ensures that πtid is a valid density. This concludes
the proof of Theorem 7.

Bellman equation

Equations 42 and 43 correspond to the two parts of the semi-offline RL version of the
Bellman equation:

E
[
C ′

(πt+1
α )

∣∣∣A′t, Xt−1, At−1,Ξ

]
=
∑
Xt

E
[
C ′

(πt+1
α )

∣∣∣A′t, Xt, At−1, at,Ξ
]
p(Xt|Xt−1, At−1, at,Ξ)

=
∑

GAt (X(1))

E
[
C ′

(πt+1
α )

∣∣∣A′t, GAt(X(1)), A
t−1, at,Ξ

]
p(GAt(X(1))|GAt−1(X(1)), A

t−1, at,Ξ)

for any at ∈ Atadm(Xt−1, At−1, A′t)

E
[
C ′

(πt+1
α )

∣∣∣A′t,Xt, At,Ξ

]
=
∑
A′t+1

E
[
C ′

(πt+2
α )

∣∣∣A′t+1, Xt, At,Ξ
]
πt+1
α (A′t+1|X ′t, A′t)

=
∑
A′t+1

E
[
C ′

(πt+2
α )

∣∣∣A′t+1, GAt(X(1)), A
t,Ξ
]
πt+1
α (A′t+1|GA′t−1(X(1)), A

′t)

The factorization holds under local positivity (if Atadm 6= ∅ exists). Furthermore, the indi-
vidual terms are identified if regional positivity holds, which concludes the proof of Theorem
8.

61



von Kleist, Zamanian, Shpitser and Ahmidi

Appendix H. Proof of Corollary 10

In this appendix, we prove Corollary 10, stating identification under the maximal global
positivity assumption. We repeat it here for ease of reference:

Corollary 10. (Identification of J for the semi-offline RL view under maximal global pos-
itivity). The reformulated AFAPE problem of estimating J under the semi-offline RL view
(Eq. 17) is under Assumption 1 (no measurement noise), Assumption 2 (consistency), As-
sumption 3 (no interference), Assumption 4 (NDE), Assumption 5 (NUC) and Assumption
6.4 (maximum global positivity) identified by Eqs. 19 and 20 where

πtid(A
t|A′t−1, A′t = a′t,Xt−1, At−1) =

= I(At ≥ a′t)πtβ(At|Xt−1, At−1)f tid(A
′t−1, A′t = a′t, Xt−1, At−1)

for any function f tid s.t. πtid is a valid density. This holds in particular for the choice of a
truncated πβ:

πtid(A
t|A′t−1, A′t = a′t, Xt−1, At−1) = πtβ(At|At ≥ a′t, Xt−1, At−1) =

=
I(At ≥ a′t)πtβ(At|Xt−1, At−1)

πtβ(At ≥ a′t|Xt−1, At−1)
.

Proof Under the maximal global positivity assumption, we have Ãtadm(a′t, xt−1, at−1) =
Atadm(xt−1, at−1, a′t). We can now insert this assumption into Eq. 21 which states the
identification of J under global positivity:

πtid(A
t|A′t, Xt−1, At−1) = I(At ∈ Ãtadm(A′t, Xt−1, At−1))f tid(A

′t, Xt−1, At−1)

= I(At ∈ Atadm(Xt−1, At−1, A′t))f tid(A
′t, Xt−1, At−1)

= I(At ≥ a′t)πtβ(At|Xt−1, At−1)f∗tid (X ′t−1, A′t, Xt−1, At−1)

where we let f∗tid denote another arbitrary function that ensures that πtid is a valid density.
This concludes the proof for Corollary 10.

Appendix I. Comparison of the Semi-offline RL IPW Estimator with
Related Methods

In this appendix, we demonstrate that our proposed IPW estimator JIPW-Semi is a more
general version of an adapted version of the IPW estimator introduced by Caniglia et al.
(2019). We refer to this estimator as ĴIPW-Cen since it is derived from a censoring viewpoint.
While ĴIPW-Cen was developed for a scenario where both feature acquisition decisions and
treatment decisions are made by the agent, it can be adapted to the AFA setting. However,
ĴIPW-Cen is only applicable to simpler settings with one acquisition option per time-point
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(At ∈ {0, 1}). ĴIPW-Cen is also only consistent if the maximal global positivity assumption
holds, as will be shown.

Caniglia et al. (2019) derived JIPW-Cen under the NDE and NUC assumptions. Instead
of using a semi-offline sampling policy that avoids the acquisition of non-available features
as proposed in this paper, Caniglia et al. (2019) simply sample from πα, even without
knowledge about X(1). As the feature revelation is not possible if a non-available feature
is acquired, they treat the resulting trajectory as censored. Known missing data methods
are then applied to adjust for this censoring. Hence, in the wording of this paper, we would
describe this viewpoint as an online RL + censoring viewpoint.

Adapted to the AFA setting under the consideration of deterministic AFA policies πα,
ĴIPW-Cen becomes:

ĴIPW-Cen = Ên,uncen[ρ̂TCenC(πα)] where ρ̂TCen =
T∏
t=1

(
I(At = 1)

π̂tβ(At = 1|Xt−1, At−1)

)At
(πα)

(44)

where Ên′,uncen[.] denotes the empirical average over the uncensored data points which have
the known deterministic counterfactuals At(πα),X

t
(πα) and C(πα).

Since At ∈ {0, 1}, it can be observed that the propensity score for a specific time-
point t only appears in the factorization if the corresponding action is At(πα) = 1. An

”acquire nothing” AFA policy (where πtα(At = 0|Xt−1, At−1) = 1 ∀t) would thus require no
adjustment (ρTCen = 1). In their example, this estimator achieved a 50-fold increase in data
efficiency compared to the standard offline RL IPW estimator (Caniglia et al., 2019).

We establish the equivalence of our estimator ĴIPW-Semi and ĴIPW-Cen in the following
proposition:

Proposition 20. (Equivalance of ĴIPW-Cen and ĴIPW-Semi). The estimators ĴIPW-Cen and
ĴIPW-Semi are equivalent for AFA settings with one action option per time-point, determin-
istic AFA policies πα, the maximal global positivity assumption (Assumption 6.4), and a
simulation policy πsim = πα.

Proof Firstly, we clarify the blocking operation (from Definition 2) for this setting:

π′sim(A′t = a′t|X ′t−1, A′t−1, At = at) =


1, if a′t = 0 & at = 0

0, if a′t = 1 & at = 0

πtα(A′t = a′t|X ′t−1, A′t−1), if at = 1.

The inverse probability weights of ĴIPW-Semi become:

ρTSemi =
T∏
t=1

πtα(A′t = a′t|X ′t−1, A′t−1)

π′tsim(A′t = a′t|X ′t−1, A′t−1, At = at)

I(At ≥ a′t)
πtβ(At ≥ a′t|Xt−1, At−1)

∗1=
T∏
t=1

(
πtα(A′t = a′t|X ′t−1, A′t−1)

)1−at ( I(At = 1)

πtβ(At = 1|Xt−1, At−1)

)a′t

∗2=
T∏
t=1

I(A′t = At(πα))

(
I(At = 1)

πtβ(At = 1|Xt−1, At−1)

)At
(πα)
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where we used in ∗1) the above definition of π′sim and that I(At ≥ 0) = 1 = πβ(At ≥
0|Xt−1, At−1). In ∗2), we see that the first term corresponds to whether πα could be
applied without running into censoring. It thus gives 0 weights to all datapoints where
blocking occurred (i.e., which are censored under the online RL + censoring viewpoint).
The second term then corresponds to the same weights as ρTCen, which concludes the proof
for Proposition 20.

We have demonstrated that, although the two estimators are derived from different
concepts (online RL with censoring vs semi-offline RL), they are equal in this specific AFA
setting of one action option per time-step, deterministic policies and under the maximal
global positivity assumption. However, the key distinction lies in the generality of our
estimator. Unlike ĴIPW-Cen, which is limited to the described setting, we developed an IPW
estimator that can be applied for multiple acquisition options (i.e., higher dimensional At)
under the weaker global positivity assumption and in a modified version for static features
settings as we show in our companion paper (von Kleist et al., 2023). It can further be
combined with a Q-model to build the DRL estimator.

Appendix J. Proof of Theorem 13

In this appendix, we proof Theorem 13, which we repeat here:

Theorem 13. (Double robustness of ĴDRL-Semi). The estimator ĴDRL-Semi is doubly robust,
in the sense that it is consistent if either the Q-function Q̂Semi or the propensity score model
π̂β is correctly specified.

Proof To prove the double robustness property of the semi-offline RL version of the DRL
estimator (i.e., Theorem 13), we decompose ĴDRL-Semi in two different ways:

Scenario 1: If π̂β is correctly specified, we find

ĴDRL-Semi = Ên

[
Ên′

[
ρTSemiC

′ +

T∑
t=1

(
−ρ̂tSemiQ̂

t
Semi + ρt−1

SemiV̂
t−1

Semi

) ∣∣∣A,X, Y ]]

= E[ρTSemiC
′]︸ ︷︷ ︸

=J

+

T∑
t=1

E
[
−ρtSemiQ̂

t
Semi + ρt−1

SemiV̂
t−1

Semi

]
︸ ︷︷ ︸

=0

,

where the first term is just the IPW estimator. As π̂β = πβ is correctly specified, the IPW
estimator consistently estimates J . The fact that the second term equals 0 is shown in the
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following:

E
[
−ρtSemiQ̂

t
Semi + ρt−1

SemiV̂
t−1

Semi

]
=

∗1= E
[
ρt−1

Semi

(
−

πtα(A′t|X′t−1, A′t−1)

π′tsim(A′t|X′t−1, A′t−1, At)

πtid(A
t|A′t, Xt−1, At−1)

πtβ(At|Xt−1, At−1)
Q̂tSemi

+
∑
A′t

πtα(A′t|X′t−1, A′t−1)Q̂tSemi

)]
∗2= E

[
ρt−1

Semi

(
−
∑
A′t,At

π′tsim(A′t|X′t−1, A′t−1, At)πtβ(At|Xt−1, At−1)
πtα(A′t|X ′t−1, A′t−1)

π′tsim(A′t|X ′t−1, A′t−1, At)
·

·
πtid(A

t|A′t, Xt−1, At−1)

πtβ(At|Xt−1, At−1)
Q̂tSemi +

∑
A′t

πtα(A′t|X ′t−1, A′t−1)Q̂tSemi

)]
∗3= E

[
ρt−1

Semi

(
−
∑
A′t

πtα(A′t|X′t−1, A′t−1)Q̂tSemi +
∑
A′t

πtα(A′t|X ′t−1, A′t−1)Q̂tSemi

)]
= 0

with the following explanations:

• ∗1): We use the relationship V̂ t−1
Semi = Eπα [Q̂tSemi] and the decomposition of ρSemi.

• ∗2): We use the fact that one can pull the expected value with respect to
π′tsim(A′t|X ′t−1, A′t−1, At)πtβ(At|Xt−1, At−1) inside.

• ∗3): We use the fact that Q̂tSemi is independent of πtid(A
t|A′t, Xt−1, At−1) as long as

it fulfills the positivity assumption.

Scenario 2: If Q̂Semi is correctly specified, we find

ĴDRL-Semi = E[V 0
Semi] + E

[
ρ̂TSemi

(
C ′ −QTSemi

)]
+ E

[
T−1∑
t=1

ρ̂tSemi

(
−QtSemi + V t

Semi

)
]

]

= E
[
V 0

Semi

]︸ ︷︷ ︸
=J

+E

ρ̂TSemi

(
fC(A′, X ′, Y )−QTSemi

)︸ ︷︷ ︸
=0


+ E

[T−1∑
t=1

ρ̂tSemi

(
−QtSemi +

∑
Xt

V t
Semi p(X

t|Xt−1, At,Ξ)

)
︸ ︷︷ ︸

=0

]

where E
[
V 0

Semi

]
corresponds to the DM estimator which is consistent if Q̂Semi = QSemi is

correctly specified. For the last term, we used that we can pull in the expected value with
respect to the conditional distributions of Xt. The resulting term equals the first part of
the semi-offline RL version of Bellman’s equation. This concludes the proof of Theorem 13.
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Appendix K. Estimation of Other Target Parameters from the
Semi-offline RL View

In this appendix, we extend the target parameter to include time-dependent costs Ct (s.t.

C = C
1
). The newly defined target parameter becomes J = E

[∑T
t=1C

t
(πα)

]
. In particular,

these costs may include acquisition costs or misclassification costs for predictions at each
time step. The acquisition costs are given by the known deterministic f tCa(At). When
considering misclassification costs, we assume a per-step label Y t to be available at each

time step (s.t. Y = Y
1
). The per-step misclassification costs can be computed by:

f tCmc
(Y ∗t, Y t) = f tCmc

(fcl(A
t, Xt), Y t).

We combine both costs such that the target parameter is redefined to be:

J = E

[
T∑
t=1

(
Cta,(πα) + Ctmc,(πα)

)]
= E

[
T∑
t=1

(
f tCa(At(πα)) + f tCmc

(At(πα), X
t
(πα), Y

t)
)]

≡ E

[
T∑
t=1

f tC(At(πα), X
t
(πα), Y

t)

]
= E

[
T∑
t=1

Ct(πα)

]
.

The reformulation, identification, and estimation steps from the semi-offline RL view can
be extended to per-step costs. For this setting, we provide corollaries of the identification
and estimation theorems from the main body. We do not provide additional proofs, as the
extensions are straightforward.

K.1 Identification

We start with a corollary that extends Theorem 7 for the per-step costs setting.

Corollary 21. (Identification of J (for per-step costs) for the semi-offline RL view). The
reformulated AFAPE problem of estimating J (for per-step costs) under the semi-offline
RL view (Eq. 17) is under Assumption 1 (no measurement noise), Assumption 2 (consis-
tency), Assumption 3 (no interference), Assumption 4 (NDE), Assumption 5 (NUC) and
Assumption 6.3 (global positivity) identified by

J = Ep′
[

T∑
t=1

C ′(πα)

]
=

∑
A′,A,GA(X(1)),Y

T∑
t=1

f tC(A′t, X ′t, Y t)q′(A′, A,X, Y ) (45)

where q′ is given by Eq. 20.

Next, we continue with a corollary that extends Theorem 8 for the per-step costs setting.

Corollary 22. (Bellman equation for semi-offline RL (for per-step costs)). The semi-
offline RL view admits under Assumption 1 (no measurement noise), Assumption 2 (con-
sistency), Assumption 3 (no interference), Assumption 4 (NDE), Assumption 5 (NUC) and
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the local positivity assumption at datapoint xt−1, at−1, a′t (from Definition 4), the following
semi-offline RL version of the Bellman equation for per-step costs:

QSemi(A
′t, Xt−1, At−1,Ξ) =

∑
Xt

VSemi(A
′t, Xt, At−1, At = at,Ξ)p(Xt|Xt−1, At−1, At = at,Ξ)

(46)

for any at ∈ Atadm(Xt−1, At−1, A′t)

VSemi(A
′t, Xt, At,Ξ) =

∑
Y t

f tC(X ′t, A′t, Y t)p(Y t|Xt, At,Ξ)

+
∑
A′t+1

QSemi(A
′t+1, Xt, At,Ξ)πt+1

α (A′t+1|X ′t, A′t) (47)

with semi-offline RL versions of the state-action value function QSemi and state value func-
tion VSemi:

QtSemi ≡ QSemi(A
′t, Xt−1, At−1,Ξ) ≡ Ep′

[
T∑
τ=t

C ′τ
(πt+1
α )

∣∣∣A′t, Xt−1, At−1,Ξ

]

V t
Semi ≡ VSemi(A

′t, Xt, At,Ξ) ≡ Ep′
[

T∑
τ=t

C ′τ
(πt+1
α )

∣∣∣A′t, Xt, At,Ξ

]
.

Furthermore, QtSemi and V t
Semi are identified if the regional positivity assumption holds at

A′t, Xt−1, At−1 and at ∈ Ãtadm(A′t, Xt−1, At−1).

K.2 Estimation

The estimation formulas can be extended to the per-step setting as follows:

1) Inverse probability weighting (IPW):
The target cost (for per-step costs) that is estimated by the semi-offline IPW estimator is

ĴIPW-Semi = Ên

[
Ên′

[
T∑
t=1

ρ̂tSemi C
′t∣∣A,X, Y ]] ,

with the same options for ρtSemi as in the setting described in the main body.

2) Direct method (DM):
The target cost (for per-step costs) that is estimated by the semi-offline DM estimator is

ĴDM-Semi = Ên′ [V̂ 0
Semi]

with the adapted per-step cost version of VSemi from Corollary 22.

3) Double reinforcement learning (DRL):
The target cost (for per-step costs) that is estimated by the semi-offline DRL estimator is

ĴDRL-Semi = Ên

[
Ên′

[
T∑
t=1

(
ρ̂tSemiC

′t − ρ̂tSemiQ̂
t
Semi + ρ̂t−1

SemiV̂
t−1

Semi

) ∣∣∣A,X, Y ]] .
with the adapted per-step cost version of VSemi and QSemi.
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Appendix L. Derivation of the Missing Data Semiparametric Theory
Approach

In this appendix, we show why Eq. 35 and Eq. 36 constitute valid choices for an element of
the IPW space ΛIPW and the augmentation space Λ2 but rely on the positivity assumption
for missing data (Assumption 6.2). This is a simplified derivation from Tsiatis (2006).

IPW space:
Clearly, hMiss = ρMissE[C(πα)|X(1), Y ]− J is a function of the observed data, since ρMiss is
non-zero only for complete cases. It thus remains to be shown that

E
[
hSemi(A,GA(X(1)), Y )|X(1), Y

]
= ϕF (X(1), Y ).

This is shown in the following:

E[hSemi(A,GA(X(1)), Y )|X(1), Y ] = E
[
ρMissE[C(πα)|X(1), Y ]

∣∣∣X(1), Y
]
− J

= E

[
T∏
t=1

I(At = ~1)

πtβ(At = ~1|Xt−1
(1) , A

t−1 = ~1)
E[C(πα)|X(1), Y ]

∣∣∣X(1), Y

]
− J

= E

[
T∏
t=1

E[I(At = ~1)|Xt−1
(1) , A

t−1 = ~1)]

πtβ(At = ~1|Xt−1
(1) , A

t−1 = ~1)
E[C(πα)|X(1), Y ]

∣∣∣X(1), Y

]
− J

= E
[
1 · E

[
C(πα)

∣∣∣X(1), Y
] ∣∣∣X(1), Y

]
− J

= E
[
C(πα)

∣∣∣X(1), Y
]
− J = ϕF (X(1), Y ).

Augmentation space Λ2:
To derive Λ2 under the missing data view, one redefines any function b(A,GA(X(1)), Y )
using the fact that A is a categorical variable:

b(A,GA(X(1)), Y ) =
∑
a∈A

I(A = a)ba(Ga(X(1)), Y ) (48)

where ba(Ga(X(1)), Y ) is any mean zero, finite variance function of Ga(X(1)), Y . This allows
the enforcement of the zero conditional mean condition that defines Λ2:

E[b(A,GA(X(1)), Y )|X(1), Y ] =
∑
a∈A

p(A = a|Ga(X(1)), Y )ba(Ga(X(1)), Y ) = 0.

Under the missing data positivity assumption, one can now solve for b~1:

b~1(G~1(X(1)), Y ) = − 1

p(A = ~1|G~1(X(1)), Y )

∑
a∈A\~1

p(A = a|Ga(X(1)), Y )ba(Ga(X(1)), Y )
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Substituting b~1(G~1(X(1)), Y ) into Eq. 48 and applying the known factorization of the
propensity score model for our AFA setting gives the desired space Λ2 consisting of all

b(A,GA(X(1)), Y ) =
∑
a∈A\~1

[
I(A = a)−

I(A = ~1)p(A = a|Ga(X(1)), Y )

p(A = ~1|G~1(X(1)), Y )

]
ba(Ga(X(1)), Y )

=
∑
a∈A\~1

[
I(A = a)−

T∏
t=1

I(At = ~1)πtβ(At = at|Gat−1(X(1)), a
t−1)

πtβ(At = ~1|Gat−1(X(1)), at−1)

]
ba(Ga(X(1)), Y ).

Appendix M. Proof of Lemma 15 and Lemma 16

In this appendix, we prove Lemma 15 and Lemma 16 which establish the equivalence of the
missing data and offline RL semiparametric theory approaches to AFAPE under the NUC
and NDE assumptions. We start with Lemma 15.

For ease of reference, we repeat it here:

Lemma 15. (Relating the offline RL IPW estimator to the IPW space). The functional
hOff ≡ ρOffC − J , based on the IPW estimator from the offline RL view, is a valid element
of the IPW space: hOff ∈ ΛIPW.

Proof We need to show that hOff = hOff(A,GA(X(1)), Y ) = ρTOffC − J ∈ ΛIPW. Clearly,
hOff is a function of the observed data. It thus remains to be shown that

E
[
hOff(A,GA(X(1)), Y )|X(1), Y

]
= ϕF (X(1), Y ).

This is shown in the following:

E
[
hOff(A,GA(X(1)), Y )|X(1), Y

]
= E

[
ρTOffC − J

∣∣∣X(1), Y
]

= E

[
T∏
t=1

πtα(At|GAt−1(X(1)), A
t−1)

πtβ(At|GAt−1(X(1)), A
t−1)

fC(Y,GA(X(1)), A)
∣∣∣X(1), Y

]
− J

=
∑
a∈A

T∏
t=1

πtα(at|Gat−1(X(1)), a
t−1)

πtβ(at|Gat−1(X(1)), at−1)
fC(Y,Ga(X(1)), a)πtβ(at|Gat−1(X(1)), a

t−1)− J

=
∑
a∈A

T∏
t=1

πtα(at|Gat−1(X(1)), a
t−1)fC(Y,Ga(X(1)), a)− J = ϕF (X(1), Y )

which completes the proof.

Next, we prove Lemma 16. We also repeat it here:

Lemma 16. (Λ∗ is equal to the augmentation space). The augmentation space Λ2 is equal
to Λ∗.

We reuse properties about Λ∗ shown by Liu et al. (2021) and do not repeat the corresponding
proofs for these properties as they involve cumbersome notation.
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Proof To demonstrate that Λ∗ = Λ2, we first introduce a new space, denoted as ΛAF* ,
containing all functions of b(A,X(1), Y ) for which E[b(A,X(1), Y )|X(1), Y ] = 0 holds:

ΛAF* ≡

{
bt(At−1, X(1), Y )

(
At

πtβ
− 1

)
: bt(At−1, X(1), Y ) ∈ H; t ∈ {1, ..., T}

}
.

The space ΛAF* indeed includes all functions b(A,X(1), Y ) with mean zero and finite variance

for which E[b(A,X(1), Y )|X(1), Y ] = 0 holds. Specifically, the elements bt(At−1, X(1), Y )

can represent any function of At−1, X(1), Y . Since At is binary (taking values 0 or 1),

adding a term
(

At

c(At−1,X(1),Y )
− 1
)

(for some c(A,X(1), Y )) generalizes the space to contain

all functions of At, X(1), Y . The specific choice c(At−1, X(1), Y ) = πtβ is enforced by the
condition E[b(A,X(1), Y )|X(1), Y ] = 0:

E
[
bt(At−1, X(1), Y )

(
At

πtβ
− 1

)
|X(1), Y

]
=

= E

[
bt(At−1, X(1), Y )E

[(
At

πtβ
− 1

)
|X(1), Y, A

t−1

]
|X(1), Y

]

= E

bt(At−1, X(1), Y )

(
πtβ
πtβ
− 1

)
︸ ︷︷ ︸

0

|X(1), Y

 = 0.

Now, in order to find Λ2, we must find the subspace of ΛAF* , which contains only the func-
tions of the observed data. This is exactly Λ∗ as was shown by Liu et al. (2021) (in the
proof of Remark 13). In fact, they showed that there aren’t observed data elements that
are in ΛAF* , but not in Λ∗. They also showed that Λ∗ only contains observed data elements.
This concludes the proof.

Appendix N. Proof of Lemma 17

In this appendix, we prove Lemma 17. The proof follows a similar approach as for Lemma
15 for the offline RL IPW estimator. We repeat the lemma here for ease of reference.

Lemma 17. (Relating the semi-offline RL IPW estimator to the IPW space). hSemi ≡
hSemi(A,GA(X(1)), Y ) = Ên′ [ρTSemiC

′|A,GA(X(1)), Y ] − J is an element of the IPW space
ΛIPW.

Proof We need to show that hSemi = hSemi(A,GA(X(1)), Y ) = Ên′ [ρTSemiC
′|A,GA(X(1)), Y ]−

J ∈ ΛIPW. Clearly, hSemi is a function of the observed data. It thus remains to be shown
that

E
[
hSemi(A,GA(X(1)), Y )|X(1), Y

]
= ϕF (X(1), Y ).
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This is shown in the following:

E
[
hSemi(A,GA(X(1)), Y )

∣∣∣X(1), Y
]

= E
[
E
[
ρTSemifC(A′, GA′(X(1)), Y )|A,GA(X(1)), Y

]
− J

∣∣∣X(1), Y
]

= E

[
T∏
t=1

πtα(A′t|X ′t−1, A′t−1)

π′tsim(A′t|X ′t−1, A′t−1, At)

πtid(A
t|A′t, Xt−1, At−1)

πtβ(At|Xt−1, At−1)
fC(A′, GA′(X(1)), Y )

∣∣∣X(1), Y

]
− J

=
∑
a∈A

∑
a′∈A

T∏
t=1

πtα(a′t|X ′t−1, a′t−1)

π′tsim(a′t|X ′t−1, a′t−1, at)

πtid(a
t|a′t, Xt−1, at−1)

πtβ(at|Xt−1, at−1)
fC(a′, Ga′(X(1)), Y )

· π′tsim(a′t|X ′t−1, a′t−1, at)πtβ(at|Xt−1, at−1)− J

=
∑
a∈A

∑
a′∈A

T∏
t=1

πtα(a′t|X ′t−1, a′t−1)πtid(a
t|a′t, Xt−1, at−1)fC(a′, Ga′(X(1)), Y )− J

=
∑
a′∈A

T∏
t=1

πtα(a′t|X ′t−1, a′t−1)fC(a′, Ga′(X(1)), Y )− J

= ϕF (X(1), Y )

which completes the proof.

Appendix O. Derivation of the Influence Function for Semi-offline RL

In this Appendix, we provide the complete derivation of the projection of hSemi onto
Λ2,Semi(Ξ), thereby completing the proof for the class of influence functions under the
semi-offline RL view, as proposed in Theorem 14.

We now show all in-between steps of the following equalities shown in Section 7:

ϕSemi(A,GA(X(1)), Y ; Ξ) = hSemi −Π(hSemi|Λ2,Semi(Ξ))

= hSemi −
T∑
t=1

E
[
hSemi

∣∣∣At, At−1, GAt−1(X(1)),Ξ
]

+

T∑
t=1

E
[
hSemi

∣∣∣At−1, GAt−1(X(1)),Ξ
]

∗1= E
[
ρTSemifC(A′, GA′(X(1)), Y )|Y,GA(X(1)), A

]
−

T∑
t=1

E
[
ρtSemiQ

t
Semi

∣∣∣At, At−1, GAt−1(X(1)),Ξ
]

+
T∑
t=1

E
[
ρt−1

SemiV
t−1

Semi

∣∣∣At−1, GAt−1(X(1)),Ξ
]
− J

= E

[
ρTSemifC(A′, GA′(X(1)), Y )−

T∑
t=1

ρtSemiQ
t
Semi +

T∑
t=1

ρt−1
SemiV

t−1
Semi

∣∣∣A,GA(X(1)), Y

]
− J.
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We now go into more detail about why ∗1) holds. We begin with the term including QSemi:

E
[
hSemi

∣∣∣At, At−1, GAt−1(X(1)),Ξ
]

=

= E
[
E
[
ρTSemifC(A′, GA′(X(1)), Y )|Y,GA(X(1)), A

]
|At, At−1, GAt−1(X(1)),Ξ

]
− J

= E
[
ρTSemifC(A′, GA′(X(1)), Y )|At, At−1, GAt−1(X(1)),Ξ

]
− J

= E
[ T∏
τ=1

πτα(A′τ |X ′τ−1, A′τ−1)

π′τsim(A′τ |X ′τ−1, A′τ−1, Aτ )

πτid(A
τ |A′τ , Xτ−1, Aτ−1)

πτβ(Aτ |Xτ−1, Aτ−1)

· fC(A′, GA′(X(1)), Y )
∣∣∣At, At−1, GAt−1(X(1)),Ξ

]
−J

= E
[ t∏
τ=1

πτα(A′1|X ′τ−1, A′τ−1)

π′τsim(A′τ |X ′τ−1, A′τ−1, Aτ )

πτid(A
τ |A′τ , Xτ−1, Aτ−1)

πτβ(Aτ |Xτ−1, Aτ−1)

· E
[ T∏
τ=t+1

πτα(A′τ |X ′τ−1, A′τ−1)

π′τsim(A′τ |X ′τ−1, A′τ−1, Aτ )

πτid(A
τ |A′τ , Xτ−1, Aτ−1)

πτβ(Aτ |Xτ−1, Aτ−1)

· fC(A′, GA′(X(1)), Y )
∣∣∣A′t, A′t−1, At, At−1, GAt−1(X(1)),Ξ

]∣∣∣At, At−1, GAt−1(X(1)),Ξ
]
− J

= E
[
ρtSemiQSemi(A

′t, At−1, GAt−1(X(1)),Ξ)
∣∣∣At, At−1, GAt−1(X(1)),Ξ

]
− J

= E
[
ρtSemiQ

t
Semi

∣∣∣A,GA(X(1)), Y
]
− J

Similarly, we can show for the term including VSemi:

E
[
hSemi

∣∣∣At−1, GAt−1(X(1)),Ξ
]

=

= E
[
E
[
ρTSemifC(A′, GA′(X(1)), Y )|Y,GA(X(1)), A

]
|At−1, GAt−1(X(1)),Ξ

]
− J

= E
[
ρTSemifC(A′, GA′(X(1)), Y )|At−1, GAt−1(X(1)),Ξ

]
− J

= E
[ T∏
τ=1

πτα(A′τ |X ′τ−1, A′τ−1)

π′τsim(A′τ |X ′τ−1, A′τ−1, Aτ )

πτid(A
τ |A′τ , Xτ−1, Aτ−1)

πτβ(Aτ |Xτ−1, Aτ−1)

· fC(A′, GA′(X(1)), Y )
∣∣∣At−1, GAt−1(X(1)),Ξ

]
−J

= E
[ t−1∏
τ=1

πτα(A′1|X ′τ−1, A′τ−1)

π′τsim(A′τ |X ′τ−1, A′τ−1, Aτ )

πτid(A
τ |A′τ , Xτ−1, Aτ−1)

πτβ(Aτ |Xτ−1, Aτ−1)

· E
[ T∏
τ=t

πτα(A′τ |X ′τ−1, A′τ−1)

π′τsim(A′τ |X ′τ−1, A′τ−1, Aτ )

πτid(A
τ |A′τ , Xτ−1, Aτ−1)

πτβ(Aτ |Xτ−1, Aτ−1)

· fC(A′, GA′(X(1)), Y )
∣∣∣A′t−1, At−1, GAt−1(X(1)),Ξ

]∣∣∣At−1, GAt−1(X(1)),Ξ
]
− J

= E
[
ρt−1

SemiVSemi(A
′t−1, At−1, GAt−1(X(1)),Ξ)

∣∣∣At−1, GAt−1(X(1)),Ξ
]
− J

= E
[
ρt−1

SemiV
t−1

Semi

∣∣∣A,GA(X(1)), Y
]
− J.

72



AFA Evaluation for Time-varying Feature Settings

Appendix P. Experiment Details

In this section, we describe the experiment setup in more detail. We also provide a detailed
list of the parameters and configurations for each experiment in Tables 3 and 4.

P.1 Data, Costs and Missingness Mechanisms

For the experiments, we defined a ”superfeature” as a feature that comprises multiple
subfeatures, which are acquired jointly and which have a single cost. Furthermore, we
assumed a subset of features is available at no cost (free features) and set fixed acquisition
costs cacq for the remaining features. A prediction was to be performed at each time step,
which corresponds to the setting described in Appendix K. We chose misclassification costs
such that good policies must find a balance between the feature acquisition cost and the
predictive value of the features.

We evaluated and compared the described methods on synthetic data sets with and
without violation of either the NDE or NUC assumption. In experiments where the NDE
assumption holds, the features are distributed according to:

Xt
(1),i =

{
γiX

t−1
(1),i + (1− γi)εi, if t > 0

εi, if t = 0.

where εi ∼ N (0, σ). In experiments with a violation of the NDE assumption, the unobserved
variables U were distributed according to:

U ti =


γiU

t−1
i + (1− γi)εi + 0.5

∑
iA

t−1
i if t > 1

γiU
t−1
i + (1− γi)εi, if t = 1

εi, if t = 0.

The labels are distributed according to

p(Y t = 1) =

{
1, if ζ1

∑
iWiX

t
(1),i + ζ2

∑
iWiX

t−1
(1),i > 0

0.3, otherwise.

This choice for Y simulates a scenario where not all data points are equally easy to classify.

The retrospective policy πβ follows different logistic models depending on whether a
MAR assumption (NUC holds) or MNAR assumption (NUC is violated) is assumed, as
specified in Table 3. To evaluate the convergence of different estimators when the NDE
assumption holds, we consider the average cost of running the AFA agent on the data set
over all data points in the ground truth test set (without missingness) as the true expected
cost J . When NDE is violated, we sample the ground truth data generating process while
running the agent and do so the same number of times as there are data points in the test
set.

We performed five different experiments:

• Experiment 1: A standard experiment where NUC, NDE, and all three positivity
assumptions (Assumptions 6.1, 6.2, and 6.4) hold.
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• Experiment 2: The NUC and NDE assumptions hold, but the missing data positiv-
ity assumption (Assumption 6.2) is violated. This is achieved by reducing the number
of complete cases to 0.007%.

• Experiment 3: The NUC and NDE assumptions hold, but the offline RL (Assump-
tion 6.1) positivity assumption is violated. This is achieved by letting A2 be always 1
under πβ.

• Experiment 4: The NDE assumption holds, but the NUC assumption is violated.
This corresponds to an MNAR missing data scenario.

• Experiment 5: The NUC assumption holds, but the NDE assumption is violated.

For full experiment configurations for the acquisition processes, please see Table 4.

P.2 Training

We used an impute-then-regress classifier (Le Morvan et al., 2021) with unconditional mean
imputation and a logistic regression classifier for the classification task and trained it on
the available and further randomly subsampled data (where p(Ati = 1) = 0.5). We tested
random and fixed acquisition policies that acquire each costly feature with a 50% or 100%
probability. Furthermore, we evaluated a proximal policy optimization (PPO) RL agent
(Schulman et al., 2017), which was trained on the semi-offline sampling distribution p′

using πα as the semi-offline sampling policy, but without adjustment for the blocking of
actions. The data sets were split into training set (for the training of the agent and the
classifier), nuisance function training set, and test set, where the estimators were evaluated.
The splitting of the data set in a nuisance function training set and a test set is necessary
due to the complexity of the used nuisance model functions classes (Kennedy, 2022). The
resulting loss of efficiency may, however, be avoided using a cross-fitting approach (Kennedy,
2022).
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Data and environment

Sample size nD 100′000 divided into 30% training set (for agent and classifier), 30%
nuisance function training set, and 40% test set.

Superfeatures superX0: [X0], superX1: [X1], superX2: [X2, X3]

Label Y t ∈ {0, 1} and for t ≤ T = 3.

Data generation pa-
rameters

γi = 0.2 ∀i, σ = 1, ζ1 = 1, ζ2 = 0.3, W = [1, 1, 2, 2]/6

Feature acquisition
cost

cacq = [0, 1, 1]

Misclassification cost cmc = 12

Models

Classifier Logistic regression

Agents

Random 50%, Fixed 100%,
PPO (learning rate: 0.0001, number of layers: 2,

hidden layer neurons per layer: 64,
hidden layer activation function: tanh)

Nuisance functions

π̂β (logistic regression),

Q̂Semi (Ξ = ∅, learning rate: 0.001, number of layers: 2,
hidden layer neurons per layer: 16,
hidden layer activation function: ReLU)

Table 3: Full experiment details except for the acquisition process
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Missingness mechanisms

Exp 1

p(At0 = 1) = 1.0,

p(At1 = 1) = σ(0.8− 3.0Xt−1
0 + 0.02Xt−1

1 − 0.02Xt−1
2 ),

p(At2 = 1) = σ(0.8− 3.0Xt−1
0 + 0.02Xt−1

1 − 0.02Xt−1
2 )

Complete cases ratio: p(A = ~1) = 11.71%

Exp 2

p(At0 = 1) = 1.0,
p(At1 = 1) = 0.2,
p(At2 = 1) = 0.2

Complete cases ratio: p(A = ~1) = 0.007%

Exp 3

p(At0 = 1) = 1.0,
p(At1 = 1) = 1.0,

p(At2 = 1) = σ(−0.5− 2.0Xt−1
0 − 0.1Xt−1

1 − 0.1Xt−1
2 )

Complete cases ratio: p(A = ~1) = 7.09%

Exp 4

p(At0 = 1) = 1.0,
p(At1 = 1) = 1.0,

p(At2 = 1) = σ(−0.6− 1.5Xt−1
(1),2 − 1.5Xt−1

(1),3)

Complete cases ratio: p(A = ~1) = 9.63%

Exp 5

p(At0 = 1) = 1.0,

p(At1 = 1) = σ(0.8− 0.2Xt−1
0 − 0.1Xt−1

1 + 0.5Xt−1
2 ),

p(At2 = 1) = σ(0.8− 0.2Xt−1
0 − 0.1Xt−1

1 + 0.5Xt−1
2 )

Complete cases ratio: p(A = ~1) = 11.71%

Table 4: Acquisition process details for all five experiments
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