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Human pluripotent stem cells and tissue-resident fetal and adult stem
cells can generate epithelial tissues of endodermal originin vitro that
recapitulate aspects of developing and adult human physiology. Here, we

integrate single-cell transcriptomes from 218 samples covering organoids
and other models of diverse endoderm-derived tissues to establish an initial
version of ahuman endoderm-derived organoid cell atlas. The integration
includes nearly one million cells across diverse conditions, data sources
and protocols. We compare cell types and states between organoid models

and harmonize cell annotations through mapping to primary tissue
counterparts. Focusing on the intestine and lung, we provide examples of
mapping data from new protocols and show how the atlas can be used as
adiverse cohort to assess perturbations and disease models. The human
endoderm-derived organoid cell atlas makes diverse datasets centrally
available and will be valuable to assess fidelity, characterize perturbed and
diseased states, and streamline protocol development.

In vitro human biosystems that model complex aspects of human
tissues in controlled conditions can be used as inroads into
human-specific biology and disease, as well as accurate alternatives
to animal models'. The term organoid is a current nomenclature to
describe three-dimensional (3D) cell cultures derived from pluripotent,
fetalor adult stem cells (PSCs, FSCs, ASCs) that recapitulate important
aspects of cell composition, cytoarchitecture and functional proper-
ties of the tissue counterpart®. However, variations in protocols, cul-
ture conditions and stem cell sources make it challenging to assess
how well organoid-derived cell states and interactions reflect those
invivo. In addition, the lack of centralized datasets and inconsistent
protocol reporting complicate comparisons across studies, making
it difficult to evaluate organoid fidelity, identify off-target or missing

celltypes, and predict genetic drivers of differentiation®. Overcoming
these obstacles could help to better understand how human cell types
and states develop, as well as support opportunities for translational
research*’. Advances in technology have led to the growth of single-cell
transcriptome datasets, bothin terms of dataset size and quantity. This
has prompted collaborations to create extensive reference atlases for
adultand developing human organs*®. Organoids offer the opportu-
nity to deepen our understanding of health and disease, by providing
avatars of diverse developmental stages, genetic variation and disease
states that will complement primary tissue atlases’. However, the scale
of generating a comprehensive organoid atlas in individual research
groupsis currentlyimpractical. Therefore, the integration of datasets
generated by the wider research community becomes crucial.
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The endoderm contributes to the development of the epithelial
lining of a variety of different organs including thyroid, esophagus,
lung, pancreas, liver, biliary system, stomach, small intestine and
colon’. Complex endodermal 3D organoids can be differentiated from
IPSCs, FSCs and ASCs in media supplemented with growth factors
that promote stem cell proliferation and differentiation'®", poten-
tially enabling exploration of human ontogenetic processes of each
tissue'>, Here, we present an integrated single-cell transcriptomic
atlas of human endoderm-derived organoids encompassing nine dif-
ferent tissues, combining newly generated dataand datafrom 55 pub-
lications. We applied the atlas as a diverse cohort to assess organoid
protocols, perturbations and disease models.

Results

Data integration to construct the organoid atlas

To create an endoderm-derived organoid cell atlas, we assembled
single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA
sequencing data from 54 published datasets and a newly generated
dataset (45,281 cells, 11samples, small and large intestine, stomach and
liver organoids) (Fig. 1a and Supplementary Table 1). Together, these
datasets include samples from 218 experiments conducted on orga-
noid models of 9 different organs (lung, liver, biliary system, stomach,
pancreas, smalland large intestine, prostate, salivary glands) (Fig.1a,b).
Data were obtained using multiple sequencing protocols, including
plate-based methods such as Smart-seq, CEL-seq and Sort-seq, as well
ascommercialized droplet-based methods (for example, 10x Genom-
ics) (Fig. 1c). Based on availability, we incorporated organoid data-
sets that model healthy states primarily of human endoderm-derived
tissues, with source material from PSCs (embryonic stem cells and
induced PSCs), FSCs or ASCs (Fig. 1d). Notably, we obtained data of each
stemcell source fromintestine, lung, liver and biliary system organoid
models (Fig. 1b,d). In total, we collected 806,646 cells to be utilized
for downstream integration and analysis (Fig. 1a-d).

We clustered cells at high resolutionin each dataset and assigned
cell annotations based on known marker gene expression and differ-
ential expression between clusters (Supplementary Table 2). To assist
with label-aware integration, we established athree-level hierarchical
cell-type annotation: class (level 1), type (level 2) and subtype (level 3)
(Extended DataFig.1). Toaddress batch effects and achieve arobust atlas
integration, we assessed 12 different data-integration methods using
single-cell integration benchmarking'?' (Extended Data Fig. 1a-d),
andselected scPoli*>* to generate an integrated embedding of all orga-
noid cells, enabling acohesive representation of the diverse data (Fig. le
and Extended DataFig. 1e). The integrated atlas was reannotated based
onthemost frequent cell type in each cluster, resultingin 5 cell classes
atlevell,48celltypesatlevel 2and 51 cell subtypes at level 3 (Fig. 1f-h
and Extended Data Fig. 1f). Comparing annotations before and after
integration with annotationsin the original manuscripts showed a high
consistency across most cell-type labels (Extended Data Fig. 2a-c).
Inconsistencies were related to states on continuous differentiation
trajectories and nomenclature granularity between publications (Sup-
plementary Table 3). Integration performance was unaffected by stem
cell source, single-cell method or tissue type, but dataset origin sub-
stantially influenced integration outcomes (Extended Data Fig. 3 and
Supplementary Table 4). Pseudo-bulk analysis using both raw and
scPoli embedding on all organoid single-cell datasets revealed stem
cell source and tissue type as primary drivers of variance (Extended
DataFig.4).

Overall, epithelial cells from different organs clustered togetherin
theintegrated atlas and clusters were composed of cells from different
stem cell sources (Fig. 1e,i). However, we also identified cell types with
contributions from multiple organoid models. For example, goblet
cells were found in both intestine (68.08%) and lung (31.84%), with
aminor presence in other organs (0.08%). Basal cells were observed
in the lung (71.29%), salivary gland (16.28%), intestine (10.41%) and

thyroid (1.32%) models (Fig. 1j). These results suggest the existence of
cell types that exhibit partial or shared characteristics across differ-
ent organ models, and also may indicate off-target cells in organoids.
We identified consistent markers for each integrated cell type across
datasets and protocols, such as OLFM4 for stem cells and TP63 for
basal cells (Fig. 1j and Supplementary Table 5). We note instances in
which cells derived from organoid models of a certain organ clustered
withcellsannotated as being from a different organ. Given the difficulty
inprecisely controlling organoid development, especially PSC-derived
organoids, off-target cells in organoids are aknownissue®. In addition,
organoids derived from primary FSCs or ASCs could be contaminated
because of handling or the adjacency of tissues during tissue acquisi-
tion, or cell states could be different from the tissue of origin because
of stem cell plasticity. Therefore, it is important to develop strategies
to compare organoid cells with reference counterparts.

Reference atlas comparison to assess organoid fidelity

To evaluate the fidelity of cell states observed in the human
endoderm-derived organoid cell atlas (HEOCA), we obtained published
scRNA-seq dataon human endoderm-derived organs fromadult (small
and large intestine, lung, liver, pancreas, prostate, salivary gland)®
(Fig.2a) and fetal (small and large intestine, lung, liver, pancreas, stom-
ach, esophagus)? (Fig. 2b) specimens. To assess on- and off-target
cells in organoids, we projected organoid cells to the fetal and adult
primary tissue atlases, and inferred the target tissue via label trans-
fer (Fig. 2c). PSC-derived organoids have a lower on-target percent-
age in both fetal and adult primary tissues compared with FSC- and
ASC-derived organoids (Fig. 2c and Extended Data Fig. 5a-d). Focus-
ing on intestine and lung organoids, FSC- and ASC-derived intestine
organoids demonstrated high on-target percentages, with an aver-
age of 91.12% in FSC-derived organoids and 98.14% in ASC-derived
organoids (Fig. 2d). By contrast, PSC-derived organoids displayed a
median on-target percentage of between 23.28% and 83.63% depending
on fetal or adult reference atlas comparison; however, this is likely a
low estimate because datasets from early organoid time points are
difficult to assess using this reference comparison (Fig. 2c-e).

We identified major cell types from each adult and fetal tissue
(Fig.2a,b), and compared organoid cell types and states with primary
counterparts using neighborhood graph correlation®*. We quantified
the proportion of cell types in each organoid sample and compared
the similarity of each cell type with counterparts in adult and fetal tis-
sues (Fig. 2f-h and Extended Data Fig. 5a,b). ASC-derived organoids
had the highest similarity to adult counterparts, whereas PSC-derived
organoids were most similar to fetal counterparts, with FSC-derived
organoid cell states showing an intermediate distribution (Fig. 2i).
Multiple regression analyses revealed that similarity to reference
atlases was influenced by publication and stem cell source but not
by scRNA-seq methods, total sample counts or total sample genes
(Extended Data Fig. Se,f).

Intestinal organoid atlas covers development

and adult biology

Toexplore organoid cell states of different stem cell origin, we focused
onintestinal organoid models in which there is substantial coverage
fromPSC-, FSC-and ASC-derived organoid cells. This subset consisted
of 98 samples from 23 different publications representing 353,140
single-cell transcriptomes (Fig. 3a, Extended Data Fig. 6a and Sup-
plementary Table 1). We reintegrated all cells and defined 5 cell types
atlevel1, 26 cell types at level 2 and 32 cell types at level 3 in the atlas
(Fig. 3b,c and Extended Data Fig. 6b,c). This integrated intestinal
organoid atlas (HIOCA) covers epithelial states from the duodenum,
ileum, colonand PSC-derived organoids, and contains alarge fraction
of mesenchymal cells, and minor populations of neural, endothelial
and immune cell types (Fig. 3b,c and Extended Data Fig. 6d-f). We
subsetted and reintegrated stem cells and enterocytes, and found that
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Fig.1|Integrated transcriptome cell atlas of human endoderm-derived
organoids. a, Schematic overview of the atlas integration and downstream
analyses. b, Box plot of cell number in samples from all publications, with sample
number indicated below. The center represents the median; bounds indicate 25%
and 75% percentiles; and whiskers show minimum and maximum values within
1.5times the interquartile range. c,d, Bar plot showing the number of samples
grouped by different single-cell sequencing methods (c) and by tissue and stem

cellsource organoid (d). e, UMAP of the organoid atlas colored by tissue.

f, Overview of level 1and level 2 cell annotations and cell proportion.

g-i, Organoid atlas by level 1annotations (g), level 2 annotations (h) or by stem
cellsource (i). j, Heatmap showing marker gene expression for each level 2 cell
typein theatlas. Side stacked bar plots show proportions of cell types at level 1,
stem cell source and tissue type annotations.
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Fig. 2| Mapping organoid cell types to a primary tissue reference atlas to
assess organoid fidelity. a,b, UMAP representations of an integrated object
comprising primary adult (a) and fetal (b) cell types and tissues are shown in the
top right, as presented in the original publication. ¢, Bar plots showing the tissue
proportion of the most similar adult (top) and fetal (bottom) tissue, sorted by
organoid tissue and stem cell source. The upper annotation bar indicates the
organoid tissue and stem cell source, with tissue colors matching Fig. e and stem
cell source colors matching Fig. 1i. Matching tissue and organoid indicate on-
target, whereas mismatched tissue and organoid indicate off-target. Scaled color
barsat the bottom of the bar plots represent the mean confidence of on-target
and off-target cells. Missing reference samples are depicted as a gray bar witha
black line.d, Box plots reveal the percentage of on-target cells inintestine and
lung organoid samples for adult (top) and fetal (bottom) cells. e, Similartoc, a
subset of all intestine organoid epithelium cells projected to adult tissue is split

by the source of stem cells. On- and off-target confidence is shown at the bottom
of each bar plot, with three marker gene expressions in corresponding cell types
shownat the top. f, Box plotsillustrate the highest similarity of all cell types in
the corresponding primary adult and fetal tissues for each organoid sample,
sorted as shownin c.g, UMAPs for primary adult (left) and fetal (right) tissues
demonstrate the maximum similarity of all organoids in the comprehensive
cross-tissue organoid atlas. h, Box plots show the maximum similarity of each
adult (left) and fetal (right) cell type in different tissues. i, Box plots present

the median similarity to primary adult (left) and fetal (right) cell types among
different sources of stem cell organoids. For plotsind, f, hand i, Pvalues are from
two-tailed Mann-Whitney U-tests. In box plots, the center represents the median;
bounds show the 25% and 75% percentiles; and whiskers indicate values within
1.5x theinterquartile range. EEC, enteroendocrine cell; NK, natural killer;

PP, pancreatic polypeptide; TA, transit-amplifying.

cellsfrom different sources or tissues clustered together and exhibited
distinct gene expression profiles (Extended Data Fig. 6h,i). We used
the large collection of protocols to examine factors that influence
cell-type proportion (Extended Data Fig. 6m-o0). For instance, tumor
necrosis factor (TNF) and interleukin-22 (IL-22) are linked to more
abundant microfold (M) and Paneth cells in ASC-derived organoids,

respectively, and xenografted PSC-derived tissues harbor both Paneth
and tuft cells, which are absent in early stage PSC-derived organoids.
Protocol evaluation suggests tailored approaches to enrich specific
cell types or enhanced maturation (Extended Data Fig. 60).
Toassessintestinal organoid fidelity and maturation, weintegrated
time series sCRNA-seq datafrom duodenal development (59 to 132 days
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Fig. 3| Humanintestinal organoids from different stem cell origins generate
developing and adult cell states. a, Analytical design of the intestine organoid
subatlas and comparison with the primary reference tissue. b,c, UMAP of
healthy intestinal organoid atlas colored by level 1 cell-type annotation, source
of intestine tissues and source of stem cells (b) and level 2 cell-type annotation
(c).d, Dot plots showing intestinal marker gene expression across organoid cell
types. From top to bottom, the dot plots display level 1 cell markers, epithelial
cell markers and mesenchymal cell markers. e, Analytical design of the intestine
organoid subatlas and comparison with the primary reference tissue. f,g, UMAP
oftheintegrated intestine fetal and adult primary tissue single-cell object
colored by adult sample or fetal sample age (f) and cell type (g). h, Projection of
intestine organoid cells onto fetal and adult primary epithelial single-cell objects
categorized by PSC-, transplant PSC- (tPSC), FSC- and ASC-derived organoid
samples. i, Bar plot illustrating the predicted cell proportions of each organoid

sample mapped to the primary tissue objects. The samples are divided by PSC-,
FSC-and ASC-derived organoid samples, with PSC-derived organoids further
ordered by organoid age, and FSC- and ASC-derived organoids ordered by the
percentage of stem cells. j, Box plot showing the predicted probability of cell
mapping to adult samples. The cell numbers range from1t0 10,866, with samples
containing fewer than100 cells marked by an asterisk. k, Bar plotsillustrating the
predicted tissue (fetal in gray and adult in blue) proportions. From top to bottom
are stem cells, precursor enterocytes and enterocytes. I, Box plot showing the
adultenterocytes similarity of each organoid sample. The order of organoid
samplesinj, kandlis consistent with thatini. Biological sample size is 163. For
thebox plotsinjandl, the center represents the median; bounds show the 25%
and 75% percentiles; and whiskers indicate values within 1.5x the interquartile
range. d, day; mLTo, mesenchymal lymphoid tissue organizer.

post fertilization) with adultintestinal epithelium?>?® (Fig. 3e). These
datarevealed distinct fetal and adult stem cell-to-enterocyte differen-
tiation trajectories, while other epithelial cell types, such as goblet, tuft,
Mand enteroendocrine cells, showed similar states across both stages
(Fig.3f,g and Extended Data Fig. 7a-f). Comparing organoids with the
primary reference revealed that PSC-derived organoids resembled fetal
tissue, whereas FSC- and ASC-derived organoids aligned with adult
tissues (Fig. 3h), consistent with reports that FSC-derived organoids

lose fetal traits during extended culture”. Metrics such as cell-type
proportion, projection probability and similarity to fetal and adult cell
types highlighted substantial variation across samples (Fig. 3i-1 and
Extended DataFig.7g,h). For example, PSC-derived organoidsincrease
in complexity and reference similarity over time in culture, and after
xenografting into a mouse host for maturation, the organoids obtain
higher cellular diversity and similarity to primary tissue differenti-
ated enterocytes. Altogether, these results reveal the diversity of cell
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Fig. 4| Human lung organoids from different stem cell origins generate
developing and adult cell states. a, Schematic of the analyses performed on
the lung organoid subatlas (HLOCA) and comparison with the primary reference
tissue. b,c, UMAP of the integrated object of all lung organoid samples colored
by cell type (b) and stem cell source (c). d, Dot plot showing lung marker gene
expression across organoid cell types. e, Analytical design of the lung organoid
subatlas and comparison with the primary reference tissue. f,g, UMAP of the
integrated lung fetal and adult primary tissue single-cell object colored by adult
sample or fetal cell type (f) and age of sample (g). h, Projection of lung organoid
cells onto fetal and adult primary epithelial single-cell objects categorized
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by PSC-, FSC-and ASC-derived organoid samples. i, Bar plotillustrating the
predicted cell proportions of each organoid sample mapped to the primary
tissue objects. The samples are divided by PSC-, FSC- and ASC-derived organoid
samples from left to right. j, Box plot showing the predicted probability of cell
mapping to adult samples. The cell numbers range from 395to 13,017, with
samples containing fewer than 500 cells marked by an asterisk. The center
represents the median; bounds show the 25% and 75% percentiles; and whiskers
indicate values within 1.5x the interquartile range. k, Bar plots illustrating

the predicted tissue (fetal in gray and adult in blue) proportions. The order of
organoid samplesinjandkis consistent with thatini.

compositionand cell maturationinintestinal organoids from different
sources, time points and protocols.

Lung organoid atlas covers development and adult biology

We performed a detailed analysis of lung organoid cells, consisting
0f 221,425 cells obtained from 52 samples and 13 publications, com-
prising PSC-, FSC- and ASC-derived sources (Fig. 4a). We integrated,
clustered and annotated these data to generate a human lung orga-
noid cell atlas (HLOCA) (Fig. 4b,c). The Uniform Manifold Approxi-
mation and Projection (UMAP) representation showed integration of
data from different publications and samples with undifferentiated
stem cells positioned centrally surrounded by more differentiated cell
types (Fig. 4b). Organoids from PSCs displayed a higher proportion
of lowly differentiated early endoderm development marker genes
such as FABPI and AFP-defined progenitor cells, which were largely
absent in the ASC-derived organoids (Fig. 4d). In turn, organoids
obtained via ASC-protocols frequently contained a relevant proportion
of club cells, whereas a high incidence of goblet and neuroendocrine
cells was primarily observed in samples produced using FSC protocols
(Fig. 4b-d). Overall, the differences in cell-type composition suggest
effects from stem cell source as well as details of the protocol, includ-
ing media and growth factors. We provide a structured account of
the publicly available metadata on lung organoid datasetsin the atlas

includinginformation on all available protocol components, concen-
trations and intervals, which can be linked to the samplesin the shared
HLOCA object.

Togaininsightsinto how the lung organoid datasets correspond
with primarytissue, we integrated a unified reference of primary adult
and fetal lung tissues®? (Fig. 4e-k). The query to reference mapping
of the lung organoid data showed that PSC-derived organoid cells
preferentially integrated with fetal counterparts, ASC-derived
organoid cells integrated with adult counterparts and FSC-derived
organoid cells projected to both fetal and adult references (Fig. 4h).
This finding is consistent with previous observations from intes-
tine reference mapping analysis in which PSC-derived organoids
model fetal biology, ASC-derived organoids model adult biology
and FSC-derived organoids have intermediate or unclear mappings.
Metrics such as cell-type proportion, projection probability and
similarity to fetal and adult cell types also highlighted substantial
variation across samples (Fig. 4i-k). Interestingly, the results show
that most PSC-derived and some FSC-derived organoids contain a
large proportion of cells resembling early fetal epithelial cells. This
observation is consistent with our previous finding of undifferenti-
ated cellsin PSC-and FSC-derived organoids. Insummary, these data
offer anintegrated atlas for lung organoids (HLOCA) to complement
the HEOCA for the study of lung 3D cultures at a single tissue level,
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providinginsightinto differencesin cell-type composition, matura-
tion state and resemblances to primary tissue from multiple stem
cell sources.

Protocol assessment and projection of new data

We developed a toolkit to incorporate organoid datasets and com-
pare datawithcell statesin the integrated HEOCA (Fig. 5a). This toolkit
(sc2heoca) offers functions to compare samples with tissue references
and assess ‘on or off” target status and cell state maturation. In addi-
tion, itenables sample projection onto theintegrated HEOCA through
nearest neighbor analysis and cell annotation through label trans-
fer. The mean expression of the nearest neighbors serves as paired
reference cells for differential expression analysis and mean distance
to nearest neighbors provides an estimate for the level of difference
betweensample and reference states. We applied this toolkit to assess
organoid protocols, perturbations and disease models (Fig. 5a).

We provide several examples of how the HEOCA can be used to
evaluate single-cell transcriptome datasets from recent organoid
protocols (Fig. 5Sb-e). First, we validate a finding? that modulation of
the TNF pathway promotes M cell abundance in intestinal organoids
(Extended Data Fig. 6m). We generated ASC-derived ileal organoidsin
controlmedia or mediasupplemented with TNF and receptor activator
of nuclear factor-kB ligand (RANKL), and performed scRNA-seq after
6 days of treatment. Reference comparison revealed that the majority
of cells from both the control and TNF treatment samples accurately
matched the intended intestinal tissue cell types (control, 98.26%;
TNF, 95.16%) (Extended Data Fig. 8a). Projection onto the HEOCA con-
firmed anotableincreasein M cellsin the TNF treatment versus control
samples, rising from 0% to 34.92%, with corresponding differential
expression profiles (Fig. 5b and Extended Data Fig. 8a).

Second, we assessed colonic epithelial tissue generated by seed-
ing human colon ASC-derived organoids on a scaffolded hydrogel in
a fluidic chip® (Fig. 5¢). Projection analysis demonstrated that this
protocolledto colonocyte differentiation and maturation, asindicated
by asubstantially higher proportion of colonocytes compared with the
controlsamples (day 4, 20.45%; day 14, 54.03%; day 21, 66.97%) (Fig. 5¢
and Extended Data Fig. 8b). This on-chip protocol offers advantages
over conventional organoid protocols by providing access to the apical
and basal sides of the epithelium and allowing the culture to be main-
tained for many weeks while sustaining both stem and differentiated
cell types.

Third, we analyzed two lung datasets consisting of time courses of
lung progenitor organoids differentiated into alveolar or airway orga-
noids (Fig. 5d,e). In the alveolar dataset, cells showed increased map-
ping to alveolar epithelial identities (AT1 and AT2) over the course of
differentiation (Fig. 5d). Thisincrease was accompanied by adecrease
in cells mapping to undifferentiated identities in the reference atlas
(Extended Data Fig. 8c). Similarly, lung progenitor organoids differ-
entiated toward the airway were accurately mapped to airway-specific
cell identities, including SCGB3A2" airway progenitors, basal cells
and secretory cells, consistent with previous descriptions of these
organoids®>* (Fig. Se and Extended Data Fig. 8d). Notably, these cells
were minimally mapped to alveolar epithelial identities, further vali-
dating the accuracy of the reference atlas in distinguishing different
lung cell types (Fig. 5d,e).

Finally, we incorporated four additional ASC-derived intestinal
organoid datasets (two published and two unpublished) including
condition versus control ileum organoids treated with IL-4 and IL-13
and colon organoids treated with IL-22, and time course data of ileum
and colon organoids in a medium to promote differentiation®***. For
each dataset we projected to the HEOCA, annotated cell types, assessed
cell-type proportion, mapped to adult and fetal references, and per-
formed differential expression analysis (Extended Data Fig. 8e-h).
Takenaltogether, these data provide aframework for protocol assess-
ment and datasetincorporationinto anintegrated organoid cell atlas.

Perturbation and disease models expand organoid cell states
We next sought to use the HEOCA as a cohort to assess organoid per-
turbations. We conducted two perturbation experiments aimed at
modeling response to viralinfection (interferon (IFN)a, IFNB and IFNy)**
and acute pathogenic inflammation (TNF, Oncostatin M (OSM), IFNy,
stem cell factor (SCF), IL-6, IL-17A and I1L-18)** (Fig. 6a). We treated
ASC-derived ileum organoids with these cytokines for 24 h and per-
formed scRNA-seq on control (4,191 cells) and treated samples from
thesamebatch (viral response, 3,305 cells; inflammation, 2,158 cells).
HEOCA projection and annotation revealed diverse cell types includ-
ing stem cells, enterocytes, goblet cells and enteroendocrine cells
(Fig. 6b,c). Distance-to-atlas analysis revealed that, compared with
the control sample, both viral response and inflammation samples
had higher distancesinall cell types (Fig. 6d,e). Differential expression
analysis between perturbation samples and the paired nearest neighbor
cellsinthe HEOCA cohortrevealed 618 genes specific to viral response
(for example, ISG15, 0AS1-3), 259 specificto inflammation (LCN2,/L32,
TNFAIP2),717 shared (STAT1, WARSI) and 996 genes upregulatedin the
atlas (Fig. 6f,g). Gene Ontology (GO) enrichment analysis showed that
viral response-specific upregulated genes were enriched in functions
related to the defense response to viruses, response to type I IFN and
IFNB, and regulation of autophagy. Inflammation-specific differen-
tially expressed genes (DEGs) were associated with the inflammatory
responses and cellular responses to chemokines. Genes commonly
upregulated in both viral response and inflammation samples were
involvedin regulating epithelial cell proliferation, chromosome organi-
zation, epithelial cell migration, intracellular signal transduction and
response to cytokines. By contrast, genes with higher expression in
the atlas cohort were enriched in ATP biosynthetic processes, mes-
senger RNA processing and cellular respiration (Fig. 6h). We found that
DEGsidentified from comparison withthe HEOCA cohort were similar
to the set identified through comparison with the isogenic control
(Extended Data Fig. 9a,b). To assess the biological relevance of the
identified states, we compared transcriptomes with counterpartepithe-
liumin an atlas of inflammatory bowel disease (IBD) patient samples’®.
Interestingly, we found that the perturbation-induced DEGs were also
differentially expressed between healthy individuals and patients with
IBD (Fig. 6i,j). This finding confirms that these perturbations generate
organoid cell states not prevalentin the atlas, that theintegrated atlas
can be used as a diverse cohort for perturbation assessment and that
these perturbation states have relevance to primary counterparts.
We next assessed the utility of the integrated atlas to understand
organoid models of disease. Through comparison withthe HEOCA we
assess cell proportion, identify disease-associated states and perform
differential expression analysis against the atlas data (Fig. 5a). We
first explored colorectal cancer (CRC) using a dataset composed of
CRC organoids from a patient resection and normal organoids from
adjacent healthy tissue® (Fig. 7a). HEOCA mapping analysis showed
that CRC samples exhibited alower percentage of mature colonocytes,
and ahigher proportion of stem cells (Fig. 7b,c). Interestingly, we also
observed the emergence of mesothelial cellsin the CRC samples, con-
sistent with the published findings that CRC canlead to anincreasein
mesenchymal cells (Fig. 7b,c)*. Distance-to-atlas analysis distinguished
cancer from normal cells, with stem cells and colonocytes showing
the greatest deviation, while goblet cells remained closer to normal
states (Fig. 7d,e). Subsetting and integrating colonocytes from both
normal and cancer organoids identified two distinct groups: a mixed
normal-cancer cluster and a cancer-specific cluster with markedly
higher atlas distances (Fig. 7f-h). DEG analysis revealed higher expres-
sion levels of CRC markers such as CEACAM6, SPINK1, TGFBl and RSPO3
in the cancer cell group (Fig. 7i). Notably, recurrent R-spondin gene
fusions have been described in certain patients with CRC and this event
potentiates Wntsignaling and tumorigenesis*’. GO enrichment analysis
highlighted immunity and cytotoxicity genesin cancer cells (Extended
Data Fig. 9c). These analyses show the utility of distance measures to
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the HEOCA as astrategy to elucidate cell states that deviate healthy or

otherwise normal states.

In a second assessment, we used a publicly available dataset of
two different organoid types generated from cells of patients with

chronic obstructive pulmonary disease (COPD) (Fig. 7j)*.. These
were derived from nasopharyngeal and bronchial stem cells of these
patients respectively. Both nasopharyngeal and bronchial COPD
organoids mapped to lung populations in the HEOCA, but whereas
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nasopharyngeal organoids resembled healthy samples, bronchial
organoids exhibited an increased proportion of club cells and fewer
basal cells (Fig. 7k,l). Distance-to-atlas analysis effectively distinguished
normal from COPD conditions, with the bronchial COPD organoids

showing notable deviations (Fig. 7m). These results matched with
the original publication*, which showed similar differences in cell-
type composition and reported differencesin resistance to viral infec-
tion between the bronchial and nasopharyngeal COPD organoids.
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Fig. 7| Comparison with the HEOCA healthy organoid cohort reveals disease-
associated features. a, Overview of colorectal cancer organoid samples and
their analysis through the HEOCA assessment. b, UMAP of adjacent normal colon
and colorectal cancer samples mapped to the HEOCA colored by predicted level
2 celltype.c, Proportion of predicted level 2 cell type in two samples. d, ROC plot
of cancer cell prediction using the distance to the atlas. e, Distance from adjacent
normal and CRC cells to HEOCA is split by cell types. f, UMAP of CRC and adjacent
normal colonocytes, colored by sample type (left), distance to HEOCA (middle)
and predicted disease state (right). g, Box plot showing the distance to the atlas
for the two disease-state clusters. h, Bar plotillustrates the distribution of CRC
and adjacent normal cells in two distinct clusters of disease-state cells. i, Scatter
plot showing DEGs between normal and cancer colonocytes. j, Overview of COPD
organoid samples and their analysis through the HEOCA assessment. k, UMAP of
normal and COPD nasopharyngeal (PO) and bronchial (BO) organoid scRNA-seq

0 1
B COPD M Healthy

samples mapped to HEOCA, colored by predicted level 2 cell types. I, Proportions
of predicted level 2 cell types in normal and COPD PO and BO samples. m,ROC
plot of COPD cell prediction using distance to the atlas. n, Distance to HEOCA for
normal and COPD PO (left) and BO (right), divided by cell types. o, UMAP of COPD
and normal BO basal cells, colored by sample type (left), distance to HEOCA
(right) and predicted disease state (bottom). p, Box plot presents the distance

of cells to HEOCA for the two clusters of disease-state cells. ¢, Bar plotillustrates
the distribution of normal and COPD BO basal cells in two distinct disease-state
clusters. r, Scatter plot showing the DEGs between normal and COPD BO samples
basal cell. For plotsin e, g, n and p, Pvalues are from two-tailed Mann-Whitney
U-tests. Inthe box plots in g and p, the center represents the median; bounds
show the 25% and 75% percentiles; and whiskers indicate values within 1.5x the
interquartile range.

Based on atlas similarity, we observed that the nasopharyngeal normal
and COPD samples showed relatively minor differences across all cell
types, whereas basal cells in the bronchial COPD samples displayed
a bimodal distribution (Fig. 7n). Distance to HEOCA states identified
onebasal cell populationindicative of adisease state, whichwas further
clarified in a heterogeneity analysis of basal cells from healthy and
bronchial organoids (Fig. 7n-q). DEG analysis revealed decreased

KRTS and KRT15 expression, and high expression of genes known to be
upregulatedin COPD such as PSCA and BPIFBI (Fig. 7r). GO enrichment
analysis of the DEGs shows that disease cells have enriched expression
of cilium and axoneme genes (Extended Data Fig. 9d). Together these
data show that the HEOCA can be used to place cell states observed in
organoid disease modelsinalarger context, which helps tobetter under-
stand holistic effects on cell composition and gene expression patterns.
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Finally, we provide an assessment of the viability of organoids
derived from different source types (PSC, FSC, ASC) for drug target
screening. We used Drug2Cell (D2C)** to score the expression levels
of 2,395 drug target signatures from the CHEMBL database in single
cells fromHEOCA, and used scDECAF* to select drug target signatures
that exhibited global covariation in two or more cell types to identify
multicellular drug signatures (Extended Data Fig. 10a and Supple-
mentary Table 6). Comparison between ASC-, FSC- and PSC-derived
intestine and lung organoid models showed substantial differences
in drug target pathway activities (Extended Data Fig. 10b,c). Drug-
gable targets in categories including alimentary tract metabolism,
systemic hormones, anti-infectives, antiparasitics, and antineoplastic
and immunomodulating agents were implicated in signatures that
varied between cell types and stem cell sources. Comparison between
lung andintestine organoid models across all cell types suggested that
many druggable targets are distinct between the two tissues and cell
typescommontobothintestine and lung (for example, stem and goblet
cells) have unique features (Extended Data Fig.10d-f).

In summary, our analyses demonstrate that HEOCA is a techni-
cally and biologically diverse cohort that canbe leveraged to evaluate
organoid models, identify pathways impacted by perturbations, and,
more broadly, explore the ontogeny of human biology.

Discussion

Single-cell transcriptome sequencing technologies have advanced
organoid research by offering a powerful set of experimental and
computational tools to investigate cell types present in these
complex 3D models. Despite immense progress, it remains a challenge
to understand and quantify organoid fidelity and to place variation
between organoid datasets into a larger context. To begin to address
these challenges, we have built an integrated cell atlas of organoids
that model endoderm-derived tissues, incorporating organoid
datasets that have been generated from multiple different types of
stem cells and protocols. We have established aframework for integra-
tion and harmonized cell-type annotation, which makes interpreting
cell heterogeneity between organoid datasets tractable. Harmoni-
zation of cell-type annotation and nomenclature is challenging, and
we envision that comprehensive integrated reference atlases across
the human lifespan will enhance the robustness of cell annotation
in organoid datasets. With regard to atlas building, single-cell tran-
scriptome data from diverse experimental designs can introduce
strong technical noise because of batch effects, protocol variation,
genomic method and other technical biases, making data integra-
tion challenging. To overcome this, we evaluated existing integration
methods and identified a suitable model based on bioconservation
andintegration metrics. Thisintegration method, scPoli, is structured
to incorporate additional data, enabling rapid comparison of data-
sets through the sc2heoca package or ArchMap website (https://www.
archmap.bio). We find that there is notable variation in organoid cell
composition, prevalence of off-target cells and overall cell state simi-
larity. This variation, and comparison with available reference atlases,
revealed that current organoid technologies cover alarge diversity of
human cell types and states, and particularly that organoids can model
both early stages of fetal development as well as stages of adulthood.
Thisresult helpsto clarify the use of human organoid technologies to
explore development, model disease and test therapeutics.

Through cross-organ, multiorganoid integration, it was possible to
identify off-target cells, a particular problemin PSC-derived organoids
because ofincomplete specification, as well as to distinguish cell states
that markedly differed from states present in the atlas. This ability to
distinguish nonpresent states is helpful to assess protocols, as well as
toidentify features of disease models that are absent innormal, healthy
organoids. Indeed, theintegrated HEOCA presents an opportunity to
place anendodermal organoid dataset into arelationship with datasets
generated from atechnically and biologically diverse cohort. There is

stillamajor challenge with organoid fidelity quantification, particularly
withrare cell types or transient ontogenetic states, because thereis not
yetacomplete andintegrated atlas of human cell-type diversity during
development and adulthood from primary tissues. Comprehensive
integrated reference atlases across the human lifespan, in health and
disease, together with diverse organoid models in normal and per-
turbed conditions, will help to clarify the full potential of the human
genome. Altogether, the HEOCA will serve asavaluable resource for the
organoid research community and a foundation to expand the ability
to model human biology.

Online content
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Methods
The experiments conducted in this study did not require approval from
aspecific ethics board.

Statistics and reproducibility

To integrate the atlas, all available datasets were included, with no
sample exclusion. For integration method comparisons and sample
variance effect analyses, random samples were selected from the full
dataset. Reproducibility codes for the analyses are available online
via GitHub, as detailed in the ‘Code availability’ section. All statistical
methods are described in the corresponding sections of the paper.

Organoid culture, cytokine treatment and scRNA-seq

Human intestinal tissue samples were obtained and experimental pro-
cedures performed within the framework of the nonprofit foundation
HTCR (Munich, Germany) including informed patient consent. lleal
organoids were derived and maintained according to previously pub-
lished culture conditions™. For the cytokine treatments, organoids were
dissociatedinto five-to ten-cell fragments using TrypLE (Invitrogen) and
reseeded in Matrigel. After 6 days, organoids were treated for 6 days by
supplementing the culture medium with 50 ng mI” TNF and 200 ng mlI™
RANKL (Acro Biosystems) for TNF treatment®® or with 400 ng mIIL-4
and 40 ng mI IL-13 (Acro Biosystems) for IL-13 and IL-4 treatment. To
model host cell responses to viralinfection, organoids were treated for
1day with1ng mI™? IFNa, 1 ng mI™ IFNy (Acro Biosystems) and 5 ng ml™
IFNB (PeproTech)**. Tomodel acute pathogenic inflammation, organoids
were treated for 1day with 10 ng mI™ TNF, 10 ng mI™ IL-6, 500 ng mI ™!
IL-17A,1 ng mI IFNy (Acro Biosystems), 50 ng mI™IL-18,100 ng mI" OSM
(BioLegend) and 100 ng mI™ SCF (MedChemExpress)* . After the indi-
cated treatment durations, organoids were dissociated for scRNA-seq
using the Neural Tissue Dissociation Kit (P) (Miltenyi Biotec) as described
previously®. First, culture medium was removed and organoids were
incubated in Cell Recovery Solution (Corning) for 40 minat4 °C. Next,
organoids were transferred to 1% bovine serum albumin (BSA)-coated
tubes using HBSS-1% BSA buffer while pipetting thoroughly to fragmen-
tize the organoids. Organoid fragments were centrifuged at 500g, 5 min,
4 °C. Each cell pellet was resuspended in prewarmed buffer X mixed
with25 plof enzymeP. Cells were incubated for 15 min at 37 °C combined
with mechanical dissociation by pipetting every 5 min. Next, 5 pl of
enzyme Ain10 pl of buffer Y was added to the digest and incubated for
afurther 10 min combined with pipetting every 5 min. Cells were sub-
sequently washed twice with HBSS-1% BSA buffer and filtered through
a40-um filter coated with 1% BSA. Single cells were counted using a
Countess 3 FL Automated Cell Counter (Invitrogen) and kept on ice.
Dilutions of -1,000 cells per plin 50-60 pl of HBSS-1% BSA buffer were
prepared and immediately processed using the 10x Chromium Next
GEM Single Cell 3’ Reagent Kit (v.3.1) according to the manufacturer’s
instructions. Libraries were sequenced on Illumina’s NovaSeq6000.

Data collection

The scRNA-seq dataused in this study were obtained from the original
papers (Supplementary Table 1). If the raw fastq files were available,
they were downloaded. The seq2science (v.1.2.2)** method was used
to download the raw fastq files from the Gene Expression Omnibus
database (https://www.ncbi.nlm.nih.gov/geo/) or BioStudies database
(https://www.ebi.ac.uk/biostudies/). The reads were aligned to the
GRCh38 genome and Ensembl 98 gene annotation using STARsolo
(STARV.2.7.10b)*. In cases in which the raw FASTQ files were not avail-
able, theraw counts were downloaded instead. The downloaded counts
and the counts obtained from the realigned reads were merged for
subsequent analysis.

Data normalization
To integrate the data, we combined the count data from all the
samples into a unified dataset. For subsequent analysis, we retained

only the genes classified as protein-coding genes and long noncod-
ing RNA genes. The low-quality cells in each sample were filed. The
raw counts were then normalized to a total count of 10,000 and
log-transformed. Given these normalized counts, the top 3,000
highly variable genes were identified using the default settings in
Scanpy. These highly variable genes were selected for further down-
stream analysis.

Cell-type annotation

Cell-type annotation was performed using the snapseed method
(https://github.com/devsystemslab/snapseed). For each sample,
the raw counts were normalized to a total count 0of 10,000 and then
log-transformed. From these normalized counts, the top 3,000 highly
variable genes were identified using the default settings in Scanpy.
These highly variable genes were selected as the subset for further
downstream analysis. Principal component analysis (PCA) was per-
formed onthe normalized data, and the top 30 principal components
were chosen for calculating the k nearest neighbors (k<NN). Using the
kNN, aUMAP was generated to visualize the datain alower-dimensional
space. To cluster the data, the Leiden clustering method with a reso-
lution of 2 was applied. This clustering approach helped to identify
distinct groups of cells based on their gene expression patterns.
Previously defined marker genes associated with specific cell types
were used to guide the annotation process. To annotate cell types
in each cluster, the snapseed method was used. This method calcu-
lates the areaunder the receiver operating characteristic (ROC) curve
(AUC) and fold change values for each marker gene in relation to the
cluster. If multiple markers were available for a particular cell type, the
maximum AUC and fold change values were selected. The average AUC
and fold change values were used to represent the specific cell type,
and the most specific cell type was annotated for each cluster based
onthese criteria.

Pseudo-bulk analysis

For gene expression level, we merged all counts in each organoid
sample by genes using the adpbulk*® method and applied a natural
logarithm transformation to one plus the counts. We then selected
the top 500 highly variable genes and calculated PCA based on their
expression. From principal components 1and 2 (PC1 and PC2), we
selected the top 200 and bottom 200 loading genes for GO enrichment
analysis using the GSEApy* method.

For the scPoli embedding level, we calculated the mean scPoli
embedding for each organoid sample using the adpbulk*® method,
followed by PCA based on the mean embedding. A linear model was
then used to calculate the covariance between principal components
and sample counts, stem cell source, scRNA-seq method, tissue type
and publication.

Dataintegration benchmarking

Tobenchmarkand compare differentintegration methods, we selected
ten random samples from the dataset for validation, repeating this
process tentimes. Twelve integration methods, including PCA, Seurat
(v.3, v.4 and v.5), scVI, scANVI, scPoli, bbknn, harmony, combat, CSS
(pearson) and CSS (spearman)™* were applied to the data to assess
their performance in integrating the samples. The scIB method, a
benchmarking tool, was used to evaluate and compare the results
obtained fromthese integration methods. In the scPoli model, we con-
figured the following parameters for effective training and integration:
embedding dimwassetto3; hidden_layer_sizes were determined as the
square root of the total number of cells. During the training phase, we
used the following settings: early_stopping_metric was set to val_pro-
totype_loss; mode was set to min; threshold was set to O; patience was
setto20; reduce_Irwasenabled, withIr_patience setto13 andIr_factor
setto 0.1; n_epochsweresetto 5; pretraining_epochs were set to 4; eta
was set to 10; alpha_epoch_anneal was set to 100.
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Sample variances across integration benchmark

To benchmark and compare how different sample variances affect
integration, we selected ten random samples from the dataset as a
control and another ten random samples with the same sample vari-
ance, such as samples from the same organoid tissue type. Each group
of selected samples was integrated using the scPoli method with the
same settings asin the HEOCA integration. The scIB method was then
used to benchmark the different integrations. The difference in scIB
output between the control and each sample variance pair was calcu-
lated to represent the effect of sample variance on integration. For
benchmarking the effect of cell number variance, we selected the
same ten samples as the control and performed a random subset of
each sample to the median or mean number of cells in all the HEOCA
samples. The subsequent comparison followed the same procedure
asthe other sample variance benchmarks.

Cell-type reannotation

After integration, we recluster all cells in the atlas based on the
scPoliintegrated embedding using the Leiden method with a resolu-
tion of 10 (HEOCA and HIOCA) and 10 (HLOCA), respectively. Annota-
tions were then assigned to each cluster using the dominant cell type
per cluster. Some clusters of cells were adjusted according to the
marker genes expression.

Marker gene refinement

We randomly subset 100,000 cells from the atlas. For each cell type,
we used the Wilcoxon rank-sum test to identify DEGs, selecting
the top ten genes as marker genes for each cell type. We combined the
selected marker genes and performed hierarchical clustering on the
resulting gene set.

Cross-organ primary tissue integration

The human fetal endoderm tissue atlas was downloaded®. The nor-
mal endoderm tissues including the esophagus, lung, liver, intestine,
stomach and pancreas were subsetted. The top 3,000 highly variable
genes were subsetted for data integration. The cells in each tissue
were integrated using the scPoli method®, with the cell_type serv-
ing as the cell-type key for integration and with the same parameters
used in the HEOCA integration. The scPoli model was saved for the
downstream comparison. The Tabula Sapiens multiple-organ adult
single-cell transcriptomic atlas of humans was downloaded (https://
tabula-sapiens-portal.ds.czbiohub.org/)®. The endoderm tissues
including the liver, lung, pancreas, small intestine, large intestine,
prostate and stomach were subsetted. The endothelial, epithelial and
stromal compartments of cells were subsetted. The top 3,000 highly
variable genes were subsetted for data integration. The cells in each
tissue were integrated using the scPoli method?®’, with the cell_ontol-
ogy_class serving as the cell-type key for integration and with the same
parametersused inthe HEOCA atlas integration. The scPoli model was
saved for the downstream comparison.

Organoid off-target analysis

For each organoid sample, the same set of variable genes used in
the primary tissue atlas (adult or fetal) was chosen, and the scPoli query
was executed using identical parameters to those used in the primary
tissue atlas training model. The UMAP embedding was transformed
using the primary tissue atlas UMAP model. For each cell, the system
selected its 100 nearest neighbors from the HEOCA dataset. The pre-
dicted tissue for the cell was assigned based on the tissue that was most
frequently observed amongits 100 nearest neighbors.

Correlation to primary tissue

To compare and correlate cell states in primary tissue and organoid
models, the miloR*® method was used to define and construct neigh-
borhood graphs for each data source separately. We computed the

transcriptional similarity graph for the primary tissue reference
using 30 nearest neighbors and the UMAP representation of latent
representations of integrated primary tissue cells. To compute the
transcriptional similarity graph for the organoid reference, we used
the 30 nearest neighbors and the UMAP representation of integrated
embedding of organoid cells. Single-cell organoid data were inte-
grated using scPoliand 3,000 highly variable genes as described earlier.
We used the default parameters for all the remaining computational
stepsinbuilding the neighborhood graphs. We then used the R package
scrabbitr® to compute the correlation between each pair of neighbor-
hoods in the primary tissue and organoid reference and to annotate
theresults at cell-type or tissue level. The neighborhood correlations
were computed using 3,000 highly variable genes that were found in
the highly variable genes in the primary tissue single-cell reference
atlases. This step results in two neighborhood correlation matrices:
a primary tissue-correlation matrix in which each entry marks
correlation of the expression profile of a given neighborhood in the
primary tissue with the HEOCA, and an organoid-correlation matrix
thatstores the correlation of expression profilesin each neighborhood
of the organoid atlas with the primary tissue atlas. This procedure
was also repeated for each organoid derivation protocol, thatis ASC-,
FSC-and PSC-derived protocols. To compare the correlation between
cellstatesinthe primary tissue and between organoid derivation pro-
tocols, we subtracted the primary tissue-neighborhood correlation
matrices computed with respect to neighborhoods for each derivation
protocol. Thisapproach of comparing primary tissue and organoid by
correlation of neighborhood graphsis more reliable than the alterna-
tive reference mapping strategy, because it removes the dependance of
thereliability and accuracy of the conclusions to mapping uncertainty,
and allows for computing correlation statistics on graphs that are con-
structed based ontranscriptional similarity of cellsineach datasource.

Velocity and pseudotime analysis

For RNA velocity analysis of the HIOCA, we first excluded samples
missing splicing information. We then applied scVelo* to generate a
UMAP representation with stream trajectory visualization. The velocity
pseudotime, spanning from stem cells to enterocytes and colonocytes,
hasbeenrescaled toarange of O to 1. We calculated and displayed the
average expression of markers in specific bins.

Intestine organoid atlas integration

The top 3,000 highly variable genes were subsetted for data integra-
tion. To integrate all the cells, we applied the scPoli method with the
same parameters used in the HEOCA atlasintegration. The scPoli model
was saved for the downstream comparison.

Lung organoid atlas integration

Lung organoid single-cell data curated from different studies was sub-
setted ontop 3,000 highly variable genes for integration. We applied
scPolitolearn30-dimensional latent representations of the cells, and
10-dimensional latent representations of the samples using a neural
network with2 hidden layers each of size 512. The network was trained
setting n_epochs=12, pretraining epochs to 10, eta=10, patience=20,
Ir_patience=13, Ir_factor=0.1, alpha_epoch_anneal=100, reduced_
Ir=True and prototypical loss of the validation set as the early stopping
criteria. The scPoli model was saved for the downstream comparison.

Intestine primary tissue atlas integration and compression of
organoid samples

The scRNA-seq data from both duodenum fetal and adult primary
tissues were obtained from two research papers®>*. We focused on
epithelial cells and subsetted them for analysis. The top 3,000 highly
variable genes were subsetted for data integration. To integrate all
the cells, we applied the scPoli method with the same parameters
used in the HEOCA atlas integration. The scPoli model was saved for
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the downstream comparison. For each organoid sample, the same set
of variable genes used in the primary tissue atlas was chosen, and the
scPoli query was executed using identical parameters to those used
inthe primary tissue atlas training model. The UMAP embedding was
transformed using the primary tissue atlas UMAP model. For each cell,
the system selected its 100 nearest neighbors from the primary tissue
dataset. The predicted cell type for the cell was assigned based on
the tissue that was most frequently observed among its 100 nearest
neighbors. To identify DEGs in primary tissue stem cells and entero-
cytes, we subsetted these cell types and used a linear model to calcu-
late the covariance between sample age and gene expression for each
gene. The top 100 genes with the highest coefficients were selected
as DEGs. The GSEApy method was then applied to identify the top
GO-enriched terms associated with these genes.

To identify the heterogeneity of intestinal organoid stem cells
and enterocytes, cells from the HIOCA were subsetted. Integration
was performed using the CSS method'® based on 1,000 highly vari-
able genes across all cells. Leiden clustering with a resolution of 0.1
was applied to identify subclusters. The Wilcoxon rank-sum test was
used toidentify DEGs among subclusters, and GO enrichment analysis
was conducted on the top 500 DEGs of each group using GSEApy.

Lung primary tissue atlas integration and compression of
organoid samples

The scRNA-seq datafrom both duodenum fetal and adult primary tis-
sues were obtained from two research papers®*. The top 3,000 highly
variable genes were subsetted for dataintegration. Tointegrate all the
cells, we applied the scPoli method with the same parameters used in
the HEOCA atlasintegration. The scPolimodel was saved for the down-
stream comparison. For each organoid sample, the same set of variable
genes used inthe primary tissue atlas was chosen, and the scPoli query
was executed usingidentical parameters to those used in the primary
tissue atlas training model. The UMAP embedding was transformed
using the primary tissue atlas UMAP model. For each cell, the system
selected its 100 nearest neighbors from the primary tissue dataset.
The predicted cell type for the cell was assigned based on the tissue
that was most frequently observed amongits 100 nearest neighbors.

Dataset incorporation

Samples of scRNA-seq raw reads were mapped to the human genome,
and counts of the matrix were obtained. The same set of variable genes
used in HEOCA was chosen, and the scPoli* query was executed using
identical parameters to those used in the HEOCA training model. The
UMAP embedding was transformed using the HEOCA UMAP model.
For each cell, the system selected its 100 nearest neighbors from the
HEOCA dataset. The predicted cell type for the cell was determined by
assigningit the cell type that was most frequently observed among its
100 nearest neighbors at the level 2 cell-type classification. Similarly,
the predicted tissue for the cell was assigned based on the tissue that
was most frequently observed among its 100 nearest neighbors.

Reconstruction of matched sample reference in HEOCA

For each cell in the organoid protocols, organoid perturbation, and
disease samples, a matched HEOCA cell was reconstructed using the
top tenkNNin HEOCA. The mean expression of these ten neighbors was
calculated to represent the expression profile of the matched sample
reference in HEOCA. In addition, the mean kNN distance of these ten
neighbors was used to represent the cell’s distance to the HEOCA.

Ftest-based differential expression analysis between a sample
and HEOCA

To compare expression levels of the samples, the above-mentioned
matched sample reference in HEOCA was identified. The expression
difference per gene for each cell pair was calculated based on the
log-normalized expression values. For each gene, the variance over

the calculated expression difference per cell pair was compared with
the sum of squared expression differences normalized by the number
of cell pairs. An Ftest was applied to test for differential expression for
eachgene.

Organoid cytokines treatment analysis
scRNA-seqreads for each sample were mapped to the humangenome,
and gene counts were generated using CellRanger. These counts served
asinputforsc2heoca, with default settings used to map all samples to
HEOCA. During mapping, each cell was annotated with a level 2 cell
type, and the distance to HEOCA was calculated. Cell proportions were
determined based onthe mapping annotations. For the raw integration
of perturbation samples, three samples were merged, highly vari-
able genes wereidentified using Scanpy with default settings, and the
samples were integrated using the ComBat method. The sc2heoca
package with default settings was used to identify DEGs, and GO
enrichment analysis was performed using GSEApy on the DEGs of
eachgroup. DEGs between each treatment sample and control sample
were calculated using the Wilcoxon rank-sum test in Scanpy (v.1.9.3).
The scIBD database*®® was downloaded, and samples from healthy
individuals, and patients with colitis, Crohn’s disease and ulcerative
colitis were extracted. Only epithelial cells were selected for down-
stream analysis. Pseudo-bulk gene expression was calculated for each
individual, and the DEGs identified in the previous step were subset-
ted. The mean expression of these genes across patients was used to
compare gene expression between inflammatory and viral response
conditions.

Disease sample analysis
The disease sample analysis is similar to the sample incorporation
step. The raw count matrices were downloaded from the original
papers. The same set of variable genes used in HEOCA was chosen,
and the scPoli*® query was executed using identical parameters to
those used in the HEOCA training model. The UMAP embedding was
transformed using the HEOCA UMAP model. For each cell, the system
selected its ten nearest neighbors from the HEOCA dataset. The pre-
dicted cell type for the cell was determined by assigning it the cell type
that was most frequently observed among its ten nearest neighbors
at the level 2 cell-type classification. The predicted tissue for the cell
was assigned based on the tissue that was most frequently observed
among its ten nearest neighbors. For each cell, the mean distance of
itsten nearest neighbors was assigned as its mean distance to HEOCA.
In the analysis of DEGs between colon cancer organoid colono-
cytes and bronchial COPD organoid basal cells, we performed sepa-
rate subsetting for all colonocytes and basal cells. For each dataset,
we isolated the top 3,000 highly variable genes. We then integrated
these subsets of cells using the bbknn method™. To cluster the two
datasets, we applied the Leiden method with resolutions of 1and 2 in
two datasets. The clusters predominantly associated with the disease
were selected as disease state cells, while the remaining clusters were
categorized as normal state cells.

Drug target analysis

We used D2C* to score the expression levels of 2,395 drug target signa-
turesinsingle cells from the human organoid cell atlas and the human
lung cell atlas. D2C scores were scaled to mitigate scale differences
between different datasets in the atlas. We used the R package scDE-
CAF (v.0.99.0)* to select drug target signatures that exhibited global
covariationinone or more cell typesin HEOCA and HLCA primary tissue
atlases. The inputs to scDECAF were the scaled D2C z-scores and the
cellembeddings from the atlases. The shrinkage operatorin scDECAF
was set tolambda = exp(-1.3) based onreconstruction error plots made
available in the scDECAF package. We assigned a drug signature to a
celltypeif more than 50% of the cells from the cell type had asignature
score above median across all cell types. Multicellular drug target
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signatures were identified whether adrug signature was selectedinat
least two cell types. To assess druggability potential of organoid cell
types, we computed the cosine similarity for cell-type pairs in organoid
and primary tissue based on multicellular drug signatures identified
in primary tissue and organoid models.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The HEOCA (raw and normalized counts, integrated embedding,
cell type annotations and technical metadata) is publicly available
and can be downloaded at CELLXGENE (https://cellxgene.cziscience.
com/collections/b4d13dc2-9b75-401d-9d9a-6d1468c17d90), the Cell
Annotation Platform (CAP) (https://celltype.info/project/604) and
via Zenodo at https://doi.org/10.5281/zenodo0.8181495 (ref. 50). The
HEOCA core reference model and embedding for the mapping of new
data to the HEOCA and human intestinal organoid cell atlas can be
found viaZenodoat https://doi.org/10.5281/zenodo.8181495 (ref. 50).
The GRCh38 genome assembly can be found at https://www.ncbi.nlm.
nih.gov/datasets/genome/GCF_000001405.26/. The scRNA-seq data
of intestine organoid generated in this study have been deposited in
the Gene Expression Omnibus (GEO) database under the accession
number GSE287233.

Code availability

Code for scRNA-seq cell type annotationis available as a Python pack-
age, deposited at https://doi.org/10.5281/zenodo.15075590 (ref. 51)
and maintained via GitHub at https://github.com/devsystemslab/
snapseed. Code for mapping protocol dataand disease datato HEOCA
isavailable as aPython package via Zenodo at https://doi.org/10.5281/
zenodo.15075673 (ref. 52) and maintained at GitHub (https://github.
com/devsystemslab/sc2heoca), code for all the analysis in this paper
is available via Zenodo at https://doi.org/10.5281/zenodo.15075693
(ref.53) and via GitHub at https://github.com/devsystemslab/HEOCA.
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Extended Data Fig. 1| Analysis of scRNA-seq integration methods. (a) Example batch correction tests. (e-f) UMAP of the organoid atlas colored by publications

UMAP of tested integration methods and without any data integration (PCA). (e) and level 3 cell annotations (f). For boxplotsin c,d, p values from two-tailed
Dotsinall UMAP embeddings are colored by the level 2 cell type annotation. Mann-Whitney U test; 10 random repeats were performed; the center of the
(b) Example scIB benchmarking metrics for all tested integration methods. box represents the median; the bounds of the box indicate the 25% and 75%

(c) The boxplot displays the benchmarking results for ten scIB biology percentiles, while the whiskers show the minimum and maximum values within
conservation tests. (d) The boxplot shows the benchmarking results for ten scIB 1.5times the interquartile range.
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Extended DataFig. 2| Cell type annotation comparison between before and after integration. (a) Heatmap depicting sample based annotation and post-
integration annotation overlap. (b) Heatmap depicting HIOCA annotations and author annotation overlap normalized by column. (c) Heatmap depicting HLOCA
annotations and author annotation overlap normalized by column.
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Extended Data Fig. 3| Analysis of how scRNA-seq integration methods
are affected by sample variances. (a) UMAP example showing samples with
identical factor variances integrated using the scPoli method. (b) Boxplot

depicting the results of 20 scIB biology conservation benchmarks with consistent

factor variances. (c) Boxplot showing the results of 20 scIB batch correction
benchmarks with the same factor variances. (d) Boxplot summarizing the total
benchmarking results for scIB biology conservation and batch correction,

with consistent factor variances. (e) UMAP exampleillustrating samples with a
subset of cell number variance integrated using the scPoli method. (f) Boxplot
presenting the results of 20 scIB biology conservation benchmarks for samples
with a subset of cell numbers. (g) Boxplot showing the results of 20 scIB batch

correction benchmarks for samples with a subset of cell numbers. (h) Boxplot
summarizing the total benchmarking results for scIB biology conservation and
batch correction with asubset of cell numbers. (i-n) UMAPs of integration with
amedian subset of cell numbers, colored by (i) publication, (j) tissue, (k) stem
cellsource, (I) level 1 annotation, (m) level 2 cell annotations, and (n) level 3 cell
annotations. For boxplotsinb,c,d,f,g,h,20 random repeats were performed;

p values from two-tailed Mann-Whitney U test; the center of the box represents
the median; the bounds of the box indicate the 25% and 75% percentiles, while
the whiskers show the minimum and maximum values within 1.5 times the
interquartilerange.
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Extended Data Fig. 4| Pseudo-bulk analysis was performed on all collected
organoid scRNA-seq data, using both raw and scPoli embedding datasets.
(a-e) PCA plot showing pseudo-bulk transcriptomes from each organoid
single-cell RNA-seq sample, colored by: (a) tissue type, (b) stem cell source,
(c) scRNA-seq methods, (d) total counts in the sample, and (e) publication.

(f-j) PCA plot showing pseudo-bulk scPoli embedding all organoid samples,

colored by: (f) tissue type, (g) stem cell source, (h) scRNA-seq methods, (i) total
countsinthe sample, and (j) publication. (k) The bar plots display the adjusted
correlation coefficients between sample variance factors (such as sample counts,
stem cell source, scRNA-seq method, tissue type, and publication) and scPoli
embedding principal components (from left to right: PC1to PC4).
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Extended Data Fig. 6 | See next page for caption.
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Extended DataFig. 6 | Integrated intestine organoid atlas analysis and
comparison to primary intestine tissue. (a-b) UMAP of the intestine organoid
atlas colored by publications (a) and level 3 cell annotations (b). (c) Heatmap
showing marker gene expression for each level 2 cell type in the intestine
organoid atlas. Side stacked barplots show proportions of cell types at level
lannotation. (d) UMAP of the integrated intestine organoid atlas with cells
colored according to level 2 annotations. The stream arrows visualize the
inferred velocity flow of cell states, providing insights into cellular dynamics.
(e) Expression profiles along the pseudotime trajectory from stem cells to
enterocytes of ASCL2 (stem cell) and SI (enterocytes). The error bar indicated
the 95% confidence interval for the regression estimate. (f) Expression profiles
along the pseudotime trajectory from stem cells to colonocytes of ASCL2 (stem
cell) and CEACAM7 (colonocytes). The error bar indicated the 95% confidence
interval for the regression estimate. (g) UMAP of intestinal organoid atlas stem
cells, colored by stem cell source, tissue type, and Leiden cluster (from left to

right). (h) Dotplot showing the top 5 marker genes for each Leiden cluster of
stem cells in (g). (i) Heatmap illustrating GO enrichment analysis of differentially
expressed genes across the Leiden clusters of stem cells shownin (g). The
p-value was computed using Fisher's exact test. (j) UMAP of intestinal organoid
atlas enterocytes, colored by stem cell source, tissue type, and Leiden cluster
(from left to right). (k) Dotplot showing the top 5 marker genes for each Leiden
cluster of enterocytesin (j). (I) Heatmap illustrating GO enrichment analysis of
differentially expressed genes across the Leiden clusters of enterocytes shown
in (j). The p-value was computed using Fisher's exact test. (m) The heatmap
illustrates the relationship between summarized factors or protocols and the
proliferation of epithelial cell types. (n) A schematic diagramillustrating the
ASC-derived smallintestine organoid protocol and the conventional basal
culture medium. (0) Asummary of theimproved culture medium based on the
conventional basal culture medium.
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Extended DataFig. 7 | Integrated primary intestine tissue features. (a) The
UMAP visualization displays 18 fetal tissue samples and five adult tissue samples,
originating from two publications, projected onto fetal and adult primary

tissue single-cell objects, with cells colored according to different samples.

(b) Stacked bar plots provide a visual representation of the predicted
proportions of fetal and adult cells in all tissue samples. (c) The heatmap shows
the top differentially expressed genes in fetal and adult stem cells. (d) Similarly,

the heatmap shows differentially expressed genes in fetal and adult enterocytes.

(e) The top five enriched GO terms for differentially expressed genes in adult and
fetal stem cells. The p-value was computed using Fisher's exact test. (f) Similarly,
the top five enriched GO terms for differentially expressed genesinadult and
fetal enterocytes. The p-value was computed using Fisher's exact test.

(g) Scatter plotsillustrate the maximum fetal or adult cell type similarity

across allintestinal organoid samples. (h) The relationship between the age of
PSC-derived organoids and cell proportion and adult similarity. The error bar
indicated the 95% confidence interval for the regression estimate.
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Extended Data Fig. 8 | Integration and extended analysis of organoid protocol
datasets. (a) lleum organoid samples treated with TNF to promote Microfold
cell proliferation. On/Off-target bar plots display the proportions of predicted
cell types targeting primary tissues, with colors matching those in Fig. 2aand b.
Thescatter plotillustrates differentially expressed genes between the treatment
samples and HEOCA, highlighting genes upregulated in the treatment samples
inred and those upregulated in HEOCA in black. (b) Similar analysis to (a) for the
colon organoid sample using a scaffold-guided hydrogel chip model. (c) Similar
analysis to (a) for the lung alveolar organoid samples. (d) Similar analysis to (a)
for the lung airway organoid samples. (e) Experimental design for IL13 and IL4

treatment ileum organoid samples. The UMAP visualization of scRNA-seq data is

mapped to the organoid atlas and colored by predicted level 2 cell types and time
points, with abar plot showing the proportions of these cell types over the time
course. On/Off-target bar plots display the proportions of predicted cell types
targeting primary tissues, with colors matching those in Fig. 2a and b. The scatter
plotillustrates differentially expressed genes between the treatment samples
and HEOCA, highlighting genes upregulated in the treatment samplesin red and
those upregulated in HEOCA in black. (f) Similar analysis to (e) for the time course
colon organoid sample. (g) Similar analysis to (e) for the time course ileum
organoid sample. (h) Similar analysis to (e) for the IL22 treatment colon organoid
sample. The p-valuesin a-h were computed using the F test.
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highlighted. (b) Scatter plot compares DEGs between viral perturbation/HEOCA
and viral perturbation/control, with the top 20 genes from each comparison
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highlighted. The error bar in a,b indicated the 95% confidence interval for the
regression estimate.(c) The top 10 enriched GO terms in differentially expressed
genes between normal and colorectal cancer samples for colonocytes. (d) The
top 10 enriched GO terms in differentially expressed genes between normal

and COPD bronchial organoid (BO) samples for basal cells. The p-value was
computed using Fisher's exact test.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Analyzing pharmacological targets inintestinal and
lung organoid cells. (a) Assessing the druggability similarities and differences
between cell types in different organoid models by scoring drug signatures.
Drug target signatures from CHEMBL database were scored using drug2cell.
Heatmap of drug2cell drug signature z-scores in (b) intestine and (c) lung
subsets of HEOCA with global patterns of covariation in more than two cell types
(akamulticellular drug target signatures) identified by scDECAF method for
drug2cell, for ASC-derived, FSC-derived and PSC-derived organoid models.
Drugs are annotated by Anatomical Therapeutic Chemical (ATC) classification.
Drugs with unknown ATC categories are not shown. (d) Cell-of-origin agnostic

comparison of drug target signatures between lung and intestine organoids in
common and uncommon cell types between the two tissue types. Heatmap of
z-scores of multicellular drug signatures identified in lung and intestine. Drugs
are annotated by ATC classification. (e-f) Assessing the viability of organoid cell
types for drug screening in primary tissue by comparing multicellular drug target
signatures between lung organoid (HLOCA) and lung primary tissue (HLCA).

(e) Number of drug signatures found per cell type in lung organoid and primary
tissue. (f) Cosine similarity of multicellular drug target signatures for primary
tissue-organoid cell type pairs.
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core reference model and embedding for the mapping of new data to the HEOCA and human intestinal organoid cell atlas can moreover be found on Zenodo
(https://doi.org/10.5281/zen0d0.8181495). The GRCh38 genome assembly can be found under (https://www.ncbi.nlm.nih.gov/datasets/genome/
GCF_000001405.26/). The scRNA-seq data of intestine organoid generated in this study have been deposited in the Gene Expression Omnibus (GEO) database
under the accession number GSE287233

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or  N/A
other socially relevant

groupings

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

X Life sciences D Behavioural & social sciences D Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We collected all the representative scRNA-seq data sets of different human endoderm-derived organoids protocols that are accessible
Data exclusions  Quality control was applied to exclude cells with low quality. Detailed methods are described in the Methods section (page 38)

Replication For the mini colon-organoids, replicates were successfully performed as indicated in this previously published paper (https://www.cell.com/
cell-stem-cell/fulltext/S1934-5909(24)00184-X). lindividual replicates demonstrated a high degree of uniformity, highlighting the consistency
of the experimental procedures and reproducibility of the system. For the atlas we integrated the previously published samples into one
embedding to study cross-organoid-protocol overlap and reproducibility. For our generated differentiation and perturbation protocols we
used two separate successful controls for the experiments.

Randomization  This study is mainly an accumulative effort of existing published data for which a classical blinding strategy does not apply in our opinion. For
integration method validation and the factor effect integration validation, we randomly selected samples. Generally, all compared or
combined samples were integrated and analyzed with the same computational parameters and strategies. For integration method validation
and the factor effect integration validation, we randomly selected samples.

Blinding This study is mainly an accumulative effort of existing published data for which a classical blinding strategy does not apply in our opinion. All
combined samples were integrated and analyzed with the same computational parameters and strategies to ensure comparability.
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies X|[] chip-seq
Eukaryotic cell lines X[ ] Flow cytometry
Palaeontology and archaeology X D MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern
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Plants
Antibodies
Antibodies used TotalSeq™-C anti-human Hashtag oligos (HTOs) (1:500, Biolegend, 394661, 394663, 394665, 394667, 394669, 394671, 394673,
394675, 394677, 394679, 394683, 394685); TotalSeqTM hashtag antibodies (A0251-A0256, Biolegend) were used according to
manufacturer's instructions (0.5 mg per sample, https://doi.org/10.1016/j.stemcr.2024.06.006).
Validation Each lot of this antibody is quality control tested by immunofluorescent staining with flow cytometric analysis and the oligomer

sequence is confirmed by sequencing. TotalSeq™-C antibodies are compatible with 10x Genomics Chromium Single Cell Immune
Profiling Solution.

Relevant citations provided by the manufacturer:
TotalSeq™-C anti-human Hashtag oligos (HTOs) (Biolegend, 394661):

Liu C, et al. 2021. Cell. 184(7):1836-1857.€22. PubMed
Li SS, et al. 2022. Cell Host Microbe. 30:1173. PubMed
LiuY, et al. 2023. Nat Commun. 14:2179. PubMed
Collora JA, et al. 2023. Genome Res. . PubMed
Sudmeier LJ, et al. 2022. Cell Rep Med. 3:100620. PubMed
Yu B, et al. 2022. Cell. 185:4904. PubMed

Chow A 2023. Immunity. 56(1):93-106.e6. PubMed
Collora JA, et al. 2022. Immunity. 55:1013. PubMed
Witkowski M, et al. 2021. Nature. 600:295. PubMed
Wagner Kl, et al. 2022. Cell Rep. 38:110214. PubMed
Sen K, et al. 2021. Front Immunol. 12:733539. PubMed
Shangguan S, et al. 2021. Elife. 10:. PubMed

TotalSeqTM hashtag antibodies (A0251, Biolegend):

Lombardi O, et al. 2022. Cell Rep. 41:111652. PubMed

Tamaoki N, et al. 2023. Cell Rep Methods. 3:100460. PubMed

Law AMK, et al. 2022. Adv Sci (Weinh). 9:e2103332. PubMed
Meyer M, et al. 2020. Cell Syst. 0.713194444. PubMed

Kaufmann M, et al. 2021. Med. 2(3):296-312.e8. PubMed

Stuart T, et al. 2019. Cell. 177:1888. PubMed

Sui L, et al. 2021. JCI Insight. 6:e141553. PubMed

Benjamin Kramer, et al. 2021. Immunity.. Online ahead of print. PubMed
Witkowski MT, et al. 2020. Cancer Cell. 37:867. PubMed

Nadeu F, et al. 2022. Nat Med. 28:1662. PubMed

Still C 2nd, et al. 2021. Cell Reports Medicine. 2(7):100343. PubMed
Yao C, et al. 2020. Cell Reports. 34(1):108590. PubMed

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) Time course: HUB-02-A2-040, HUB-04-A2-001, HUB-HS-02-A2-M21-00050, HUB-HS-02-A2-M21-00225, HUB-HS-02-A2-
M21-00081, HUB-HS-02-A2-M21-00164, HUB-HS-02-A2-M21-00244, HUB-HS-02-A2-M21-00258, HUB-HS-02-A2-M21-00271,
HUB-HS-02-A2-M21-00047. Tissue material was originally obtained from patients included in HUB-Cancer protocol (12- 093).
Additional details can be found under this Preprint: https://www.biorxiv.org/content/10.1101/2023.12.18.572103v1.full
Transplanted intestinal organoids: iPSC72.3, H9
ASC organoids for differentiation and perturbation experiments were derived from the healthy ileum tissue of a 50-year old
female who underwent resection of a malignant tumor of the colon ascendens.

Authentication ASC organoids for differentiation and perturbation experiments were derived from the healthy ileum tissue of a 50-year old
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Authentication

female. The untransformed status of the origin tissue was confirmed by a pathologist.

Mycoplasma contamination All ASC cultures used in the differentiation and perturbation experiments were tested negative for mycoplasma.

Commonly misidentified lines -

(See ICLAC register)

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in

Research

Laboratory animals

Wild animals

Reporting on sex

Field-collected samples

Ethics oversight

Immunocompromised NOD-SCID IL2Rg null (NSG) mice (strain no. 0005557) were used in organoid transplantation experiments.

In accordance with the guidelines for facilities, housing, and environmental management set forth by the Guide for the Care & Use of
Laboratory Animals, the University of Michigan Unit for Laboratory Animal Medicine (ULAM) uses an established set of standard
lighting practices in all animal housing rooms on campus. Housing rooms employ centrally controlled and monitored light cycles that
utilize a 12-hour light / 12-hour dark photoperiod. Temperatures are maintained within plus or minus 2 degrees throughout a range
of ~18-26°C with 30-70% humidity.

We do not use wild animals in this study.

Mice were solely used for transplantation experiments for human organoids and we therefore did not analyze any potentially male or
female biased mouse gene expression data of either sex in this study.

We do not use field-collected samples in this study.

Institutional Animal Care and Use Committee (Protocol # PRO0O0006609)

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Plants

Seed stocks

Novel plant genotypes

Authentication

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
IVDVg;CK;/;gé”([J;;y atthentication-procedures for-each-seed-stock-used-or-novel-genotype-generated.-Describe-any-experiments-used-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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